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Abstract

The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread
in multiple locations around the world and, along with it, brought associated organisms such as
endosymbionts. We investigated endosymbiont diversity and prevalence across putative native
and invasive populations of this spider, predicting lower endosymbiont diversity across the
invasive range compared to the native range. First, we characterized the microbial community in
the putative native (South Africa) and invasive (Israel and the United States) ranges via high
throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from
only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an
apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs,
indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were
detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma
and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from
native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found

Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that
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it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at
lower overall prevalence (14%) and was represented in all countries, but not all populations. In
addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from
Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and
Wolbachia was geographically clustered in both Israel and South Africa. Characterizing
endosymbiont prevalence and diversity is a first step in understanding their function inside the
host and may shed light on the process of spread and population variability in cosmopolitan

invasive species.

Introduction

When moving into new habitats, invasive species may bring along microbial associates that can
influence the invasion process [1,2]. Some microbes are vertically inherited endosymbionts that
are restricted to the invasive species, but may yet influence interactions between the invasive and
native species. Maternally-inherited endosymbionts have been shown to affect traits important to
host fitness such as dispersal [3], fecundity [4], and defenses against natural enemies [5],
potentially providing an advantage to the invasive species [6]. Some endosymbionts affect the
organism’s reproductive biology, for example, by modifying offspring sex ratio in infected
populations, which can affect the speed of invasive spread [7]. For example, acting as both a
mutualist and reproductive manipulator, Rickettsia caused whiteflies to have higher fitness and a

higher proportion of daughters, and quickly spread in invasive populations [8].

Assessing endosymbiont prevalence across geographically distant populations can
provide a key to understanding the role of a symbiont. Widespread prevalence of a facultative
endosymbiont suggests that the symbiont plays a functional role in its host, such as providing

fitness benefits or manipulating reproduction [9,10]. The latter is often manifested by sex ratio
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distortions, although the most common reproductive manipulation is cytoplasmic incompatibility
(CI), which causes incompatibilities between infected males and uninfected females but does not
alter the sex ratio of the population [11]. Our understanding of the dynamics and prevalence of
facultative endosymbiont infection during invasive spread is limited, especially for non-insect

arthropod endosymbionts.

Invasive populations are predicted to exhibit reduced endosymbiont prevalence and
diversity compared to native populations. During founding events, often few individuals are
initially introduced into the invasive range [12], in which case only a subset of endosymbionts
found in the native range might be introduced to the new location [13]. However, in most
biological invasions, multiple introductions are common [14], and so endosymbiont diversity
might be lower initially, and then increase over time as more individuals arrive from various
localities [15]. Comparing endosymbiont diversity across invasive and native populations can
provide valuable insights into the gain and loss of microbial communities during the invasion

process.

The brown widow spider, Latrodectus geometricus (Theridiidae), is a medically
important spider with neurotoxic venom. Latrodectus geometricus has spread recently to
multiple locations around the world from the putative native range in southern Africa, most
likely via cargo shipments [16,17]. Evidence suggests that during invasion, establishment and
spread, spider traits related to dispersal, fecundity, and body size shifted across populations that
were established over different time periods [18]. In addition to these shifts in ecologically
important traits, associations with other organisms, such as parasitoids [19] or endosymbionts,

may have also changed during the invasion spread.
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Endosymbionts of widow spiders (genus Latrodectus) are poorly known. A previous
study on L. geometricus identified the endosymbiont Rhabdochlamydia, but only examined a few
adult females in a single, inbred lab population in Florida, USA [20]. The same study did not
detect Rhabdochlamydia in two other Latrodectus species. Hence, a further study across field-
collected individuals worldwide is necessary to assess the presence of Rhabdochlamydia more
broadly across populations of L. geometricus. The family Rhabdochlamydiaceae (Phylum:
Chlamydiota) is predicted to be the most diverse chlamydial family [21]. It includes important
vertebrate and human pathogens and is widespread across soil and aquatic ecosystems with many
yet unknown hosts [22]. The genus Rhabdochlamydia has been found in a few distantly-related
invertebrate hosts, including a cockroach [23], a tick [24], a dwarf spider [25], and a terrestrial

isopod [26], although it was not found at a high prevalence within any of these species.

Also previously found in invasive populations of L. geometricus was Wolbachia, as a
facultative associate in varying prevalence across populations [27]. Wolbachia infection is
common in arthropods, with 40-60% of species infected [28], as well as in other invertebrates
including nematodes [29]. Wolbachia is known to affect the fitness and reproduction of many of

its hosts, which could have implications for successful invasive establishment and spread [30].

In this study, we compared endosymbiont presence and diversity across populations of
the brown widow spider, L. geometricus, from the putative native range in South Africa to
populations in the invasive range in the United States and Israel, using both high-throughput
sequencing and diagnostic PCR screens. Our objectives were to 1) characterize the dominant
endosymbionts in L. geometricus, 2) compare prevalence and diversity across purported native
and known invasive ranges, and 3) investigate geographic patterns of endosymbiont infection

within countries. We predicted that, due to founder effects, some endosymbiont would be lost
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and infection rates would be lower in invasive populations in the U.S. and Israel compared to
putative native populations in South Africa, and that geographic patterns of endosymbiont loss

would reflect the proposed routes of invasive spread of L. geometricus within each country.

Methods
Study species

Latrodectus geometricus, the brown widow spider, is a globally invasive species that has
established populations in parts of North and South America, the Middle East, Australia, and
Asia [17]. In the United States, L. geometricus was first detected in Miami, Florida in 1936 [31],
was confined to southern Florida until the late 1990s, and was subsequently detected in Texas
and California in the 2000s [32]. In Israel, L. geometricus was first detected in the Tel Aviv area
in 1980 [33], and in the Negev region after 2000 [34]. Throughout the global invasive range, L.
geometricus 1s found in urban and settled habitats, and builds nests on and around buildings, on

fences, garden furniture, trash bins, and in playgrounds [17].
Study sites

We collected L. geometricus adult females from urban environments across the United States
(Edisto Island, South Carolina » = 10; Gainesville, Florida n = 10; Austin, Texas n = 6; Los
Angeles, California n = 7), Israel (Haifa n =7, Tel Aviv n =10, Be’er Sheva n =10, Yeruham n
= 8, Midreshet Ben-Gurion n = 10, Eilat n = 1), and South Africa (Modimolle n = 10, Pretoria n
=5, Johannesburg n = 5, Kimberley n = 8, Cape Town n = 5, Riebeeck-Kasteel n = 6, George n
= 7). Spiders were deprived of food for one week before they were preserved in 100% ethanol.
Starved individuals have minimal gut content and are less likely to result in false positives for
endosymbionts found in the spider’s prey [35]. To learn about the potential for vertical

transmission, we also collected L. geometricus egg sacs from two sites in South Africa:
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Kimberley (n = 1) and Riebeeck Kasteel (n = 2), and sampled egg sacs produced in the

laboratory from Midreshet Ben-Gurion (n = 3) and Tel Aviv (n = 2), Israel.

Bacterial 16S sequencing

We surface-sterilized each adult female L. geometricus specimen (n = 125) with a series of
bleach and ethanol rinses [36] before longitudinally dividing the abdomen in half and extracting
DNA from one half using DNeasy Blood and Tissue extraction kits (Qiagen, Germantown, MD)
according to manufacturer’s instructions. In addition, we extracted DNA from the legs of two
specimens, as well as from the eggs of 8 L. geometricus egg sacs to assess endosymbiont
presence outside reproductive tissues and the potential for maternal transmission, respectively.
Extraction quality for each sample was verified by PCR amplification of a ~650 bp segment of
the COI gene (forward primer, 1co1490: 5'-GGTCAACAAATCATAAAGATATTGG-3', reverse
primer, hco2198: 5'-TAAACTTCAGGGTGACCAAAAAATCA-3'; cycling conditions: one
cycle of 94°C for 3 min, followed by 35 cycles of 95°C for 30 s, 53°C for 30 s, 72°C for 1 min,
final extension at 72°C for 5 min [37]. If COI failed to amplify, we attempted a second extraction
with the other half of the abdomen. If this extraction failed to amplify product as well, we
assumed sample preservation had been poor and eliminated the specimen from the dataset

entirely (7/125 specimens).

To investigate which endosymbionts were present in these specimens, we profiled the
microbiomes using high-throughput sequencing of the bacterial community. We amplified the
V4 region of bacterial 16S rRNA for each sample using dual indexed 515F/806R primers [38].
We visualized the resulting products, and multiplexed 1 pl aliquots from successful
amplifications into one of two libraries that were purified with GenCatch PCR Cleanup Kits.

Samples that failed to amplify (6/118 samples) were not included in the library. Each library also
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included specimens from other projects that are not reported here, and received a PhiX spike to
increase sequence heterogeneity among the amplified sequences. Libraries were sequenced at the
University of Kentucky genomics core facility on an [llumina Miseq instrument using a paired-
end strategy and 250bp reads. Sequences from each run were demultiplexed, trimmed and
quality filtered within BaseSpace (Illumina, basespace.illumina.com), then imported into

QIIME2 (v2021.11, https://giime2.org [39]) using a manifest. We conducted additional quality

control using deblur [40] implemented in QIIME?2 using default parameters and a trim length of
251 bases. Resulting amplicon sequence variants (ASV) were taxonomically classified using a
naive Bayes classifier that was trained on the 515F/806R V4 region of the Greengenes 138 99%
OTUs reference database [41]. We filtered out 15 ASV that originated from other specimens in
the sequencing run (e.g., obligate endosymbionts of other host taxa, see [42] for discussion of
index swapping), which collectively constituted only a small minority (0.14%) of the 3.57 x 10°
reads associated with the L. geometricus samples. Following filtering, L. geometricus samples
with less than 1000 reads were excluded from further analysis (9/112 adult samples, 6/8 egg
samples). For the remaining samples, we blasted high prevalence ASV sequences (>1% of any L.
geometricus sample) against the NCBI nt database using the megablast algorithm, to identify
bacterial taxa that may not have been included in the reference database. For ASV that appeared
at very high prevalence or frequency (>90% of reads for any specimen, or found in multiple
specimens across multiple locations), we amplified a longer segment of 16S using universal
primers from specimen(s) dominated by that taxon, to aid in taxonomic placement (Forward
primer, 27F: 5'-AGAGTTTGATCMTGGCTCAG-3', reverse primer 1492R: 5'-
GGTTACCTTGTTACGACTT-3', cycling conditions: one cycle of 95°C for 2 min, followed by

35 cycles of 92°C for 30 s, 55°C for 30 s, 72°C for 30 s, final extension at 72°C for 6 min [43].
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Diagnostic PCR

We diagnostically screened all samples (all 118 adult female, 8 egg, and 2 leg samples) for the
two bacterial genera previously identified from L. geometricus: Wolbachia (Class
Alphaproteobacteria, Order Rickettsiales, Family Anaplasmataceae) and Rhabdochlamydia
(Class Chlamydiia, Order Chlamydiales, Family Rhabdochlamydiaceae; Arrington, 2014; Dunaj
et al., 2020). For Wolbachia, we followed previously published protocols (Baldo et al., 2006),
using primers specific to the Wolbachia surface protein (wsp) gene (Forward primer, wspF1: 5'-
GTCCAATARSTGATGARGAAAC-3', reverse primer wspR1: 5'-
CYGCACCAAYAGYRCTRTAAA-3', cycling conditions: one cycle of 94°C for 2 min,
followed by 36 cycles of 94°C for 30 s, 59°C for 45 s, 72°C for 1 min 30 s, final extension at
70°C for 10 min [44]. For Rhabdochlamydia, we designed new primers in Primer3 [45] to
amplify a ~540bp segment of 16S: Rhabdo 108F 5'-ACACTGCCCAAACTCCTACG-3"and

Rhabdo 647R

5'-TTAGCTWCGACACAGCCAGG-3'. All reactions were run in 10ul volume; the
Rhabdochlamydia reactions included 3 pL purified water, 1pL 10X Buffer (New England
Biolabs), 1.2 uL. 10mM dNTPs, 1.5 pL 25mM MgCly, 0.6uL each of forward and reverse
primers at SpM, and 0.1 pL of 5U New England Biolabs Taq Polymerase. PCR reactions
received one cycle of 94°C for 2 min, followed by 25 cycles of 95°C for 15 s, 56°C at 15 s, 68°C
for 45 s. We electrophoresed and visualized the products on 1% agarose gels stained with Gel
Red (Biotium) alongside known positive and negative (reagents-only) controls. Samples with
initial negative diagnoses were retested before being categorized as uninfected. For a subset of
the samples with positive evidence of infection, we repeated the PCR at a 20ul volume and

purified the PCR product with either GenCatch PCR Cleanup or Gel Extraction Kits (Epoch Life
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Sciences, Missouri City, TX) according to manufacturer’s instructions. Products were then
submitted for Sanger sequencing (Eurofins, Louisville, KY'). Resulting sequences were
compared to the NCBI nucleotide database using the megablast algorithm, and specimens
returning a 97% or higher match to the expected bacterial genus were scored as positive. For
each strain of Wolbachia, we sequenced 5 MLST genes (coxA, fbpA, fisZ, gatB and hcpA) and

the Wolbachia surface protein (wsp) according to [44].

For Rhabdochlamydia, we ran phylogenetic analyses to place the L. geometricus strains,
using a set of accessions across Chlamydiia with Oligosphaera ethanolica as an outgroup. For
each analysis, multiple alignments were assembled using the MAFFT server (v. 7;

https://mafft.cbrc.jp/alignment/server/ [46]) using the Q-INS-I alignment method that takes

secondary structure into account. Maximum likelihood phylogenetic analyses were conducted on
1576-character aligned datasets using Garli (v. 2.01 [47]). We applied the most complex model
available (GTR+I+G [48]) as per recommendations of Huelsenbock and Rannala [49] for
likelihood-based analyses. We conducted a 100-replicate ML search for the tree of highest log-
likelihood and a 500-replicate ML bootstrap analysis [50] with two search replicates per

individual bootstrap replicate. All analyses used the default settings.

We used the same approach to generate a Wolbachia phylogeny. We used a concatenated
data set containing 5 MLST genes (coxA4, fbpA, fisZ, gatB and hcpA; total of 2079 characters)
with 38 Wolbachia strains pulled from the Wolbachia PubMLST website
(pubmlst.org/organisms/wolbachia-spp [51]). Because rooting Wolbachia trees is challenging
[52], and our objective was only placement of our new strains within established Wolbachia
supergroups, we chose to simply root the tree within Supergroup A. Individual specimens were

scored for the presence of Rhabdochlamydia and Wolbachia based on the combination of
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diagnostic, high-throughput, and Sanger sequencing data. For a sample to be scored positive, a
positive diagnostic PCR needed to be corroborated by either high-throughput or Sanger
sequencing validation. For a sample to be scored negative, consistent negative diagnostic PCRs

needed to be accompanied by positive validation of spider COI and/or other bacterial taxa.
Statistical methods

All analyses were conducted in R version 4.0.2 [53]. To compare the prevalence of the dominant
strains of Rhabdochlamydia and Wolbachia across South Africa, Israel, and the United States,
we used a general linear model (“Ime4” package [54]) with a binomial link function, with
Rhabdochlamydial or Wolbachial presence or absence in an individual as the response variable,
and country as the predictor. Maps showing collection localities in South Africa, Israel, and the

United States, were generated using the R package ggspatial [55].

Results

Compared to most microbiomes in arthropods, L. geometricus spiders have a depauperate
microbial fauna. Of 103 adult female spiders that produced sufficient read depth (mean + SE of
33844 + 2026 sequences per sample), all were dominated by one to three bacterial strains that
accounted for greater than 90% of the reads (Figure 1). In 64 samples, a single strain accounted
for greater than 99% of reads. In most samples, the most prevalent bacterial ASV was
Rhabdochlamydia (83/103 samples) although a few samples each were dominated by ASVss
corresponding to Wolbachia (6 samples), Enterobacteriaceae (10 samples), Providencia (2
samples), Wohlfahrtimonas (1 sample) and a bacteria that could not be placed by the Greengenes
reference database, but which our analyses (see below) place within the Chlamydiales

(Chlamydialesl, 3 samples, Figure 1).
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Most samples had at least some Rhabdochlamydia representation. Nine samples from
several locations in South Africa and the United States had negligible representation (<0.1% of
reads) of Rhabdochlamydia. The number of Rhabdochlamydia reads in the latter samples ranged
from O (out of 4222 reads) to 359 (out of 37618 reads), and most fell below the number of
Rhabdochlamydia reads seen in blanks (9-81 reads). Two samples were diagnostically positive
for Rhabdochlamydia despite low numbers of reads, and were additionally validated by Sanger
sequencing of the diagnostic product, thus were counted as Rhabdochlamydia positive in the
final dataset. In the remaining seven specimens, the low number of proportional reads and the
diagnostic absence supports the genuine absence of Rhabdochlamydia. Of the additional 15
samples that were excluded from high throughput analysis due to poor initial amplification or

insufficient read depth, six were validated to have Rhabdochlamydia and nine did not.

To gain insight into the occurrence of strains of the major endosymbionts found, we used
Sanger sequencing data to distinguish among strains of the same symbiont clade. Most detected
Rhabdochlamydia strains were identical (GenBank Accession #0P598824). Two variant strains
were detected, each in one individual. The variant strain from a Modimolle, South Africa
specimen (#OP598825) was 99.8% similar to the dominant strain, differing at only 1/480 bases
of 16S. The variant strain from Eilat, Israel (#OP598826) was 98.8% similar, differing at 6/480
bases of 16S. Phylogenetically, all three strains were clustered together within the genus

Rhabdochlamydia and family Rhabdochlamydiaceae (Figure 2).

Wolbachia was much less common than Rhabdochlamydia, found in 14% (17/118) of
individuals, but represented in spiders collected from all three regions. We were able to sequence
all MLST genes and wsp for all three strains of Wolbachia (accession numbers OP612314-

OP612330), except gatB in L. geometricus Wolbachia3. The most widespread and characteristic
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strain of Wolbachia in L. geometricus, Wolbachial, was present in 13/118 specimens (11%), and
phylogenetic analysis placed the strain in Wolbachia Supergroup F (Supplementary Figure 1). In
contrast, L. geometricus Wolbachia2, which was found in four specimens across three localities
in South Africa, belongs to a different Wolbachia clade, Supergroup B. A third Wolbachia strain,
L. geometricus Wolbachia3, which was found in a single sample that had not been included in
high throughput sequencing but was validated with diagnostic PCR and subsequent sequencing,

was placed in Supergroup A.

Only 16 other ASV, besides Rhabdochlamydia and Wolbachia, were ever found at >1%
prevalence in any sample, and the majority of these (nine) were each found in single specimens.
Enterobacteriaceael represented a substantial proportion of reads in 12 individuals across several
locations in South Africa and the United States, and was the dominant ASV in eight individuals.
When blasted against the NCBI database, a 1359bp segment of 16S from this bacterium
(#OP598828) was not closely aligned to any other accessions, bearing greatest resemblance to
aphid secondary symbionts (e.g., EU348326 at 96.8%) or Gilliamella, a specialized honeybee
gut symbiont (e.g., CP048265 at 95.84%). Enterobacteriaceael was absent from Israel, although
a different Enterobacteriaceae ASV was detected from two individuals collected from one
location in Israel. Two other gammaproteobacteria ASVs, Providencia and Wohlfahrtiimonas,
were present in two and one specimens, respectively. One bacterial strain, which was found in
four individuals across two locations in the southeast U.S., was not able to be placed against the
Greengenes database in the QIIME2 pipeline, but a 498bp segment of 16S aligns most closely
with other Chlamydiales in GenBank (e.g. FJ976094 at 87.2%). Our chlamydial phylogeny
(Figure 2), also supports placement within this order, hence we have designated it

Chlamydiales1. Other bacterial ASV were only found at a low percentage of reads across spiders
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(two Acenitobacter ASV, two Spiroplasma ASV, and one each of Entomoplasmatales,

Sporosarcina, Bacillus, Enterococcus, and Lactococcus).

Comparing across the three countries, a higher proportion of spiders collected in Israel
were infected with the dominant strain of Rhabdochlamydia, Rhabdochlamydial, than spiders
from South Africa (GLM, z =-2.128, p =.033) or the U.S. (z=-2.538, p =.011). We found no
differences in prevalence of the dominant Wolbachia strain, Wolbachial, across countries (GLM,
US-Israel, z =-0.689, p = .491; US-South Africa, z =-1.268, p = .205; Isracl-South Africa, z = -
0.669, p = .504). Using diagnostic PCR screening, we found evidence for Rhabdochlamydia in
100% (8/8) of L. geometricus eggs tested from South Africa and Israel. In contrast, only two out
of eight egg sacs showed signal of Wolbachia, both from Tel Aviv, consistent with the

proportional infection rate in adults from the source populations.

Wolbachia prevalence was too low for formal spatial analysis, but visually appeared to
have some level of clustering (Figure 3). In South Africa, both Wolbachial and Wolbachia?2
were found in northeastern populations (Johannesburg, Pretoria, and Modimolle) but were not
detected elsewhere in the country. Likewise, in Israel, Wolbachial was present in central and
northern populations (Tel Aviv and Haifa), but was not detected in the southern Negev
populations (Beer Sheva, Yeruham, Sede Boger, Eilat). Among the four U.S. populations,
Wolbachial was found in spiders collected from Florida and Texas, Wolbachia3 was in South
Carolina, but no Wolbachia was detected in spiders from California, the most recently detected

invasive population.

Discussion

Latrodectus geometricus spiders have maintained a characteristic microbiome throughout their

global spread. We identified one predominant endosymbiont, Rhabdochlamydial in almost all
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spiders (86%), and represented in all collection locations. We also found a characteristic
Supergroup F Wolbachia (Wolbachial) represented in all countries, albeit in fewer individuals
(11% of spiders). We detected both Rhabdochlamydial and Wolbachial in L. geometricus eggs,

indicating that both are vertically transmitted endosymbionts.

The widespread presence of Rhabdochlamydia suggests that it might be important
functionally for the host. In other arthropods, endosymbionts found at consistently high
frequency across wide geographic ranges have often subsequently been found to have important
fitness or reproductive consequences for their hosts [56,57]. Little is known about the functional
role of Rhabdochlamydia in arthropods. It was described from a variety of mostly non-insect
arthropods and was generally found at low prevalence in the tested populations [23,24,26]. In a
terrestrial isopod, Rhabdochlamydia had pathogenic effects [26]. The high prevalence (86%)
and vertical transmission of Rhabdochlamydia in L. geometricus argue against a strongly
pathogenic role for this bacterial strain within our system. Genomic analysis of
Rhabdochlamydia found in other arthropod hosts, an isopod and a tick, found pathways for
polyamine synthesis [22], which are relevant for virulence and stress responses, suggesting that

some strains of this bacteria are potentially beneficial in their host.

We also detected Rhabdochlamydia in L. geometricus legs, consistent with the work of
Dunaj et al. [20], which indicated that the bacteria is found throughout the body and not just
restricted to reproductive tissue. Dunaj et al. [20] also found that the bacterial community of L.
geometricus was dominated by Rhabdochlamydia, lacking the microbial diversity of the other
spider species they examined, and speculated that this result may have been an artifact of
laboratory-reared, inbred L. geometricus spiders. Our field collected spiders from locations

around the world suggest that their result was not an artifact, but a genuine representation of a
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characteristic and depauperate bacterial community in L. geometricus. Vertically transmitted
bacterial symbionts often dominate the sampled microbiomes of their hosts, overwhelming the

signal from more casual bacterial associates [11,25,35].

Importantly, maternal transmission of Rhabdochlamydia suggests the possibility of
reproductive manipulation of host by symbiont. Reproductive manipulation is extremely
common in vertically transmitted symbionts, and the list of bacteria that have been demonstrated
to induce such manipulations is rapidly expanding [11,58]. Rhabdochlamydia has not yet been
tested for host reproductive manipulation. The widespread prevalence and vertical transmission
of Rhabdochlamydia in L. geometricus would make this system an excellent prospect for such

investigations.

Latrodectus geometricus was host to several strains of Wolbachia, a bacterial clade well
known for reproductive manipulation. Wolbachia is common in spiders, but most strains belong
to Supergroup A or B, as is the case in insects [30]. In contrast, the dominant Wolbachia strain in
L. geometricus belongs to Supergroup F, which has rarely been reported for spiders. Supergroup
F has been found sporadically in arthropods, including South African scorpions [59], termites
[60], quill mites [61], and nematodes [62]. Preliminary work on L. geometricus suggested that
Wolbachia might induce mild CI in this species [63], but the strain of Wolbachia was not

characterized, and additional experiments will be necessary to fully validate CI in this system.

Although symbiont communities were largely similar across our sampled regions, we did
find some subtle differences between the likely native and invasive ranges. Rhabdochlamydia
was found at highest prevalence in Israel compared to populations in the U.S. and South Africa.
Multiple strains of Rhabdochlamydia, Wolbachia, and the Enterobacteriaceae were found in

South Africa, the putative native population. The dominant strain of Enterobacteriaceae was
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found in South Africa and the U.S., but absent in Israel, the newest invasive region that we
sampled. From a previous study, Wolbachia prevalence in L. geometricus in the U.S. was highest
near the initial site of introduction in Florida [27]. In comparison, we found lower Wolbachia
prevalence in other locations in the southeastern and central U.S, and absence in spiders from
California, the most recently established population. Similarly, in Israel, Wolbachia was absent
in recently established populations in southern Israel. These patterns are consistent with the loss
of endosymbionts during the invasion process, but more localities, specimens, and more
knowledge of the invasion route is needed. Climatic differences such as hotter, dryer conditions
in the Negev Desert in southern Israel could also contribute to reduction of Wolbachia [64],
although deeper sampling effort would be needed to assess whether Wolbachia is entirely absent

from these locations.

Further work will test the functional role and fitness effects of endosymbiont presence in
L. geometricus, as well as compare patterns of host-endosymbiont diversity during invasive
spread. Invasive L. geometricus are highly dispersive [18], and are less susceptible to parasitism
by parasitoids compared to native widow species in the invasive range [19]. It would be valuable
to test whether these advantages and others during invasion are related to interactions with
endosymbionts. In particular, the dominance and high prevalence of Rhabdochlamydia across
global populations of L. geometricus suggests an important role of this endosymbiont.
Characterizing potentially important and widespread endosymbionts is a step towards
understanding their relevance to ecological interactions and responses to rapid environmental

changes.
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Figure legends.

Figure 1. High throughput analysis of bacterial associates in Latrodectus geometricus.
Proportional distribution of 16S sequencing reads from L. geometricus adult females collected
from South Africa (a), the United States (b), and Israel (c). All bacterial strain types that
exceeded 1% of reads in any sample are depicted. All remaining strains are collected within the

“other” category.

Figure 2. Phylogenetic placement of Chlamydial bacterial associates of Latrodectus
geometricus. Tree of highest log likelihood from 500 maximum likelihood searches of a 35 OTU
16S data set containing 1576 characters conducted with Garli (v. 2.01) using the default settings.
Taxa in bold are the new strains from L. geometricus (labeled Rhabdochlamydial, 2, 3 and
Chlamydiales1). Numbers above the nodes are bootstrap values above 50 (500 bootstrap

replicates with 2 searches per replicate).

Figure 3. Proportion of adult female L. geometricus infected with Rhabdochlamydial and/or
Wolbachial detected through PCR screening across 17 localities in a) South Africa, b) Israel,
and c) the United States. Blue represents individuals infected with just Rhabdochlamydial,
purple represents individuals infected with both Rhabdochlamydial and Wolbachial, red
represents individuals infected with just Wolbachial, and white represents individuals infected
with neither Wolbachial nor Rhabdochlamydial. Size of pie charts corresponds to the number of
individual spiders screened from each site (range = one specimen from Eilat, Israel to 10
specimens from Edisto Island, SC, USA, see Supplementary table 1 for sample sizes and

collection localities).
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