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Abstract. Algebraic multigrid (AMG) is one of the most widely used solution techniques for
linear systems of equations arising from discretized partial differential equations. The popularity
of AMG stems from its potential to solve linear systems in almost linear time, that is with an
O(n) complexity, where n is the problem size. This capability is crucial at the present, where the
increasing availability of massive HPC platforms pushes for the solution of very large problems.
The key for a rapidly converging AMG method is a good interplay between the smoother and the
coarse-grid correction, which in turn requires the use of an effective prolongation. From a theoretical
viewpoint, the prolongation must accurately represent near kernel components and, at the same
time, be bounded in the energy norm. For challenging problems, however, ensuring both these
requirements is not easy and is exactly the goal of this work. We propose a constrained minimization
procedure aimed at reducing prolongation energy while preserving the near kernel components in the
span of interpolation. The proposed algorithm is based on previous energy minimization approaches
utilizing a preconditioned restricted conjugate gradients method, but has new features and a specific
focus on parallel performance and implementation. It is shown that the resulting solver, when used
for large real-world problems from various application fields, exhibits excellent convergence rates and
scalability and outperforms at least some more traditional AMG approaches.
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1. Introduction. With the increasing availability of powerful computational
resources, scientific and engineering applications are becoming more demanding in
terms of both memory and CPU time. For common methods used in the numerical
approximation to partial differential equations (e.g., finite difference, finite volume, or
finite element), the resulting approximation can easily grow to several millions or even
billions of unknowns. The efficient solution to the associated sparse linear system of
equations

(1.1) Ax= b,

either as a stand-alone system or as part of a nonlinear solve process, often represents
a significant computational expense in the numerical application. Thus, research on
sparse linear solvers continues to be a key topic for efficient simulation at large scales.
One of the most popular sparse linear solvers is algebraic multigrid (AMG) [6, 7, 29]
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A2562 JANNA, FRANCESCHINI, SCHRODER, AND OLSON

because of its potential for O(n) computational cost for problems with n degrees-of-
freedom.

A fast converging AMG method relies on the complementary action of relax-
ation (e.g., with weighted Jacobi) and coarse grid correction, which is a projection
step focused on eliminating the error that is not reduced by relaxation. Even in a
purely algebraic setting, the main algorithmic decisions in multigrid are often based
on heuristics for elliptic problems. As a result, for more complex applications, tradi-
tional methods often break down, requiring additional techniques to improve accuracy
with a careful eye on overall computational complexity.

Even with advanced AMG methods, robustness remains an open problem for a
variety of applications, especially in parallel. Yet, there have been several advances in
recent years that have significantly improved convergence in a range of settings. Adap-
tive AMG [21] and adaptive smoothed aggregation [10] are among early attempts to
assess the quality of the AMG setup phase during the setup process, with the ability
to adaptively improve the interpolation operators. Later works focus on extending
the adaptive ideas to more general settings [22], and in particular, Bootstrap AMG
[4] further develops the idea of adaptive interpolation with least-squares interpolation
coupled with locally relaxed vectors and multilevel eigenmodes. Other advanced ap-
proaches have a focus on specific AMG components, such as energy minimization of
the interpolation operator [23, 35, 30, 28, 25], generalizing the strength of connection
procedure [27, 5], or by considering the nonsymmetric nature of the problem directly
[26, 24].

While AMG robustness and overall convergence has improved with combinations
of the advances above, the overarching challenge of controlling cost is persistent.
In this paper, we make a number of related contributions with a focus on AMG
effectiveness and efficiency at large scale. Our key contributions are as follows:

\bullet The quality and sparsity of tentative interpolation is improved through a
novel utilization of sparse QR and a new process for sparsity pattern expan-
sion that targets locally full-rank matrices for improved mode interpolation
constraints.

\bullet We accompany the energy minimization construction of interpolation with
new energy and convergence monitoring, thus limiting the total cost.

\bullet We apply a new preconditioning technique for the energy minimization
process based on Gauss--Seidel applied to the blocks.

\bullet We present the nontrivial and efficient parallel implementation in detail; and
\bullet we demonstrate improved convergence and computational complexity with

several large scale experiments.
The remainder of this paper is as follows. We begin with the basics of AMG in
section 2. In section 3, we derive the energy minimization process based on QR fac-
torizations and introduce a method for monitoring reduction of energy in practice.
Finally, we conclude with several numerical experiments in section 5 along with a
discussion on performance.

2. Introduction to classical AMG. The effectiveness of AMG as a solver
depends on the complementary relationship between relaxation and coarse-grid
correction, where the error not reduced by relaxation on the fine grid (e.g., with
weighted-Jacobi or Gauss--Seidel) is accurately represented on the coarse grid, where
a complementary error correction is computed. For a more in-depth introduction to
AMG; see the works [11, 31]. Here, we focus our description of AMG on the coarse
grid and interpolation setup, which are most relevant to the rest of this paper.
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PARALLEL ENERGY-MINIMIZATION PROLONGATION FOR AMG A2563

Constructing the AMG coarse grid begins with a partition of the n unknowns of
A into a C-F partition of nf fine nodes and nc coarse nodes: \{ 0, . . . , n - 1\} = \scrC \cup \scrF .
From this, we assume an ordering of A by F-points followed by C-points:

(2.1) A=

\biggl[ 
Aff Afc

AT
fc Acc

\biggr] 
,

where, for example, Aff corresponds to entries in A between two F-points. We also
assume A is SPD so that Acf =AT

fc. In classical AMG, prolongation takes the form

(2.2) P =

\biggl[ 
W
I

\biggr] 
,

where W must be sparse (for efficiency) and represents interpolation from the coarse
grid to fine grid F -points.

In constructing prolongation of the form (2.2), there are two widely accepted
guidelines, the so-called ideal [9, 37] and optimal [36, 8] forms of prolongation. Al-
though both of these are not feasible in practical applications, leading to very ex-
pensive and dense prolongation operators, the concepts behind their definition are
valuable guides for constructing effective P .

Ideal prolongation is constructed by starting with the above C-F partition and
constructing Pid as

(2.3) Pid =

\biggl[ 
 - A - 1

ff Afc

I

\biggr] 
.

Making Pid the goal for interpolation is motivated by Corollary 3.4 from the theoretical
work [14]. Here, the main assumption is a classical AMG framework where P is of the
form in (2.2).1 In this setting, the choice of W =  - A - 1

ff Afc minimizes the two-grid
convergence of AMG relative to the choice of P , i.e., relaxation is fixed. Motivating
our later energy minimization approach, Pid can be viewed as having zero energy
rows, as APid is zero at all F-rows.

With optimal interpolation, the goal of interpolation is to capture the algebra-
ically smoothest modes in span(P ), i.e., the modes left behind by relaxation. More
specifically following [8], let v1, v2, . . . , vn be the ordered eigenvectors of the general-
ized eigenvalue problem Ax= \lambda \~Mx, where \~M is the symmetrized relaxation matrix.
(See [8] for more details.) Then, the two-grid convergence of AMG is minimized if

(2.4) span(P ) = range(v1, v2, . . . , vnc
).

Note, that no assumptions on the structure of P are made, as in (2.2). Motivating
our later energy minimization approach, (2.4) indicates that span(P ) should capture
low-energy modes relative to relaxation, which our Jacobi or Gauss--Seidel precon-
ditioned energy minimization approach will explicitly target. Moreover, our energy
minimization approach will incorporate constraints which explicitly force certain vec-
tors, corresponding to the smallest eigenvalues, to be in span(P ).

The idea of energy minimization AMG with constraints has been exploited for
both symmetric and nonsymmetric operators in several works [23, 35, 30, 28, 25], and,
though requiring more computational effort than classical interpolation formulas, of-
ten provides improved preconditioners that balance the extra cost.

1The other assumptions are specific choices for the map to F-points S = [I,0], for the map to
C-points R= [0, I], and for relaxation X = \| A\| I.
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A2564 JANNA, FRANCESCHINI, SCHRODER, AND OLSON

Table 3.1

Symbols used in this section.

Symbol Description

A matrix

a(r) column vector containing the nonzeros of A ordered row-wise

a(c) column vector containing the nonzeros of A ordered column-wise
\scrA nonzero pattern of A

A binary matrix obtained replacing the nonzeros of A with ones
v vector

v vector containing only the nonzeros of v

3. Energy minimization prolongation. To help the reader with the heavy
notation needed for this section, Table 3.1 provides a reference for the main symbols.

The energy minimization process combines the key aspects of ideal and optimal
prolongation. To define this, we first introduce V , a basis for the near kernel of A or
the lowest energy modes of A. Next, the optimization problem is as follows: find

(3.1) P = argmin
P\in \scrP 

\bigl( 
tr(PTAP )

\bigr) 
\rightarrow objective function,

subject to the constraint

(3.2) V \subseteq range(P ).

Here, the space \scrP denotes all possible sparse matrices with nonzero entries only at
specified locations defined by the nonzeros of a predetermined binary matrix P k.

Indeed, for practical use in AMG, the prolongation operator must be sparse,
therefore construction begins by defining a sparse nonzero pattern for P . Assume that
a strength of connection (SoC) matrix S is provided where nonzero entries denote a
strong coupling between degrees-of-freedom in the discretization matrix [29, 27, 5].
Next, let T be a tentative prolongation operator with nonzero pattern \scrT , to be used
as an initial guess for P .2 We next obtain an enlarged sparsity pattern \scrP by growing
\scrT to include all strongly connected neighbors up to distance k. Denoting with P the
binary matrix obtained from P by replacing its nonzeros with unitary entries, this is
equivalent to

(3.3) P k = spones(SkT ),

where \scrP is defined by the pattern of P k (see [28]) and spones(\cdot ) transforms the
argument into a corresponding binary matrix, i.e., with the same pattern.

For a constraint condition satisfying (3.2), we start by splitting the near kernel
basis V with the same C-F splitting as in (2.1):

(3.4) V =

\biggl[ 
Vf

Vc

\biggr] 
.

Recalling the form of interpolation (2.2), the near kernel requirement for P becomes

(3.5) W Vc = Vf ,

2See subsection 3.2 for our contributions regarding the construction of T , which is based on the
adaptive algorithm [22, 17]. T can be defined similarly to the tentative prolongation from smoothed
aggregation AMG [33] in that T interpolates the basis V , but needs further improvement, for example,
with energy minimization.
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PARALLEL ENERGY-MINIMIZATION PROLONGATION FOR AMG A2565

which is a set of nf conditions on the rows of W . By denoting wT
i as the ith row of

W (and P ) and vTi as the ith row V , condition (3.5) is then exploited row-wise as

(3.6) V T
c wi = vi \forall i\in \scrF .

Using the sparsity pattern \scrP , we rewrite (3.6) for only the nonzeros in each row wi.
Letting the index set \scrJ i be the nonzero column indices in the ith row of P , this
becomes

(3.7) Vc(\scrJ i, :)
Twi = vi \forall i\in \scrF ,

where wi = wi(\scrJ i) collects only the nonzeros of wi. It is important to note that for
each of the nf fine points, the constraints (3.7), are independent of each other, because
each entry of W appears in only one constraint. Next, we write the constraints in the
following matrix form:

(3.8) \widetilde BT p(r) = g(r),

where p(r) is the row-wise vectorization of P , g(r) collects the vi in (3.7) into a single
vector, and where \widetilde BT is a block diagonal matrix composed of Vc(\scrJ i, :)

T due to the
independence of constraints.

Lastly, we describe the reduced linear system framework for approximating (3.1).
Minimizing (3.1) is equivalent to minimizing the energy of the individual columns of
P on the prescribed nonzero pattern:

(3.9) pi = argmin
pi\in \scrP i

pTi Api,

where pi is the ith column of P and \scrP i is the sparsity pattern of column i. The generic
pi represents one term in the trace of PTAP in (3.1).

Next, let \scrI i be the set of nonzero row indices of the ith column of W , and let
hi be the vector collecting the nonzero entries of the ith column of W . Then the
minimization in (3.9) defines hi with

(3.10) A(\scrI i,\scrI i)hi = - A(\scrI i, i) \forall i\in \scrC ,

where A(\scrI i,\scrI i) is a square, relatively dense, submatrix of A corresponding to the
allowed nonzero indices \scrI i and A(\scrI i, i) is a vector corresponding to the ith column
of A at the allowed nonzero indices. Also in this case, each column of P satisfies
(3.9) independently. Thus, denoting by f (c) the vector collecting each  - A(\scrI i, i), the
minimization (3.9) is recast as

(3.11) Kp(c) = f (c),

where K is block diagonal with A(\scrI i,\scrI i) as the ith block and p(c) is the column
ordered version of p(r).

The two conditions, one on the range of P in (3.8) and one on the minimality of
the objective function in (3.11), together form a constrained minimization problem,
whose solution is the desired energy minimal prolongation. Casting this problem using
Lagrange multipliers results in the saddle point system

(3.12)

\biggl[ 
K B
BT 0

\biggr] \biggl[ 
p(c)

\lambda 

\biggr] 
=

\biggl[ 
f (c)

g(c)

\biggr] 
.
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A2566 JANNA, FRANCESCHINI, SCHRODER, AND OLSON

The elements in (3.12) are the same as those defined in (3.8) and (3.11), with
the exception that B is \widetilde B reordered to operate on the column-ordered vector p(c),
and that \lambda is the vector of Lagrange multipliers whose values are not needed for
the purpose of setting up the prolongation. We emphasize that, with the entries of
p(c) enumerated columnwise with respect to P , K is block diagonal. Likewise, if the
vectorization of P is obtained following the rows of P , then B becomes block diagonal.
Unfortunately, there is no sorting able to make both K and B block diagonal at the
same time. Nevertheless, it is possible to take advantage of this underlying structure in
the numerical implementation, as will be shown later. Leveraging the block structure
of B is also important, because, as we will see in section 3.1, our algorithm to minimize
energy requires several applications of the orthogonal projector given as

(3.13) \Pi B = I  - B(BTB) - 1BT .

The system (3.12) follows closely the method from [28]. In sections 3.2--3.4, we
outline our proposed improvements to energy minimization.

3.1. Minimization through Krylov subspace methods. Following [28], en-
ergy minimization proceeds by starting with a tentative prolongation, T , that satisfies
the near kernel constraints (see (3.5)). From here on, we will vectorize matrices only
columnwise, unless clearly stated, thus the superscript (c) will be ignored.

Denoting by t the tentative prolongation in vector form these constraints read

(3.14) BT t= g.

Defining the final prolongation as the tentative t plus a correction \delta p gives

(3.15) p= t+ \delta p.

Then, the problem is recast as finding the optimal correction \Delta P \ast :

(3.16) \Delta P \ast = argmin
\Delta P\in \scrP 

\bigl( 
tr((T +\Delta P )TA(T +\Delta P ))

\bigr) 
,

subject to the constraint BT \delta p = 0, where \delta p is the vector form of \Delta P . By recalling
the definition of T---i.e., T = [WT

0 , I]T---and that \Delta P has nonzero components only
in \Delta W---i.e., \Delta P = [\Delta WT ,0]T---the C-F partition (2.1) of tr(PTAP ) reads

tr((T +\Delta P )TA(T +\Delta P ))

= tr(\Delta WTAff\Delta W ) + 2tr(WT
0 Aff\Delta W ) + 2tr(AT

fc\Delta W )
\underbrace{}  \underbrace{}  

dependent on \Delta P

+ tr(WT
0 AffW0) + 2tr(WT

0 Afc) + tr(Acc)\underbrace{}  \underbrace{}  
independent of \Delta P

.

(3.17)

Using the preset nonzero pattern for \Delta W , the problem is rewritten in vector from to
minimizie only the terms depending on \Delta P :

(3.18) argmin
\delta w

(\delta wTK\delta w+ 2wT
0 K\delta w+ 2fT \delta w),

subject to the constraint

(3.19) BT \delta w= 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARALLEL ENERGY-MINIMIZATION PROLONGATION FOR AMG A2567

where K and f are defined as in (3.12) and \delta w and w0 are the vector forms of \Delta W
and W0, respectively. Note that the matrix form of \delta w is nonzero only at fine nodes
and satisfies the sparsity pattern of \scrP at fine nodes.

This minimization can be performed using (preconditioned) conjugate gradients
by ensuring that both the initial solution and the search direction satisfy the constraint
[28]. To do this, return to the orthogonal projector

(3.20) \Pi B = I  - B(BTB) - 1BT ,

and apply conjugate gradients to the singular system

(3.21) \Pi BK\Pi B\delta w= - \Pi B(f +Kw0),

starting from \delta w= 0. Due to its block diagonal structure, it is straightforward to find
a QR decomposition of B =QR, and the projection simply becomes

(3.22) \Pi B = I  - QQT .

Finally, introducing K\Pi =\Pi BK\Pi B and \=f = f +Kw0, the Krylov subspace built
by conjugate gradients is

(3.23) \scrK m = span\{ \Pi B
\=f,K\Pi 

\=f,K2
\Pi 
\=f, . . . ,Km

\Pi 
\=f\} .

This is equivalent to applying the nullspace method [3] to the saddle-point system
(3.12).

3.2. Improved tentative interpolation \bfitT and orthogonal projection \Pi \bfitB 

with sparsity pattern expansion and sparse \bfitQ \bfitR . A crucial point for energy min-
imization interpolation is the availability of a tentative prolongation T that satisfies
the near kernel representability constraint (3.5). While this is relatively straightfor-
ward for scalar diffusion equations where V has only one column and T corresponds
to nonoverlapping basis functions, it is not trivial for vector-valued PDEs such as elas-
ticity. One specific difficulty is that while forming the ith constraint equation (3.7),
we must ensure that Vc(\scrJ i, :) is full rank. If it is not full rank, then no prolongation
operator is able to satisfy (3.5) and the solution to (3.12) is not possible, in general.
We consider two possible remedies:

1. Add strongly connected neighbors to the pattern of the ith row of P to enlarge
\scrJ i until Vc(\scrJ i, :) is full-rank (i.e., sparsity pattern expansion) or

2. compute the least square solution of (3.7) as is done in [28].
A novel aspect of this work is our pursuit of sparsity pattern expansion. We

find that this careful construction of the sparsity pattern, which guarantees that
each constraint is exactly satisfied as Vc(\scrJ i, :) is always full rank, greatly improves
performance on some problems.

To accomplish this task, we adopt a dynamic-pattern, least-squares fit (LSF) pro-
cedure that satisfies (3.5) or, equivalently, (3.14). For each row of W (corresponding
to a fine node i), this is equivalent to satisfying the local dense system (3.7). For
simplicity, we rewrite (3.7) by dropping the row subscript i, with w = wi and v = vi,
yielding

(3.24) Bw= v,

where B= Vc(\scrJ i, :)
T corresponds to a diagonal block of BT in (3.12), when the nonzero

entries of P are enumerated row-wise.
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Algorithm 3.1. Tentative prolongation set-up.

1: procedure PTent SetUp(S, V , lmax)
2: input: S -- strength of connection matrix
3: V -- near kernel modes
4: lmax -- maximum interpolation distance

5: output: \widehat t -- initial tentative prolongation
6: for all fine nodes i do
7: Set l= 0;
8: while l < lmax do

9: Set l= l+ 1;
10: Form \scrN i with the strong neighbors of i up to distance l;
11: Select the best columns of Vc(\scrN i, :)

T using max vol to form B;
12: Compute the least-squares solution to Bw= v;
13: if \| v - Bw\| 2 = 0 then

14: Assign w
T as i-th row of \widehat t;

15: break;
16: end if

17: end while

18: end for

19: end procedure

Considering this generic fine node represented by (3.24), if there are a sufficient
number of coarse node neighbors, then B has more columns than rows. Hence if we
assume a full rank B, then (3.24) is an underdetermined system and can be solved
in several ways. In order to have a sparse solution w, we choose a minimal set of
columns of B using the max vol algorithm [19, 16] to have the best basis. Here, we
satisfy (3.24) exactly. We note that a related max vol approach to computing C-F
splittings is used in [8].

Remark 3.1. We adopt this form of a QR factorization with max vol, that is as
sparse as possible, in order to improve the complexity of our algorithm and quality of
T . While it is a relatively minor change to the algorithm's structure, we count it as
a useful novelty of our efficient implementation.

If, on the contrary, the number of neighboring coarse nodes is not sufficient (v /\in 
span(B)), then (3.24) cannot be satisfied because it is overdetermined. This may
occur not only when B is skinny, i.e., the number of columns is smaller than the
number of rows, but more often because B is rank deficient even if it has a larger
number of columns, i.e., it is wide. In elasticity problems and, in particular, with
shell finite elements, this issue arises often in practice with standard distance one
coarsening, where during the coarsening process, some fine nodes may occasionally
remain isolated. Our strategy is to gradually increase the interpolation distance for
violating nodes where v /\in span(B), thus widening the interpolatory set (i.e., adding
columns to B) where it is necessary. Algorithm 3.1 describes how to set-up \widehat t, the
vector form of initial tentative prolongation \widehat T . (Algorithm 3.2, described later, will
further process \widehat T for the final tentative prolongation T ).

Remark 3.2. Avoiding a skinny or rank deficient local B block is also important
for the construction of the orthogonal projection \Pi B = I  - B(BTB) - 1BT that maps
vectors of R

n to Ker(BT ). Note that \Pi B is used not only to correct the conjugate
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PARALLEL ENERGY-MINIMIZATION PROLONGATION FOR AMG A2569

gradients search direction, but also to ensure the initial prolongation satisfies the near
kernel constraint. In general, the size of B during energy minimization is larger than
when constructing tentative prolongation because of the additional sparsity pattern
expansion in (3.3). Thus, this ``rank-deficiency"" issue is ameliorated, but there are
pathological cases where it has been observed in practice.

We now describe our procedure for computing local blocks of \Pi B , called \Pi B, and
a single row of the final tentative prolongation T , called w

T
0 . The global procedure to

build T and \Pi B is then obtained by repeating this local algorithm for each fine row.
Denote by \widehat wT

0 the starting tentative prolongation row. We use the word starting,

because, in general, we can receive a tentative prolongation that does not satisfy the
constraint. That is, we may have

(3.25) B\widehat w0 \not = v.

Denote by nl and ml the dimensions of the local system, so that B\in R
nl\times ml . To fulfill

condition (3.24), we must find a correction to \widehat w0, say \delta , such that

(3.26) B\delta = v - B\widehat w0 = r

and then set

(3.27) w0 = \widehat w0 + \delta .

To enforce condition (3.19) efficiently, we construct an orthonormal basis of range(B),
say Q, that gives rise to the desired local orthogonal projector:

(3.28) \Pi B = I  - QQT .

If the prolongation pattern is large enough, the vast majority of the above local
problems will be such that nl \leq ml with B being also full-rank, i.e., rank(B) = nl.
Thus, an economy-size QR decomposition is first performed on B, B = QR with
Q \in R

nl\times ml and R \in R
ml\times ml , and Q is used to form the local projector. Then,

through the same QR decomposition, we compute \delta as the least norm solution of the
underdetermined system (3.26):

(3.29) \delta = (BT
B) - 1

B
T
r= (RTQTQR) - 1RTQT

r=R - 1QT
r.

Note that any solution to (3.26) would be equivalent, as the optimal choice in terms
of global prolongation energy is later computed by the restricted CG algorithm. Since
the initial tentative prolongation arises from the LSF set-up, it should already fulfill
(3.26) and r\equiv 0. However, in the most difficult cases even extending the interpolatory
set with large distance lmax is not sufficient to guarantee an exact interpolation of the
near kernel for all the fine nodes. For these fine nodes--- i.e., when nl > ml or B is
not full rank---we compute an SVD decomposition of B:

(3.30) B=U\Sigma V T .

From the diagonal of \Sigma , we determine the rank of B, say kl, and use the first kl
columns of U to form Q and thus \Pi B. From a numerical viewpoint, the rank is the
number of singular values larger than 1/condmax times the largest singular value. In
our numerical experiments, we used condmax = 1010. The value of condmax has a
negligible impact on the overall AMG convergence. It is enough to avoid too small
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A2570 JANNA, FRANCESCHINI, SCHRODER, AND OLSON

Algorithm 3.2. Energy minimization set-up.

1: procedure EMIN SetUp(B, g, \widehat t)
2: input: B -- block diagonal constraint matrix, as in (3.14)
3: g -- constraint right-hand side

4: \widehat t -- initial tentative prolongation
5: output: \Pi B -- projection matrix, constructed blockwise
6: t -- final tentative prolongation
7: for all fine nodes i do
8: Gather B, v and \widehat w0 for row i, as in (3.25);
9: Compute r= v - B\widehat w0;
10: FAIL QR = false;
11: if nl \geq ml then

12: Compute economy size QR of B: B=QR;
13: if rank(R)<ml then

14: Set FAIL QR = true;
15: else

16: Compute \delta =R - 1QT
r;

17: end if

18: end if

19: if nl <ml or FAIL QR then

20: Compute SVD of B: B=U\Sigma V T ;
21: Determine k= rank(B) using the diagonal of \Sigma ;
22: Set Q=U(:,1 : k);
23: Compute \delta = V \Sigma \dagger UT

r;
24: end if

25: Compute w0 = \widehat w0 + \delta and insert w
T
0 as row i of t;

26: Set ith block of \Pi B as I  - QQT ;
27: end for

28: end procedure

values (e.g., \leq 104), which prevent the correct representation of the kernel, or too
large values (e.g., \geq 1014), which may cause too large weights in T . Finally, since
in this case it could be impossible to satisfy the constraint because the system is
overdetermined, we use the least square solution to (3.26) to compute the correction
for \widehat w0:

(3.31) \delta = V \Sigma \dagger UT
r.

It is important to recognize that for these specific fine nodes, energy minimization
cannot reduce the energy, because the constraint does not leave any degree of freedom.
Consequently, this situation should be avoided when selecting the coarse variables and
the prolongation pattern, because a prolongation violating the near kernel constraint
will likely fail in representing certain smooth modes. The pseudocode to set-up \Pi B

and correct the initial tentative prolongation T (after Algorithm 3.1) is provided in
Algorithm 3.2.

3.3. Improved stopping criterion and energy monitoring for CG-based

energy minimization. Stopping criteria plays an important role in the overall cost
and effectiveness of energy minimization. Here, we introduce a measure for monitoring
energy and halting in the algorithm.
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Since CG often converges quickly for energy minimization, it is common to fix the
number of iterations in advance [23, 28]. However, in the case of a more challenging
problem, several iterations may be needed, thus requiring an accurate stopping crite-
rion. One immediate option is to use the relative residual, yet this may not be a close
indicator of energy. In the following, we analyze CG for a generic Ax = b; however,
our observations extend to PCG as well.

In the CG algorithm, once the search direction pk is defined at iteration k, the
scalar \alpha is computed:

(3.32) \alpha k =
pTk rk
pTkApk

,

in such a way that the new approximation xk+1 = xk +\alpha kpk minimizes the square of
the energy norm of the error, i.e.,

(3.33) Ek = (xk  - h)TA(xk  - h),

where h = A - 1b is the true solution. The difference in energy \Delta Ek+1 = Ek+1  - Ek

between two successive iterations k and k+ 1 can be computed as

\Delta Ek+1 = (xk + \alpha kpk)
TA(xk + \alpha kpk) - 2bT (xk + \alpha kpk) - xT

kAxk + 2bTxk

= 2\alpha kx
T
kApk + \alpha 2

kp
T
kApk  - 2\alpha kb

T pk = - 2\alpha kr
T
k pk + \alpha 2

kp
T
kApk

= \alpha k( - 2rTk pk + \alpha kp
T
kApk) = - \alpha k(p

T
k rk) = - 

(pTk rk)
2

pTkApk
< 0.

(3.34)

From (3.32) and (3.34), it is possible to measure, with minimal cost, the energy
decrease provided by the (k+1)st iteration. Indeed, by noting that \alpha k is computed as
the ratio between the two values \alpha num = pTk rk and \alpha den = pTkApk, the energy decrease
reads

(3.35) \Delta Ek+1 =
\alpha 2
num

\alpha den
.

The relative value of the energy variation with respect to the initial variation (first
iteration) is monitored and convergence is achieved when energy is sufficiently reduced:

(3.36)
\Delta Ek

\Delta E1
\leq \tau 

for a small user-defined \tau .

3.4. Improved preconditioning for CG-based energy minimization. Be-
fore introducing PCG, we present some important properties of matrices K and B,
that we leverage in the design of effective preconditioners for energy minimization. In
particular, we will see that, thanks to the nonzero structures of K and B, pointwise
Jacobi or Gauss--Seidel iterations prove particularly effective in preconditioning the
projected block \Pi BK\Pi B .

Let us assume that the vector form of prolongation p has been obtained by col-
lecting the nonzeroes of P row-wise, so that B is block diagonal. Denoting by Q the
matrix collecting an orthonormal basis of range(B), and Z an orthonormal basis of
ker(B), by construction we have

(3.37) [Q Z][Q Z]T = [Q Z]T [Q Z] = I,
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{

Fig. 3.1. Nonzero pattern of the columns of B, Q, and Z corresponding to a specific row of the
prolongation P .

i.e., the matrix [Q Z] is square and orthogonal. Moreover, since B is block diagonal,
bothQ and Z are block diagonal and can be easily computed and stored. We note that,
by construction, each column of Q and Z refers to a specific row of the prolongation,
and, due to the block diagonal pattern chosen for B, also each column of Q and Z is
nonzero only in the positions corresponding to the entries of p collecting the nonzeroes
of a specific row of P , as is schematically shown in Figure 3.1. More precisely, using
the same notation as in (3.7), let us define \scrL i as the set of indices in p corresponding
to the nonzero entries in the ith row of P so that

(3.38) p(\scrL i) = P (i,\scrJ i)

and define \scrJ B,i and \scrJ Z,i as the set of columns of B and Z, referring to the ith row
of P . Then,

B(k,\scrJ B,i) = 0
Q(k,\scrJ B,i) = 0
Z(k,\scrJ Z,i) = 0

\right\} 
 
 if k /\in \scrL i.(3.39)

We are now ready to state two theorems that will be useful in explaining the
choice of our preconditioners.

Theorem 3.1. The diagonal of the projected matrix ZTKZ is equal to the pro-

jection of the diagonal of K:

(3.40) diag(ZTKZ) = diag(ZTDKZ),

where DK is the matrix collecting the diagonal entries of K. Moreover, ZTDKZ is a

diagonal matrix.

Proof. Let us consider the block of columns of Z relative to row i, that is Z(:, JZ,i),
remembering that it is nonzero only for the row indices in \scrL i. As a consequence, the
square block Hi obtained by pre- and postmultiplying K by Z(:, JZ,i) is computed as

(3.41) Hi(j, k) =
\sum 

r\in \scrL i

\Biggl( 
\sum 

s\in \scrL i

Z(s, k)K(r, s)

\Biggr) 
Z(r, j) for j, k \in \scrJ Z,i.

However, K(r, s) for r, s\in \scrL i represents the connection between P (i, jr) and P (i, js),
which is nonzero only for jr = js, i.e., r = s, because in K there is no connection
between different columns of P . Moreover, due to (3.10), K(r, r) = A(i, i) for every
r \in \scrL i. As the columns of Z are orthonormal by construction, ZTZ = I, it immediately
follows that the square block Hi is diagonal with all its nonzero entry equal to A(i, i).
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PARALLEL ENERGY-MINIMIZATION PROLONGATION FOR AMG A2573

Algorithm 3.3. Preconditioned conjugate gradients for energy minimization.

1: procedure EMIN PCG(maxit, \tau , K, f , \Pi B , M , T )
2: input: maxit -- maximum iterations
3: \tau -- energy convergence tolerance
4: K -- system matrix (applied matrix-free with A)
5: f -- right-hand side f from (3.11)
6: \Pi B -- projection matrix
7: M -- preconditioner
8: T -- tentative prolongation
9: output: P -- final prolongation
10: Extract global weight vector w0 row-wise from T
11: \Delta w= 0;
12: r= - \Pi B (f +Kw0);
13: for k= 1, . . . ,maxit do
14: z =\Pi BM

 - 1r;
15: \gamma = rT z;
16: if i= 1 then

17: y= z;
18: else

19: \beta = \gamma /\gamma old;
20: y= z + \beta y;
21: end if

22: \gamma old = \gamma ;
23: \u y=\Pi BKy;
24: \alpha = \gamma /(yT \u y);
25: \Delta Ek = \gamma \alpha 
26: if \Delta Ek < \tau \Delta E1 return

27: \Delta w=\Delta w+ \alpha y;
28: r= r - \alpha \u y;
29: end for

30: w=w0 +\Delta w;
31: Form final prolongation P = [W ; I] with global weight vector w
32: end procedure

The fact that ZTDKZ is a diagonal matrix follows from the above observation that
K(\scrL i,\scrL i) =DK(\scrL i,\scrL i) =A(i, i)Im, with Im the identity matrix having size m equal
to the cardinality of \scrL i.

Corollary 3.2. The product ZTDKQ, where DK is defined as in Theorem 3.1,
is equal to the null matrix:

(3.42) ZTDKQ= 0.

Proof. Due to the block-diagonal structure of Q and Z, all the off-diagonal blocks
of ZTDKQ are empty. Then, (3.42) follows fromDK(\scrL i,\scrL i) =A(i, i)Im and Z(:,\scrJ i)\bot 
Q(:,\scrJ i).

3.4.1. Preconditioned CG-based energy minimization. Preconditioning
CG can greatly improve convergence, but special care should be taken to maintain
the search direction y in the space of vectors satisfying the near kernel constraint. In
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other words, y must satisfy \Pi By\equiv y. In [28], a Jacobi preconditioner is adopted that
satisfies this requirement, but, due to the special properties of the matrix K, it is
possible to compute a more effective preconditioner. Denoting by M - 1 any approx-
imation of K - 1, we use \Pi BM

 - 1\Pi B to precondition \Pi BK\Pi B in order to guarantee
the constraint. The resulting PCG algorithm is outlined in Algorithm 3.3, where,
since \Pi B is a projection, we can avoid premultiplying r by \Pi B (line 14) as r already
satisfies the constraint.

In the remainder of this section we focus our attention on ZTKZ instead of
\Pi BK\Pi B , because, as \Pi B = I  - QQT = ZZT , they have the same spectrum. Our
aim is to find a good preconditioner for ZTKZ. Unfortunately, although K is block
diagonal and several effective preconditioners can be easily built for it, ZTKZ is less
manageable and further approximations are needed.

By pre- and postmultiplying K by [Z Q]T and [Z Q], respectively, we can write
the following 2\times 2 block expression:

(3.43) [Z Q]TK[Z Q] =

\biggl[ 
ZTKZ ZTKQ
QTKZ QTKQ

\biggr] 
,

and, since we are interested in the inverse of ZTKZ, we can express it as the Schur
complement of the leading block of the inverse of [Z Q]TK[Z Q] [34, Chapter 3]:

(3.44) ([Z Q]TK[Z Q]) - 1 = [Z Q]TK - 1[Z Q] =

\biggl[ 
ZTK - 1Z ZTK - 1Q
QTK - 1Z QTK - 1Q

\biggr] 
,

from which it follows that

(3.45) (ZTKZ) - 1 =ZTK - 1Z  - ZTK - 1Q(QTK - 1Q) - 1QTK - 1Z.

When K - 1 is approximated with the inverse of the diagonal of K, MJ = diag(K),
because of Theorem 3.2, we have that ZTM - 1

J Q = 0, and the expression (3.45)
becomes

(3.46) (ZTKZ) - 1 \simeq M - 1
1 =ZTM - 1

J Z,

which corresponds to a Jacobi preconditioning of ZTKZ.
We highlight that only for Jacobi can the postmultiplication by \Pi B be neglected

in line 14 of Algorithm 3.3, sinceM - 1
J does not introduce components along range(Q).

This is consistent with [28], where the Jacobi preconditioner is used, and no postmul-
tiplication by \Pi B is adopted.

If a more accurate preconditioner is needed, K - 1 can be approximated using a
blockwise symmetric Gauss--Seidel (SGS) iteration, that is,

(3.47) K - 1 \simeq M - 1
SGS = (L+D) - TD(L+D) - 1,

which substituted into equation (3.45) reads

(3.48) (ZTKZ) - 1 \simeq M - 1
2 =ZTM - 1

SGSZ  - ZTM - 1
SGSQ(QTM - 1

SGSQ) - 1QTM - 1
SGSZ.

Since the application of (3.48) is still impractical due to the presence of the term
(QTM - 1

SGSQ) - 1, we neglect the second member of the right-hand side, based on the
heuristic that ZTM - 1

SGSQ should be small, because ZTM - 1
J Q= 0. After this simpli-

fication, we obtain the final expression of the projected SGS preconditioner:

(3.49) K - 1 \simeq M - 1
2 =ZTM - 1

SGSZ =ZT (L+D) - TD(L+D) - 1Z.
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Note that while M - 1
1 is exactly the Jacobi preconditioner of ZTKZ, M - 1

2 is only an
approximation of the exact SGS preconditioner of ZTKZ. However, we will show in
the numerical results that it is able to significantly accelerate convergence.

4. Efficient parallel implementation. Energy minimization has historically
been considered computationally expensive for AMG setup and real applications.
Nevertheless, a cost effective implementation is still possible, but requires special
care with the algorithm parallelization. In this work, we build our AMG precondi-
tioner with Chronos [17, 15], which provides the standard numerical kernels usually
required in a distributed memory AMG implementation such as the communication
of ghost unknowns, coarse grid construction (e.g., computing the PMIS C-F partition
[12]), sparse matrix-vector, and sparse matrix-matrix product, etc. For energy mini-
mization, however, we developed three specific kernels that are not required in other
AMG approaches, but are critical for an efficient parallel implementation here, i.e.,
the sparse product between K and p, application of the projection \Pi B , and symmet-
ric Gauss--Seidel with K. We do not list Jacobi preconditioning, because it simply
consists of a row-wise scaling of P .

The first issue related to the product by K is that in practical applications K
cannot be stored. In fact, if we consider a prolongation P having r nonzeroes per row
on average, the number of nonzeroes per column will be approximately s \simeq 

nf

nc
r and

theK matrix would be of size ncs\times ncs with about ncs t\simeq nfr t nonzeroes to be stored,
where t is the average number of nonzeroes per row of A. Often, r \simeq t and storing
K becomes several times more expensive than storing A. For instance in practical
elasticity problems, K can be up to 20 times larger than A, making it unavoidable to
proceed in matrix-free mode for K. Fortunately, the special structure of K allows us
to interpret the productKp as a sparse matrix-matrix (SpGEMM) product between A
and P , but with a fixed, prescribed pattern on P . This property can be easily derived
from the definition of K (3.11) and the vector form of the prolongation p. One
advantage of prescribing a fixed pattern for P is that the amount of data exchanged
in SpGEMM is greatly reduced. First, the sparsity pattern adjacency information of
P can be communicated only once before entering PCG, then for all the successive
AP products only the entries of P are exchanged. Moreover, all the buffers to receive
and send messages through the network, can be allocated and set-up only once at the
beginning and removed at the end of the minimization process. In practice, we find
that these optimizations reduce the cost of SpGEMM by about 50\%.

By contrast, the construction and application of \Pi B does not require any commu-
nication. In fact, we distribute the prolongation row-wise among processes, and since
B is block diagonal, with each block corresponding to a row of P as shown in (3.8),
we distribute B blocks to the process owning the respective row of P . Following this
scheme, each block B of B is factorized independently to obtain Q which is efficiently
processed by the LAPACK routine DGEMV when applying \Pi B .

Finally, we emphasize that there is no parallel bottleneck when parallelizing the
application of symmetric Gauss--Seidel with K. This is because K is block diagonal
and, at least in principle, each block can be assigned to a different process. How-
ever, as in the Kp product, the main issue is the large size of K which prevents
explicit storage. As above, we rely on the equivalence between the Kp product and
the AP product with a prescribed sparsity pattern. The symmetric Gauss--Seidel
step is then performed matrix-free, similar to the AP product, by saving again a
considerable amount of data exchange because it is not necessary to communicate ad-
jacency information or reallocate communication buffers. As expected, the symmetric
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Gauss--Seidel application exhibits a computational cost comparable to that of the AP
product.

5. Numerical experiments. In this section, we investigate the improved con-
vergence offered by energy minimization and the resulting computational performance
and parallel efficiency for real-world applications. This numerical section is divided
into three parts: a detailed analysis on the prolongation energy reduction and related
AMG convergence for two medium-size matrices, a weak scalability test for an elas-
ticity problem on a uniformly refined cube, and a comparison study for a set of large
real world matrices representing fluid dynamics and mechanical problems.

As a reference for the proposed approach, we compare with the well-known and
open source solvers GAMG [32], a smoothed aggregation based AMG code from
PETSc, and BoomerAMG [20], a classical AMG based code in hypre. In all cases,
Chronos, GAMG and BoomerAMG are used with preconditioned conjugate gradients
(PCG). Both GAMG and BoomerAMG parameters are set for each problem start-
ing from the default parameters, as suggested by the PETSc user guide [32] and the
``best practices"" parameters for hypre from [13]. For relaxation, we have chosen pow-
erful standard options available in the three packages, that is FSAI with 10 nonzeros
per row in Chronos, degree 2-Chebyshev accelerated Jacobi in GAMG, and hybrid
symmetric-SOR BoomerAMG. Each time such default parameters are modified, we
report the chosen values in the relevant section.

A truly fair comparison between different solver packages is indeed difficult. Thus,
our goal in the comparison is to primarily highlight the competitiveness of the pro-
posed energy-minimization approach with existing approaches. Here, aspects affecting
the comparison include the different relaxation methods (note, no Chebyshev or sym-
metric SOR options exist in Chronos and no FSAI option exists in PETSc or hypre)
and the different strength-of-connection methods. For the filtering of the strength of
connection matrix, Chronos retains a fixed number of nonzeros per row (50 by de-
fault), while GAMG and BoomerAMG use a threshold for dropping small values (\mu ).
Overall, we choose standard, effective options available in each package. However,
in order to encourage a useful comparison, we do the following. Regarding the near
kernel modes used by each multigrid solver's interpolation routines, either the con-
stant vector (scalar problems) or the rigid body modes (systems problems) are used.
We note that hypre has the capability to account for multiple near kernel modes [1].
Additionally, the input near kernel modes are never later smoothed or updated, since
not all packages allow for this option. Last, since all of the experiments are run in
parallel, the system matrices are partitioned with ParMETIS [18] before the AMG
preconditioner set-up to reduce communication overhead.

All numerical experiments have been run on the Marconi100 supercomputer lo-
cated in the Italian consortium for supercomputing (CINECA). Marconi100 consists
of 980 nodes based on the IBM Power9 architecture, each equipped with two 16-core
IBM POWER9 AC922 @3.1GHz processors. For each test, the number of nodes,
N , is selected so that each node has approximately 640,000,000 nonzero entries, and,
consequently, the number of nodes is problem dependent. Each node is always fully
exploited by using 32 MPI tasks, i.e., each task (core) has an average load of 20,000,000
nonzero entries. The number of cores is denoted ncr. Only during the smaller cases
in the weak scalability analysis are nodes partially used (i.e., with less than 32 MPI
tasks). Even though Chronos can exploit hybrid MPI-OpenMP parallelism, for the
sake of comparison, it is convenient to use just one thread, i.e., pure MPI parallelism.
Moreover, for such a high load per core, we do not find that fine-grained OpenMP
parallelism is of much help.
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The numerical results are presented in terms of total number of computational
cores used, ncr, the grid and operator complexities, Cgd and Cop, respectively, the
number of iterations, nit, and the setup, iteration, and total times, Tp, Ts, and Tt

= Tp + Ts, respectively. For all the test cases, the right-hand side is a unit vector.
The linear systems are solved with PCG and a zero initial guess, and convergence
is achieved when the \ell 2-norm of the iterative residual drops below eight orders of
magnitude with respect to the \ell 2-norm of the right-hand side.

5.1. Analysis of the energy minimization process. We use two matrices for
studying prolongation energy reduction, Cube and Pflow742 [22]. While the former
is quite simple, as it is the fourth refinement level of the linear elasticity cube used in
the weak scalability study, the latter arises from a three-dimensional (3D) simulation
of the pressure field in a multilayered porous medium discretized by a sufficiently
regular Q2-hexahedral finite elements. The main source of ill-conditioning here is the
large contrast in the material properties for different layers. The dimensions of Cube
are 1,778,112 rows and 78,499,998 entries, with 44.15 entries per row on average. The
size of Pflow742 is 742,793 rows and 37,138,461 entries for an average entry-per-row
ratio of 50.00.

The overall solver performance is compared against the energy reduction for the
fine-level P when using the energy mininimization Algorithm 3.3 with either Jacobi
and Gauss--Seidel as the preconditioner. Results are analyzed in terms of computa-
tional costs and times. The main algorithmic features we want to analyze are

\bullet how the prolongation energy reduction affects AMG convergence; and
\bullet the effectiveness of the preconditioner, i.e., Jacobi or Gauss--Seidel.

The energy minimization iteration count (Algorithm 3.3) is denoted by nE
it . Between

brackets, we also report the relative energy reduction that is used to monitor the
restricted PCG convergence of Algorithm 3.3, as shown in (3.36). Ti is the time
spent to improve the prolongation, with either classical prolongation smoothing with
weighted-Jacobi (SMOOTHED) or the energy minimization process. Note that Ti is
only part of Tp.

Table 5.1 shows the results for Cube. First, it can be seen that the energy min-
imization algorithm produces prolongation operators which lead to somewhat lower
complexities than for the smoothed case. Moreover, energy minimization builds more
effective prolongation operators overall, since the global iteration count (nit) is lower.
As the energy minimization iteration count increases, we can observe that nit de-
creases, while the setup time (Tp) increases. For this simple problem, the optimal
point in terms of total time (Tt) is reached using two iterations of Jacobi (EMIN-J).
Figure 5.1a further shows that two iterations of Jacobi (EMIN-J) already reaches
close to the achievable energy minimum. Figure 5.2a compares the cost in wall-clock
seconds for each energy minimization iteration using different preconditioners. For
this case and implementation, Jacobi is more efficient.

Similar conclusions can be drawn for the Pflow742 case, as nit monotonically
decreases as the energy associated with the prolongation operator is reduced. As re-
ported by Table 5.2, the optimal total time (Tt) is obtained with four Jacobi iterations
(EMIN-J). Figure 5.1b shows how the energy of the prolongation operator decreases
slower than for Cube and that Jacobi converges significantly slower than Gauss--Seidel.
However, as reported by Figure 5.2b, the cost of Gauss--Seidel is still more than that
of Jacobi, although the performance difference is smaller than for Cube.

Regarding algorithmic complexity, each energy minimization iteration with
Gauss--Seidel should cost exactly twice an iteration with Jacobi, and from the above
tests, Gauss--Seidel is able to reduce the energy more than twice as fast as Jacobi. Thus
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Table 5.1

Analysis of energy minimization for the Cube problem.

Prolongation nE
it

\Delta Ek
\Delta E1

Cgr Cop nit Tp [s] Ts [s] Tt [s] Ti [s]

SMOOTHED -- -- 1.075 1.648 58 52.1 13.4 65.5 6.3

EMIN-J 1 100 1.075 1.592 54 47.6 11.2 58.8 11.3
EMIN-J 2 2 \cdot 10 - 1 1.075 1.589 32 50.9 6.7 57.6 14.3
EMIN-J 4 10 - 2 1.075 1.589 27 57.3 5.7 63.0 20.0
EMIN-GS 1 100 1.075 1.587 28 55.5 6.0 61.5 19.3
EMIN-GS 2 2 \cdot 10 - 2 1.075 1.588 26 65.6 5.5 71.1 28.8
EMIN-GS 4 1 \cdot 10 - 4 1.075 1.589 26 84.4 5.6 90.0 47.7

0 1 2 3 4 5 6 7 8 9 10

restricted PCG iteration

1e+09

1e+10

1e+11

en
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g
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Jacobi
Gauss-Seidel

(a) Cube case

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

restricted PCG iteration
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Gauss-Seidel

(b) Pflow742 case

Fig. 5.1. Energy reduction versus energy minimization iterations with Jacobi and Gauss--Seidel.
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(b) Pflow742 case

Fig. 5.2. Energy reduction versus computational cost for energy minimization preconditioned
with Jacobi and Gauss--Seidel.

Table 5.2

Analysis of energy minimization for the Pflow742 problem.

Prolongation nE
it

\Delta Ek
\Delta E1

Cgr Cop nit Tp [s] Ts [s] Tt [s] Ti [s]

SMOOTHED -- -- 1.061 1.465 369 23.0 29.8 52.8 2.3

EMIN-J 1 100 1.061 1.339 377 20.4 27.3 47.7 2.9
EMIN-J 2 3 \cdot 10 - 1 1.061 1.344 270 21.5 19.6 41.1 3.7
EMIN-J 4 4 \cdot 10 - 2 1.062 1.352 219 23.3 15.7 39.0 5.4
EMIN-J 8 8 \cdot 10 - 3 1.062 1.360 189 26.2 13.8 40.0 8.1
EMIN-GS 1 100 1.061 1.346 276 23.0 19.9 42.9 5.3
EMIN-GS 2 9 \cdot 10 - 2 1.062 1.352 221 26.2 16.0 42.2 8.2
EMIN-GS 4 6 \cdot 10 - 3 1.062 1.363 184 31.7 14.3 46.0 13.8
EMIN-GS 8 7 \cdot 10 - 4 1.063 1.367 183 42.9 13.8 56.7 24.8
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Gauss--Seidel should be cheaper than Jacobi. Unfortunately, this is not confirmed by
our numerical experiments and this is likely due to a suboptimal parallel implemen-
tation of the Gauss--Seidel preconditioner. Although the block diagonal structure of
K allows, theoretically, for a perfectly parallel implementation, the Gauss--Seidel im-
plementation requires more communication and synchronization stages than Jacobi,
likely leading to our results where the Jacobi preconditioner is faster. A more cost
effective implementation of Gauss--Seidel will be the focus of future work. For now,
Jacobi is chosen as our default preconditioner and will be used in all subsequent cases.

Finally, we observe that a relative energy reduction of one order of magnitude gives
generally the best trade-off between set-up time and AMG convergence. Therefore,
we use \tau = 0.1 as default.

5.2. Weak scalability test. Here, we carry out a weak scalability study of
energy minimization AMG for linear elasticity on a unit cube and different levels of
refinement. The unit cube [0,1]3 is discretized by regular tetrahedral elements, the
material is homogeneous, and all displacements are prevented on the square region
[0,0.125]\times [0,0.125] at z = 0. The mesh sizes are chosen such that each subsequent
refinement produces about twice the number degrees of freedom with respect to the
previous mesh. The problem sizes range from 222k rows to 124M rows, with an
average entries-per-row ratio of 44.47.

Two sets of AMG parameters are used with Chronos: the first set targets a
constant PCG iteration count, while the second minimizes the total solution time (Tt).
The first section of Table 5.3 provides the outcome of the first test. The iteration
count increases very slowly from 23 to 33, while the problem size increases by a
factor of about 29. However, this nearly optimal scaling comes with relatively large
complexities. As a consequence, total times are also relatively large, especially the
setup time (Tp). The time for energy minimization (Ti) scales quite well, however,
with only a factor of 2 difference between the first and last refinement levels.

Next, to reduce the setup and solution times, we increase the AMG strength
threshold [29] to allow for lower complexities. The second section of Table 5.3 collects
the new outputs. The relative trends are the same as in the previous tests, but the
timings are lower (30\% on average). The reduced complexity is thus advantageous by
providing faster wall-clock times, even at the expense of more iterations nit.

For comparison, the same set of problems is next solved with GAMG from PETSc.
The default values for all parameters are used, as it turned out they were already the
best. The only exception is the threshold for dropping edges in the aggregation graph
(\mu ), whose value is reported alongside the results. The third section of Table 5.3 shows
the output for GAMG. The complexities and run-times are higher than for Chronos,
especially for the setup stage. The iteration counts are usually between two and
three times larger than those required by Chronos. For this test problem, reducing
complexity by setting \mu = 0.0 is not beneficial as the increase in the iteration count
cancels the set-up time reduction. We also note that both the operator complexity and
set-up time increase significantly with the refinement level, while energy minimization
is able to better limit growth in these quantities. Comparing two codes is fraught
with difficulty, but these results do indicate that energy minimization is an efficient
approach in parallel for this problem.

5.3. Challenging real-world problems. We now examine the proposed en-
ergy minimization approach for a set of challenging real-world problems arising from
discretized PDEs in both fluid dynamics and mechanics. The former class consists of
problems from the discretization of the Laplace operator, such as underground fluid
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Table 5.3

Weak scalability results for regular cube. Three sets of results are reported: (i) energy
minimization-based AMG via Chronos to produce an almost constant iteration count; (ii) the same
tuned to minimize the total time; and (iii) PETSc's GAMG using all default parameters with the
exception of \mu , which is chosen to reduce the overall solution time.

Solver nrows ncr N Cgr Cop nit Tp [s] Ts [s] Tt [s] Ti [s]

E
n
er
g
y
m
in
im

iz
a
ti
o
n

m
in
im

a
l
it
er
a
ti
o
n
co
u
n
t 222k 1 1 1.077 1.540 23 28.7 2.7 31.4 0.12

447k 2 1 1.076 1.559 24 33.0 2.9 35.9 0.12
902k 4 1 1.076 1.580 26 36.1 3.4 39.5 0.13

1,778k 8 1 1.075 1.596 27 39.0 3.6 42.7 0.13
3,675k 16 1 1.075 1.610 28 43.3 4.1 47.4 0.15
7,546k 32 1 1.075 1.620 29 53.9 5.3 59.2 0.18

15,533k 64 2 1.075 1.630 30 61.2 5.9 67.2 0.20
31,081k 128 4 1.075 1.670 30 74.9 6.5 81.4 0.22
62,391k 256 8 1.075 1.642 32 72.8 6.8 79.7 0.21

124,265k 512 16 1.075 1.646 33 88.8 7.8 96.7 0.24

E
n
er
g
y
m
in
im

iz
a
ti
o
n

b
es
t
so
lu
ti
o
n
ti
m
e

222k 1 1 1.047 1.252 31 19.5 3.1 22.6 0.10
447k 2 1 1.047 1.260 31 22.6 3.3 25.9 0.11
902k 4 1 1.047 1.269 34 24.4 3.8 28.2 0.11

1,778k 8 1 1.047 1.274 34 27.4 4.0 31.4 0.12
3,675k 16 1 1.047 1.279 37 30.6 4.7 35.3 0.13
7,546k 32 1 1.047 1.283 38 37.8 6.1 43.9 0.16

15,533k 64 2 1.046 1.286 49 44.3 8.5 52.8 0.17
31,081k 128 4 1.046 1.289 41 45.0 7.5 52.5 0.18
62,391k 256 8 1.046 1.291 43 48.4 8.6 57.0 0.20

124,265k 512 16 1.046 1.292 51 52.5 10.8 63.3 0.21

G
A
M
G

(µ
=

0
.0
1
)

b
es
t
so
lu
ti
o
n
ti
m
e

222k 1 1 N/A 1.479 58 11.19 13.72 24.92 0.24
447k 2 1 N/A 1.503 69 10.02 17.12 27.14 0.25
902k 4 1 N/A 1.526 73 11.41 19.19 30.59 0.26

1,778k 8 1 N/A 1.549 78 12.63 21.05 33.68 0.27
3,675k 16 1 N/A 1.571 82 14.83 24.86 39.68 0.30
7,546k 32 1 N/A 1.608 86 23.04 35.52 58.56 0.41

15,533k 64 2 N/A 1.618 93 27.15 39.33 66.48 0.42
31,081k 128 4 N/A 1.703 97 37.48 41.58 79.06 0.43
62,391k 256 8 N/A 1.803 98 58.98 43.37 102.35 0.44

124,265k 512 16 N/A 1.953 100 119.16 50.29 169.45 0.50

flow, compressible or incompressible airflow around complex geometries, or porous
flow. The latter class consists of mechanical applications such as subsidence analysis,
hydrocarbon recovery, gas storage (geomechanics), mesoscale simulation of composite
materials (mesoscale), mechanical deformation of human tissues or organs subjected
to medical interventions (biomedicine), and design and analysis of mechanical ele-
ments, e.g., cutters, gears, air-coolers (mechanical). The selected problems are not
only large but also characterized by severe ill-conditioning due to mesh distortions,
material heterogeneity, and anisotropy. They are listed in Table 5.4 with details
about the size, the number of nonzeros, and the application field from which they
arise.

Table 5.5 reports the AMG performance on these benchmarks when using the
energy minimization procedure, classical prolongation smoothing (one step of weighed-
Jacobi on the tentative prolongation), GAMG, and BoomerAMG, respectively. The
overall best time is highlighted in boldface. As before, please note that for GAMG
and BoomerAMG only the threshold value for dropping edges in the SoC graph (\mu )
has been tuned. All the other parameters are used with their default value, as they
were already the best.
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Table 5.4

Matrix sizes and number of nonzeroes for the real-world problems.

Matrix nrows nterms avg nt/row Application

guenda11m 11,452,398 512,484,300 44.75 geomechanics
agg14m 14,106,408 633,142,730 44.88 mesoscale
tripod20m 19,798,056 871,317,864 44.01 mechanical

M20 20,056,050 1,634,926,088 81.52 mechanical
wing 33,654,357 2,758,580,899 81.97 mechanical

Pflow73m 73,623,733 2,201,828,891 29.91 reservoir
c4zz134m 134,395,551 10,806,265,323 80.41 biomedicine

Table 5.5

Results for the real-world cases using: (i) energy minimization AMG; (ii) classical prolongation
smoothing; (iii) PETSc's GAMG, and (iv) hypre's BoomerAMG. Default PETSc GAMG parameters
are used. Also BoomerAMG is used with default parameters, listed as ``best practices"" in [13]. Only
\mu , i.e., the threshold for dropping edges in aggregation graph, is changed. `*' means that the matrix
has not been partitioned with ParMETIS. Please note that only the threshold value for dropping
edges in the aggregation graph (\mu ) has been tuned. All the other parameters are used with their
default value, as it turned out they were already the best.

Solver N µ Cgr Cop nit Tp [s] Ts [s] Tt [s]

E
n
er
g
y

m
in
im

iz
a
ti
o
n

1 N/A 1.041 1.325 987 314.0 399.0 713.0

1 N/A 1.042 1.322 23 66.7 7.2 74.0
2 N/A 1.049 1.302 104 40.3 22.2 62.6

2 N/A 1.055 1.304 111 98.0 40.2 138.0
8 N/A 1.055 1.297 140 47.2 25.3 72.5

4 N/A 1.028 1.101 1169 225.0 424.0 649.0

8 N/A 1.029 1.122 154 72.7 48.8 122.0

sm
o
o
th
ed

p
ro
lo
n
g
a
ti
o
n

1 N/A 1.041 1.378 1771 307.0 750.0 1060.0
1 N/A 1.042 1.371 48 62.5 15.5 78.1
2 N/A 1.048 1.336 212 34.6 47.5 82.2
2 N/A 1.054 1.733 154 167.0 76.6 244.0
8 N/A 1.055 1.697 301 93.5 71.6 165.1
4 N/A 1.058 1.371 841 441.3 394.5 836.0
8 N/A 1.028 1.199 277 79.2 98.9 178.0

G
A
M
G

1 0.00 N/A 1.524 2237 22.3 1553.9 1576.1
1 0.00 N/A 1.557 33 20.6 32.2 52.7

2 0.01 N/A 1.679 48 32.2 32.2 64.4
2 0.01 N/A 1.203 60 36.7 62.4 99.1

8 0.01 N/A 1.204 250 34.0 108.4 142.4
4 — N/A — — — — —

* 8 0.01 N/A 1.233 156 110.9 250.38 361.33

B
o
o
m
er

A
M
G

1 0.90 1.772 2.342 — — >1800 —
1 0.90 1.538 1.817 85 5.7 77.2 82.9
2 0.90 1.761 2.620 351 5.7 296.6 302.3
2 0.90 1.552 1.589 634 4.3 667.6 671.9
8 0.70 1.574 2.050 590 4.0 316.2 320.2
4 0.25 1.154 1.302 — — — —
8 0.90 1.657 1.959 — — — —

With respect to classical prolongation smoothing, the energy minimization pro-
cedure is able to reduce the complexities, in particular Cop, the setup time Tp, and
also the iteration count (with the only exception being Pflow73m). It is the reduced
complexities that allow energy minimization to achieve the lower setup time. The
overall gain in total time is in the range 5--55\% for all test cases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
5
/0

7
/2

4
 t

o
 6

4
.1

0
6
.3

8
.1

8
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A2582 JANNA, FRANCESCHINI, SCHRODER, AND OLSON

guenda11m agg14m tripod20m M20 wing Pflow73m c4zz134m0 0

1 1

2 2

3 3

4 4

5 5

re
la

tiv
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tim
e

EMIN
SMOOTHED
GAMG
BoomerAMG

Fig. 5.3. Comparison in terms of relative total time for the different preconditioners. Darker
portions of the bars represent AMG setup, while the lighter segments represent the time spent in
the solve phase. The relative baseline is time taken by the energy minimization phase to build
prolongation.

Energy minimization also compares favorably with GAMG and BoomerAMG.
GAMG provides a faster total time than energy minimization-based AMG on two
cases out of seven, agg14m and M20, and a similar total time on tripod20m, while
the solution stage in BoomerAMG is only competitive for the agg14m case. The
situation is reversed on the most challenging examples, where GAMG is significantly
slower and is unable to solve Pflow73m. We briefly note that, unexpectedly, the
ParMETIS partitioning significantly harms GAMG effectiveness on c4zz134m. For
this case, we report GAMG performance on the matrix with its native ordering and
mark this test with a `*'. Typically, the GAMG and BoomerAMG set-up times are
faster than energy minimization, but energy minimization allows for a preconditioner
of higher quality, which significantly reduces the total time in the most difficult cases.
Figure 5.3 collects all these results, reporting the relative total times. The setup and
solve phases are denoted by different shading.

6. Conclusions. This work provides evidence of the potential of a novel energy
minimization procedure in constructing the AMG prolongation operator. While the
theoretical advantages of this idea are well known in the literature, the computational
aspects and its practical feasibility in a massively parallel software were still under
discussion.

With this contribution, we have highlighted how the energy minimization ap-
proach can be effectively implemented in a classical AMG setting, leading to robust
and cost-effective prolongation operators when compared to other approaches. It is
also shown how, especially in challenging problems, this technique can lead to con-
siderably faster AMG convergence. The prolongation energy can be minimized with
several schemes. We have adopted a restricted conjugate gradient, accelerated by
suitable preconditioners. We presented and analyzed Jacobi and Gauss--Seidel pre-
conditioners, restricting our attention to these two because of their applicability in
matrix-free mode. The experiments show that Gauss--Seidel has the potential to be
faster than Jacobi; however, its efficient parallel implementation is not straightforward
and needs more attention.

Weak scalability has been assessed on an elasticity model problem by discretizing
a cube with regular tetrahedra. The proposed algorithms have been implemented
in a hybrid MPI-OpenMP linear solver and its performance has been compared to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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other well recognized AMG implementations (GAMG and BoomerAMG) using a set
of large and difficult problems arising from real-world applications.

In the future, we plan to further reduce set-up time by investigating other pre-
conditioning techniques as those described in [2], and to extend this approach to
nonsymmetric problems as well.
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