

1 **Endosymbiont diversity across native and invasive brown widow spider populations**

2

3 Monica A. Mowery^{1*}, Laura C. Rosenwald², Eric Chapman², Yael Lubin¹, Michal Segoli¹,
4 Thembile Khoza³, Robin Lyle⁴, Jennifer A. White²

5

6 1. Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-
7 Gurion University of the Negev, Sede Boqer Campus, Israel
8 2. Department of Entomology, University of Kentucky, Lexington, KY, USA
9 3. South African National Biodiversity Institute, Biosystematics Division, Pretoria, South
10 Africa
11 4. Agricultural Research Council – Plant Health and Protection, Biosystematics Division,
12 Queenswood, South Africa

13 *Current affiliation: Department of Biology, York College, The City University of New York,
14 Jamaica, NY, USA. Email: mmowery@york.cuny.edu

15 **Abstract**

16 The invasive brown widow spider, *Latrodectus geometricus* (Araneae: Theridiidae), has spread
17 in multiple locations around the world and, along with it, brought associated organisms such as
18 endosymbionts. We investigated endosymbiont diversity and prevalence across putative native
19 and invasive populations of this spider, predicting lower endosymbiont diversity across the
20 invasive range compared to the native range. First, we characterized the microbial community in
21 the putative native (South Africa) and invasive (Israel and the United States) ranges via high
22 throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from
23 only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an
24 apparently uniform strain of *Rhabdochlamydia*. We also found *Rhabdochlamydia* in spider eggs,
25 indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were
26 detected, but included two variant *Rhabdochlamydia* strains and several *Wolbachia*, *Spiroplasma*
27 and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from
28 native and invasive populations specifically for *Rhabdochlamydia* and *Wolbachia*. We found
29 *Rhabdochlamydia* in 86% of individuals and represented in all populations, which suggests that

30 it is a consistent and potentially important associate of *L. geometricus*. *Wolbachia* was found at
31 lower overall prevalence (14%) and was represented in all countries, but not all populations. In
32 addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from
33 Israel were more likely to carry *Rhabdochlamydia* than those from the US and South Africa, and
34 *Wolbachia* was geographically clustered in both Israel and South Africa. Characterizing
35 endosymbiont prevalence and diversity is a first step in understanding their function inside the
36 host and may shed light on the process of spread and population variability in cosmopolitan
37 invasive species.

38 **Introduction**

39 When moving into new habitats, invasive species may bring along microbial associates that can
40 influence the invasion process [1,2]. Some microbes are vertically inherited endosymbionts that
41 are restricted to the invasive species, but may yet influence interactions between the invasive and
42 native species. Maternally-inherited endosymbionts have been shown to affect traits important to
43 host fitness such as dispersal [3], fecundity [4], and defenses against natural enemies [5],
44 potentially providing an advantage to the invasive species [6]. Some endosymbionts affect the
45 organism's reproductive biology, for example, by modifying offspring sex ratio in infected
46 populations, which can affect the speed of invasive spread [7]. For example, acting as both a
47 mutualist and reproductive manipulator, *Rickettsia* caused whiteflies to have higher fitness and a
48 higher proportion of daughters, and quickly spread in invasive populations [8].

49 Assessing endosymbiont prevalence across geographically distant populations can
50 provide a key to understanding the role of a symbiont. Widespread prevalence of a facultative
51 endosymbiont suggests that the symbiont plays a functional role in its host, such as providing
52 fitness benefits or manipulating reproduction [9,10]. The latter is often manifested by sex ratio

53 distortions, although the most common reproductive manipulation is cytoplasmic incompatibility
54 (CI), which causes incompatibilities between infected males and uninfected females but does not
55 alter the sex ratio of the population [11]. Our understanding of the dynamics and prevalence of
56 facultative endosymbiont infection during invasive spread is limited, especially for non-insect
57 arthropod endosymbionts.

58 Invasive populations are predicted to exhibit reduced endosymbiont prevalence and
59 diversity compared to native populations. During founding events, often few individuals are
60 initially introduced into the invasive range [12], in which case only a subset of endosymbionts
61 found in the native range might be introduced to the new location [13]. However, in most
62 biological invasions, multiple introductions are common [14], and so endosymbiont diversity
63 might be lower initially, and then increase over time as more individuals arrive from various
64 localities [15]. Comparing endosymbiont diversity across invasive and native populations can
65 provide valuable insights into the gain and loss of microbial communities during the invasion
66 process.

67 The brown widow spider, *Latrodectus geometricus* (Theridiidae), is a medically
68 important spider with neurotoxic venom. *Latrodectus geometricus* has spread recently to
69 multiple locations around the world from the putative native range in southern Africa, most
70 likely via cargo shipments [16,17]. Evidence suggests that during invasion, establishment and
71 spread, spider traits related to dispersal, fecundity, and body size shifted across populations that
72 were established over different time periods [18]. In addition to these shifts in ecologically
73 important traits, associations with other organisms, such as parasitoids [19] or endosymbionts,
74 may have also changed during the invasion spread.

75 Endosymbionts of widow spiders (genus *Latrodectus*) are poorly known. A previous
76 study on *L. geometricus* identified the endosymbiont *Rhabdochlamydia*, but only examined a few
77 adult females in a single, inbred lab population in Florida, USA [20]. The same study did not
78 detect *Rhabdochlamydia* in two other *Latrodectus* species. Hence, a further study across field-
79 collected individuals worldwide is necessary to assess the presence of *Rhabdochlamydia* more
80 broadly across populations of *L. geometricus*. The family Rhabdochlamydiaceae (Phylum:
81 Chlamydiota) is predicted to be the most diverse chlamydial family [21]. It includes important
82 vertebrate and human pathogens and is widespread across soil and aquatic ecosystems with many
83 yet unknown hosts [22]. The genus *Rhabdochlamydia* has been found in a few distantly-related
84 invertebrate hosts, including a cockroach [23], a tick [24], a dwarf spider [25], and a terrestrial
85 isopod [26], although it was not found at a high prevalence within any of these species.

86 Also previously found in invasive populations of *L. geometricus* was *Wolbachia*, as a
87 facultative associate in varying prevalence across populations [27]. *Wolbachia* infection is
88 common in arthropods, with 40-60% of species infected [28], as well as in other invertebrates
89 including nematodes [29]. *Wolbachia* is known to affect the fitness and reproduction of many of
90 its hosts, which could have implications for successful invasive establishment and spread [30].

91 In this study, we compared endosymbiont presence and diversity across populations of
92 the brown widow spider, *L. geometricus*, from the putative native range in South Africa to
93 populations in the invasive range in the United States and Israel, using both high-throughput
94 sequencing and diagnostic PCR screens. Our objectives were to 1) characterize the dominant
95 endosymbionts in *L. geometricus*, 2) compare prevalence and diversity across purported native
96 and known invasive ranges, and 3) investigate geographic patterns of endosymbiont infection
97 within countries. We predicted that, due to founder effects, some endosymbiont would be lost

98 and infection rates would be lower in invasive populations in the U.S. and Israel compared to
99 putative native populations in South Africa, and that geographic patterns of endosymbiont loss
100 would reflect the proposed routes of invasive spread of *L. geometricus* within each country.

101

102 **Methods**

103 *Study species*

104 *Latrodectus geometricus*, the brown widow spider, is a globally invasive species that has
105 established populations in parts of North and South America, the Middle East, Australia, and
106 Asia [17]. In the United States, *L. geometricus* was first detected in Miami, Florida in 1936 [31],
107 was confined to southern Florida until the late 1990s, and was subsequently detected in Texas
108 and California in the 2000s [32]. In Israel, *L. geometricus* was first detected in the Tel Aviv area
109 in 1980 [33], and in the Negev region after 2000 [34]. Throughout the global invasive range, *L.*
110 *geometricus* is found in urban and settled habitats, and builds nests on and around buildings, on
111 fences, garden furniture, trash bins, and in playgrounds [17].

112 *Study sites*

113 We collected *L. geometricus* adult females from urban environments across the United States
114 (Edisto Island, South Carolina $n = 10$; Gainesville, Florida $n = 10$; Austin, Texas $n = 6$; Los
115 Angeles, California $n = 7$), Israel (Haifa $n = 7$, Tel Aviv $n = 10$, Be'er Sheva $n = 10$, Yeruham n
116 = 8, Midreshet Ben-Gurion $n = 10$, Eilat $n = 1$), and South Africa (Modimolle $n = 10$, Pretoria n
117 = 5, Johannesburg $n = 5$, Kimberley $n = 8$, Cape Town $n = 5$, Riebeeck-Kasteel $n = 6$, George n
118 = 7). Spiders were deprived of food for one week before they were preserved in 100% ethanol.
119 Starved individuals have minimal gut content and are less likely to result in false positives for
120 endosymbionts found in the spider's prey [35]. To learn about the potential for vertical
121 transmission, we also collected *L. geometricus* egg sacs from two sites in South Africa:

122 Kimberley ($n = 1$) and Riebeeck Kasteel ($n = 2$), and sampled egg sacs produced in the
123 laboratory from Midreshet Ben-Gurion ($n = 3$) and Tel Aviv ($n = 2$), Israel.

124 *Bacterial 16S sequencing*

125 We surface-sterilized each adult female *L. geometricus* specimen ($n = 125$) with a series of
126 bleach and ethanol rinses [36] before longitudinally dividing the abdomen in half and extracting
127 DNA from one half using DNeasy Blood and Tissue extraction kits (Qiagen, Germantown, MD)
128 according to manufacturer's instructions. In addition, we extracted DNA from the legs of two
129 specimens, as well as from the eggs of 8 *L. geometricus* egg sacs to assess endosymbiont
130 presence outside reproductive tissues and the potential for maternal transmission, respectively.
131 Extraction quality for each sample was verified by PCR amplification of a ~650 bp segment of
132 the COI gene (forward primer, lco1490: 5'-GGTCAACAAATCATAAAGATATTGG-3', reverse
133 primer, hco2198: 5'-TAAACTTCAGGGTGACCAAAAAATCA-3'; cycling conditions: one
134 cycle of 94°C for 3 min, followed by 35 cycles of 95°C for 30 s, 53°C for 30 s, 72°C for 1 min,
135 final extension at 72°C for 5 min [37]. If COI failed to amplify, we attempted a second extraction
136 with the other half of the abdomen. If this extraction failed to amplify product as well, we
137 assumed sample preservation had been poor and eliminated the specimen from the dataset
138 entirely (7/125 specimens).

139 To investigate which endosymbionts were present in these specimens, we profiled the
140 microbiomes using high-throughput sequencing of the bacterial community. We amplified the
141 V4 region of bacterial 16S rRNA for each sample using dual indexed 515F/806R primers [38].
142 We visualized the resulting products, and multiplexed 1 μ l aliquots from successful
143 amplifications into one of two libraries that were purified with GenCatch PCR Cleanup Kits.
144 Samples that failed to amplify (6/118 samples) were not included in the library. Each library also

145 included specimens from other projects that are not reported here, and received a PhiX spike to
146 increase sequence heterogeneity among the amplified sequences. Libraries were sequenced at the
147 University of Kentucky genomics core facility on an Illumina Miseq instrument using a paired-
148 end strategy and 250bp reads. Sequences from each run were demultiplexed, trimmed and
149 quality filtered within BaseSpace (Illumina, basespace.illumina.com), then imported into
150 QIIME2 (v2021.11, <https://qiime2.org> [39]) using a manifest. We conducted additional quality
151 control using deblur [40] implemented in QIIME2 using default parameters and a trim length of
152 251 bases. Resulting amplicon sequence variants (ASV) were taxonomically classified using a
153 naïve Bayes classifier that was trained on the 515F/806R V4 region of the Greengenes 13_8 99%
154 OTUs reference database [41]. We filtered out 15 ASV that originated from other specimens in
155 the sequencing run (e.g., obligate endosymbionts of other host taxa, see [42] for discussion of
156 index swapping), which collectively constituted only a small minority (0.14%) of the 3.57×10^6
157 reads associated with the *L. geometricus* samples. Following filtering, *L. geometricus* samples
158 with less than 1000 reads were excluded from further analysis (9/112 adult samples, 6/8 egg
159 samples). For the remaining samples, we blasted high prevalence ASV sequences (>1% of any *L.*
160 *geometricus* sample) against the NCBI nt database using the megablast algorithm, to identify
161 bacterial taxa that may not have been included in the reference database. For ASV that appeared
162 at very high prevalence or frequency (>90% of reads for any specimen, or found in multiple
163 specimens across multiple locations), we amplified a longer segment of 16S using universal
164 primers from specimen(s) dominated by that taxon, to aid in taxonomic placement (Forward
165 primer, 27F: 5'-AGAGTTGATCMTGGCTCAG-3', reverse primer 1492R: 5'-
166 GGTTACCTTGTACGACTT-3', cycling conditions: one cycle of 95°C for 2 min, followed by
167 35 cycles of 92°C for 30 s, 55°C for 30 s, 72°C for 30 s, final extension at 72°C for 6 min [43].

168 *Diagnostic PCR*

169 We diagnostically screened all samples (all 118 adult female, 8 egg, and 2 leg samples) for the
170 two bacterial genera previously identified from *L. geometricus*: *Wolbachia* (Class
171 Alphaproteobacteria, Order Rickettsiales, Family Anaplasmataceae) and *Rhabdochlamydia*
172 (Class Chlamydiia, Order Chlamydiales, Family Rhabdochlamydiaceae; Arrington, 2014; Dunaj
173 et al., 2020). For *Wolbachia*, we followed previously published protocols (Baldo et al., 2006),
174 using primers specific to the *Wolbachia* surface protein (*wsp*) gene (Forward primer, *wspF1*: 5'-
175 GTCCAATARSTGATGARGAAC-3', reverse primer *wspR1*: 5'-
176 CYGCACCAAYAGYRCTRTAAA-3', cycling conditions: one cycle of 94°C for 2 min,
177 followed by 36 cycles of 94°C for 30 s, 59°C for 45 s, 72°C for 1 min 30 s, final extension at
178 70°C for 10 min [44]. For *Rhabdochlamydia*, we designed new primers in Primer3 [45] to
179 amplify a ~540bp segment of 16S: *Rhabdo_108F* 5'-ACACTGCCAAACTCCTACG-3' and
180 *Rhabdo_647R*
181 5'-TTAGCTWCGACACAGCCAGG-3'. All reactions were run in 10µl volume; the
182 *Rhabdochlamydia* reactions included 3 µL purified water, 1µL 10X Buffer (New England
183 Biolabs), 1.2 µL 10mM dNTPs, 1.5 µL 25mM MgCl₂, 0.6µL each of forward and reverse
184 primers at 5µM, and 0.1 µL of 5U New England Biolabs Taq Polymerase. PCR reactions
185 received one cycle of 94°C for 2 min, followed by 25 cycles of 95°C for 15 s, 56°C at 15 s, 68°C
186 for 45 s. We electrophoresed and visualized the products on 1% agarose gels stained with Gel
187 Red (Biotium) alongside known positive and negative (reagents-only) controls. Samples with
188 initial negative diagnoses were retested before being categorized as uninfected. For a subset of
189 the samples with positive evidence of infection, we repeated the PCR at a 20µl volume and
190 purified the PCR product with either GenCatch PCR Cleanup or Gel Extraction Kits (Epoch Life

191 Sciences, Missouri City, TX) according to manufacturer's instructions. Products were then
192 submitted for Sanger sequencing (Eurofins, Louisville, KY). Resulting sequences were
193 compared to the NCBI nucleotide database using the megablast algorithm, and specimens
194 returning a 97% or higher match to the expected bacterial genus were scored as positive. For
195 each strain of *Wolbachia*, we sequenced 5 MLST genes (*coxA*, *fbpA*, *ftsZ*, *gatB* and *hcpA*) and
196 the *Wolbachia* surface protein (*wsp*) according to [44].

197 For *Rhabdochlamydia*, we ran phylogenetic analyses to place the *L. geometricus* strains,
198 using a set of accessions across Chlamydia with *Oligosphaera ethanolica* as an outgroup. For
199 each analysis, multiple alignments were assembled using the MAFFT server (v. 7;
200 <https://mafft.cbrc.jp/alignment/server/> [46]) using the Q-INS-I alignment method that takes
201 secondary structure into account. Maximum likelihood phylogenetic analyses were conducted on
202 1576-character aligned datasets using Garli (v. 2.01 [47]). We applied the most complex model
203 available (GTR+I+G [48]) as per recommendations of Huelsenbeck and Rannala [49] for
204 likelihood-based analyses. We conducted a 100-replicate ML search for the tree of highest log-
205 likelihood and a 500-replicate ML bootstrap analysis [50] with two search replicates per
206 individual bootstrap replicate. All analyses used the default settings.

207 We used the same approach to generate a *Wolbachia* phylogeny. We used a concatenated
208 data set containing 5 MLST genes (*coxA*, *fbpA*, *ftsZ*, *gatB* and *hcpA*; total of 2079 characters)
209 with 38 *Wolbachia* strains pulled from the Wolbachia PubMLST website
210 (pubmlst.org/organisms/wolbachia-spp [51]). Because rooting *Wolbachia* trees is challenging
211 [52], and our objective was only placement of our new strains within established *Wolbachia*
212 supergroups, we chose to simply root the tree within Supergroup A. Individual specimens were
213 scored for the presence of *Rhabdochlamydia* and *Wolbachia* based on the combination of

214 diagnostic, high-throughput, and Sanger sequencing data. For a sample to be scored positive, a
215 positive diagnostic PCR needed to be corroborated by either high-throughput or Sanger
216 sequencing validation. For a sample to be scored negative, consistent negative diagnostic PCRs
217 needed to be accompanied by positive validation of spider COI and/or other bacterial taxa.

218 *Statistical methods*

219 All analyses were conducted in R version 4.0.2 [53]. To compare the prevalence of the dominant
220 strains of *Rhabdochlamydia* and *Wolbachia* across South Africa, Israel, and the United States,
221 we used a general linear model (“lme4” package [54]) with a binomial link function, with
222 *Rhabdochlamydia1* or *Wolbachia1* presence or absence in an individual as the response variable,
223 and country as the predictor. Maps showing collection localities in South Africa, Israel, and the
224 United States, were generated using the R package ggspatial [55].

225 **Results**

226 Compared to most microbiomes in arthropods, *L. geometricus* spiders have a depauperate
227 microbial fauna. Of 103 adult female spiders that produced sufficient read depth (mean \pm SE of
228 33844 ± 2026 sequences per sample), all were dominated by one to three bacterial strains that
229 accounted for greater than 90% of the reads (Figure 1). In 64 samples, a single strain accounted
230 for greater than 99% of reads. In most samples, the most prevalent bacterial ASV was
231 *Rhabdochlamydia* (83/103 samples) although a few samples each were dominated by ASVs
232 corresponding to *Wolbachia* (6 samples), Enterobacteriaceae (10 samples), *Providencia* (2
233 samples), *Wohlfahrtimonas* (1 sample) and a bacteria that could not be placed by the Greengenes
234 reference database, but which our analyses (see below) place within the Chlamydiales
235 (Chlamydiales1, 3 samples, Figure 1).

236 Most samples had at least some *Rhabdochlamydia* representation. Nine samples from
237 several locations in South Africa and the United States had negligible representation (<0.1% of
238 reads) of *Rhabdochlamydia*. The number of *Rhabdochlamydia* reads in the latter samples ranged
239 from 0 (out of 4222 reads) to 359 (out of 37618 reads), and most fell below the number of
240 *Rhabdochlamydia* reads seen in blanks (9-81 reads). Two samples were diagnostically positive
241 for *Rhabdochlamydia* despite low numbers of reads, and were additionally validated by Sanger
242 sequencing of the diagnostic product, thus were counted as *Rhabdochlamydia* positive in the
243 final dataset. In the remaining seven specimens, the low number of proportional reads and the
244 diagnostic absence supports the genuine absence of *Rhabdochlamydia*. Of the additional 15
245 samples that were excluded from high throughput analysis due to poor initial amplification or
246 insufficient read depth, six were validated to have *Rhabdochlamydia* and nine did not.

247 To gain insight into the occurrence of strains of the major endosymbionts found, we used
248 Sanger sequencing data to distinguish among strains of the same symbiont clade. Most detected
249 *Rhabdochlamydia* strains were identical (GenBank Accession #OP598824). Two variant strains
250 were detected, each in one individual. The variant strain from a Modimolle, South Africa
251 specimen (#OP598825) was 99.8% similar to the dominant strain, differing at only 1/480 bases
252 of 16S. The variant strain from Eilat, Israel (#OP598826) was 98.8% similar, differing at 6/480
253 bases of 16S. Phylogenetically, all three strains were clustered together within the genus
254 *Rhabdochlamydia* and family Rhabdochlamydiaceae (Figure 2).

255 *Wolbachia* was much less common than *Rhabdochlamydia*, found in 14% (17/118) of
256 individuals, but represented in spiders collected from all three regions. We were able to sequence
257 all MLST genes and *wsp* for all three strains of *Wolbachia* (accession numbers OP612314-
258 OP612330), except *gatB* in *L. geometricus* *Wolbachia3*. The most widespread and characteristic

259 strain of *Wolbachia* in *L. geometricus*, *Wolbachia1*, was present in 13/118 specimens (11%), and
260 phylogenetic analysis placed the strain in *Wolbachia* Supergroup F (Supplementary Figure 1). In
261 contrast, *L. geometricus* *Wolbachia2*, which was found in four specimens across three localities
262 in South Africa, belongs to a different *Wolbachia* clade, Supergroup B. A third *Wolbachia* strain,
263 *L. geometricus* *Wolbachia3*, which was found in a single sample that had not been included in
264 high throughput sequencing but was validated with diagnostic PCR and subsequent sequencing,
265 was placed in Supergroup A.

266 Only 16 other ASV, besides *Rhabdochlamydia* and *Wolbachia*, were ever found at >1%
267 prevalence in any sample, and the majority of these (nine) were each found in single specimens.
268 *Enterobacteriaceae1* represented a substantial proportion of reads in 12 individuals across several
269 locations in South Africa and the United States, and was the dominant ASV in eight individuals.
270 When blasted against the NCBI database, a 1359bp segment of 16S from this bacterium
271 (#OP598828) was not closely aligned to any other accessions, bearing greatest resemblance to
272 aphid secondary symbionts (e.g., EU348326 at 96.8%) or *Gilliamella*, a specialized honeybee
273 gut symbiont (e.g., CP048265 at 95.84%). *Enterobacteriaceae1* was absent from Israel, although
274 a different *Enterobacteriaceae* ASV was detected from two individuals collected from one
275 location in Israel. Two other gammaproteobacteria ASVs, *Providencia* and *Wohlfahrtiimonas*,
276 were present in two and one specimens, respectively. One bacterial strain, which was found in
277 four individuals across two locations in the southeast U.S., was not able to be placed against the
278 Greengenes database in the QIIME2 pipeline, but a 498bp segment of 16S aligns most closely
279 with other Chlamydiales in GenBank (e.g. FJ976094 at 87.2%). Our chlamydial phylogeny
280 (Figure 2), also supports placement within this order, hence we have designated it
281 Chlamydiales1. Other bacterial ASV were only found at a low percentage of reads across spiders

282 (two *Acenitobacter* ASV, two *Spiroplasma* ASV, and one each of *Entomoplasmatales*,
283 *Sporosarcina*, *Bacillus*, *Enterococcus*, and *Lactococcus*).

284 Comparing across the three countries, a higher proportion of spiders collected in Israel
285 were infected with the dominant strain of *Rhabdochlamydia*, *Rhabdochlamydia1*, than spiders
286 from South Africa (GLM, $z = -2.128, p = .033$) or the U.S. ($z = -2.538, p = .011$). We found no
287 differences in prevalence of the dominant *Wolbachia* strain, *Wolbachia1*, across countries (GLM,
288 US-Israel, $z = -0.689, p = .491$; US-South Africa, $z = -1.268, p = .205$; Israel-South Africa, $z = -$
289 0.669, $p = .504$). Using diagnostic PCR screening, we found evidence for *Rhabdochlamydia* in
290 100% (8/8) of *L. geometricus* eggs tested from South Africa and Israel. In contrast, only two out
291 of eight egg sacs showed signal of *Wolbachia*, both from Tel Aviv, consistent with the
292 proportional infection rate in adults from the source populations.

293 *Wolbachia* prevalence was too low for formal spatial analysis, but visually appeared to
294 have some level of clustering (Figure 3). In South Africa, both *Wolbachia1* and *Wolbachia2*
295 were found in northeastern populations (Johannesburg, Pretoria, and Modimolle) but were not
296 detected elsewhere in the country. Likewise, in Israel, *Wolbachia1* was present in central and
297 northern populations (Tel Aviv and Haifa), but was not detected in the southern Negev
298 populations (Beer Sheva, Yeruham, Sede Boquer, Eilat). Among the four U.S. populations,
299 *Wolbachia1* was found in spiders collected from Florida and Texas, *Wolbachia3* was in South
300 Carolina, but no *Wolbachia* was detected in spiders from California, the most recently detected
301 invasive population.

302 **Discussion**

303 *Latrodectus geometricus* spiders have maintained a characteristic microbiome throughout their
304 global spread. We identified one predominant endosymbiont, *Rhabdochlamydia1* in almost all

305 spiders (86%), and represented in all collection locations. We also found a characteristic
306 Supergroup F *Wolbachia* (*Wolbachia1*) represented in all countries, albeit in fewer individuals
307 (11% of spiders). We detected both *Rhabdochlamydia1* and *Wolbachia1* in *L. geometricus* eggs,
308 indicating that both are vertically transmitted endosymbionts.

309 The widespread presence of *Rhabdochlamydia* suggests that it might be important
310 functionally for the host. In other arthropods, endosymbionts found at consistently high
311 frequency across wide geographic ranges have often subsequently been found to have important
312 fitness or reproductive consequences for their hosts [56,57]. Little is known about the functional
313 role of *Rhabdochlamydia* in arthropods. It was described from a variety of mostly non-insect
314 arthropods and was generally found at low prevalence in the tested populations [23,24,26]. In a
315 terrestrial isopod, *Rhabdochlamydia* had pathogenic effects [26]. The high prevalence (86%)
316 and vertical transmission of *Rhabdochlamydia* in *L. geometricus* argue against a strongly
317 pathogenic role for this bacterial strain within our system. Genomic analysis of
318 *Rhabdochlamydia* found in other arthropod hosts, an isopod and a tick, found pathways for
319 polyamine synthesis [22], which are relevant for virulence and stress responses, suggesting that
320 some strains of this bacteria are potentially beneficial in their host.

321 We also detected *Rhabdochlamydia* in *L. geometricus* legs, consistent with the work of
322 Dunaj et al. [20], which indicated that the bacteria is found throughout the body and not just
323 restricted to reproductive tissue. Dunaj et al. [20] also found that the bacterial community of *L.*
324 *geometricus* was dominated by *Rhabdochlamydia*, lacking the microbial diversity of the other
325 spider species they examined, and speculated that this result may have been an artifact of
326 laboratory-reared, inbred *L. geometricus* spiders. Our field collected spiders from locations
327 around the world suggest that their result was not an artifact, but a genuine representation of a

328 characteristic and depauperate bacterial community in *L. geometricus*. Vertically transmitted
329 bacterial symbionts often dominate the sampled microbiomes of their hosts, overwhelming the
330 signal from more casual bacterial associates [11,25,35].

331 Importantly, maternal transmission of *Rhabdochlamydia* suggests the possibility of
332 reproductive manipulation of host by symbiont. Reproductive manipulation is extremely
333 common in vertically transmitted symbionts, and the list of bacteria that have been demonstrated
334 to induce such manipulations is rapidly expanding [11,58]. *Rhabdochlamydia* has not yet been
335 tested for host reproductive manipulation. The widespread prevalence and vertical transmission
336 of *Rhabdochlamydia* in *L. geometricus* would make this system an excellent prospect for such
337 investigations.

338 *Latrodectus geometricus* was host to several strains of *Wolbachia*, a bacterial clade well
339 known for reproductive manipulation. *Wolbachia* is common in spiders, but most strains belong
340 to Supergroup A or B, as is the case in insects [30]. In contrast, the dominant *Wolbachia* strain in
341 *L. geometricus* belongs to Supergroup F, which has rarely been reported for spiders. Supergroup
342 F has been found sporadically in arthropods, including South African scorpions [59], termites
343 [60], quill mites [61], and nematodes [62]. Preliminary work on *L. geometricus* suggested that
344 *Wolbachia* might induce mild CI in this species [63], but the strain of *Wolbachia* was not
345 characterized, and additional experiments will be necessary to fully validate CI in this system.

346 Although symbiont communities were largely similar across our sampled regions, we did
347 find some subtle differences between the likely native and invasive ranges. *Rhabdochlamydia*
348 was found at highest prevalence in Israel compared to populations in the U.S. and South Africa.
349 Multiple strains of *Rhabdochlamydia*, *Wolbachia*, and the Enterobacteriaceae were found in
350 South Africa, the putative native population. The dominant strain of Enterobacteriaceae was

351 found in South Africa and the U.S., but absent in Israel, the newest invasive region that we
352 sampled. From a previous study, *Wolbachia* prevalence in *L. geometricus* in the U.S. was highest
353 near the initial site of introduction in Florida [27]. In comparison, we found lower *Wolbachia*
354 prevalence in other locations in the southeastern and central U.S, and absence in spiders from
355 California, the most recently established population. Similarly, in Israel, *Wolbachia* was absent
356 in recently established populations in southern Israel. These patterns are consistent with the loss
357 of endosymbionts during the invasion process, but more localities, specimens, and more
358 knowledge of the invasion route is needed. Climatic differences such as hotter, dryer conditions
359 in the Negev Desert in southern Israel could also contribute to reduction of *Wolbachia* [64],
360 although deeper sampling effort would be needed to assess whether *Wolbachia* is entirely absent
361 from these locations.

362 Further work will test the functional role and fitness effects of endosymbiont presence in
363 *L. geometricus*, as well as compare patterns of host-endosymbiont diversity during invasive
364 spread. Invasive *L. geometricus* are highly dispersive [18], and are less susceptible to parasitism
365 by parasitoids compared to native widow species in the invasive range [19]. It would be valuable
366 to test whether these advantages and others during invasion are related to interactions with
367 endosymbionts. In particular, the dominance and high prevalence of *Rhabdochlamydia* across
368 global populations of *L. geometricus* suggests an important role of this endosymbiont.
369 Characterizing potentially important and widespread endosymbionts is a step towards
370 understanding their relevance to ecological interactions and responses to rapid environmental
371 changes.

372 **Acknowledgements:** We thank Ofir Altstein, Ishai Hoffmann, Cayley Buckner, Madison
373 Heisey, Catherine Scott, Nishant Singh, Alyssa Fuller, Astri Leroy, Annari van der Merwe,

374 Fiona Hellmann, Joh Henschel, Theresa Henschel, and Colin Ralston for assistance collecting
375 spiders. This work was supported by a Zuckerman STEM Leadership Postdoctoral Fellowship to
376 MAM. This material is based upon work supported by the National Science Foundation under
377 Grant No. 1953223 and the National Institute of Food and Agriculture, U.S. Department of
378 Agriculture (Hatch No. 1020740).

379 Data availability statement: The datasets generated and/or analyzed during the current study are
380 available via NCBI SRA, Bioproject PRJNA1068539:
381 <https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1068539>

382 **References**

- 383 1. Chalkowski, K., Lepczyk, C. A. & Zohdy, S. Parasite ecology of invasive species: conceptual
384 framework and new hypotheses. *Trends in Parasitology* **34**, 655–663 (2018).
385 <https://doi.org/10.1016/j.pt.2018.05.008>
- 386 2. Sepúlveda, D. A., Zepeda-Paulo, F., Ramírez, C. C., Lavandero, B., & Figueroa, C. C.
387 Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in
388 introduced aphid pests. *Insect Science*, **24**(3), 511–521. (2017). <https://doi.org/10.1111/1744-7917.12313>
- 389 3. Leonardo, T. E. & Mondor, E. B. Symbiont modifies host life-history traits that affect gene
390 flow. *Proceedings of the Royal Society B: Biological Sciences* **273**, 1079–1084 (2006).
391 <https://doi.org/10.1098/rspb.2005.3408>
- 392 4. Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring
393 defensive symbionts. *Journal of Evolutionary Biology* **24**, 1611–1617 (2011).
394 <https://doi.org/10.1111/j.1420-9101.2011.02292.x>
- 395 5. Oliver, K. M. & Martinez, A. J. How resident microbes modulate ecologically-important traits
396 of insects. *Current Opinion in Insect Science* **4**, 1–7 (2014).
397 <https://doi.org/10.1016/j.cois.2014.08.001>
- 398 6. Jaenike, J. Population genetics of beneficial heritable symbionts. *Trends in Ecology &
399 Evolution* **27**, 226–232 (2012). <https://doi.org/10.1016/j.tree.2011.10.005>

401 7. Rey, O. *et al.* Distribution of endosymbiotic reproductive manipulators reflects invasion
402 process and not reproductive system polymorphism in the little fire ant *Wasmannia*
403 *auropunctata*. *PLOS ONE* **8**, e58467 (2013). <https://doi.org/10.1371/journal.pone.0058467>

404 8. Himler, A. G. *et al.* Rapid spread of a bacterial symbiont in an invasive whitefly is driven by
405 fitness benefits and female bias. *Science* **332**, 254–256 (2011).
406 <https://doi.org/10.1126/science.1199410>

407 9. Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A. & Engelstädter, J. High incidence of
408 the maternally inherited bacterium *Cardinium* in spiders. *Molecular Ecology* **17**, 1427–1437
409 (2008). <https://doi.org/10.1111/j.1365-294X.2008.03689.x>

410 10. Łukasik, P., van Asch, M., Guo, H., Ferrari, J. & Charles J. Godfray, H. Unrelated facultative
411 endosymbionts protect aphids against a fungal pathogen. *Ecology Letters* **16**, 214–218 (2013).
412 <https://doi.org/10.1111/ele.12031>

413 11. Rosenwald, L. C., Sitvarin, M. I. & White, J. A. Endosymbiotic *Rickettsiella* causes
414 cytoplasmic incompatibility in a spider host. *Proc Biol Sci* **287**, 20201107 (2020).
415 <https://doi.org/10.1098/rspb.2020.1107>

416 12. Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: genetic variation,
417 adaptive evolution, and the role of multiple introductions. *Mol. Ecol.* **17**, 431–449 (2008).
418 <https://doi.org/10.1111/j.1365-294X.2007.03538.x>

419 13. Shoemaker, D. D., Ross, K. G., Keller, L., Vargo, E. L. & Werren, J. H. *Wolbachia*
420 infections in native and introduced populations of fire ants (*Solenopsis spp.*). *Insect Molecular*
421 *Biology* **9**, 661–673 (2000). <https://doi.org/10.1046/j.1365-2583.2000.00233.x>

422 14. Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive
423 populations. *Trends in Ecology & Evolution* **33**, 527–534 (2018).
424 <https://doi.org/10.1016/j.tree.2018.04.014>

425 15. Desneux, N. *et al.* Intraspecific variation in facultative symbiont infection among native and
426 exotic pest populations: Potential implications for biological control. *Biological Control* **116**,
427 27–35 (2018). <https://doi.org/10.1016/j.biocontrol.2017.06.007>

428 16. Garb, J. E., González, A. & Gillespie, R. G. The black widow spider genus *Latrodectus*
429 (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. *Molecular*
430 *Phylogenetics and Evolution* **31**, 1127–1142 (2004).
431 <https://doi.org/10.1016/j.ympev.2003.10.012>

432 17. Sadir, M. & Marske, K. A. Urban environments aid invasion of brown widows (Theridiidae:
433 *Latrodectus geometricus*) in North America, constraining regions of overlap and mitigating
434 potential impact on native widows. *Frontiers in Ecology and Evolution* **9**, (2021).
435 <https://www.frontiersin.org/articles/10.3389/fevo.2021.757902>

436 18. Mowery, M. A., Lubin, Y. & Segoli, M. Invasive brown widow spiders disperse aerially
437 under a broad range of environmental conditions. *Ethology* **128**, 564–571 (2022).
438 <https://doi.org/10.1111/eth.13314>

439 19. Mowery, M. A., Arabesky, V., Lubin, Y. & Segoli, M. Differential parasitism of native and
440 invasive widow spider egg sacs. *Behavioral Ecology* **33**, 565–572 (2022).
441 <https://doi.org/10.1093/beheco/arac017>

442 20. Dunaj, S. J., Bettencourt, B. R., Garb, J. E. & Brucker, R. M. Spider phylosymbiosis:
443 divergence of widow spider species and their tissues' microbiomes. *BMC Evolutionary
444 Biology* **20**, 104 (2020). <https://doi.org/10.1186/s12862-020-01664-x>

445 21. Halter, T. *et al.* Ecology and evolution of chlamydial symbionts of arthropods. *ISME
446 COMMUN.* **2**, 1–11 (2022). <https://doi.org/10.1038/s43705-022-00124-5>

447 22. Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M. One to host
448 them all: genomics of the diverse bacterial endosymbionts of the spider *Oedothorax gibbosus*.
449 *Microb Genom.* 2023 Feb;9(2):mgen000943. doi: 10.1099/mgen.0.000943.

450 23. Corsaro, D. *et al.* 'Candidatus *Rhabdochlamydia crassificans*', an intracellular bacterial
451 pathogen of the cockroach *Blatta orientalis* (Insecta: Blattodea). *Systematic and Applied
452 Microbiology* **30**, 221–228 (2007). <https://doi.org/10.1016/j.syapm.2006.06.001>

453 24. Pillonel, T. *et al.* Sequencing the obligate intracellular *Rhabdochlamydia helvetica* within its
454 tick host *Ixodes ricinus* to investigate their symbiotic relationship. *Genome Biology and
455 Evolution* **11**, 1334–1344 (2019). <https://doi.org/10.1093/gbe/evz072>

456 25. Vanthournout, B. & Hendrickx, F. Endosymbiont dominated bacterial communities in a
457 dwarf spider. *PLOS ONE* **10**, e0117297 (2015). <https://doi.org/10.1371/journal.pone.0117297>

458 26. Kostanjšek, R., Štrus, J., Drobne, D. & Avguštin, G. 'Candidatus *Rhabdochlamydia
459 porcellionis*', an intracellular bacterium from the hepatopancreas of the terrestrial isopod
460 *Porcellio scaber* (Crustacea: Isopoda). *International Journal of Systematic and Evolutionary
461 Microbiology* **54**, 543–549 (2004). <https://doi.org/10.1099/ijss.0.02802-0>

462 27. Arrington, B. D. The prevalence and effect of *Wolbachia* infection on the brown widow
463 spider (*Latrodectus geometricus*). (Georgia Southern University, 2014).

464 28. Zug, R. & Hammerstein, P. Still a host of hosts for *Wolbachia*: Analysis of recent data
465 suggests that 40% of terrestrial arthropod species are infected. *PLOS ONE* **7**, e38544 (2012).
466 <https://doi.org/10.1371/journal.pone.0038544>

467 29. Fenn, K. *et al.* Phylogenetic relationships of the *Wolbachia* of nematodes and arthropods.
468 *PLOS Pathogens* **2**, e94 (2006). <https://doi.org/10.1371/journal.ppat.0020094>

469 30. Kaur, R. *et al.* Living in the endosymbiotic world of *Wolbachia*: A centennial review. *Cell*
470 *Host & Microbe* **29**, 879–893 (2021). <https://doi.org/10.1016/j.chom.2021.03.006>

471 31. Pearson, J. F. W. *Latrodectus geometricus* Koch in southern Florida. *Science* **83**, 522–523
472 (1936).

473 32. Vincent, L. S., Vetter, R. S., Wrenn, W. J., Kempf, J. K. & Berrian, J. E. The brown widow
474 spider *Latrodectus geometricus* C. L. Koch, 1841, in southern California. *The Pan-Pacific*
475 *Entomologist* **84**, 344–349 (2009). <https://doi.org/10.3956/2008-07.1>

476 33. Levy, G. & Amitai, P. Revision of the widow-spider genus *Latrodectus* (Araneae:
477 Theridiidae) in Israel. *Zool J Linn Soc* **77**, 39–63 (1983). <https://doi.org/10.1111/j.1096-3642.1983.tb01720.x>

479 34. Mowery, M. A., Lubin, Y., Harari, A., Mason, A. C. & Andrade, M. C. B. Dispersal and life
480 history of brown widow spiders in dated invasive populations on two continents. *Animal*
481 *Behaviour* (2022) doi:<https://doi.org/10.1016/j.anbehav.2022.02.006>.

482 35. White, J. A. *et al.* Endosymbiotic bacteria are prevalent and diverse in agricultural spiders.
483 *Microb Ecol* **79**, 472–481 (2020). <https://doi.org/10.1007/s00248-019-01411-w>

484 36. Curry, M. M., Paliulis, L. V., Welch, K. D., Harwood, J. D. & White, J. A. Multiple
485 endosymbiont infections and reproductive manipulations in a linyphiid spider population.
486 *Heredity* **115**, 146–152 (2015). <https://doi.org/10.1038/hdy.2015.2>

487 37. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification
488 of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol*
489 *Mar Biol Biotechnol* **3**, 294–299 (1994).

490 38. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development
491 of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence

492 data on the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* **79**, 5112–5120
493 (2013). <https://doi.org/10.1128/AEM.01043-13>

494 39. Caporaso, J. G. *et al.* QIIME allows analysis of high-throughput community sequencing data.
495 *Nat Methods* **7**, 335–336 (2010). <https://doi.org/10.1038/nmeth.f.303>

496 40. Bokulich, N. A. *et al.* Quality-filtering vastly improves diversity estimates from Illumina
497 amplicon sequencing. *Nat Methods* **10**, 57–59 (2013). <https://doi.org/10.1038/nmeth.2276>

498 41. DeSantis, T. Z. *et al.* Greengenes, a chimera-checked 16S rRNA gene database and
499 workbench compatible with ARB. *Appl Environ Microbiol* **72**, 5069–5072 (2006).
500 <https://doi.org/10.1128/AEM.03006-05>

501 42. Larsson, A., Stanley, G. M., Sinha, R., Weissman, I. & Sandberg, R. Computational
502 correction of index switching in multiplexed sequencing libraries. *Nature Methods* (2018)
503 doi:10.1038/nmeth.4666. <https://doi.org/10.1038/nmeth.4666>

504 43. Hongoh, Y., Ohkuma, M. & Kudo, T. Molecular analysis of bacterial microbiota in the gut
505 of the termite *Reticulitermes speratus* (Isoptera; Rhinotermitidae). *FEMS Microbiology
506 Ecology* **44**, 231–242 (2003). [https://doi.org/10.1016/S0168-6496\(03\)00026-6](https://doi.org/10.1016/S0168-6496(03)00026-6)

507 44. Baldo, L. *et al.* Multilocus sequence typing system for the endosymbiont *Wolbachia
508 pipipientis*. *Applied and Environmental Microbiology* **72**, 7098–7110 (2006).
509 <https://doi.org/10.1007/s00284-007-9009-4>

510 45. Untergasser, A. *et al.* Primer3—new capabilities and interfaces. *Nucleic Acids Research* **40**,
511 e115 (2012). <https://doi.org/10.1093/nar/gks596>

512 46. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence
513 alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* **20**,
514 1160–1166 (2019). <https://doi.org/10.1093/bib/bbx108>

515 47. Zwickl, D. J. Genetic algorithm approaches for the phylogenetic analysis of large biological
516 sequence datasets under the maximum likelihood criterion. (The University of Texas at
517 Austin, United States -- Texas, 2006).

518 48. Rodríguez, F., Oliver, J. L., Marín, A. & Medina, J. R. The general stochastic model of
519 nucleotide substitution. *Journal of Theoretical Biology* **142**, 485–501 (1990).
520 [https://doi.org/10.1016/S0022-5193\(05\)80104-3](https://doi.org/10.1016/S0022-5193(05)80104-3)

521 49. Huelsenbeck, J. P. & Rannala, B. Frequentist properties of Bayesian posterior probabilities
522 of phylogenetic trees under simple and complex substitution models. *Systematic Biology* **53**,
523 904–913 (2004). <https://doi.org/10.1080/10635150490522629>

524 50. Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution*
525 **39**, 783–791 (1985). <https://doi.org/10.2307/2408678>

526 51. Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics:
527 BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res* **3**,
528 124 (2018). <https://doi.org/10.12688/wellcomeopenres.14826.1>

529 52. Rodrigues, J. *et al.* *Wolbachia* springs eternal: symbiosis in *Collembola* is associated with
530 host ecology. *Royal Society Open Science* **10**, 230288 (2023).
531 <https://doi.org/10.1098/rsos.230288>.

532 53. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
533 Statistical Computing (2023).

534 54. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using
535 lme4. *Journal of Statistical Software* **67**, 1–48 (2015). <https://doi.org/10.18637/jss.v067.i01>

536 55. Dunnington, D., Thorne, B. & Hernangómez, D. ggspatial: Spatial Data Framework for
537 ggplot2. (2023). <https://github.com/paleolimbot/ggspatial>.

538 56. Arif, S. *et al.* Evidence for multiple colonisations and *Wolbachia* infections shaping the
539 genetic structure of the widespread butterfly *Polyommatus icarus* in the British Isles.
540 *Molecular Ecology* **30**, 5196–5213 (2021). <https://doi.org/10.1111/mec.16126>

541 57. Cornwell, B. H. & Hernández, L. Genetic structure in the endosymbiont *Breviolum*
542 ‘*muscatinei*’ is correlated with geographical location, environment and host species.
543 *Proceedings of the Royal Society B: Biological Sciences* **288**, 20202896 (2021).
544 <https://doi.org/10.1098/rspb.2020.2896>

545 58. Pollmann, M. *et al.* Highly transmissible cytoplasmic incompatibility by the extracellular
546 insect symbiont *Spiroplasma*. *iScience* **25**, 104335 (2022).
547 <https://doi.org/10.1016/j.isci.2022.104335>

548 59. Baldo, L., Prendini, L., Corthals, A. & Werren, J. H. *Wolbachia* are present in southern
549 African scorpions and cluster with Supergroup F. *Curr Microbiol* **55**, 367–373 (2007).
550 <https://doi.org/10.1007/s00284-007-9009-4>

551 60. Lo, N. & Evans, T. A. Phylogenetic diversity of the intracellular symbiont *Wolbachia* in
552 termites. *Mol Phylogenet Evol* **44**, 461–466 (2007).
553 <https://doi.org/10.1016/j.ympev.2006.10.028>

554 61. Glowska, E., Dragun-Damian, A., Dabert, M. & Gerth, M. New *Wolbachia* supergroups
555 detected in quill mites (Acari: Syringophilidae). *Infection, Genetics and Evolution* **30**, 140–
556 146 (2015). <https://doi.org/10.1016/j.meegid.2014.12.019>

557 62. Casiraghi, M. *et al.* Phylogeny of *Wolbachia pipiensis* based on gltA, groEL and ftsZ gene
558 sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence
559 for further diversity in the *Wolbachia* tree. *Microbiology* **151**, 4015–4022 (2005).
560 <https://doi.org/10.1099/mic.0.28313-0>

561 63. Knight, E. Characterizing the complex relationship between the brown widow spider and Its
562 bacterial endosymbiont, *Wolbachia*. *Electronic Theses and Dissertations* (2018).
563 <https://digitalcommons.georgiasouthern.edu/etd/1825>

564 64. Charlesworth, J., Weinert, L. A., Araujo, E. V. & Welch, J. J. *Wolbachia, Cardinium* and
565 climate: an analysis of global data. *Biology Letters* **15**, 20190273 (2019).
566 <https://doi.org/10.1098/rsbl.2019.0273>

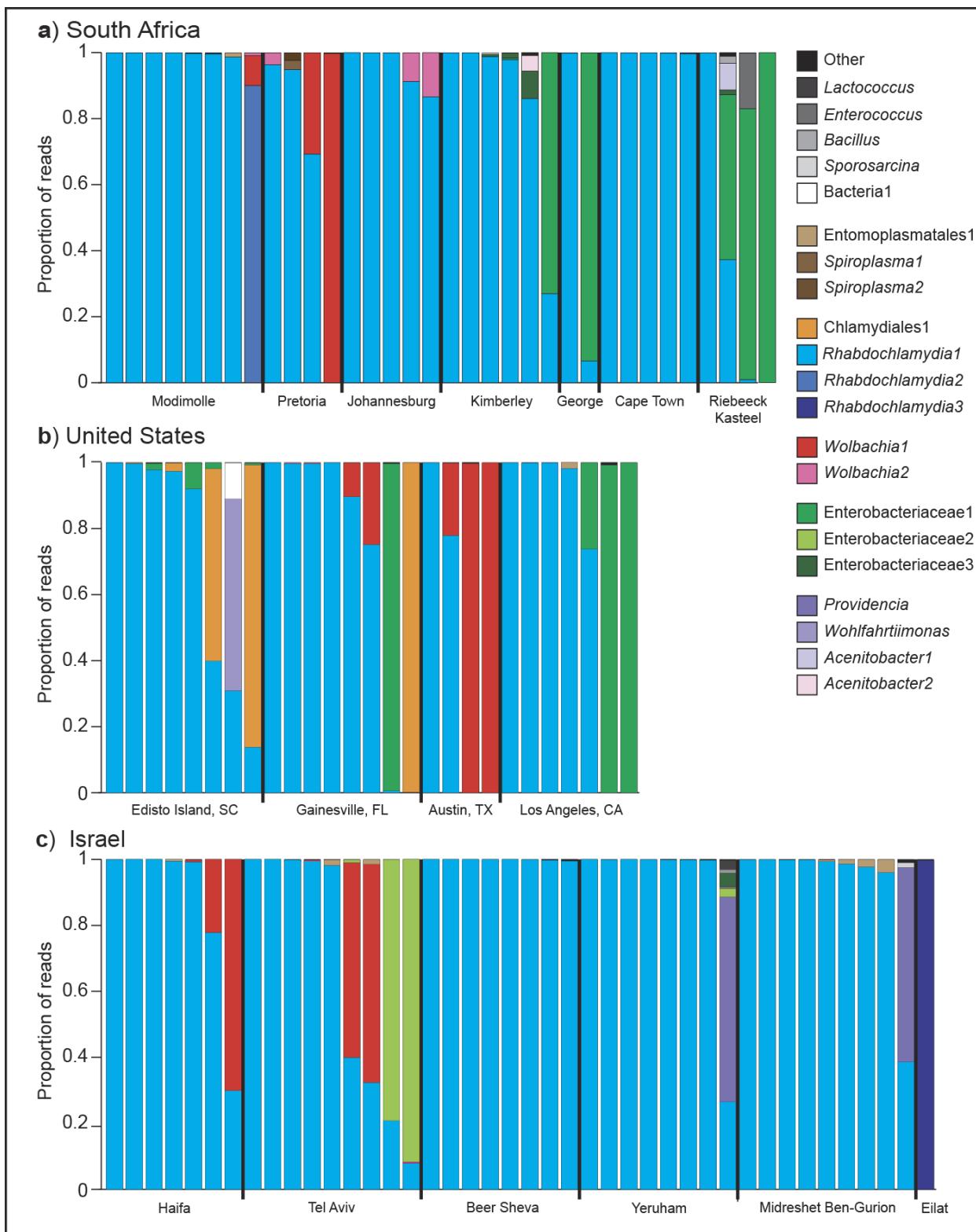
567

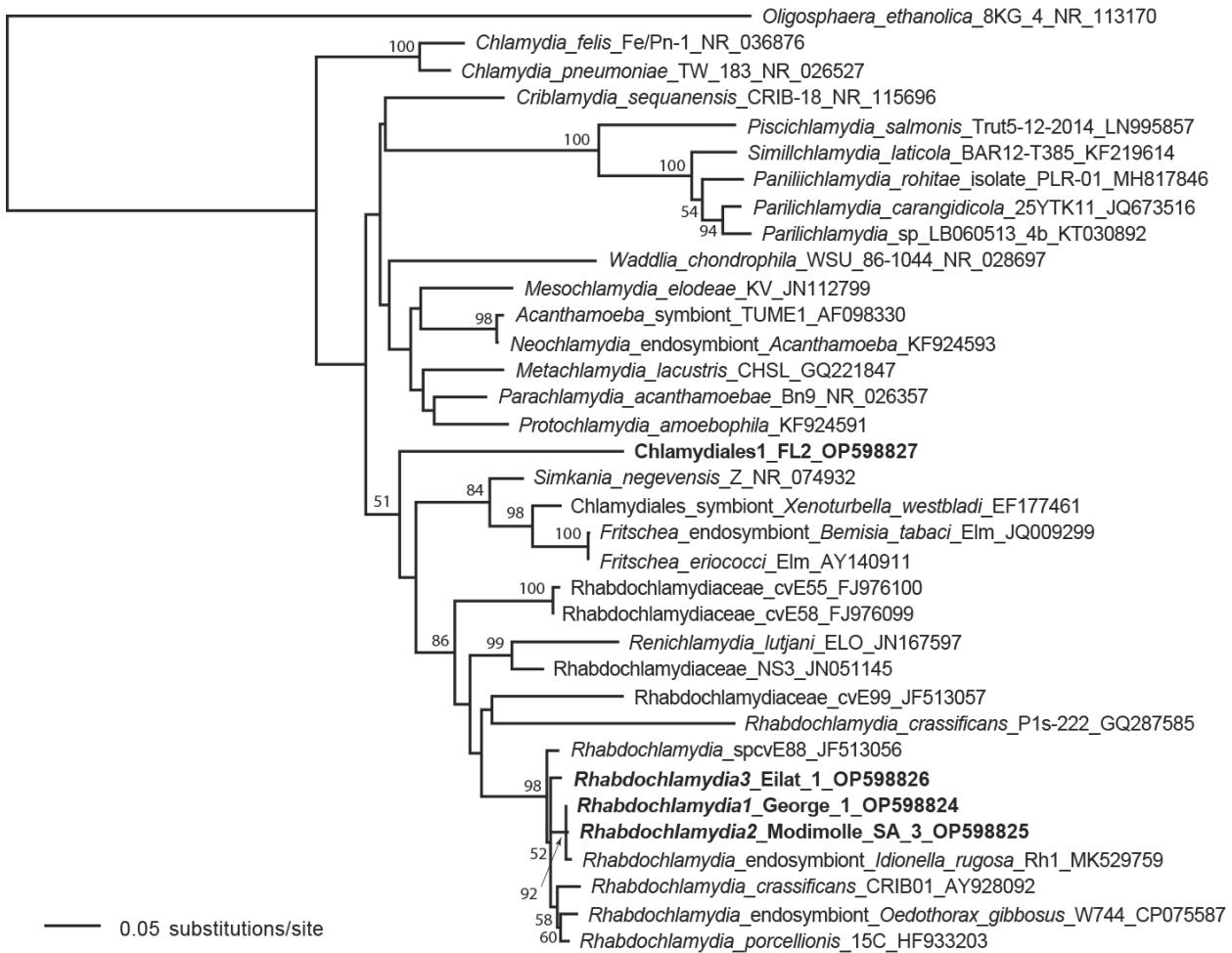
568

569

570

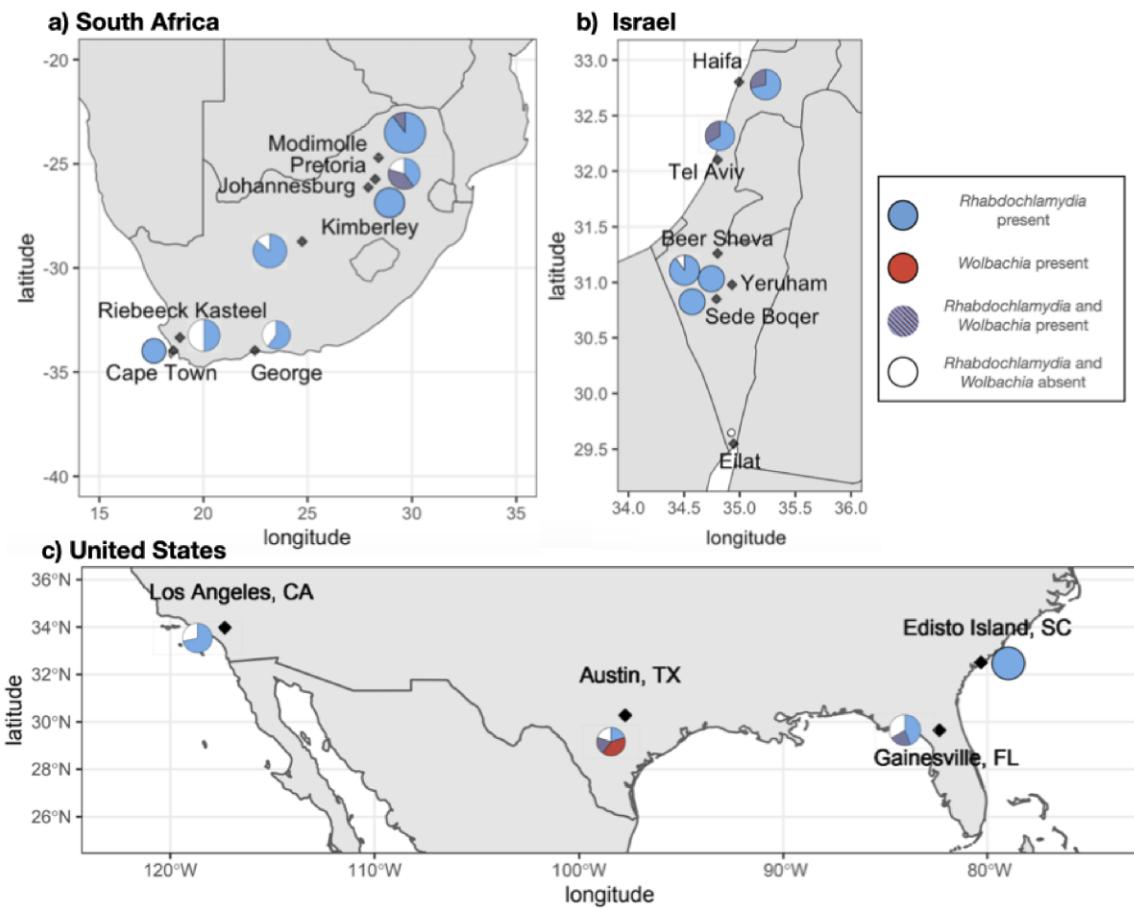
571 Figure legends.


572 **Figure 1.** High throughput analysis of bacterial associates in *Latrodectus geometricus*.


573 Proportional distribution of 16S sequencing reads from *L. geometricus* adult females collected
574 from South Africa (a), the United States (b), and Israel (c). All bacterial strain types that
575 exceeded 1% of reads in any sample are depicted. All remaining strains are collected within the
576 “other” category.

577 **Figure 2.** Phylogenetic placement of Chlamydial bacterial associates of *Latrodectus*
578 *geometricus*. Tree of highest log likelihood from 500 maximum likelihood searches of a 35 OTU
579 16S data set containing 1576 characters conducted with Garli (v. 2.01) using the default settings.
580 Taxa in bold are the new strains from *L. geometricus* (labeled Rhabdochlamydia1, 2, 3 and
581 Chlamydiales1). Numbers above the nodes are bootstrap values above 50 (500 bootstrap
582 replicates with 2 searches per replicate).

583 **Figure 3.** Proportion of adult female *L. geometricus* infected with *Rhabdochlamydia1* and/or
584 *Wolbachia1* detected through PCR screening across 17 localities in a) South Africa, b) Israel,
585 and c) the United States. Blue represents individuals infected with just *Rhabdochlamydia1*, purple
586 represents individuals infected with both *Rhabdochlamydia1* and *Wolbachia1*, red
587 represents individuals infected with just *Wolbachia1*, and white represents individuals infected
588 with neither *Wolbachia1* nor *Rhabdochlamydia1*. Size of pie charts corresponds to the number of
589 individual spiders screened from each site (range = one specimen from Eilat, Israel to 10
590 specimens from Edisto Island, SC, USA, see Supplementary table 1 for sample sizes and
591 collection localities).


592

596 Figure 2

597

598

599 Figure 3

600