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Abstract 11 

It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological 12 

nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural 13 

watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the 14 

spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. 15 

However, modeling performance is usually limited by the oversimplification of natural and 16 

human-managed processes and insufficient representation of spatiotemporally varied 17 

hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a 18 

spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the 19 

model to four tile-drained catchments with mixed agricultural management and diverse 20 

landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model 21 

well reproduced the daily and monthly water discharge, NO3-N concentration and loading 22 

measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface 23 

flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-24 

82%) over the years. However, the contributions of tile drainage and lateral flow vary 25 

remarkably among catchments due to different tile-drained area percentages and the presence of 26 

farmed potholes (former depressional wetlands that have been drained for agricultural 27 

production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer 28 

management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile 29 

drainage) play important roles in predicting the spatial distributions of NO3-N leaching and 30 

loading. The simulated results reveal that the model improvements in representing water 31 

retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage 32 

improved model performance in estimating discharge and NO3-N export at a daily time step, 33 

while improvement of agricultural management mainly impacts NO3-N export prediction. This 34 

study underlines the necessity of characterizing catchment properties, agricultural management 35 

practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for 36 

accurately simulating water quality dynamics and predicting the impacts of agricultural 37 

conservation nutrient reduction strategies. 38 
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1 Introduction 39 

The modern agricultural system coupled with fertile soil conditions and a suitable climate 40 

environment has made the US Corn Belt one of the most productive agricultural regions in the 41 

world (Gonzalo et al., 2022). Substantial nitrogen (N) synthetic fertilizer and manure 42 

supplementation for crop production have also made this region a hotspot of N inputs in the US. 43 

(Bian et al., 2021; Cao et al., 2018). Total N inputs in this region often exceed crop utilization, 44 

resulting in a substantial N surplus (Lu et al., 2019; Zhang et al., 2021), which leads to a waste of 45 

resources and degrading water quality (Baron et al., 2013). The increased leaching of nitrate-46 

nitrogen (NO3-N) from agricultural areas in this region is identified as a primary contributor to 47 

hypoxia in the Gulf of Mexico (Jones et al., 2018). Therefore, it is essential to identify the 48 

dominant processes, critical areas, and time periods of NO3-N losses for implementing effective 49 

agricultural conservation practices to mitigate the agriculture-derived water quality issues. 50 

Spatially distributed process-based modeling with adequate representation of the hydrological-51 

biogeochemical cycles is a promising tool to quantify the NO3-N leaching and transport 52 

processes and to predict the efficiency of multiple management practices in reducing NO3-N 53 

loads in agricultural watersheds (Ren et al., 2022).  54 

Simulating the dynamics of NO3-N export at the watershed outlet is challenging as they reflect 55 

complicated impacts of climate variation, watershed characteristics, human management, and 56 

hydrological and biogeochemical cycles. Agricultural management plays a critical role in 57 

determining NO3-N input sources in agricultural watersheds. For example, crop rotation and N 58 

fertilizer management (rate, timing, method, and form) significantly impact the magnitude and 59 

seasonality of N inputs (Cao et al., 2018). Constrained by local environmental conditions, the N 60 

biogeochemical transformation is generally complex and highly heterogeneous, which influences 61 

the dynamics of NO3-N availability over space and time. Furthermore, the spatiotemporal 62 

hydrological processes connect the agriculture-derived NO3-N sources and transport them to 63 

streams. Due to the divergence in hydrological connectivity and flow travel time, water and N 64 

fluxes that flow along separate pathways contribute differently to in-stream NO3-N dynamics 65 

over time. This is particularly important in tile-drained watersheds in the Midwest. Tiles that are 66 

installed below the soil surface profoundly alter the water and nutrient balance of agricultural 67 

watersheds by shortening groundwater travel time and quickly removing excess water from the 68 

soil ( Schilling et al., 2015). In the Prairie Pothole Region of North America, small depressional 69 

wetlands were formed by glacial activity and subsequent thawing. These depressions have been 70 

converted for agricultural practices such as crop cultivation and livestock grazing (defined as 71 

farmed pothole hereafter). Coupled with tile drains, farmed potholes significantly change 72 

hydrological and biogeochemical cycles in this region by intercepting runoff and retaining 73 

nutrients (Hayashi et al., 2016; Tomer et al., 2003). Therefore, insufficient representation of 74 

agricultural management, catchment characteristics (e.g. tile drainage and farmed potholes), and 75 

their interactions undermines model performance in tracking NO3-N leaching and delivery along 76 

water flows. 77 

A wide variety of modeling efforts have attempted to evaluate the impacts of various 78 

management practices on agricultural non-point source of NO3-N losses at both field-level and 79 

large watershed-level in the US Corn Belt (Ren et al., 2022; Tahmasebi Nasab and Chu, 2020). 80 
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However, due to the scarcity of long-term monitoring data and spatially detailed farming 81 

practices information, very few modeling studies have focused on the scale at which the NO3-N 82 

loads are delivered to surface water systems (defined as delivery-scale hereafter, Ikenberry et al., 83 

2017). The delivery-scale catchment is the ideal spatial scale for identifying model performance 84 

and assessing the effectiveness of agricultural conservation practices since this scale reflects 85 

field-scale processes and field-to-stream transport but excludes in-stream NO3-N removal 86 

effects. Most models that are widely used in this region are semi-distributed, for example, the  87 

Soil Water Assessment Tool (Wellen et al., 2015), in which the watershed is disaggregated into 88 

homogenous hydrological response units (HRU) based on topography, soil type, and land use. 89 

However, the spatial heterogeneity of environmental factors within HRU is averaged, which may 90 

lead to mismatches between natural units (e.g. landscape and slope) and agricultural management 91 

boundary (e.g. field) within the HRU (Du et al., 2005; Ren et al., 2022). Furthermore, the 92 

aggregated water management (e.g. subsurface drainage, making the system leakier) and 93 

landscape characteristics (e.g. farmed potholes that enhance water retention) within the HRU 94 

have mixed up the bi-directional water dynamics and overlooked the spatiotemporal dynamics of 95 

transport processes. Consequently, the biogeochemical transformation and transport processes of 96 

water and N fluxes regulated by climate, agricultural management, and catchment characteristics 97 

may be misrepresented in semi-distributed models due to such management-water-N decoupling.  98 

The modeling tool we used in this study is derived from the spatially distributed, process-based 99 

Dynamic Land Ecosystem Model 2.0 (DLEM 2.0) that is designed to simulate the coupled water-100 

N-carbon cycling within the plant-soil-water-river continuum from the grid to the regional level. 101 

This model has been extensively validated and applied to quantify water flow and N loading 102 

from the Mississippi river basin and its sub-basins (Liu et al., 2013; Lu et al., 2020; Zhang et al., 103 

2022). Based upon DLEM 2.0, we developed a new DLEM version, named DLEM-catchment, 104 

which has better representations of management practices and unique features to mimic flow-105 

specific water and N transport through farmed potholes and tile lines. Here, a catchment is 106 

defined as topographically-based and elevation-derived sub-areas of a watershed, excluding the 107 

impacts of upstream sources (Hill et al., 2017).  108 

In this study, we applied DLEM-catchment to four tile-drained delivery-scale agricultural 109 

catchments in Iowa in the Midwestern US at a 30-m resolution. Using historical weather 110 

conditions, field-level practice information, and other input drivers to force the model, we 111 

confronted the modeled results with daily observations of water discharge and NO3-N export 112 

from 2015 to 2019. The main objectives of this study were 1) to improve model representation of 113 

management, physical and biogeochemical processes in reproducing daily observations of 114 

discharge and NO3-N exports from tile-drained catchments, 2) to assess the relative contributions 115 

of distinct hydrologic transport pathways to dynamics of discharge and NO3-N exports, 3) to 116 

evaluate how agricultural management and catchment characteristics translate to the spatial 117 

pattern of NO3-N concentration and loading fluxes, and 4) to quantify the contribution of key 118 

model improvements to the estimation of water and N loading dynamics.  119 
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2 Methods and Procedures 120 

2.1 Study Area 121 

Four catchments in Iowa were simulated for this study (Fig. 1): the RS and KS catchments 122 

located in Story County, and the LP and WW catchments located in Floyd County. These 123 

catchments are in a temperate region characterized by a humid continental climate, with an 124 

average annual precipitation of 1100 mm. The temperature throughout the year ranges widely 125 

from -32 oC to 38 oC with an average annual temperature of 9 oC. The snow season typically 126 

spans from late November to early April. All four catchments drain into first-order streams with 127 

drainage areas ranging from 2.1 to 4.6 km2. The RS and KS catchments are located in the Des 128 

Moines Lobe of Iowa (DML-IA), a geomorphic region of the state that contains a large number 129 

of farmed potholes, and as such each catchment features multiple, drained depressional wetlands. 130 

In contrast, the LP and WW catchments are situated outside of the DML-IA, and do not include 131 

drained depressional wetlands. Land use was similar in the four catchments with more than 80% 132 

of the area of each watershed used for corn-soybean (CS) and continuous corn (CC) cropping 133 

systems. These catchments are well representative of tile-drained watersheds that do and do not 134 

host farmed potholes, and feature variability in climate, catchment characteristics, and 135 

agricultural management, which makes them especially suitable to develop and evaluate model 136 

predictions regarding water discharge and nitrate export (Table 1). 137 

2.2 Hydrology and NO3-N concentration measurements 138 

The daily discharge and NO3-N concentrations for 2015 through 2019 were measured and 139 

processed from sub-daily observations taken close to the outlet of each catchment. Full details 140 

related to the discharge and NO3-N measurements can be found in Crumpton et al. (2020). To 141 

quantify the contribution of different flow pathways to total catchment discharge, we separated 142 

the measured daily discharge into surface runoff and subsurface flow components (tile flow + 143 

lateral flow) using four hydrograph separation approaches, including the local minimum method 144 

(LMM), the one parameter digital filter (OPD), the recursive digital filter (RDF), and the end 145 

member mixing model (EMM). The LMM connects the lowest points on the hydrograph with 146 

straight lines to estimate surface runoff and subsurface flow (Sloto and Crouse, 1996). The 147 

digital methods, OPD (Lyne and Hollick, 1979) and RDF (Eckhardt, 2005), were used to 148 

separate high frequency waves (surface runoff) and low frequency waves (subsurface flow). We 149 

applied a filter parameter of 0.98 and a BFI maximum of 0.8 to RDF (Schilling and Jones, 2019). 150 

EMM is a tracer-based method that separates hydrograph into two or more components by 151 

linearly mixing conservative tracers. In this study, we applied EMM by combining 152 

measurements of stream discharge and NO3-N concentration (Ikenberry et al., 2017). 153 

2.3 DLEM Improvements 154 

Despite its success in simulating various hydrological and biogeochemical cycling processes at 155 

the large watershed and regional scales, DLEM 2.0 required modifications to reproduce 156 

discharge and N loading in catchments of smaller size due to the over-simplified processes, less 157 

data availability, and difficulty in calibration and validation. To meet this need, in this study, we 158 

improved DLEM 2.0 (DLEM-catchment) by adding a two-layer snow model, soil roughness, and 159 

farmed potholes fill and spill dynamics to increase water retention capacity. In addition, we 160 

improved flow generation and transport by enhancing subsurface flow separation, flow travel 161 
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time, and flow routing (Fig. 2). Moreover, we integrated various agricultural management 162 

practices into the model based on field records (see supplementary material for detailed model 163 

improvement).  164 

2.4 Data Preparation 165 

In order to characterize the environmental changes and prepare model input drivers, we collected 166 

and processed a number of time-variant and invariant databases from multiple sources into 167 

model-compatible formats. All gridded geospatial data was resampled to 30-m resolution grids, 168 

and time-series input drivers were compiled to drive the model run over the period 2000 to 2019. 169 

The detailed information is listed in Table S2.  170 

Climate: Daily solar radiation and temperature (maximum and minimum) were obtained from 171 

the three closest climate sites, IAC005 (RS), IA0200 (KS), and IA1402 (LP and WW), through 172 

the Iowa Environmental Mesonet (IEM, 2021). Daily mean temperatures were calculated by 173 

averaging the daily maximum and minimum temperatures. Daily precipitation was extracted 174 

from the IEM geospatial rainfall data product from a particular point within each catchment. 175 

Given their small areas, we assumed each catchment experienced temporally varying, but 176 

spatially uniform atmospheric conditions.  177 

Atmospheric components: Monthly CO2 concentration was retrieved from the dataset 178 

developed by Wei et al. (2014). Annual geospatial ammonium and nitrate maps were obtained 179 

from the National Atmospheric Deposition Program (NADP, https://nadp.slh.wisc.edu/maps-180 

data/ntn-gradient-maps/). 181 

Geographic characteristics: The 10-m resolution USGS National Elevation Dataset 182 

(https://apps.nationalmap.gov/downloader/) was used to calculate topographic indexes and 183 

delineate hydrological parameters. The distribution and properties (maximum area and depth) of 184 

farmed potholes were obtained from McDeid et al. (2019). Soil properties were obtained from 185 

the gridded Soil Survey Geographic Database (gSSURGO, 186 

https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx). Grids of likely tile-187 

drained areas for each catchment were derived by intersecting gSSURGO soils identified as 188 

“somewhat poorly drained”, “poorly drained”, or “very poorly drained” with elevation grid cells 189 

having local slopes of less than 8% (Valayamkunnath et al., 2020).   190 

Land use and land cover: Annual land use data, including crop type and distributions, from 191 

2000 to 2019 at a 30-m resolution were obtained from the National Agricultural Statistics 192 

Service Crop Data Layer (CDL, https://nassgeodata.gmu.edu/CropScape/).  193 

Agricultural management: Field-level farm management information was retrieved from the 194 

field records of partnering farmers, including tillage type and timing, cover crop management, 195 

and synthetic N fertilizer and manure management information such as application rates, timing, 196 

and form (Fig. S2).  197 

2.5 Model calibration and simulation 198 

DLEM 2.0 has been rigorously calibrated and validated against the measurements of the carbon  199 

cycle, the N cycle, and water flow at site-specific, regional, and global scales (Lu et al., 2022, 200 
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2020; Tian et al., 2010; Yu et al., 2018). We further calibrated the key parameters related to plant 201 

growth using the county average corn and soybean yield from 2000 to 2019, which is essential 202 

for simulating water balances (e.g. transpiration) and N balances (e.g. N uptake and plant 203 

residual N). In this work, the snowpack depth obtained from nearby weather stations was used to 204 

calibrate the parameters that determine the snowfall-rainfall ratio (Fig. S3). We also calibrated 205 

the key parameters controlling hydrological and biogeochemical processes and validated the 206 

simulated discharge and NO3-N export against the measurements in the four study catchments 207 

from 2015 to 2019. The description of the key model parameters is detailed in Table S2. The 208 

model was first run to get the 2000 baseline of C, N, and water pools by repeatedly using land 209 

use data for 2000, and the 20-year, 1980-1999, mean climate. The model was then run to 210 

simulate the daily discharge and in-stream NO3-N concentration using driving data from 2000 to 211 

2019.  212 

2.6 Model performance evaluation 213 

We adopted three widely used indices to evaluate model performance: the Nash-Sutcliffe 214 

Efficiency (NSE) (Nash and Sutcliffe, 1970), the Percent Bias (PBIAS), and the Kling-Gupta 215 

Efficiency (KGE) (Gupta et al., 2009)). The NSE value measures how well the simulated values 216 

agree with measured values. NSE values range from -∞ to 1, with the value of 1 considered a 217 

perfect match. The PBIAS measures the average tendency of the simulated values to be larger or 218 

smaller than their corresponding observations, with an optimal value of zero. The KGE value, 219 

ranging from -∞ to 1, measures the composite performance that considers association, similarity 220 

in variability, as well as distance between observation and simulation. The closer to 1, the more 221 

accurate the model is.  222 

We judged the model performance for NSE and PBIAS based on the evaluation criteria by 223 

Moriasi et al. (2015) and KGE by Tahmasebi Nasab and Chu (2020) (Table S3). Due to general 224 

poor model performance in simulating in-stream NO3-N concentration among studies, Moriasi et 225 

al. (2015) suggested criteria of NSE and PBIAS only for monthly NO3-N loading. Given no 226 

consensus on prediction accuracy of NO3-N concentration that is very dynamic, here, we applied 227 

these criteria for evaluating daily and monthly NO3-N concentration simulations, which may 228 

underrate our model performance. In addition to these statistical measures, the reliability of 229 

model outputs was judged through the graphical presentations of the predicted and observed 230 

data. 231 

3 Results  232 

3.1 Discharge and In-stream Nitrate Concentration 233 

Given the limited length of water quality monitoring data, we calibrated the key parameter 234 

values by using annual ranges of observations, and further evaluated the model performance in 235 

simulating discharge, NO3-N concentration and loading against daily and monthly observations 236 

from 2015 to 2019 in four catchments. The predicted daily discharge over the study period is 237 

satisfactory for all the four catchments according to the NSE metric, whereas PBIAS and KGE 238 

values indicate good model simulations (Table 2). All three criteria indices for monthly 239 

discharge indicate good to very good model performance at four catchments. The simulated daily 240 

discharge reasonably captures the rise and fall of the observed hydrographs. However, some 241 
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discrepancies in stream peaks and low flows are apparent (Fig. 3). For example, the model 242 

underestimates peak flows for some storm events in the KS and WW catchments, especially for 243 

simulations of wet years.  244 

As shown in Table 2, the statistic indices for modeling the daily in-stream NO3-N concentrations 245 

from four catchments are within the satisfactory range with respect to KGE > 0.5, and of very 246 

good range with respect to PBIAS (< 15%). Because we adopt the classification standard for 247 

nitrate loading that is likely too strict for assessing the prediction accuracy of NO3-N 248 

concentration, it is not surprising the model performance in estimating daily NO3-N 249 

concentration from two catchments (RS and LP) is ranked unsatisfactory using NSE (i.e. NSE < 250 

0.35, Table 2). The simulated daily NO3-N concentration generally matches observations, with 251 

good presentation of intra-annual and seasonal dynamics (Fig. 4). Some discrepancies are found 252 

for the lows in fall and winter months, and for peak flows in early spring periods. For example, 253 

the model underestimates NO3-N concentration during the fall and winter of 2014/2015 in the RS 254 

and KS catchments, and overestimates that in the early spring of 2018 in the RS catchment. In 255 

addition, simulated daily NO3-N concentration shows more short-term fluctuations than 256 

observations. In contrast, the simulated monthly NO3-N concentration is ranked acceptable to 257 

good by all indices. Both daily and monthly simulations of NO3-N loading fall within good 258 

range, except for daily loading in the KS catchment, which is lower than the satisfactory limit. 259 

The simulated daily NO3-N loading adequately captures the peaks and lows of observations, 260 

except that some peak loads were underestimated (Fig. S4). NO3-N loading is the product of 261 

discharge and NO3-N concentration. Given the good performance in discharge simulation, the 262 

uncertainty in predicting NO3-N loading may be mainly attributed to simulated NO3-N 263 

concentrations. 264 

3.2 Contributions of Flows to Discharge and Nitrate Loading 265 

In this study, we quantified the contributions of daily surface runoff, tile drainage, and lateral 266 

flows to water discharge at the catchment outlet. The simulated subsurface flow (tile flow + 267 

lateral flow) is the major contributor to discharge in four catchments, with annual base flow 268 

indices (BFI, that is the ratio of subsurface flow to discharge) ranging from 0.70 to 0.75 (Table 3, 269 

Fig. 5). These fall in the range of BFI derived from monitoring data although the latter varies 270 

significantly among hydrograph separation methods, ranging from 0.5-0.63 by LMM, OPD, 271 

RDF, and ~0.9 by EMM. Despite the similar contribution of subsurface flow to total discharge, 272 

our simulations show that tile flow in RS and KS (~57%) has weaker impacts on discharge 273 

compared to LP and WW (~66%). The contribution of tile flow to discharge also differs among 274 

rainfall events. Tile flow accounts for a large proportion of peak flows in the ice-free season, 275 

especially for small and medium peaks. During heavy rainfalls, tile flow contributes to both 276 

rising and falling limbs, behaving as both quick and slow flows. (Fig. 5).  277 

Similarly, the NO3-N loads associated with subsurface flow are the dominant contributor to in-278 

stream NO3-N loads (Fig. 6 & Table S4). We found 77-81% of annual NO3-N loads from these 279 

four catchments are carried by subsurface flows, in which tile flow is a dominant factor, 280 

delivering 53-76%. Lateral flow also plays an important role in delivering NO3-N loads in RS 281 

(20%) and KS (23%) compared to LP (5%) and WW (6%). Surface runoff contributes to some 282 
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peak loads during the winter season, but plays a marginal role in NO3-N loads for small and 283 

median rainfall events. On the other hand, lateral flow dominates the NO3-N loads during low 284 

flow periods.   285 

3.3 Spatial Nitrate Leaching and Loading Dynamics 286 

The model estimates reveal large spatial heterogeneity of NO3-N leaching rates and accumulated 287 

NO3-N loads along flow pathways, which vary among catchments (Fig. 7). Only a small 288 

proportion in the northeastern RS catchment has a high NO3-N leaching rate (> 9 g N m2 yr-1), 289 

with the majority of the catchment showing a low level of NO3-N leaching (< 5 g N m2 yr-1). 290 

Meanwhile, low NO3-N loads along flow pathways are accumulated slowly within a large 291 

drainage area, especially in the central RS. In contrast, high NO3-N leaching rates (> 7 g N m2 yr-292 
1) are prevalent across the KS catchment compared with the other three catchments, contributing 293 

to high NO3-N loads along the flow pathway delivered from a smaller drainage area. The 294 

northern end of the WW catchment exhibits a higher level of NO3-N leaching rates (> 7 g N m2 295 

yr-1) than that does its southern portion (< 5 g N m2 yr-1), resulting in a strong build-up of NO3-N 296 

loads along the main catchment flow path. LP has an intermediate NO3-N leaching rate from 5 to 297 

9 g N m2 yr-1 across the catchment. Furthermore, the discrepancy in NO3-N leaching rates exists 298 

within the field. Grids with tile drainage and farmed potholes leach more NO3-N from soils than 299 

non-tile drained, non-pothole grids.  300 

3.4 Impacts of tile drainage and farmed potholes on water and NO3-N fluxes 301 

We examined the effects of tile drainage and farmed potholes in simulating flow-specific 302 

discharge and NO3-N loading. Including tile drainage in the model substantially altered 303 

catchment-scale hydrological processes by reducing surface runoff (-25% − -45%) and lateral 304 

flow (-24% − -62%), while promoting tile flow (Fig. 8). By draining more water out of the soil, 305 

tile drainage also lowers evapotranspiration (-5% − -11%) while enhancing soil infiltration (7% 306 

− 19%) and increasing total discharge (11% − 50%). Adding farmed potholes into the model 307 

further enhances the tile flow (50% − 97%) with an increase in infiltration (16%) and reduction 308 

in surface runoff (-15% − -27%). Overall, the inclusion of tile drainage and farmed pothole 309 

jointly improved the accuracy of modeled stream discharge. 310 

Similarly, simulated NO3-N loading shows that including tile drainage in the model lowered the 311 

contribution of surface runoff (-41% − -49%) and lateral flow (-25% − -79%) to NO3-N loads, 312 

with tile flow delivering the majority of NO3-N loads (Fig. 9). In addition to the changes in 313 

different flows, including tile drainage increased total NO3-N loads (18% − 94%). Conversely, 314 

adding farmed potholes slightly increased the NO3-N export by tile flow (6% − 9%) and lateral 315 

flow (0.8% − 1%) while significantly reducing NO3-N by surface runoff (-35% − -44%), 316 

resulting in lower total NO3-N loads (-8% − -10%) compared with adding tile drainage alone. In 317 

general, the inclusion of tile drainage and farmed potholes improved model performance with 318 

respect to NO3-N loading. 319 

4 Discussion 320 

4.1 Contribution of Different Flows to discharge and NO3-N export 321 

Quantifying the contribution of individual hydrological pathway to total water discharge is 322 

essential for accurately predicting the spatiotemporal dynamics of discharge and developing 323 
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effective N reduction strategies in tile-drained agricultural watersheds in the U.S. Midwest. In 324 

this study, we compared the fraction of subsurface flow (tile flow and lateral flow) to total 325 

discharge using outputs from various hydrograph separation approaches and our model 326 

estimations (Table 3). The LMM, OPD, and RDF concluded a consistently low BFI in four 327 

catchments (50 to 63%). In contrast, the EMM and DLEM-catchment assessed a much higher 328 

BFI. Our model results are in agreement with other tile-drained watershed studies using a variety 329 

of base flow measures (Table 3). The LMM and two digital filter methods separate base flow and 330 

surface runoff with lines connecting low points of the stream hydrograph by assuming the rising 331 

limbs are caused by surface runoff. However, our daily simulation shows that tile flows also 332 

contribute to the rising and falling limbs of the hydrographs in these catchments, especially for 333 

peak flows of small and medium magnitudes (Fig. 5). This result has also been reported by 334 

several other researchers, using both empirical and modeling approaches (Ikenberry et al., 2017; 335 

Tomer et al., 2010). Therefore, these widely used hydrograph separation methods may 336 

underestimate the contribution of subsurface flows to stream discharge in the tile-drained 337 

watersheds.  338 

Due to lower NO3-N concentrations in surface runoff, our model simulated a higher proportion 339 

of annual subsurface flow to total NO3-N loads (Table S4), with tile flow dominating both small 340 

and large peak loading during the growing season in each catchment (Fig. 5). Quantifying the 341 

flow-specific contribution of NO3-N loading at the watershed scale is essential for implementing 342 

proper management practices (Arenas Amado et al., 2017). For example, riparian buffers have 343 

been reported to efficiently remove NO3-N in surface runoff and shallow groundwater (Hill, 344 

2019). However, our results suggest that the majority of NO3-N loads might bypass stream 345 

buffers via tile drains, lowering their overall NO3-N removal efficiency. 346 

Furthermore, most studies focus on the separation of surface runoff and base flow but overlook 347 

the discrepancy among subsurface flows, such as interflow, tile drainage, and groundwater flows 348 

(Arenas Amado et al., 2017; Schilling et al., 2019). Our simulations show that despite the similar 349 

contributions from subsurface flows to total flows, the fractions of tile flow to discharge and 350 

NO3-N loads are lower in RS and KS than those in LP and WW (Table 3). By measuring 351 

discharge and NO3-N loads from all tile drain outlets and catchment outlets, Williams et al. 352 

(2015) estimated the contributions of tile flows to discharge (56-62%) that is consistent to our 353 

results for the RS and KS catchments. This is likely caused by the low tile-drained percentage in 354 

these two catchments, where a fair amount of water and NO3-N is delivered by lateral flows from 355 

non-tile-drained grid cells. This indicates that the percent coverage of tile drainage influences the 356 

source compositions of discharge and NO3-N load.  357 

4.2 Spatial Variability of NO3-N Leaching and Loading 358 

The dynamics of stream NO3-N loading are determined by local NO3-N leaching and water 359 

transport networks within a catchment. By aggregating various environmental factors and 360 

landscape characteristics into a few sub-catchments or hydrologic units, semi-distributed water 361 

quality models tend to reduce the spatial variability of hydrological processes and aggregate flow 362 

transport networks. In contrast, the DLEM-catchment model features fully distributed flow 363 

networks embedded in grid cells with consideration of spatially explicit input data and coupled 364 
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hydro-biogeochemical cycling, which makes it able to mimic complex N cycle processes and 365 

quantify the spatial heterogeneity of NO3-N leaching in the study catchments (Fig. 7). 366 

Specifically, land characteristics, soil status, the presence of tile drains and farmed potholes 367 

govern the variability of NO3-N leaching between and within each catchment. In addition, NO3-368 

N leaching rates also differ depending on cultivated crop types and N input levels (Kalkhoff et 369 

al., 2016). Our simulations show that grid cells that have high-level N input rates and tile 370 

drainage demonstrate the highest NO3-N leaching rates. Interestingly, farmed potholes with tile 371 

installed underneath could intercept NO3-N in surface runoff that route from the neighboring grid 372 

cells, forming hotspots of NO3-N leaching in the areas with potholes. Meanwhile, DLEM-373 

catchment is able to track the NO3-N loading dynamics along flow pathways, which reflects the 374 

net changes between NO3-N leaching, transport, and removal through the flow routing network 375 

over a given time period. For example, NO3-N loads are slowly accumulated in central RS (< 1.5 376 

Metric ton N yr-1) due to general low NO3-N leaching rates (< 5 g N m-2 yr-1), whereas NO3-N 377 

loads exceeding 1.5 Metric ton N yr-1 and NO3-N leaching rates higher than 7 g N m-2 yr-1 from 378 

relatively smaller contributing areas are extensively found in KS. This implies that the prioritized 379 

catchments might be sought to cleaning water and reducing N footprint from agricultural 380 

landscape. Therefore, quantifying NO3-N leaching and loading at a finer resolution (e.g. 30-m in 381 

this study) or at a scale where decision is made (e.g. field level) is essential for informing the 382 

spatial variations in NO3-N pollution and identifying the critical areas to place the proper 383 

nitrogen reduction measures. 384 

4.3 Key Model Developments Improving Model Performance 385 

In this section, we examined how the key model development we made in this study, including 386 

modeling processes, structure, and inputs, has contributed to the improved model performance.  387 

4.3.1 Water Retention Capacity and subsurface drainage 388 

Snow processes: The two-layer snow module developed in this study mimics the snow 389 

properties, processes, and interactions with the soil surface, leading to better quantification of 390 

subsurface drainage and reproduces the continuous high-level of NO3-N concentration as 391 

observed in winter in all the four catchments (Fig. 10a&11a). Seasonal snow plays a critical role 392 

in regulating catchment water balances during winter (Flanner et al., 2011). Snow accumulation 393 

not only collects snowfall and temporarily stores water in solid form, but also retains rainfall and 394 

meltwater within the snowpack porosity by refreezing capacity and capillary holding capacity, 395 

resulting in the reduction of surface runoff. Meanwhile, the insulating effect of the snowpack 396 

keeps soil from freezing and the gradual replenishment of water from melting snowpack into soil 397 

promotes infiltration and subsurface drainage (Ayers et al., 2021; Kalkhoff et al., 2016). Our 398 

results highlight the importance of accurately representing snow processes to improve simulation 399 

of winter hydrology and NO3-N leaching in the watersheds with cold-season, especially in the 400 

tile-drained watersheds. 401 

Soil Roughness: Our simulations show that adding soil roughness smooths small peaks during 402 

low flow and modestly reduces peak flows of higher magnitudes, indicating an enhancement in 403 

infiltration and subsurface flows (Fig. 10b). Additionally, our results indicate that considering 404 

soil roughness generally increases the model estimates of daily NO3-N concentrations by 405 
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enhancing the leaching of NO3-N from soil with tile drainage (Fig. 11b). DLEM 2.0 estimates 406 

surface runoff as the combination of infiltration excess overland flow and saturation excess 407 

overland flow, based mainly on topographic characteristics and soil moisture states (Yang et al., 408 

2015). This surface runoff generation mechanism has been employed in other grid-based 409 

spatially distributed hydrological models used in regional and global research (Niu et al., 2011). 410 

However, the soil roughness is enhanced by farming activities across cultivated fields in four 411 

agricultural catchments in this study, which significantly increases the importance of soil 412 

microrelief over topographic features in surface runoff generation. By increasing surface water 413 

storage, soil roughness impedes surface runoff and retains water in the agricultural watershed 414 

(Youssef et al., 2018).  415 

Farmed Potholes: Farmed potholes perform important water regulating functions by impacting 416 

the magnitude, timing, and spatial patterns of flows in the prairie pothole region (Hayashi et al., 417 

2016; Rajib et al., 2020). Most current hydrological models aggregate or lump potholes within 418 

HRUs to represent the combined hydrological functions of small depressions (Hay et al., 2018; 419 

Rajib et al., 2020). However, the conceptual lumping of potholes disconnects potholes among 420 

neighboring HRUs and overlooks fill-spill connections of potholes (Hayashi et al., 2016). 421 

Additionally, few studies have coupled N storage, retention, and transport to hydrological 422 

processes of potholes due to the lack of measurements and the complexity of modeling 423 

processes.  424 

In this study, we linked the spatially explicit distribution of farmed potholes to the flow pathway 425 

network at 30-m resolution, allowing DLEM-catchment to simulate the water and N balance of 426 

individual potholes and their fill-spill connections. The simulated daily and annual discharge 427 

revealed that farmed potholes lowered peak flows while increasing subsurface flow (Fig. 10d), 428 

which is in agreement with previous modeling studies (Evenson et al., 2018). Interestingly, the 429 

simulated water level of farmed potholes demonstrates diverse roles of potholes in regulating 430 

hydrological balance depending on where they are located in their respective catchments (Fig. 431 

S5). For example, the potholes at the edge and upper reaches of the study catchments, where 432 

surface runoff contributing areas tend to be small, can fully intercept surface runoff from 433 

upstream grid cells (Fig. S5a-c). However, the potholes in the middle and lower reaches, where 434 

pothole contributing areas tend to be larger, mix and delay surface runoff through fill-spill 435 

process (Fig. S5d&e).  436 

Our simulations show that depressions in the RS and KS catchments receive NO3-N from surface 437 

runoff draining into the potholes, acting as local hotspots with elevated NO3-N leaching (Fig. 7). 438 

This has been also observed in the in-field pothole research (Skopec and Evelsizer, 2018). 439 

Conversely, farmed potholes decrease the surface runoff NO3-N loads while moderately 440 

increasing tile flow NO3-N loads, performing as gatekeeper of catchment NO3-N export (Fig. 9d 441 

& Fig. 11d). Our simulated NO3-N removal effects by farmed potholes were consistent with field 442 

measurements and modeling estimates (Baron et al., 2013). The NO3-N export reduction in the 443 

presence of potholes is likely caused by enhanced denitrification due to long NO3-N residence 444 

time within these features (Golden et al., 2019). It is worth noting that the farmed potholes act as 445 

wetlands when filled with water, possessing water and nutrient regulating functions that we 446 
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improved in this study. Therefore, these functions can be extended to catchments that include 447 

wetlands. 448 

Tile drainage: It is well understood that artificial tile drains are the major contributor to 449 

discharge and nitrate loads in tile-drained watersheds (Arenas Amado et al., 2017; Helmers et al., 450 

2005). Many modeling studies have adopted the physics-based Hooghoudt and Kirkham tile 451 

drain equations to estimate tile drainage (Ren et al., 2022; Singh et al., 2006). However, 452 

information about the parameters of the equations such as tile space, depth, and tube radius vary 453 

among fields and is often unavailable. Moreover, an accurate representation of surface 454 

depression depth, soil water movement, and water table dynamics is essential for tile drainage 455 

simulation. Our results show that the representation of tile drains in the DLEM-catchment has 456 

significantly improved estimations of discharge and NO3-N export, in which catchment-specific 457 

parameters for describing the features of tile drains are important for reproducing daily 458 

observations. Specifically, tile drainage decreased peak flows, maintained high subsurface flow, 459 

and extended hydrograph recession (Fig. 10c), converting the subsurface flow to the dominant 460 

contributor to total discharge. However, removing tile drainage in the modeling scheme 461 

significantly enhanced in-stream NO3-N concentrations during no-rain days because more NO3-462 

N will be accumulated in soils (Fig. 11c). More importantly, the interaction with water retention 463 

processes (e.g. soil roughness and farmed potholes) amplified the effects of tile drains. For 464 

example, the improved model with tile drainage and farmed potholes performed better than the 465 

model including tile drainage alone in predicting annual discharge and NO3-N loading compared 466 

with observations (Fig. 8&9). Furthermore, the effects of tile drainage on water and NO3-N in 467 

this study have broader applicability to other catchments characterized by artificial or natural 468 

subsurface drainage such as karst catchments. 469 

4.3.2 Water and NO3-N transport 470 

Most fully distributed hydrological models assume that 1) surface runoff and subsurface flows 471 

generated in the grid are merged into the tributary or stream; and then 2) aggregated flows move 472 

to the downstream gird along the stream with the same transport speed. DLEM-catchment, 473 

however, routes surface runoff and subsurface flows separately (with distinct different travel 474 

times) to the downstream grid because the delivery-scale catchments are small in size and only 475 

contains water and nutrient movement before they reach streams. In addition, tile drains transport 476 

water far more quickly than untiled subsurface drainage (Schilling et al., 2015), and as such it is 477 

necessary to consider its water and nutrient transport processes in a way different from other 478 

flows. Therefore, in this study we developed a new flow routing network in the model structure 479 

with separated flow pathways and individual travel times to capture the dominant flow transport 480 

pathways and processes in tile-drained agricultural landscapes (Fig. 2). This new conceptual 481 

structure also enables the DLEM-catchment to link farmed potholes to surface runoff routing. In 482 

this model, flow travel time was calculated based on grid-level factors such as slope, soil 483 

properties, and management, reflecting the variability of catchment characteristics. As a result, 484 

due to the large difference in NO3-N concentration among flows, the improvement in flow 485 

routing can benefit the estimation of NO3-N transport and delivery.  486 
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4.3.3 Agricultural Management 487 

Agricultural management such as crop rotation, tillage, cover crops, and synthetic and manure N 488 

fertilizer use (including application rate, timing, method, and fertilizer type) have direct and 489 

indirect impacts on the water and NO3-N balances of farmed watersheds (Kaspar et al., 2012). 490 

However, due to the difficulty in obtaining explicit management information at the scale of 491 

individual fields, modeling research often uses static data from the literature, regional averages, 492 

or management guidance provided by university extension offices (Ikenberry et al., 2017; Ren et 493 

al., 2022). Neglecting the spatiotemporal heterogeneity of agricultural management has fed 494 

models with biased inputs and generated large uncertainties in estimating the magnitude and 495 

timing of discharge and NO3-N export. DLEM 2.0 has evolved to use various agricultural 496 

management information for regional assessments (Lu et al., 2022, 2020; Yu et al., 2018). 497 

Additionally, in this study, we prescribed the time-series field-level management information to 498 

each catchment at a resolution of 30 m and modified relevant model processes to address the 499 

spatiotemporal representation of these management practices. We found the modeling estimates 500 

have well reproduced observed inter-annual and seasonal variations of NO3-N exports for four 501 

study catchments, capturing the rise of observed NO3-N concentration in early spring and late 502 

fall, and corresponding declines in summer. This success could be largely attributed to the 503 

improved input information including crop planting date and N fertilizer application timings at 504 

the field level. Additionally, fine-scale management data we used in this study enables the model 505 

to reflect the divergent magnitude of in-stream NO3-N concentrations across catchments, and 506 

spatial heterogeneity of NO3-N leaching and loading. The adequate representation of 507 

anthropogenic management in our model, and the reasonable accuracy of the model with respect 508 

to discharge and outlet NO3-N concentrations shows that DLEM-catchment has the potential to 509 

be a capable decision support tool. 510 

4.4 Uncertainties and Limitations 511 

Model performance is largely affected by the quality of input data, including the accuracy of 512 

precipitation time-series, assumed spatial distributions of tile drains, and agricultural 513 

management information. The precipitation data was extracted from spatially interpolated 514 

precipitation maps. Therefore, the rainfall amount is averaged and may be smaller than that from 515 

individual sites within the region, especially with respect to local storms. Moreover, due to the 516 

limited climate data availability, we used daily precipitation data as water inputs, which may 517 

underestimate rainfall intensity and generation of surface runoff during brief storms. These 518 

factors may explain why DLEM-catchment underestimates some large peak flows and 519 

corresponding NO3-N concentration dilution in our simulations (Fig. 3&4).  520 

Due to the lack of detailed information about the hydraulic characteristics of tile drains and their 521 

locations, the tile drained grids are determined based on gSSURGO soil drainage classes. Given 522 

the impacts of tile drains on flows and N exports, this limitation may be significant. Despite 523 

having field-level agricultural management information from partnering farmers, the 524 

management records for about half of the fields within each catchment remain unavailable and 525 

are assumed to be identical to other known fields with close cropping system in a given year. The 526 

lack of spatially explicit management information in these fields may also introduce uncertainties 527 

in the simulated results.  528 
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Some simplified model processes and structure may also limit the model performance. For 529 

example, we developed a new model structure to represent flow pathways and individual flow 530 

travel time, by which different flows are constrained within the corresponding flow path from 531 

grid to grid with no intersections. However, in reality, interflow that flows above the tile drains 532 

may enter tiles in downstream grids. On the other hand, when soils of downstream girds are 533 

unsaturated, surface runoff from upstream grids may enter the soil through infiltration, which 534 

could increase the proportion of subsurface flow to total discharge. The simplification we made 535 

to exclude flow interactions may explain the lower BFI estimated by our model compared to the 536 

EMM approach. We also simplified the biogeochemical processes in farmed potholes, such as 537 

crop mortality and enhanced denitrification caused by inundation (Hayashi et al., 2016; LaBaugh 538 

et al., 2018). As potholes cover a small portion of drainage areas in the study catchments, this 539 

likely have little impacts on simulated water discharge and NO3-N loading, but more 540 

measurement data within potholes will improve model capability in quantifying potential hot 541 

spot contributions. It is worth noting that the delivery-scale catchments have short-distance 542 

perennial streams, in which in-stream N biogeochemical cycling has little impacts on NO3-N 543 

loading. DLEM-catchment may need further improvements in stream N biogeochemical 544 

processes for predicting NO3-N loading in large-scale watersheds. 545 

5 Conclusions 546 

In this study, using the spatially distributed process-based DLEM-catchment model, we 547 

identified and quantified the key model processes and features that are critical for accurately 548 

simulating water discharge and NO3-N exports from four tile-drained catchments in the 549 

Midwestern US. We also comprehensively quantified the flow-specific contributions to and 550 

cross-catchment variations in water flow and NO3-N fluxes under various weather and 551 

management conditions. The improved model reasonably reproduced the dynamics of discharge 552 

and NO3-N fluxes, with satisfactory performance for daily simulations and good performance for 553 

monthly simulations. Particularly, tile drains coupled with water retention capacity from snow 554 

processes, soil roughness, and farmed potholes substantially alter the water and NO3-N balances 555 

of these catchments by promoting infiltration and subsurface drainage, while decreasing surface 556 

runoff. Agricultural management practices, such as crop planting/harvesting, and fertilizer input 557 

rates and timing, play an essential role in regulating NO3-N leaching at a daily time step. These 558 

model performance improvements verify the necessity of considering these mechanisms in tile-559 

drained watersheds in the US rain-fed Corn Belt areas. Meanwhile, the water balance and NO3-N 560 

dynamic regulating functions by these improvements can be transferred to other models designed 561 

for different types of catchments. 562 

The improved model estimated reasonable ranges of event-based and annual flow-specific 563 

contributions to discharge and NO3-N loading compared with other hydrograph separation 564 

approaches and other studies in the tile-drained catchments. Daily simulations show that tile flow 565 

is the dominant contributor to peak flows, especially for small and medium peaks, while lateral 566 

flow dominates low flows during dry periods. At the annual scale, the model estimates that 567 

subsurface flow (tile flow and lateral flow) accounts for 70%-75% of discharge and 77%-82% of 568 

NO3-N loading. However, tile flow contributes more water and NO3-N loads in the LP and WW 569 

catchments than the other two catchments due to a larger proportion of poorly-drained areas with 570 
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no tile drains, indicating the necessity to quantify tile flow and lateral flow separately. Our 571 

simulated results reveal that the contributions of different flows to discharge and NO3-N loading 572 

vary significantly among catchments and among rainfall events depending on local conditions.  573 

With the adequate representation of various agricultural management and coupled hydrological-574 

biogeochemical-processes, the improved model results demonstrate the detailed spatial patterns 575 

of hydrological NO3-N losses within catchments. Agricultural management (e.g. N fertilizer and 576 

manure application rate and timing), which varies across fields, notably impacts the magnitude 577 

and seasonality of NO3-N leaching. Landscape characteristics (e.g. geographic slope and farmed 578 

potholes), soil properties, and artificial tile drainage govern local NO3-N loss dynamics. Our 579 

study highlighted the importance of integrating cross-scale water quality monitoring catchment 580 

characteristics, and in-field management practices into a water quality modeling framework for 581 

improving prediction accuracy and identifying effective N reduction strategies. In general, our 582 

findings illustrate the necessity of modeling tools like DLEM-catchment to assess and predict the 583 

effectiveness of management practices in reducing NO3-N loading from tile-drained agricultural 584 

landscapes. 585 
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 771 

 772 

Table 1. Characteristics of the four catchments.  

Characteristics Unit RS KS LP WW 

Landscape 

Drainage area km2 4.6 3.0 2.1 2.4 

Mean Slope % 0.86 0.93 0.43 0.77 

Farmed Potholes % 7.5 3.3 0 0 

Climate* 
Annual Tem oC 9.2 10.3 8.3 8.3 

PPT mm 1019 1066 1183 1176 

Row crop 

Fields#  19 18 9 15 

CS % 27 37 56 31 

CCS % 24 17 7 21 

CCC % 40 36 27 26 

Management 

Total N input g N m-2 yr-1 10.3-22.5 14.1-20.5 18.6-23.8 9.9-20.2 

N fer / Manure % 6-100 0-100 100 0-100 

Fall application % 0-94 0-100 0-32 18-100 

Cover Crop % 47 0 85 0 

Tile coverage % 55 62 89 88 

*Climate conditions shown here are the annual average values during 2015-2019. Annual Tem is annual 

mean temperature. PPT is annual total precipitation. Number of fields is counted by the boundary of fields 
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defined by partnering farmers and CDL (cropland Data Layer) maps. The cropping systems are defined by 

time-series crop type and rotation categories according to the 30-m CDL data: CS is corn-soybean 

rotation, CCS is corn-corn-soybean rotation, and CCC is three and more consecutive corn years. Cover 

crop was implemented in fall 2017. Total N input includes N fertilizer and manure N. 

 773 

 774 

Table 2. Statistic indices of model performance in estimating discharge, and NO3-N 

concentration and loads at the daily and monthly scale.  

Watershed Variables 
Daily  Monthly 

NSE PBIAS KGE  NSE PBIAS KGE 

RS Q 0.62* -5.7** 0.79**  0.73** -5.7** 0.85** 

NO3-N conc. 0.34 0.2*** 0.64*  0.46* -0.1*** 0.69* 

 NO3-N load 0.54** -4.0*** 0.77**  0.70*** -3.9*** 0.85** 

KS Q 0.64* 14.0* 0.69*  0.80*** 13.9* 0.84** 

NO3-N conc. 0.35* -3.4*** 0.55*  0.50** -2.1*** 0.60** 

 NO3-N load 0.15 12.4** 0.56*  0.68*** 13.9** 0.77** 

LP Q 0.58* -14.1* 0.75**  0.86*** -14.4** 0.83** 

NO3-N conc. 0.15 -10.0*** 0.61*  0.39* -10.4*** 0.71* 

 NO3-N load 0.52** -26.9* 0.63*  0.68*** -27* 0.66* 

WW Q 0.57* -6.4*** 0.77**  0.82*** -6.6*** 0.89** 

NO3-N conc. 0.42* -8.9*** 0.64*  0.68*** -5.0*** 0.63* 

 NO3-N load 0.50** -20.0** 0.58*  0.71*** -18.8*** 0.74* 

* represents satisfactory, ** is good, *** is very good only for NSE and PBIAS (Criteria can 

be found in Supplementary Table S3). 
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Table 3. Comparison between this study and other studies in quantifying the contribution from tile 
drainage and subsurface flow to annual discharge.  

Watershed 

Drainage 

Area  

(km2) 

Tile 

Drain  

(%) 

Subsurface 

Flow 

 (%) 

Tool* 
 

Citations 

LCW-

LCR4T 
2.5  62 RDF 

Schilling and Jones 

(2019) LCW-

LCR3T 
6.0  61 RDF 

KS 
3.1 

 75 EMMM 

Ikenberry et al. (2017) 
  73 SWAT 

AL 
2.3 

 89 EMMM 

  85 SWAT 

UBWC-B 3.9 
56     

Measurement Williams et al. (2015) 
62  

LCW 42 66 ~76 SWAT Schilling et al. (2019) 

WCW 51  75 DRAINMOD 
Schilling and Helmers 

(2008) 

RS 4.6 

 60 RDF 

This study 

 63 OPD 

 53 LMM 

 91 EMM 

59  72 DLEM 

KS 3.0 

 54 RDF 

 55 OPD 

 54 LMM 

 87 EMM 

56  71  DLEM 

LP 2.1 

 56 RDF 

 58 OPD 

 60 LMM 

 90 EMM 

70  75  DLEM 

WW 2.4 

 50 RDF 

 50 OPD 

 53 LMM 

 90 EMM 

62 70 DLEM 
*RDF is Recursive Digital Filter, EMM is End-Member-Mix-Model, SWAT is Soil Water Assessment Tool. 
OPD is One Parameter Digital filter. LMM represents Local Minimum Method. 
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 778 

Figure 1. Land use map of the four study catchments in Iowa (i.e., RS, KS, LP, and WW) with 779 

sampling locations shown by the star symbol (we use the land use maps in 2016 as an example). 780 

DML refers to Des Moines Lobe. HUC 10 refers to Hydrologic Unit Code 10 with an average 781 

spatial scale of 590 km2. HUC 12 refers to Hydrologic Unit Code 12 with an average spatial 782 

scale of 100 km2. 783 
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 785 

 786 

 787 

 788 

 789 

Figure 2. (a) Conceptual framework to show the hydrological processes that is represented in 790 

model for tile-drained catchments, and (b) Grid-based flow pathway and the interactions between 791 

flows and farmed potholes. Subsurface Flows refer to Interflow and Groundwater Flow in (a), of 792 

which the travel time is unequal. 793 

 794 

 795 
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 796 

Figure 3. Comparison of model-estimated vs. monitored daily water discharge amount at four 797 

tile-drained catchments in Central Iowa during 2015-2019. 798 

 799 

 800 
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 802 

Figure 4. Comparison of daily NO3-N concentration between simulation and observation at the 803 

four catchments during 2015-2019. 804 

 805 

 806 

 807 

 808 

 809 
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 810 

 811 

Figure 5. Simulated daily surface runoff, tile flow, and lateral flow at the outlet of four 812 

catchments. Lateral flow includes interflow and groundwater flow. BFI is the 5-y-average ratio 813 

of subsurface flow (tile flow + lateral flow) to discharge from 2015 to 2019. 814 

 815 

 816 

 817 
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 818 

Figure 6. Simulated daily NO3-N loads of surface runoff, tile flow, and lateral flow at the outlet 819 

of four catchments. Lateral flow includes interflow and groundwater flow. BF NO3-N fraction is 820 

the 5-yr average fraction of NO3-N loads carried by subsurface flow (tile flow + lateral flow) in 821 

the total NO3-N loads from 2015 to 2019. 822 
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 824 

 825 

Figure 7. Spatial distribution of model-estimated annual average NO3-N leaching and loading in 826 

four catchments over 2015-2019 with a resolution of 30 m ×30 m. 827 
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 829 

Figure 8. The model-estimated water balance components, including ET, infiltration, surface 830 

runoff, tile flow, lateral flow, and total flow, were derived from multiple model structures and 831 

comparison with total flow observations (OB, red bar) during 2015-2019. Lateral flow 832 

aggregates interflow and groundwater flow. IM represents the Improved Model. IM-No TD 833 

represents the improved model without Tile Drainage. IM-No TD & FP represents the improved 834 

model without Tile Drainage and Farmed Pothole. The upper and lower hinge of the box indicate 835 

25-75% quantile, respectively. Black lines are medium values, and whiskers comprise the whole 836 

range of data. 837 
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 841 

Figure 9. NO3-N delivered by different water flows as estimated by multiple model structures 842 

and compared with total NO3-N load observations (OB, red bar). Lateral flow aggregates NO3-N 843 

loads from interflow and groundwater flow. IM represents Improved Model. TD represents Tile 844 

Drainage. FP represents Farmed Pothole. Boxes include 25-75% of NO3-N loading during 2015-845 

2019, black lines are medium values, and whiskers comprise the whole range of data. 846 
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 849 

 850 

Figure 10. Improved model performance in simulating daily water discharge (a) and 851 

contributions of key model structure reflected by comparing estimations between improved 852 

model (IM) and IM without a certain feature (b-d). OB represents observation, BI represents 853 

model estimates before Improvement. IM represents Improved Model estimates.  854 
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 857 

Figure 11. Improved model performance in simulating daily NO3-N concentration (a) and 858 

contributions of key model structure reflected by comparing estimations between improved 859 

model (IM) and IM without a certain feature (b-d). OB represents Observation. BI represents 860 

model estimates before Improvement.  861 
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