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Abstract
Pollinators are an essential component of terrestrial food webs and agricultural systems but are
threatened by insufficient access to floral resources. Managed honey bees, as generalist foragers that
hoard nectar as honey, can act as bioindicators of floral resources available to pollinators in a given
landscape through their accumulation of honey. Honey yields across the United States have
decreased appreciably since the 1990s, concurrent with shifts in climate, land-use, and large-scale
pesticide application. While many factors can affect honey accumulation, this suggests that
anthropogenic stressors may be having large-scale impacts on the floral resources that pollinators
depend on for their nutrition. We used hierarchical partitioning on five decades of state-level data
to parse the most important environmental factors and likely mechanisms associated with spatial
and temporal variation in honey yields across the US. Climatic conditions and soil productivity
were among the most important variables for estimating honey yields, with states in warm or cool
regions with productive soils having the highest honey yields per colony. These findings suggest
that foundational factors constrain pollinator habitat suitability and define ecoregions of low or
high honey production. The most important temporally varying factors were change in herbicide
use, land use (i.e. increase in intensive agriculture and reduction in land conservation programs
that support pollinators) and annual weather anomalies. This study provides insights into the
interplay between broad abiotic conditions and fine temporal variation on habitat suitability for
honey bees and other pollinators. Our results also provide a baseline for investigating how these
factors influence floral resource availability, which is essential to developing strategies for resilient
plant–pollinator communities in the face of global change.

1. Introduction

Flowering plants and pollinators form mutualistic
relationships which are vital for terrestrial ecosys-
tems: as pollinators collect nectar and pollen from
flowering plants as their main source of nutrition,
they support seed and fruit set in their host plants
[1]. Ecoregions can vary in their capacity to support
pollinators, as regional climate and soil characterist-
ics determine what plant communities can grow in

different locations aswell as the success of those plants
[3–5]. Global change, however, can reduce habitat
suitability and threatens plant–pollinator mutual-
isms in numerous ways [6–9]. It is well established
that anthropogenic land use change reduces floral
availability [10, 11] and that land use intensification,
notably increased use of pesticides, particularly herbi-
cides, diminishes floral resource quality [12]. There is
also growing recognition that changing weather pat-
terns associated with climate change pose a threat to
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Figure 1. Conceptual diagram illustrating the environmental filtering process influencing pollinator floral resource availability. As
one moves up the pyramid, environmental factors act at finer spatial and temporal scales and further filter floral resource
availability. Spatial factors are shown to the left in pink boxes and temporal factors are shown in blue boxes. At the foundation of
the pyramid is ecoregion suitability (characterized by climate and soil productivity), followed by habitat availability
(characterized by land use and annual land use change), and habitat quality (characterized by herbicide use, herbicide use change,
and annual weather). Adapted from [2].

the quality, quantity, and phenological availability of
flowers [13, 14]. However, due to limited monitoring
across sufficient spatial and temporal scales, it is diffi-
cult to understand how ecoregional conditions, land
use change, and weather interact to influence floral
resources available [15, 16]. This limits our ability to
prepare for a resilient future amidst a changing world.

Lack of high quality floral resources is considered
one of the primary stressors to pollinators [17, 18].
Bees’ primary source of nutrition is pollen and nec-

tar from flowers, and there is great interest in quan-
tifying floral resources to identify bee-supportive
landscapes and to enhance landscape management

[19, 20]. Empirical estimates of landscape-level floral

resources are extremely labor intensive and often
unable to sufficiently account resource quality (e.g.

nectar volume) [19]. Honey bee (Apis mellifera)
colonies are uniquely suited as a sentinel for mon-

itoring long-term, broad scale environmental effects
on floral resources [21–23]. Honey bees store abund-
ant nectar resources as honey and recruit nestmates
to high quality resources [24], are generalist foragers
whose dietary niche overlaps with many specialist
and generalist pollinators, and are capable of for-
aging over long distances [25]. Additionally, as man-
aged pollinators, honey bees have other needs met by
the beekeeper (e.g. nesting resources), enabling more
direct assessment of nutritional resources. Thus,
honey accumulation can be used to quantify the
effects of landscape-level stressors on floral resource
availability.

While multiple regional and global change factors
impact the abundance, diversity, and resource quality
of flowering plants, few studies assess these impacts

simultaneously to determine their relative impact and
likely mechanism. Our objective in this study was to
distill the spatial (regional) and temporal (change)
effects of climate, soil productivity, land use, and
herbicide use on honey bee colony productivity, to
reveal potential drivers of floral resource availability
using five decades of honey yield data from across the
United States (figure 1) (United States Department
of Agriculture-National Agricultural Statistics Service
(USDA-NASS)). Though this USDA-NASS data is
only available at a course, state level, the spatial
and temporal extent provides a unique opportun-
ity to understand broad-scale patterns. We hypothes-
ize that variation in honey yields can be explained
in large part by ecoregional factors such as climate
and soil, while anthropogenic change factors (hab-
itat conversion and intensification) will account for
declining honey yields over the past several decades.
Understanding the spatiotemporal trends in honey
yields across the US over the last half century provides
a baseline that will allow for enhanced predictions
and targeted studies of floral resources to support
managed honey bees, wild pollinator communities,
and their pollination services amid an ever-changing
environment. These findings can also help inform
beekeeping practices, target land management exper-
iments, and prioritize the most important locations
for these experiments and interventions to support
biodiversity and ecosystem services.

2. Methods

2.1. Data sources and pre-processing
Data on average honey yield per colony, land use,
herbicide use, climate, weather anomalies, and soil
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Table 1. Description of data sources for each variable included in analysis of honey yields in the United States from 1974 to 2020,
including temporal extent, temporal resolution, spatial resolution, data summary with units (mean, standard error, and range). While
some values of the explanatory variables are small relative to others (e.g. CRP, glyphosate use), these values are representative of the
system as they summarize data from across the US over several decades. Variables were scaled and centered prior to analysis to put them
on the same scale.

Variable Description Data source
Temporal
extent

Temporal
resolution

Spatial
resolution

Data summary
mean± se;
(min–max)

Honey yield Average yield of
honey per colony
based on stratified
sampling of
beekeepers with>5
colonies

USDA-NASS
[28] accessed: 9
August 2021

1974–1981;
1986–2020

Annual State 28.7± 0.3 kg
colony−1;
(8.6–62.6)

Soybean area Acres of harvested
soybean, converted
to proportion of
state area, available
for 31 of 48
contiguous states

USDA-NASS
[29–31]
accessed: 9
August 2021

1974–2020 Annual State 7.3± 0.3%;
(0.01–30)

Conservation
Reserve
Program
(CRP)

Enrolled acres of all
CRP (as opposed to
only those with
pollinator-specific
management goals)
for the program’s
entire duration
(1986–2019),
converted to
proportion of state
area

USDA-FSA
[32] accessed:
10 August 2021

1986–2019 Annual State 0.02± 0.05%;
(0–0.07)

Glyphosate
use on
soybean

Weight of
glyphosate applied
to soybean; low
estimate used (high
estimates also
available). To
approximate
application rate,
application weight
was divided by the
total area of
harvested soybeans

USGS Pesticide
National
Synthesis
Project [33]
accessed: 30
November
2021

1992–2019 Annual State 0.4± 0.01 kg/acre;
(0–1.2)

Temperature Annual mean
temperature

PRISM [34, 35]
accessed: 4
August 2021

1974–1981
1986–2020

Annual 4 km 12.8± 0.1 ◦C;
(4.9–21.8)

Precipitation Total annual
precipitation

PRISM [34, 35]
accessed: 4
August 2021

1974–1981
1986–2020

Annual 4 km 1089.1± 9.7 mm;
(491.4–1520.5)

Soil
productivity
index

Ordinal index,
ranging from 0 to
19, with 19
representing the
most productive
soils. Classification
is based upon soil
taxonomy and
features that are
commonly
associated with soil
productivity

USDA-Forest
Service [36, 37]
accessed: 9
August 2021

Updated in
2020

NA (does
not
change
over
time)

240 m 8.3± 0.1 index
(3.7–13.7)

productivity in the continental United States were
obtained frommultiple open-source repositories and
varied in their temporal extent, temporal resolution,

and spatial resolution (table 1). In supplement 1 we
provide detailed explanation for our choice of data
to represent each of these environmental stressors.
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Figure 2. Average honey yield (kg colony−1) among colonies in the United States from 1974–2020, with light gray lines showing
reported yields for each state over time and the dark line showing a loess smooth with shaded confidence interval to help visualize
the temporal trend. Data were not reported for 1982–1985.

Briefly, spatial variation in land use among states was
represented in our models by soybeans, a proxy for
intensive agriculture that is typically considered non-
bee-supportive, and Conservation Reserve Program
(CRP) land, a national conservation program that
has been shown to support pollinators [26, 27]. We
hypothesized that land use and land use conversion
from CRP land (the largest on-farm conservation
program) to soybean land (the most abundant agri-
cultural crop by area), as well as soybean intensi-
fication, (i.e. glyphosate, the most abundant herb-
icide used on soybeans, and overall in agriculture,
by weight) would represent broad trends in land
management over the past several decades and cap-
ture loss of weedy floral resources in crop margins.
Additionally, climate (i.e. temperature and precipit-
ation) and soil productivity may help characterize
floral ecoregions, while annual deviations from cli-
mate normal (i.e. weather anomalies) may underly
floral resource quality (i.e. nectar quantity) [13].
We also assessed the potentially confounding effect
of colony abundance on honey yields, finding no
effect and thus excluding this variable in subsequent
analyses (supplement 2). Due to limitations in data
availability, we are unable to answer all questions
related to honey production but feel that our care-
fully chosen environmental variables shed light on
bee floral resource dynamics across the US over the
last 50 years.

All data processing and analysis was completed
in R version 3.6.3 [38]. To match the state-level

resolution available for honey yield data, more gran-
ular raster data were averaged to the state level using
the raster (v.3.4.5) [39] and exactextractr (v.0.6.1)
[40] packages. We stratified our analysis into separ-
ate models: pre- and post-1992 (1974–1991, 1992–
2019) to match the temporal extent of different data
sources [41]. Glyphosate data andCRPdatawere only
available post-1992; thus the post-1992 model util-
izes the full set of variables while the pre-1992 model
is a reduced model. This also approximated the peri-
ods when colonies were generally increasing in pro-
ductivity and decreasing in productivity, respectively
(figure 2).

2.2. Statistical analysis
We fit generalized linear mixed effects model
(GLMM) in JAGS using R2jags (v.0.7.1) [42] with
an identity link function and normal error distribu-
tions. For each of these models we examined estim-
ated effect sizes for each of our covariates of interest
and used hierarchical partitioning to assess the relat-
ive contribution of different groups of factors to the
explained variation in honey yield [41]. Hierarchical
partitioning assesses relative variable importance
based upon the improvement in log likelihood asso-
ciated with the addition or removal of each group of
covariates among an exhaustive series of hierarchic-
ally organized regression models [43]. In this way,
explained variation can be assessed for each set of
variables, independent of other proposed covariates
[43]. This is particularly useful in cases such as ours,
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where variables are correlated (supplement figure
S1). Before fitting models, each dependent and inde-
pendent variable was scaled and centered to assist
with model convergence and to enable parameter
estimate comparisons of variables on different scales
(due to units or biological reasons). Prior to scaling,
average proportion of soybean and CRP land, as well
as honey yield, our dependent variable, were square
root transformed to correct for skew.

Within each model (pre-1992 and post-1992),
spatial variation was characterized by calculating the
state-level average for each predictor (across all years,
within each time period), while temporal variation
was characterized by the annual deviation from the
state-level average [44, 45]. For example, average tem-
perature in each state from 1992 to 2021 (i.e. ‘cli-
mate’) is a spatial predictor, while the annual devi-
ations from those values (i.e. ‘weather anomalies’) is
a temporal predictor (supplement table S1).

The set ofmodels included in the hierarchical par-
titioning included the full model of all spatial and
temporal predictors, all nested subset models, and a
null model with no fixed effects (supplement table
S1). Predictors were functionally grouped into soil
productivity, land use (soybean and CRP land), herb-
icide use, herbicide use change, land use change (soy-
bean andCRP land), annual weather anomalies (tem-
perature and precipitation) and climate (temperat-
ure and precipitation). Visualizing the relationship
between climate and honey yield suggested a quad-
ratic relationship, so we also included their squared
terms. This resulted in five sets of variables for a
total of 30 nested models in the pre-1992 hierarch-
ical partitioning, and seven sets of variables (addi-
tion of herbicide use and herbicide use change) in the
post-1992 hierarchical partitioning, for a total of 126
nested models. We did not include random effects in
any of the hierarchical partitioning models to ensure
the explained variation was solely attributable to the
fixed effects. However, when reporting estimates from
the full model, we include a random intercept of state
and year. We assessed model fit for both full models
using Bayesian p-values for the mean and coefficient
of variation (standard deviation divided by themean)
of new, simulated values of honey yield, compared to
observed values of honey yield [46, 47].

honeyts = αt + γs +β ∗ xts + εts

αt ∼ Normal
(
µt,σ

2
t

)

γs ∼ Normal
(
0,σ2

s

)

εts ∼ Normal
(
0,σ2

)
.

We used minimally informative priors for our
parameters; means were normally distributed and
centered around zero with small precision Normal(0,

0.001), and vague, uniformly distributed standard
deviations Uniform(0,100). We fit three chains for
each model, each with 10 000 iterations monitored
after a burn-in of 2000 iterations and thinned at an
interval of 5.

3. Results

Honey yield per colony were generally increasing
from the mid-1970’s to early 1990’s but decreased
precipitously since the early 1990’s (figure 2).
However, general patterns in regional productivity
have remained consistent across time, with states in
the Northern Great Plains and along the Gulf Coast
consistently producing the greatest honey yields per
colony across years (supplement figure S2). In both
periods we assessed (pre- and post-1992), sources
of spatial variation across states (climate, soil pro-
ductivity, proportion of soybean or conservation
land, and herbicide use) were much more import-
ant than sources of temporal variation in each state
(weather anomalies, changes proportion of soy-
bean or conservation land, changes in herbicide use)
(figure 3). Our full model provided accurate estim-
ates of honey yields (supplement figure S3) and post
predictive checks showed that our data was consist-
ent with the fitted model (i.e. all Bayesian p-values
fell within 0.1–0.9, with three of the four p-values
= 0.5).

3.1. Sources of spatial variation in honey yields
For both the pre- and post-1992 data, spatial variation
in climate was the most important factor for describ-
ing spatial trends in honey yields, followed by soil pro-
ductivity, and then land use (figure 3). In the pre-
and post-1992 models, 64% and 69% of explained
variance was attributable to climate, respectively. Soil
productivity also accounted for a large proportion of
explained variance, with 30% in the pre-1992 model
and 10% in the post-1992 model. In the pre-1992
model, state-level land use only accounted for 3% of
the explained variance, as compared to 10% in the
post-1992 model. In the post-1992 model, average
state-level herbicide use was only marginally import-
ant, at 2%; data on herbicide use was not available for
pre-1992.

The highest honey yields were seen in states with
either cool or warm climates and high soil productiv-
ity (figure 4). In our full model for both the pre-
1992 data (µlinear = −0.02 ± 0.09, 95% credible
interval (CI) = −0.17–0.21; µquad = 0.46 ± 0.07,
95% CI = 0.31–0.60), and post-1992 data
(µlinear = −0.12 ± 0.13, 95% CI = −0.14–0.40;
µquad = 0.59 ± 0.13, 95% CI = 0.31–0.84) there was
strong evidence for a parabolic relationship between
climate-average temperature and honey yield
(figure 4). In both periods, there was also a positive
correlation between honey yield and soil productivity
(pre-1992: µ = 0.37 ± 0.11, 95% CI = 0.15–0.59;
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Figure 3. Parameter importance to describing honey yield, before and after 1992. Parameters are variables or groups of variables
assessed using hierarchical partitioning. We compared spatial (denoted by ∧ in legend) versus temporal parameters (denoted by ∗

in legend). The herbicide parameters were only assessed in the post-1992 models when data became available.

Figure 4. Spatial variation in climate and soil productivity are strongly associated with honey yield. Pre-1992 model estimated
trends between honey yields and climate-normal temperature (A) and soil productivity (B) are shown. Trends are shown (black
line) with the 95% credible interval (gray), and actual data are plotted as points.

post-1992: µ = 0.36 ± 0.22, 95% CI = −0.07–0.78).
The model predicted an approximate 50% increase in
yield from the lowest to the highest productivity val-
ues (range= 3.7–13.7) in both the pre- and post-1992
models (figure 4). Climate variables and soil pro-
ductivity alone yielded very good estimates of honey
yield during each period, when comparing actual

versusmodel-fitted values (pre-1992 model: ρ= 0.87,
R2 = 0.77; post-1992 model: ρ = 0.83, R2 = 0.68)
(figure 5).

In the full model for both periods, there was
large uncertainty around the effect of land use, and
the effects were not sufficiently different from zero.
The amount of land used for soybean production
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Figure 5. Spatial variation in climate and soil productivity accurately predict honey yield in post 1992 data. Actual average honey
yields (A) and estimated honey yield, based on the post-1992 climate and Soil Productivity mean estimates (B) are shown. States
are shaded according to honey yield estimates (lighter colors indicating higher honey yields).

in each state did not have an appreciable effect on
honey yields in the pre-1992 model (µ= 0.03± 0.08,
95% CI = −0.14–0.18), or in the post-1992 model
(µ = 0.17 ± 0.15, 95% CI = −0.12–0.46), but there
was some evidence of a positive trend. In the post-
1992 model, there was large uncertainty around the
effect of proportion of CRP land in a state, and
the mean estimate was very low (µ=−0.08 ± 0.17,
95% CI = −0.44–0.24). There was also limited evid-
ence for an effect for average state-level herbicide
use on average honey yield (µ = 0.15 ± 0.11, 95%
CI = −0.06–0.37), with some evidence of a positive
trend.

3.2. Sources of temporal variation in honey yields
We next evaluated sources of temporal variation in
honey yields within states. Since 1992, and concur-
rent with declines in honey yields, average temper-
atures and rainfall have both generally increased,
CRP land enrollment area has decreased while soy-
bean area has increased, and there has been a pro-
nounced increase in the glyphosate use (supplement
figure S4). Compared to the spatial factors, tem-
poral factors accounted for a smaller proportion of
overall explained variation (figure 3). Of these tem-
poral factors, land use change and weather anom-
alies were of comparable importance for describing
honey yields in the pre-1992 data (1% and 2% of total
variation explained, respectively). In the post-1992
model, change in herbicide use was the most import-
ant temporal factor (5% of total explained variation),
followed by land use change (3%) andweather anom-
alies (1%) (figure 3).

Increasing the proportion of soybean land and
decreasing the proportion of CRP land across time
were each negatively correlated with honey yield.
When the proportion of soybean land in a state
increased, our temporal model for the pre-1992 data
indicated that honey yield simultaneously decreased
(µ = −0.10 ± 0.03, 95% CI = −0.15 to −0.04). In
our post-1992 temporal model, however, there was
no evidence of an effect of changes in the proportion
of soybean land (µ = 0.04 ± 0.03, 95% CI = −0.02–
0.09), but there was evidence for lower honey yields

associated with a decreasing proportion of CRP land
(µ= 0.07± 0.03, 95% CI= 0.01–0.13).

While identified as important, we did not detect a
strong effect of changing herbicide application rates
in the post-1992 model (µ = −0.02 ± 0.05, 95%
CI=−0.12–0.09). Our model estimates a 65% prob-
ability of a negative correlation between change in
herbicide use and change in honey yield. However,
this uncertainty likely stems from the inclusion of
year as a random effect in the GLMM. Because
change in herbicide application rates increased across
years (supplement figure S4(F)), including year in
the model increases the uncertainty around our fixed
effect of changing herbicide application rate.

Though weather anomalies were identified as rel-
atively important in both periods, the only strong
evidence for an effect of weather anomalies comes
from precipitation anomalies pre-1992. In the pre-
1992 model, wetter-than-normal years were associ-
ated with lower honey yields (µ = −0.08 ± 0.03,
95% CI = −0.14 to −0.02), but there was little evid-
ence for an effect of annual temperature deviations
from normal in this model (µ = −0.04 ± 0.04,
95% CI = −0.12–0.04). Likewise, in the post-1992
model, the 95% credible intervals for annual tem-
perature deviations from normal contained zero
(µ = −0.03 ± 0.04, 95% CI = −0.04–0.10), indic-
ating weak evidence of an effect. There was also
no evidence for an effect of precipitation anomalies
in the post-1992 model (µ = −0.00 ± 0.03, 95%
CI=−0.05–0.05).

4. Discussion

We summarize the appreciable decline in honey
yields across the continental United States since the
mid-1990s, which contrasts with annually increasing
yields in the previous decades. There are multiple
interacting factors that are thought to affect honey
bee colony productivity and pollinators more broadly
[17, 18]. We show that over the last five decades,
honey yields at the state level, which can be con-
sidered a proxy for trends in floral resource availab-
ility for both managed and wild pollinators [21, 48],
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can be explained largely by geographic factors. That
is, there are different floral-resource suitability ecore-
gions across the US characterized by climate condi-
tions and soil productivity. We also demonstrate that
changes in honey yields over time within states are
associatedwith changes in herbicide application rates,
land use, and annual weather anomalies. These year-
to-year changes seem to fine-tune the foundational
ecoregional patterns we observed and contribute to
better estimates of floral resources.

Warm and cool regions with highly productive
soils produce more honey than states with moder-
ate climates and poor soil productivity. Based on the
importance of the spatial (ecoregional) coefficients in
our hierarchical models, our results suggest a process
of environmental filtering. That is, climate and soil
productivity set the foundation for the most floral-
supportive states, likely by determining the types of
floral communities that can grow in a region. Land
use, the next most important spatial factor, may fur-
ther constrain the types of flowers that are available
in the landscape. Herbicide use, a proxy for land use
quality and additional layer of environmental filter-
ing, was not identified as very important as a spa-
tial predictor in our hierarchical partitioning model,
perhaps because it was too far abstracted to have an
appreciable effect.

The importance of climate and climate change
to pollinators is increasingly recognized as a poten-
tial stressor [13, 49, 50]. Our findings likewise indic-
ate that climate is closely associated with honey
production, likely through climate effects on floral
resources. A recent study on colony productivity
across the North Central US likewise identified cli-
mate conditions as the most important factor for
describing honey bee colony weights, as compared
to land use and annual weather [22]. Similar to
our findings, the authors describe greater colony
weight gain in the cool, dry regions of the study
[22]. Warm and cool climates are likely not intrins-
ically supportive of floral resources. Rather, these
climates likely foster regional, bee-supportive floral
communities. It is therefore unlikely that these find-
ings could be extrapolated beyond theUS, as different
regions of the globe have different floral communities
that are shaped and differentially affected by climate
conditions.

Climate became increasingly important in
describing honey yields post-1992, as compared to
pre-1992. This difference may reflect regions of the
US becomingmore distinct with climate change [51].
It is unclear how future shifts in climate will affect key
honey-producing regions of theUS. If pollinators and
plant communities track climate shifts, our model
estimates may help predict changes in pollinator-
supportive regions of the country under future cli-
mate change scenarios. For example, we may expect
declining pollinator resources in the Great Plains as
climate warms and becomes more moderate, while

resources may increase in the mid-Atlantic as con-
ditions become hotter. Given the variable effects of
climate change on different floral and pollinator spe-
cies and cascading effects at different spatial scales,
the effects of climate change on plant–pollinator
communities are likely much more complex and
uncertain [6, 49, 52–54]. Therefore, continued mon-
itoring is necessary to identify thresholds and make
predictions as climates become more extreme and
stochastic. Because parameter importance is relat-
ive to other factors, the apparent increase in the
importance of climate post-1992may instead reflect a
decrease in importance of other factors (e.g. soil pro-
ductivity). However, given the high overall import-
ance of climate on honey yield and given that cli-
mate change is expected to exacerbate other pollin-
ator stressors [8], conservation actions that mitigate
climate change should be considered for pollinator
conservation.

Soil productivity, an underexplored factor in
describing landscape suitability for pollinators, was
identified as an important spatial factor in our mod-
els. To our knowledge, only one previous study
has modeled landscape level effects of soils on pol-
linator floral resources or colony productivity [5].
While previous studies have focused on soil nutrients
[4, 5, 55, 56], our findings suggest that soil taxo-
nomic traits (the basis of the soil productivity index)
effectively captures the potential of soils to sup-
port abundant, productive flowers. One previous
study analyzed the effect of various soil characterist-
ics on field-scale grassland productivity by creating
a novel index using principal components analysis
[57]. These researchers found that their index was
positively correlated with floral functional diversity,
and in turn with plant–pollinator interactions [57].
The soil productivity index (which we used) has
the distinct advantage of being standardized open-
source data for researchers and land managers in the
US. Furthermore, because it is based on soil tax-
onomy, similar indices could be developed in coun-
tries outside the US with minimal data collection.
While we were unable to account for temporal dif-
ferences in soil productivity, it is known that anthro-
pogenic practices, such as those that result in erosion
and excessive drainage, can decrease soil productivity
[36], and a recent study showed that anthropogenic
soil eutrophication has negative consequences for
pollinator communities [5]. Future research is needed
to further investigate the effect of soil taxonomy
on the quantity and quality of flowers for pollinat-
ors. If this is a true effect, practices that retain and
restore soil productivity (one of the original objectives
of CRP [58]) could be considered for pollinator
conservation.

Land use change trends closely matched our
expectations, with a decrease in soybean land and an
increase in CRP land each having a positive effect
on honey yields. Moreover, change in herbicide use
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application rates was important, which aligns with
previous suggestions that flowering weeds in rowcrop
agriculture can provide nutrition to bees in intens-
ive landscapes [59]. The role of land use change and
intensification on floral availability is a notable find-
ing, given that much of pollinator conservation to
date has focused on pollinator habitat restoration. In
2014, the US Pollinator Health Task Force released a
memorandum that called for the restoration and/or
improvement of seven million acres (2.83 million
ha) of pollinator habitat [60]. Conservation Reserve
Program land has been shown effective in attract-
ing abundant honey bee and wild bee foragers [26],
and when CRP land is present in the local land-
scape honey bee colonies are more productive [27].
Previous research has raised concern about the effect
of land use conversion fromCRP land to soybean land
and the potential effects on honey bee colonies [10,
61]. Otto et al [10] showed that the Northern Great
Plains, a key region for honey productions, had over
half of its CRP land converted to annual row crops,
including soybeans, between 2006 and 2016. At the
country scale, we similarly saw an increase in soy-
bean land and decrease in CRP land in recent decades.
Unlike Otto et al [10, 61] however, we did not have
the spatial resolution to determine if sampled colon-
ies were within foraging range of CRP land. This lack
of granularity is a limitation of our study. Because
beekeepers select apiary locations based on perceived
landscape quality (e.g. preferringCRP land over crops
such as soybeans [10]), our approach may under-
estimate the importance of land use and land use
change. Our finding, along with previous research,
suggests that investing in pollinator habitat restor-
ation is a promising approach for enhancing floral
resources for pollinators at the landscape scale.

We also provide strong evidence of a negative
correlation between higher-than-normal precipita-
tion and honey yields pre-1992. Similar to our find-
ings, a detailed, four-year study in the Michigan, US
identified the importance of weather to honey bee
colony productivity, and described a negative cor-
relation between higher-than-normal precipitation
on honey weight accumulation, which is primar-
ily attributable to honey [62]. The authors attribute
this trend to an indirect effect of rainfall on floral
communities [62], thoughwe cannot exclude the pos-
sibility that these trends also correlate with the bees’
ability to forage. Likewise, Calovi et al [63] (2020)
found that both high and low precipitation was asso-
ciated with increased colony mortality in a three-
year study in Pennsylvania, US. Extreme precipitation
events are expected with climate change [64] and thus
continuedmonitoring could help researchers forecast
various climate change scenarios and prepare for a
resilient future for pollinators.

Our study demonstrates significant effects ofmul-
tiple global change factors, from climate and soil pro-
ductivity to land use change and extreme weather.

We suggest that climate and soil productivity under-
pin floral regions by constraining the available plant
communities, while land use and weather modu-
late the realized floral resources and annual pro-
ductivity of that community. While large-scale, long-
term studies, such as ours, are often limited by data
availability, our findings provide valuable insights
that can be applied to improve models and design
experiments to enable beekeepers to predict honey
yields, growers to understand pollination services,
and land managers to support plant–pollinator com-
munities and ecosystem services. We call for contin-
ued long-term monitoring and manipulative exper-
iments to improve understanding of environmental
factors affecting habitat suitability for pollinators
across space and time. Our findings reinforce per-
vious findings on the detrimental effect of land use
conversion from bee-supportive habitats to intens-
ive agricultural land use and highlight soil conser-
vation as an area for further consideration as a pol-
linator conservation practice. These long term, broad
scale observational trends should be explored further
at local scales, and with manipulative experiments.
As climate changes, we may also need to consider
climate-smart cultivars for pollinator habitats that
are adapted to regional climates and that can with-
stand extreme weather events to support pollinator
communities.
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