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Abstract

It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological
nitrate-nitrogen (NOs3-N) losses for developing nitrogen loads reduction strategies in agricultural
watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the
spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows.
However, modeling performance is usually limited by the oversimplification of natural and
human-managed processes and insufficient representation of spatiotemporally varied
hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a
spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the
model to four tile-drained catchments with mixed agricultural management and diverse
landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model
well reproduced the daily and monthly water discharge, NO3-N concentration and loading
measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface
flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-
82%) over the years. However, the contributions of tile drainage and lateral flow vary
remarkably among catchments due to different tile-drained area percentages and the presence of
farmed potholes (former depressional wetlands that have been drained for agricultural
production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer
management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile
drainage) play important roles in predicting the spatial distributions of NO3-N leaching and
loading. The simulated results reveal that the model improvements in representing water
retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage
improved model performance in estimating discharge and NO3-N export at a daily time step,
while improvement of agricultural management mainly impacts NO3-N export prediction. This
study underlines the necessity of characterizing catchment properties, agricultural management
practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for
accurately simulating water quality dynamics and predicting the impacts of agricultural
conservation nutrient reduction strategies.
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1 Introduction

The modern agricultural system coupled with fertile soil conditions and a suitable climate
environment has made the US Corn Belt one of the most productive agricultural regions in the
world (Gonzalo et al., 2022). Substantial nitrogen (N) synthetic fertilizer and manure
supplementation for crop production have also made this region a hotspot of N inputs in the US.
(Bian et al., 2021; Cao et al., 2018). Total N inputs in this region often exceed crop utilization,
resulting in a substantial N surplus (Lu et al., 2019; Zhang et al., 2021), which leads to a waste of
resources and degrading water quality (Baron et al., 2013). The increased leaching of nitrate-
nitrogen (NO3-N) from agricultural areas in this region is identified as a primary contributor to
hypoxia in the Gulf of Mexico (Jones et al., 2018). Therefore, it is essential to identify the
dominant processes, critical areas, and time periods of NO3-N losses for implementing effective
agricultural conservation practices to mitigate the agriculture-derived water quality issues.
Spatially distributed process-based modeling with adequate representation of the hydrological-
biogeochemical cycles is a promising tool to quantify the NO3-N leaching and transport
processes and to predict the efficiency of multiple management practices in reducing NO3-N
loads in agricultural watersheds (Ren et al., 2022).

Simulating the dynamics of NO3-N export at the watershed outlet is challenging as they reflect
complicated impacts of climate variation, watershed characteristics, human management, and
hydrological and biogeochemical cycles. Agricultural management plays a critical role in
determining NO3-N input sources in agricultural watersheds. For example, crop rotation and N
fertilizer management (rate, timing, method, and form) significantly impact the magnitude and
seasonality of N inputs (Cao et al., 2018). Constrained by local environmental conditions, the N
biogeochemical transformation is generally complex and highly heterogeneous, which influences
the dynamics of NO3-N availability over space and time. Furthermore, the spatiotemporal
hydrological processes connect the agriculture-derived NO3-N sources and transport them to
streams. Due to the divergence in hydrological connectivity and flow travel time, water and N
fluxes that flow along separate pathways contribute differently to in-stream NO3-N dynamics
over time. This is particularly important in tile-drained watersheds in the Midwest. Tiles that are
installed below the soil surface profoundly alter the water and nutrient balance of agricultural
watersheds by shortening groundwater travel time and quickly removing excess water from the
soil ( Schilling et al., 2015). In the Prairie Pothole Region of North America, small depressional
wetlands were formed by glacial activity and subsequent thawing. These depressions have been
converted for agricultural practices such as crop cultivation and livestock grazing (defined as
farmed pothole hereafter). Coupled with tile drains, farmed potholes significantly change
hydrological and biogeochemical cycles in this region by intercepting runoff and retaining
nutrients (Hayashi et al., 2016; Tomer et al., 2003). Therefore, insufficient representation of
agricultural management, catchment characteristics (e.g. tile drainage and farmed potholes), and
their interactions undermines model performance in tracking NO3-N leaching and delivery along
water flows.

A wide variety of modeling efforts have attempted to evaluate the impacts of various
management practices on agricultural non-point source of NO3-N losses at both field-level and
large watershed-level in the US Corn Belt (Ren et al., 2022; Tahmasebi Nasab and Chu, 2020).
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However, due to the scarcity of long-term monitoring data and spatially detailed farming
practices information, very few modeling studies have focused on the scale at which the NO3-N
loads are delivered to surface water systems (defined as delivery-scale hereafter, Ikenberry et al.,
2017). The delivery-scale catchment is the ideal spatial scale for identifying model performance
and assessing the effectiveness of agricultural conservation practices since this scale reflects
field-scale processes and field-to-stream transport but excludes in-stream NO3-N removal
effects. Most models that are widely used in this region are semi-distributed, for example, the
Soil Water Assessment Tool (Wellen et al., 2015), in which the watershed is disaggregated into
homogenous hydrological response units (HRU) based on topography, soil type, and land use.
However, the spatial heterogeneity of environmental factors within HRU is averaged, which may
lead to mismatches between natural units (e.g. landscape and slope) and agricultural management
boundary (e.g. field) within the HRU (Du et al., 2005; Ren et al., 2022). Furthermore, the
aggregated water management (e.g. subsurface drainage, making the system leakier) and
landscape characteristics (e.g. farmed potholes that enhance water retention) within the HRU
have mixed up the bi-directional water dynamics and overlooked the spatiotemporal dynamics of
transport processes. Consequently, the biogeochemical transformation and transport processes of
water and N fluxes regulated by climate, agricultural management, and catchment characteristics
may be misrepresented in semi-distributed models due to such management-water-N decoupling.

The modeling tool we used in this study is derived from the spatially distributed, process-based
Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) that is designed to simulate the coupled water-
N-carbon cycling within the plant-soil-water-river continuum from the grid to the regional level.
This model has been extensively validated and applied to quantify water flow and N loading
from the Mississippi river basin and its sub-basins (Liu et al., 2013; Lu et al., 2020; Zhang et al.,
2022). Based upon DLEM 2.0, we developed a new DLEM version, named DLEM-catchment,
which has better representations of management practices and unique features to mimic flow-
specific water and N transport through farmed potholes and tile lines. Here, a catchment is
defined as topographically-based and elevation-derived sub-areas of a watershed, excluding the
impacts of upstream sources (Hill et al., 2017).

In this study, we applied DLEM-catchment to four tile-drained delivery-scale agricultural
catchments in Iowa in the Midwestern US at a 30-m resolution. Using historical weather
conditions, field-level practice information, and other input drivers to force the model, we
confronted the modeled results with daily observations of water discharge and NO3-N export
from 2015 to 2019. The main objectives of this study were 1) to improve model representation of
management, physical and biogeochemical processes in reproducing daily observations of
discharge and NOs-N exports from tile-drained catchments, 2) to assess the relative contributions
of distinct hydrologic transport pathways to dynamics of discharge and NOs-N exports, 3) to
evaluate how agricultural management and catchment characteristics translate to the spatial
pattern of NO3-N concentration and loading fluxes, and 4) to quantify the contribution of key
model improvements to the estimation of water and N loading dynamics.
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2 Methods and Procedures

2.1 Study Area

Four catchments in lowa were simulated for this study (Fig. 1): the RS and KS catchments
located in Story County, and the LP and WW catchments located in Floyd County. These
catchments are in a temperate region characterized by a humid continental climate, with an
average annual precipitation of 1100 mm. The temperature throughout the year ranges widely
from -32 °C to 38 °C with an average annual temperature of 9 °C. The snow season typically
spans from late November to early April. All four catchments drain into first-order streams with
drainage areas ranging from 2.1 to 4.6 km?. The RS and KS catchments are located in the Des
Moines Lobe of lowa (DML-IA), a geomorphic region of the state that contains a large number
of farmed potholes, and as such each catchment features multiple, drained depressional wetlands.
In contrast, the LP and WW catchments are situated outside of the DML-IA, and do not include
drained depressional wetlands. Land use was similar in the four catchments with more than 80%
of the area of each watershed used for corn-soybean (CS) and continuous corn (CC) cropping
systems. These catchments are well representative of tile-drained watersheds that do and do not
host farmed potholes, and feature variability in climate, catchment characteristics, and
agricultural management, which makes them especially suitable to develop and evaluate model
predictions regarding water discharge and nitrate export (Table 1).

2.2 Hydrology and NO3-N concentration measurements

The daily discharge and NOs-N concentrations for 2015 through 2019 were measured and
processed from sub-daily observations taken close to the outlet of each catchment. Full details
related to the discharge and NO3-N measurements can be found in Crumpton et al. (2020). To
quantify the contribution of different flow pathways to total catchment discharge, we separated
the measured daily discharge into surface runoff and subsurface flow components (tile flow +
lateral flow) using four hydrograph separation approaches, including the local minimum method
(LMM), the one parameter digital filter (OPD), the recursive digital filter (RDF), and the end
member mixing model (EMM). The LMM connects the lowest points on the hydrograph with
straight lines to estimate surface runoff and subsurface flow (Sloto and Crouse, 1996). The
digital methods, OPD (Lyne and Hollick, 1979) and RDF (Eckhardt, 2005), were used to
separate high frequency waves (surface runoff) and low frequency waves (subsurface flow). We
applied a filter parameter of 0.98 and a BFI maximum of 0.8 to RDF (Schilling and Jones, 2019).
EMM is a tracer-based method that separates hydrograph into two or more components by
linearly mixing conservative tracers. In this study, we applied EMM by combining
measurements of stream discharge and NO3-N concentration (Ikenberry et al., 2017).

2.3 DLEM Improvements

Despite its success in simulating various hydrological and biogeochemical cycling processes at
the large watershed and regional scales, DLEM 2.0 required modifications to reproduce
discharge and N loading in catchments of smaller size due to the over-simplified processes, less
data availability, and difficulty in calibration and validation. To meet this need, in this study, we
improved DLEM 2.0 (DLEM-catchment) by adding a two-layer snow model, soil roughness, and
farmed potholes fill and spill dynamics to increase water retention capacity. In addition, we
improved flow generation and transport by enhancing subsurface flow separation, flow travel
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time, and flow routing (Fig. 2). Moreover, we integrated various agricultural management
practices into the model based on field records (see supplementary material for detailed model
improvement).

2.4 Data Preparation

In order to characterize the environmental changes and prepare model input drivers, we collected
and processed a number of time-variant and invariant databases from multiple sources into
model-compatible formats. All gridded geospatial data was resampled to 30-m resolution grids,
and time-series input drivers were compiled to drive the model run over the period 2000 to 2019.
The detailed information is listed in Table S2.

Climate: Daily solar radiation and temperature (maximum and minimum) were obtained from
the three closest climate sites, IAC005 (RS), IA0200 (KS), and IA1402 (LP and WW), through
the lowa Environmental Mesonet (IEM, 2021). Daily mean temperatures were calculated by
averaging the daily maximum and minimum temperatures. Daily precipitation was extracted
from the IEM geospatial rainfall data product from a particular point within each catchment.
Given their small areas, we assumed each catchment experienced temporally varying, but
spatially uniform atmospheric conditions.

Atmospheric components: Monthly CO: concentration was retrieved from the dataset
developed by Wei et al. (2014). Annual geospatial ammonium and nitrate maps were obtained
from the National Atmospheric Deposition Program (NADP, https://nadp.slh.wisc.edu/maps-
data/ntn-gradient-maps/).

Geographic characteristics: The 10-m resolution USGS National Elevation Dataset
(https://apps.nationalmap.gov/downloader/) was used to calculate topographic indexes and
delineate hydrological parameters. The distribution and properties (maximum area and depth) of
farmed potholes were obtained from McDeid et al. (2019). Soil properties were obtained from
the gridded Soil Survey Geographic Database (gSSURGO,
https://datagateway.nrcs.usda.gov/GDGHome DirectDownLoad.aspx). Grids of likely tile-
drained areas for each catchment were derived by intersecting gSSURGO soils identified as
“somewhat poorly drained”, “poorly drained”, or “very poorly drained” with elevation grid cells
having local slopes of less than 8% (Valayamkunnath et al., 2020).

Land use and land cover: Annual land use data, including crop type and distributions, from
2000 to 2019 at a 30-m resolution were obtained from the National Agricultural Statistics
Service Crop Data Layer (CDL, https://nassgeodata.gmu.edu/CropScape/).

Agricultural management: Field-level farm management information was retrieved from the
field records of partnering farmers, including tillage type and timing, cover crop management,
and synthetic N fertilizer and manure management information such as application rates, timing,
and form (Fig. S2).

2.5 Model calibration and simulation
DLEM 2.0 has been rigorously calibrated and validated against the measurements of the carbon
cycle, the N cycle, and water flow at site-specific, regional, and global scales (Lu et al., 2022,
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2020; Tian et al., 2010; Yu et al., 2018). We further calibrated the key parameters related to plant
growth using the county average corn and soybean yield from 2000 to 2019, which is essential
for simulating water balances (e.g. transpiration) and N balances (e.g. N uptake and plant
residual N). In this work, the snowpack depth obtained from nearby weather stations was used to
calibrate the parameters that determine the snowfall-rainfall ratio (Fig. S3). We also calibrated
the key parameters controlling hydrological and biogeochemical processes and validated the
simulated discharge and NOs-N export against the measurements in the four study catchments
from 2015 to 2019. The description of the key model parameters is detailed in Table S2. The
model was first run to get the 2000 baseline of C, N, and water pools by repeatedly using land
use data for 2000, and the 20-year, 1980-1999, mean climate. The model was then run to
simulate the daily discharge and in-stream NO3-N concentration using driving data from 2000 to
2019.

2.6 Model performance evaluation

We adopted three widely used indices to evaluate model performance: the Nash-Sutcliffe
Efficiency (NSE) (Nash and Sutcliffe, 1970), the Percent Bias (PBIAS), and the Kling-Gupta
Efficiency (KGE) (Gupta et al., 2009)). The NSE value measures how well the simulated values
agree with measured values. NSE values range from -<° to 1, with the value of 1 considered a
perfect match. The PBIAS measures the average tendency of the simulated values to be larger or
smaller than their corresponding observations, with an optimal value of zero. The KGE value,
ranging from -<° to 1, measures the composite performance that considers association, similarity
in variability, as well as distance between observation and simulation. The closer to 1, the more
accurate the model is.

We judged the model performance for NSE and PBIAS based on the evaluation criteria by
Moriasi et al. (2015) and KGE by Tahmasebi Nasab and Chu (2020) (Table S3). Due to general
poor model performance in simulating in-stream NO3-N concentration among studies, Moriasi et
al. (2015) suggested criteria of NSE and PBIAS only for monthly NO3-N loading. Given no
consensus on prediction accuracy of NOs3-N concentration that is very dynamic, here, we applied
these criteria for evaluating daily and monthly NO3-N concentration simulations, which may
underrate our model performance. In addition to these statistical measures, the reliability of
model outputs was judged through the graphical presentations of the predicted and observed
data.

3 Results

3.1 Discharge and In-stream Nitrate Concentration

Given the limited length of water quality monitoring data, we calibrated the key parameter
values by using annual ranges of observations, and further evaluated the model performance in
simulating discharge, NOs-N concentration and loading against daily and monthly observations
from 2015 to 2019 in four catchments. The predicted daily discharge over the study period is
satisfactory for all the four catchments according to the NSE metric, whereas PBIAS and KGE
values indicate good model simulations (Table 2). All three criteria indices for monthly
discharge indicate good to very good model performance at four catchments. The simulated daily
discharge reasonably captures the rise and fall of the observed hydrographs. However, some
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discrepancies in stream peaks and low flows are apparent (Fig. 3). For example, the model
underestimates peak flows for some storm events in the KS and WW catchments, especially for
simulations of wet years.

As shown in Table 2, the statistic indices for modeling the daily in-stream NO3-N concentrations
from four catchments are within the satisfactory range with respect to KGE > 0.5, and of very
good range with respect to PBIAS (< 15%). Because we adopt the classification standard for
nitrate loading that is likely too strict for assessing the prediction accuracy of NO3-N
concentration, it is not surprising the model performance in estimating daily NO3-N
concentration from two catchments (RS and LP) is ranked unsatisfactory using NSE (i.e. NSE <
0.35, Table 2). The simulated daily NO3-N concentration generally matches observations, with
good presentation of intra-annual and seasonal dynamics (Fig. 4). Some discrepancies are found
for the lows in fall and winter months, and for peak flows in early spring periods. For example,
the model underestimates NO3-N concentration during the fall and winter of 2014/2015 in the RS
and KS catchments, and overestimates that in the early spring of 2018 in the RS catchment. In
addition, simulated daily NOs-N concentration shows more short-term fluctuations than
observations. In contrast, the simulated monthly NO3-N concentration is ranked acceptable to
good by all indices. Both daily and monthly simulations of NOs-N loading fall within good
range, except for daily loading in the KS catchment, which is lower than the satisfactory limit.
The simulated daily NOs-N loading adequately captures the peaks and lows of observations,
except that some peak loads were underestimated (Fig. S4). NO3-N loading is the product of
discharge and NOs-N concentration. Given the good performance in discharge simulation, the
uncertainty in predicting NO3-N loading may be mainly attributed to simulated NO3-N
concentrations.

3.2 Contributions of Flows to Discharge and Nitrate Loading

In this study, we quantified the contributions of daily surface runoff, tile drainage, and lateral
flows to water discharge at the catchment outlet. The simulated subsurface flow (tile flow +
lateral flow) is the major contributor to discharge in four catchments, with annual base flow
indices (BFI, that is the ratio of subsurface flow to discharge) ranging from 0.70 to 0.75 (Table 3,
Fig. 5). These fall in the range of BFI derived from monitoring data although the latter varies
significantly among hydrograph separation methods, ranging from 0.5-0.63 by LMM, OPD,
RDF, and ~0.9 by EMM. Despite the similar contribution of subsurface flow to total discharge,
our simulations show that tile flow in RS and KS (~57%) has weaker impacts on discharge
compared to LP and WW (~66%). The contribution of tile flow to discharge also differs among
rainfall events. Tile flow accounts for a large proportion of peak flows in the ice-free season,
especially for small and medium peaks. During heavy rainfalls, tile flow contributes to both
rising and falling limbs, behaving as both quick and slow flows. (Fig. 5).

Similarly, the NO3-N loads associated with subsurface flow are the dominant contributor to in-
stream NOs3-N loads (Fig. 6 & Table S4). We found 77-81% of annual NOs-N loads from these
four catchments are carried by subsurface flows, in which tile flow is a dominant factor,
delivering 53-76%. Lateral flow also plays an important role in delivering NO3-N loads in RS
(20%) and KS (23%) compared to LP (5%) and WW (6%). Surface runoff contributes to some
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peak loads during the winter season, but plays a marginal role in NO3-N loads for small and
median rainfall events. On the other hand, lateral flow dominates the NO3-N loads during low
flow periods.

3.3 Spatial Nitrate Leaching and Loading Dynamics

The model estimates reveal large spatial heterogeneity of NO3-N leaching rates and accumulated
NOs-N loads along flow pathways, which vary among catchments (Fig. 7). Only a small
proportion in the northeastern RS catchment has a high NOs-N leaching rate (> 9 g N m? yr'!),
with the majority of the catchment showing a low level of NO3-N leaching (< 5 g N m? yr').
Meanwhile, low NOs-N loads along flow pathways are accumulated slowly within a large
drainage area, especially in the central RS. In contrast, high NO3-N leaching rates (> 7 g N m? yr’
1) are prevalent across the KS catchment compared with the other three catchments, contributing
to high NOs-N loads along the flow pathway delivered from a smaller drainage area. The
northern end of the WW catchment exhibits a higher level of NO3-N leaching rates (> 7 g N m?
yr'!) than that does its southern portion (< 5 g N m? yr'!), resulting in a strong build-up of NO3-N
loads along the main catchment flow path. LP has an intermediate NO3-N leaching rate from 5 to
9 ¢ N m? yr'! across the catchment. Furthermore, the discrepancy in NOs-N leaching rates exists
within the field. Grids with tile drainage and farmed potholes leach more NO3-N from soils than
non-tile drained, non-pothole grids.

3.4 Impacts of tile drainage and farmed potholes on water and NO3-N fluxes

We examined the effects of tile drainage and farmed potholes in simulating flow-specific
discharge and NOs-N loading. Including tile drainage in the model substantially altered
catchment-scale hydrological processes by reducing surface runoff (-25% — -45%) and lateral
flow (-24% — -62%), while promoting tile flow (Fig. 8). By draining more water out of the soil,
tile drainage also lowers evapotranspiration (-5% — -11%) while enhancing soil infiltration (7%
— 19%) and increasing total discharge (11% — 50%). Adding farmed potholes into the model
further enhances the tile flow (50% — 97%) with an increase in infiltration (16%) and reduction
in surface runoff (-15% — -27%). Overall, the inclusion of tile drainage and farmed pothole
jointly improved the accuracy of modeled stream discharge.

Similarly, simulated NO3-N loading shows that including tile drainage in the model lowered the
contribution of surface runoff (-41% — -49%) and lateral flow (-25% — -79%) to NOs-N loads,
with tile flow delivering the majority of NO3-N loads (Fig. 9). In addition to the changes in
different flows, including tile drainage increased total NO3-N loads (18% — 94%). Conversely,
adding farmed potholes slightly increased the NOs-N export by tile flow (6% — 9%) and lateral
flow (0.8% — 1%) while significantly reducing NO3-N by surface runoff (-35% — -44%),
resulting in lower total NO3-N loads (-8% — -10%) compared with adding tile drainage alone. In
general, the inclusion of tile drainage and farmed potholes improved model performance with
respect to NOs3-N loading.

4 Discussion

4.1 Contribution of Different Flows to discharge and NO3-N export

Quantifying the contribution of individual hydrological pathway to total water discharge is
essential for accurately predicting the spatiotemporal dynamics of discharge and developing
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effective N reduction strategies in tile-drained agricultural watersheds in the U.S. Midwest. In
this study, we compared the fraction of subsurface flow (tile flow and lateral flow) to total
discharge using outputs from various hydrograph separation approaches and our model
estimations (Table 3). The LMM, OPD, and RDF concluded a consistently low BFI in four
catchments (50 to 63%). In contrast, the EMM and DLEM-catchment assessed a much higher
BFI. Our model results are in agreement with other tile-drained watershed studies using a variety
of base flow measures (Table 3). The LMM and two digital filter methods separate base flow and
surface runoff with lines connecting low points of the stream hydrograph by assuming the rising
limbs are caused by surface runoff. However, our daily simulation shows that tile flows also
contribute to the rising and falling limbs of the hydrographs in these catchments, especially for
peak flows of small and medium magnitudes (Fig. 5). This result has also been reported by
several other researchers, using both empirical and modeling approaches (Ikenberry et al., 2017,
Tomer et al., 2010). Therefore, these widely used hydrograph separation methods may
underestimate the contribution of subsurface flows to stream discharge in the tile-drained
watersheds.

Due to lower NOs-N concentrations in surface runoff, our model simulated a higher proportion
of annual subsurface flow to total NO3-N loads (Table S4), with tile flow dominating both small
and large peak loading during the growing season in each catchment (Fig. 5). Quantifying the
flow-specific contribution of NOs-N loading at the watershed scale is essential for implementing
proper management practices (Arenas Amado et al., 2017). For example, riparian buffers have
been reported to efficiently remove NO3-N in surface runoff and shallow groundwater (Hill,
2019). However, our results suggest that the majority of NO3-N loads might bypass stream
buffers via tile drains, lowering their overall NO3-N removal efficiency.

Furthermore, most studies focus on the separation of surface runoff and base flow but overlook
the discrepancy among subsurface flows, such as interflow, tile drainage, and groundwater flows
(Arenas Amado et al., 2017; Schilling et al., 2019). Our simulations show that despite the similar
contributions from subsurface flows to total flows, the fractions of tile flow to discharge and
NOs-N loads are lower in RS and KS than those in LP and WW (Table 3). By measuring
discharge and NOs-N loads from all tile drain outlets and catchment outlets, Williams et al.
(2015) estimated the contributions of tile flows to discharge (56-62%) that is consistent to our
results for the RS and KS catchments. This is likely caused by the low tile-drained percentage in
these two catchments, where a fair amount of water and NO3-N is delivered by lateral flows from
non-tile-drained grid cells. This indicates that the percent coverage of tile drainage influences the
source compositions of discharge and NO3-N load.

4.2 Spatial Variability of NO3-N Leaching and Loading

The dynamics of stream NO3-N loading are determined by local NO3-N leaching and water
transport networks within a catchment. By aggregating various environmental factors and
landscape characteristics into a few sub-catchments or hydrologic units, semi-distributed water
quality models tend to reduce the spatial variability of hydrological processes and aggregate flow
transport networks. In contrast, the DLEM-catchment model features fully distributed flow
networks embedded in grid cells with consideration of spatially explicit input data and coupled
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hydro-biogeochemical cycling, which makes it able to mimic complex N cycle processes and
quantify the spatial heterogeneity of NO3-N leaching in the study catchments (Fig. 7).
Specifically, land characteristics, soil status, the presence of tile drains and farmed potholes
govern the variability of NOs-N leaching between and within each catchment. In addition, NOs-
N leaching rates also differ depending on cultivated crop types and N input levels (Kalkhoff et
al., 2016). Our simulations show that grid cells that have high-level N input rates and tile
drainage demonstrate the highest NO3-N leaching rates. Interestingly, farmed potholes with tile
installed underneath could intercept NO3-N in surface runoff that route from the neighboring grid
cells, forming hotspots of NO3-N leaching in the areas with potholes. Meanwhile, DLEM-
catchment is able to track the NOs-N loading dynamics along flow pathways, which reflects the
net changes between NOs-N leaching, transport, and removal through the flow routing network
over a given time period. For example, NO3-N loads are slowly accumulated in central RS (< 1.5
Metric ton N yr'!) due to general low NO3-N leaching rates (<5 g N m? yr'!), whereas NO3-N
loads exceeding 1.5 Metric ton N yr'! and NOs-N leaching rates higher than 7 g N m? yr! from
relatively smaller contributing areas are extensively found in KS. This implies that the prioritized
catchments might be sought to cleaning water and reducing N footprint from agricultural
landscape. Therefore, quantifying NOs-N leaching and loading at a finer resolution (e.g. 30-m in
this study) or at a scale where decision is made (e.g. field level) is essential for informing the
spatial variations in NO3-N pollution and identifying the critical areas to place the proper
nitrogen reduction measures.

4.3 Key Model Developments Improving Model Performance
In this section, we examined how the key model development we made in this study, including
modeling processes, structure, and inputs, has contributed to the improved model performance.

4.3.1 Water Retention Capacity and subsurface drainage

Snow processes: The two-layer snow module developed in this study mimics the snow
properties, processes, and interactions with the soil surface, leading to better quantification of
subsurface drainage and reproduces the continuous high-level of NO3-N concentration as
observed in winter in all the four catchments (Fig. 10a&11a). Seasonal snow plays a critical role
in regulating catchment water balances during winter (Flanner et al., 2011). Snow accumulation
not only collects snowfall and temporarily stores water in solid form, but also retains rainfall and
meltwater within the snowpack porosity by refreezing capacity and capillary holding capacity,
resulting in the reduction of surface runoff. Meanwhile, the insulating effect of the snowpack
keeps soil from freezing and the gradual replenishment of water from melting snowpack into soil
promotes infiltration and subsurface drainage (Ayers et al., 2021; Kalkhoff et al., 2016). Our
results highlight the importance of accurately representing snow processes to improve simulation
of winter hydrology and NOs-N leaching in the watersheds with cold-season, especially in the
tile-drained watersheds.

Soil Roughness: Our simulations show that adding soil roughness smooths small peaks during
low flow and modestly reduces peak flows of higher magnitudes, indicating an enhancement in
infiltration and subsurface flows (Fig. 10b). Additionally, our results indicate that considering
soil roughness generally increases the model estimates of daily NO3-N concentrations by
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enhancing the leaching of NOs3-N from soil with tile drainage (Fig. 11b). DLEM 2.0 estimates
surface runoff as the combination of infiltration excess overland flow and saturation excess
overland flow, based mainly on topographic characteristics and soil moisture states (Yang et al.,
2015). This surface runoff generation mechanism has been employed in other grid-based
spatially distributed hydrological models used in regional and global research (Niu et al., 2011).
However, the soil roughness is enhanced by farming activities across cultivated fields in four
agricultural catchments in this study, which significantly increases the importance of soil
microrelief over topographic features in surface runoff generation. By increasing surface water
storage, soil roughness impedes surface runoff and retains water in the agricultural watershed
(Youssef et al., 2018).

Farmed Potholes: Farmed potholes perform important water regulating functions by impacting
the magnitude, timing, and spatial patterns of flows in the prairie pothole region (Hayashi et al.,
2016; Rajib et al., 2020). Most current hydrological models aggregate or lump potholes within
HRUs to represent the combined hydrological functions of small depressions (Hay et al., 2018;
Rajib et al., 2020). However, the conceptual lumping of potholes disconnects potholes among
neighboring HRUs and overlooks fill-spill connections of potholes (Hayashi et al., 2016).
Additionally, few studies have coupled N storage, retention, and transport to hydrological
processes of potholes due to the lack of measurements and the complexity of modeling
processes.

In this study, we linked the spatially explicit distribution of farmed potholes to the flow pathway
network at 30-m resolution, allowing DLEM-catchment to simulate the water and N balance of
individual potholes and their fill-spill connections. The simulated daily and annual discharge
revealed that farmed potholes lowered peak flows while increasing subsurface flow (Fig. 10d),
which is in agreement with previous modeling studies (Evenson et al., 2018). Interestingly, the
simulated water level of farmed potholes demonstrates diverse roles of potholes in regulating
hydrological balance depending on where they are located in their respective catchments (Fig.
S5). For example, the potholes at the edge and upper reaches of the study catchments, where
surface runoff contributing areas tend to be small, can fully intercept surface runoff from
upstream grid cells (Fig. S5a-c). However, the potholes in the middle and lower reaches, where
pothole contributing areas tend to be larger, mix and delay surface runoff through fill-spill
process (Fig. S5d&e).

Our simulations show that depressions in the RS and KS catchments receive NO3-N from surface
runoff draining into the potholes, acting as local hotspots with elevated NOs-N leaching (Fig. 7).
This has been also observed in the in-field pothole research (Skopec and Evelsizer, 2018).
Conversely, farmed potholes decrease the surface runoff NO3-N loads while moderately
increasing tile flow NO3-N loads, performing as gatekeeper of catchment NO3-N export (Fig. 9d
& Fig. 11d). Our simulated NOs3-N removal effects by farmed potholes were consistent with field
measurements and modeling estimates (Baron et al., 2013). The NO3-N export reduction in the
presence of potholes is likely caused by enhanced denitrification due to long NOs-N residence
time within these features (Golden et al., 2019). It is worth noting that the farmed potholes act as
wetlands when filled with water, possessing water and nutrient regulating functions that we
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improved in this study. Therefore, these functions can be extended to catchments that include
wetlands.

Tile drainage: It is well understood that artificial tile drains are the major contributor to
discharge and nitrate loads in tile-drained watersheds (Arenas Amado et al., 2017; Helmers et al.,
2005). Many modeling studies have adopted the physics-based Hooghoudt and Kirkham tile
drain equations to estimate tile drainage (Ren et al., 2022; Singh et al., 2006). However,
information about the parameters of the equations such as tile space, depth, and tube radius vary
among fields and is often unavailable. Moreover, an accurate representation of surface
depression depth, soil water movement, and water table dynamics is essential for tile drainage
simulation. Our results show that the representation of tile drains in the DLEM-catchment has
significantly improved estimations of discharge and NOsz-N export, in which catchment-specific
parameters for describing the features of tile drains are important for reproducing daily
observations. Specifically, tile drainage decreased peak flows, maintained high subsurface flow,
and extended hydrograph recession (Fig. 10c), converting the subsurface flow to the dominant
contributor to total discharge. However, removing tile drainage in the modeling scheme
significantly enhanced in-stream NO3-N concentrations during no-rain days because more NOs-
N will be accumulated in soils (Fig. 11c). More importantly, the interaction with water retention
processes (e.g. soil roughness and farmed potholes) amplified the effects of tile drains. For
example, the improved model with tile drainage and farmed potholes performed better than the
model including tile drainage alone in predicting annual discharge and NO3-N loading compared
with observations (Fig. 8&9). Furthermore, the effects of tile drainage on water and NOs3-N in
this study have broader applicability to other catchments characterized by artificial or natural
subsurface drainage such as karst catchments.

4.3.2 Water and NO3-N transport

Most fully distributed hydrological models assume that 1) surface runoff and subsurface flows
generated in the grid are merged into the tributary or stream; and then 2) aggregated flows move
to the downstream gird along the stream with the same transport speed. DLEM-catchment,
however, routes surface runoff and subsurface flows separately (with distinct different travel
times) to the downstream grid because the delivery-scale catchments are small in size and only
contains water and nutrient movement before they reach streams. In addition, tile drains transport
water far more quickly than untiled subsurface drainage (Schilling et al., 2015), and as such it is
necessary to consider its water and nutrient transport processes in a way different from other
flows. Therefore, in this study we developed a new flow routing network in the model structure
with separated flow pathways and individual travel times to capture the dominant flow transport
pathways and processes in tile-drained agricultural landscapes (Fig. 2). This new conceptual
structure also enables the DLEM-catchment to link farmed potholes to surface runoff routing. In
this model, flow travel time was calculated based on grid-level factors such as slope, soil
properties, and management, reflecting the variability of catchment characteristics. As a result,
due to the large difference in NOs3-N concentration among flows, the improvement in flow
routing can benefit the estimation of NOs-N transport and delivery.
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4.3.3 Agricultural Management

Agricultural management such as crop rotation, tillage, cover crops, and synthetic and manure N
fertilizer use (including application rate, timing, method, and fertilizer type) have direct and
indirect impacts on the water and NOs3-N balances of farmed watersheds (Kaspar et al., 2012).
However, due to the difficulty in obtaining explicit management information at the scale of
individual fields, modeling research often uses static data from the literature, regional averages,
or management guidance provided by university extension offices (Ikenberry et al., 2017; Ren et
al., 2022). Neglecting the spatiotemporal heterogeneity of agricultural management has fed
models with biased inputs and generated large uncertainties in estimating the magnitude and
timing of discharge and NOs-N export. DLEM 2.0 has evolved to use various agricultural
management information for regional assessments (Lu et al., 2022, 2020; Yu et al., 2018).
Additionally, in this study, we prescribed the time-series field-level management information to
each catchment at a resolution of 30 m and modified relevant model processes to address the
spatiotemporal representation of these management practices. We found the modeling estimates
have well reproduced observed inter-annual and seasonal variations of NO3-N exports for four
study catchments, capturing the rise of observed NOs-N concentration in early spring and late
fall, and corresponding declines in summer. This success could be largely attributed to the
improved input information including crop planting date and N fertilizer application timings at
the field level. Additionally, fine-scale management data we used in this study enables the model
to reflect the divergent magnitude of in-stream NO3-N concentrations across catchments, and
spatial heterogeneity of NOs-N leaching and loading. The adequate representation of
anthropogenic management in our model, and the reasonable accuracy of the model with respect
to discharge and outlet NOs3-N concentrations shows that DLEM-catchment has the potential to
be a capable decision support tool.

4.4 Uncertainties and Limitations

Model performance is largely affected by the quality of input data, including the accuracy of
precipitation time-series, assumed spatial distributions of tile drains, and agricultural
management information. The precipitation data was extracted from spatially interpolated
precipitation maps. Therefore, the rainfall amount is averaged and may be smaller than that from
individual sites within the region, especially with respect to local storms. Moreover, due to the
limited climate data availability, we used daily precipitation data as water inputs, which may
underestimate rainfall intensity and generation of surface runoff during brief storms. These
factors may explain why DLEM-catchment underestimates some large peak flows and
corresponding NO3-N concentration dilution in our simulations (Fig. 3&4).

Due to the lack of detailed information about the hydraulic characteristics of tile drains and their
locations, the tile drained grids are determined based on gSSURGO soil drainage classes. Given
the impacts of tile drains on flows and N exports, this limitation may be significant. Despite
having field-level agricultural management information from partnering farmers, the
management records for about half of the fields within each catchment remain unavailable and
are assumed to be identical to other known fields with close cropping system in a given year. The
lack of spatially explicit management information in these fields may also introduce uncertainties
in the simulated results.
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Some simplified model processes and structure may also limit the model performance. For
example, we developed a new model structure to represent flow pathways and individual flow
travel time, by which different flows are constrained within the corresponding flow path from
grid to grid with no intersections. However, in reality, interflow that flows above the tile drains
may enter tiles in downstream grids. On the other hand, when soils of downstream girds are
unsaturated, surface runoff from upstream grids may enter the soil through infiltration, which
could increase the proportion of subsurface flow to total discharge. The simplification we made
to exclude flow interactions may explain the lower BFI estimated by our model compared to the
EMM approach. We also simplified the biogeochemical processes in farmed potholes, such as
crop mortality and enhanced denitrification caused by inundation (Hayashi et al., 2016; LaBaugh
et al., 2018). As potholes cover a small portion of drainage areas in the study catchments, this
likely have little impacts on simulated water discharge and NO3-N loading, but more
measurement data within potholes will improve model capability in quantifying potential hot
spot contributions. It is worth noting that the delivery-scale catchments have short-distance
perennial streams, in which in-stream N biogeochemical cycling has little impacts on NO3-N
loading. DLEM-catchment may need further improvements in stream N biogeochemical
processes for predicting NO3-N loading in large-scale watersheds.

5 Conclusions

In this study, using the spatially distributed process-based DLEM-catchment model, we
identified and quantified the key model processes and features that are critical for accurately
simulating water discharge and NOs-N exports from four tile-drained catchments in the
Midwestern US. We also comprehensively quantified the flow-specific contributions to and
cross-catchment variations in water flow and NO3-N fluxes under various weather and
management conditions. The improved model reasonably reproduced the dynamics of discharge
and NOs-N fluxes, with satisfactory performance for daily simulations and good performance for
monthly simulations. Particularly, tile drains coupled with water retention capacity from snow
processes, soil roughness, and farmed potholes substantially alter the water and NO3-N balances
of these catchments by promoting infiltration and subsurface drainage, while decreasing surface
runoff. Agricultural management practices, such as crop planting/harvesting, and fertilizer input
rates and timing, play an essential role in regulating NO3-N leaching at a daily time step. These
model performance improvements verify the necessity of considering these mechanisms in tile-
drained watersheds in the US rain-fed Corn Belt areas. Meanwhile, the water balance and NO3-N
dynamic regulating functions by these improvements can be transferred to other models designed
for different types of catchments.

The improved model estimated reasonable ranges of event-based and annual flow-specific
contributions to discharge and NO3-N loading compared with other hydrograph separation
approaches and other studies in the tile-drained catchments. Daily simulations show that tile flow
is the dominant contributor to peak flows, especially for small and medium peaks, while lateral
flow dominates low flows during dry periods. At the annual scale, the model estimates that
subsurface flow (tile flow and lateral flow) accounts for 70%-75% of discharge and 77%-82% of
NOs-N loading. However, tile flow contributes more water and NOs-N loads in the LP and WW
catchments than the other two catchments due to a larger proportion of poorly-drained areas with
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no tile drains, indicating the necessity to quantify tile flow and lateral flow separately. Our
simulated results reveal that the contributions of different flows to discharge and NOs-N loading
vary significantly among catchments and among rainfall events depending on local conditions.

With the adequate representation of various agricultural management and coupled hydrological-
biogeochemical-processes, the improved model results demonstrate the detailed spatial patterns
of hydrological NO3-N losses within catchments. Agricultural management (e.g. N fertilizer and
manure application rate and timing), which varies across fields, notably impacts the magnitude
and seasonality of NO3-N leaching. Landscape characteristics (e.g. geographic slope and farmed
potholes), soil properties, and artificial tile drainage govern local NO3-N loss dynamics. Our
study highlighted the importance of integrating cross-scale water quality monitoring catchment
characteristics, and in-field management practices into a water quality modeling framework for
improving prediction accuracy and identifying effective N reduction strategies. In general, our
findings illustrate the necessity of modeling tools like DLEM-catchment to assess and predict the
effectiveness of management practices in reducing NO3-N loading from tile-drained agricultural
landscapes.
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Table 1. Characteristics of the four catchments.

Characteristics Unit RS KS LP WWwW
Drainage area km? 4.6 3.0 2.1 2.4
Landscape Mean Slope % 0.86 0.93 0.43 0.77
Farmed Potholes % 7.5 33 0 0
Climate™ Annual Tem °C 9.2 10.3 8.3 8.3
PPT mm 1019 1066 1183 1176
Fields” 19 18 9 15
Row crop CS % 27 37 56 31
CCS % 24 17 7 21
CCC % 40 36 27 26
Total N input gNm?yr! 10.3-22.5 14.1-20.5 18.6-23.8 9.9-20.2
N fer / Manure % 6-100 0-100 100 0-100
Management Fall application % 0-94 0-100 0-32 18-100
Cover Crop % 47 0 85 0
Tile coverage % 55 62 89 88

*Climate conditions shown here are the annual average values during 2015-2019. Annual Tem is annual
mean temperature. PPT is annual total precipitation. Number of fields is counted by the boundary of fields
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defined by partnering farmers and CDL (cropland Data Layer) maps. The cropping systems are defined by
time-series crop type and rotation categories according to the 30-m CDL data: CS is corn-soybean
rotation, CCS is corn-corn-soybean rotation, and CCC is three and more consecutive corn years. Cover
crop was implemented in fall 2017. Total N input includes N fertilizer and manure N.

773
774
Table 2. Statistic indices of model performance in estimating discharge, and NO3-N
concentration and loads at the daily and monthly scale.
Watershed Variables Daily Monthly
NSE  PBIAS KGE NSE PBIAS KGE
RS Q 0.62*  -5.7%%* 0.79%** 0.73%*  57%* 0.85%*
NO3-N conc. 0.34 (0. 2% 0.64* 0.46* -0.1%%%  0.69*
NOs-N load 0.54%* -4 0%** 0.77%%* 0.70%** .3 9%*x () g5**
KS Q 0.64*  14.0* 0.69* 0.80***  13.9* 0.84%#*
NO:s-N conc. 0.35%  -3.4%** 0.55* 0.50%* 2. 1%**  (.60%*
NO3-N load 0.15 12.4%* 0.56* 0.68***  ]3.9%* 0.77%*
LP Q 0.58*  -14.1%* 0.75%%* 0.86%**  -14.4**  (.83**
NO3-N conc. 0.15 -10.0***  0.61%* 0.39* -10.4***  0.71*
NOs-N load 0.52%*%  -26.9% 0.63* 0.68***  27* 0.66*
WwW Q 0.57*  -6.4%** 0.77%* 0.82%**  _6.6%**  (.89**
NO:s-N conc. 0.42%  -8.9%** 0.64* 0.68***  -50%**  (.63*
NO;3-N load 0.50%* -20.0** 0.58* 0.71%**  -18.8*** (.74*
* represents satisfactory, ** is good, *** is very good only for NSE and PBIAS (Criteria can
be found in Supplementary Table S3).
775
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Table 3. Comparison between this study and other studies in quantifying the contribution from tile

drainage and subsurface flow to annual discharge.

Drainage Tile Subsurface
Watershed Area Drain Flow Tool* Citations
(km?) (%) (%)
LCW-
LCRAT 2:5 62 RDF Schilling and Jones
LCW- (2019)
LCR3T 6.0 61 RDF
KS 31 75 EMMM
' 73 SWAT
AL 25 29 EMMM Ikenberry et al. (2017)
' 85 SWAT
UBWC-B 3.9 Zg Measurement ~ Williams et al. (2015)
LCW 42 66 ~76 SWAT Schilling et al. (2019)
Schilling and Helmers
WCW 51 75 DRAINMOD (2008)
60 RDF
63 OPD
RS 4.6 53 LMM
91 EMM
59 72 DLEM
54 RDF
55 OPD
KS 3.0 54 LMM
87 EMM
56 71 DLEM .
56 RDF This study
58 OPD
LP 2.1 60 LMM
90 EMM
70 75 DLEM
50 RDF
50 OPD
ww 2.4 53 LMM
90 EMM
62 70 DLEM

*RDF is Recursive Digital Filter, EMM is End-Member-Mix-Model, SWAT is Soil Water Assessment Tool.

OPD is One Parameter Digital filter. LMM represents Local Minimum Method.
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Figure 1. Land use map of the four study catchments in Iowa (i.e., RS, KS, LP, and WW) with

sampling locations shown by the star symbol (we use the land use maps in 2016 as an example).

DML refers to Des Moines Lobe. HUC 10 refers to Hydrologic Unit Code 10 with an average
spatial scale of 590 km?. HUC 12 refers to Hydrologic Unit Code 12 with an average spatial
scale of 100 km?.
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Figure 3. Comparison of model-estimated vs. monitored daily water discharge amount at four
tile-drained catchments in Central lowa during 2015-2019.
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Figure 4. Comparison of daily NO3-N concentration between simulation and observation at the
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Figure 6. Simulated daily NOs-N loads of surface runoff, tile flow, and lateral flow at the outlet
of four catchments. Lateral flow includes interflow and groundwater flow. BF NOs-N fraction is
the 5-yr average fraction of NOs3-N loads carried by subsurface flow (tile flow + lateral flow) in
the total NO3-N loads from 2015 to 2019.
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Figure 7. Spatial distribution of model-estimated annual average NOs-N leaching and loading in
four catchments over 2015-2019 with a resolution of 30 m x30 m.
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Figure 8. The model-estimated water balance components, including ET, infiltration, surface
runoff, tile flow, lateral flow, and total flow, were derived from multiple model structures and
comparison with total flow observations (OB, red bar) during 2015-2019. Lateral flow
aggregates interflow and groundwater flow. IM represents the Improved Model. IM-No TD
represents the improved model without Tile Drainage. IM-No TD & FP represents the improved
model without Tile Drainage and Farmed Pothole. The upper and lower hinge of the box indicate
25-75% quantile, respectively. Black lines are medium values, and whiskers comprise the whole
range of data.

30



841

842
843
844
845
846

847

848

RS
| Surfsce Runoff | TieFlow || Lateral Flow | Total Fiow

251

N loads (Metric ton M yr ')
w &
E
#il
i

& ¥ o o
LP

209 | I X

[ Surface Runoll | Tils Flow || Lalersl Fiow || Total Flow |

207

o

l
-

M loads (Metric tan N yr '}

s
o & © @ © @ .:,’é‘-'

& @

KS

| Surtace Runoff | Tie Flow || Laleral Flow | Total Fiow
304
201 I

I |
1I:lf |_

. Rl

o

R A ® # o PRSP
o e v ¥
ot e ,9_-:\\ \\1}&0 nﬁcibr

o - o &
Wi

= [ SuiTa08 RAInGHT _ TimFiow || Lalsral Fiow || Tobal Flow |
15 ;]
N i

A1

| —
—_—

:.F' E-3 & u\‘i b .e-a'-‘-‘\ﬁ & &

& o & &

Figure 9. NOs-N delivered by different water flows as estimated by multiple model structures
and compared with total NO3-N load observations (OB, red bar). Lateral flow aggregates NO3-N
loads from interflow and groundwater flow. IM represents Improved Model. TD represents Tile
Drainage. FP represents Farmed Pothole. Boxes include 25-75% of NOs-N loading during 2015-
2019, black lines are medium values, and whiskers comprise the whole range of data.
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Figure 10. Improved model performance in simulating daily water discharge (a) and
contributions of key model structure reflected by comparing estimations between improved
model (IM) and IM without a certain feature (b-d). OB represents observation, BI represents
model estimates before Improvement. IM represents Improved Model estimates.
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Figure 11. Improved model performance in simulating daily NO3-N concentration (a) and
contributions of key model structure reflected by comparing estimations between improved
model (IM) and IM without a certain feature (b-d). OB represents Observation. BI represents
model estimates before Improvement.
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