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After publication of our paper Rojas-Kolomiets et al. (2023), we
discovered that Aleutian lavas powdered in the University of South
Carolina between 2004 and 2009 were contaminated with Mo. The issue
was discovered in June-July 2023 when we re-powdered a subset of
samples twice by grinding them in agate containers in a planetary ball
mill and in tungsten carbide containers in a benchtop ring mill. Analyses
of both sets of new rock powders showed significantly lower Mo con-
centrations than data from Rojas-Kolomiets et al. (2023). We subse-
quently re-powdered and re-analyzed all samples that were originally
prepared at the University of South Carolina following the methods
outlined in the paper. This included all samples from Rojas-Kolomiets
et al. (2023) except those from the Korovin, Seguam and Yunaska lo-
cations. Despite this issue, most of our conclusions (particularly the
presence of serpentinite-derived fluids in Aleutian lavas near the Amlia
Fracture Zone) remain unchanged, and only one ought to be slightly
modified (see details below).

We expected the contamination to be from the grinding containers
used to prepare the powders but the agate containers we used from 2004
to 2009 were the same containers we used in 2023 and the results are the
same for replicate samples powdered in tungsten carbide. Thus, the
source of the contamination is unknown. We speculate that it may be
related to the renovation of the lab space that was completed in 2004.
No other analyzed element shows the discrepancy that we find for Mo
(Table S1, Fig. S1). Review of published data for the affected samples
shows no sign of contamination for sensitive elements such as Pb which
have depleted isotopic compositions that are well aligned with data from
prior studies and are inconsistent with any plausible environmental
contaminant (e.g., Fig. 13 in Yogodzinski et al., 2015).

The new Mo isotope and Mo concentration data are reported in
Table S1, and shown in updated figures (Fig. 2, Fig. 3, Fig. 4, Fig. 5, and
Fig. 7). Based on the re-analyses, the Mo concentrations of the western
Aleutian samples are lower than reported in the original article (with no
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difference between the tungsten carbide and agate mills). We find no
systematic variability between the new and previous Mo concentration
or Mo-isotope data (except one Okmok sample, UM-10, with newly ac-
quired heavier Mo isotope compositions, Table S1). As such, most of our
interpretations and conclusions remain unchanged, specifically:

1. Lack of Mo isotope fractionation with fractional crystallization
(Fig. 2A).

2. Along-arc variability of Mo isotopes showing heavy Mo isotopes only
in Korovin, Seguam and Yunaska near the Amlia Fracture Zone
(Fig. 4C).

3. A serpentinite-derived fluid source with heavy Mo isotopes and high
B/Ce ratios, likely related to the subduction of the Amlia Fracture
Zone, remains the most likely explanation for the relatively heavy
Mo isotope values in Korovin, Seguam and Yunaska (Figs. 2C, 4C and
7C).

4. MORB-like Mo isotopes in the western Aleutian lavas remain
consistent with a Mo flux from the subducted Pacific MORB (Fig. 4C).

5. Mo incompatible behavior in Little Sitkin lavas: This discussion point
remains unchanged given that, despite the lower Mo concentrations,
Little Sitkin lavas show increasing Mo concentrations with
decreasing Mg# (Fig. 2B).

6. The role of amphibole fractionation in the Mo systematics: Although
new data shows that Little Sitkin lavas have lower Mo/Ce ratios than
originally published, Mo/Ce vs. B/Ce plot patterns (Fig. 2C) show
that amphibole fractionation is consistent with the new Little Sitkin
data.

Only one discussion/conclusion point ought to be slightly modified:

1. Based on the elevated Mo/Ce and MORB-like Mo isotopes of western
Aleutian lavas, we originally speculated that rutile, albeit present as
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Fig. 2. Mo isotope systematics and B concentration for Aleutian arc lavas. (A) §°®°°Mo vs. SiO2 (wt.%). Shaded rectangles represent the general distribution of
Korovin and Buldir lavas. Gray dashed rectangle shows the general distribution of MORB estimates (excluding the two high 5°°*Mo MORB samples) (Bezard et al.,
2016, dark gray circles), (Chen et al., 2022, light gray circles), (Hin et al., 2022, hollow gray circles). (B) Mo concentrations vs. Mg#. High-Mg# dacites correspond to
westernmost samples with Mg# >0.6. Gray arrow shows the general tendency of Korovin and Little Sitkin plot patterns. (C) Mo/Ce vs. B/Ce. Gray and pink squares
represent average MORB and Continental Crust (CC), respectively. MORB B concentrations from Marschall et al. (2017) and Ce from Gale et al. (2013). Mo isotope
data for CC from Liang et al. (2017) and Voegelin et al. (2014). Mo and Ce concentrations from Rudnick and Gao (2003). Aleutian Ce and SiO, data from Singer et al.
(2007); Arndt (2011); Yogodzinski et al. (2010, 2015). Data points with black circles represent primitive samples (Mg#>0.6). Gray bar represents analytical un-
certainty (+2SD) of +0.05.
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Fig. 3. Mo isotopes vs. Mo concentrations for Aleutian lavas and volcanic rocks globally. (A) §°%/°>Mo vs. Mo concentrations for Aleutian lavas (see legend in
the lower left corner), Pacific sediments (hollow green circles for DSDP 183 and filled green circles from ODP 886C), serpentinized peridotites (magenta diamonds)
and AOC (yellow diamonds). Light gray bray represents general distribution of MORB data (Bezard et al., 2016; Chen et al., 2022; Hin et al., 2022). (B) §°%/°°Mo vs.
Mo concentrations for Aleutian lavas, Hekla (Yang et al., 2015), Mariana arc (Freymuth et al., 2015), Banda arc (Wille et al., 2018), Kos (Voegelin et al., 2014),
Tuscan-Vesuvius (Casalini et al., 2019), Solomon and PNG (Konig et al., 2016), Lesser Antilles (Freymuth et al., 2016), Martinique (Gaschnig et al., 2017) and Izu arc
(Villalobos-Orchard et al., 2020). Gray bar represents analytical uncertainty (+2SD) of +0.05.
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Fig. 4C. Along-arc variance on Mo isotope signatures of Aleutian lavas.
Bold gray line represents sediment flux (m®/m/yr) estimates from Kelemen
et al. (2003). Dashed gray line shows the location of the Amlia Fracture Zone
(AFZ) in the Aleutian arc. Dashed gray rectangle represents the general
§%%/%5Mo distribution for MORB (Bezard et al., 2016; Chen et al., 2022; Hin
et al., 2022). Gray bar represents analytical uncertainty (+2SD) of +£0.05. Data
points with black circles represent primitive samples (Mg#>0.6).

a residual phase, does not retain Mo. However, new data show that
Western Cones and selected Buldir lavas with a stronger slab-melting
signature and marked heavy-rare-earth-element depletions (La/Y >
0.78), display Mo depletions (Mo/Ce < 0.02) comparable to Ta-Nb
(Fig. 5A), as opposed to the Mo enrichments observed in the orig-
inal paper. This suggests that rutile may play a role in retaining Mo in
lavas with a stronger slab-melting component. However, given their
light and MORB-like Mo isotopes, retention of Mo in rutile does not

lead to Mo isotope fractionation in Aleutian lavas.

We sincerely apologize for any inconvenience caused and we would
like to advise future studies on Mo analyses to exercise caution during
sample powdering and preparation.
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Fig. 5. Trace element concentrations relative to Primitive Mantle. (A).
Orange lines represent western Aleutian lavas. Black lines represent western
samples with Mo depletions (Mo/Ce < 0.02) and heavy-rare-earth-element
depletions (La/Y > 0.78). (B). Light blue lines represent eastern lavas. Aleu-
tian data from Yogodzinski et al. (2010, 2015) and Arndt (2011). Primitive
mantle values from McDonough and Sun (1995).
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Fig. 7C. D. Mo isotopes vs. Mo/Ce ratios for Aleutian lavas, serpentinized peridotites and AOC. (C) 5°8/95Mo vs. Mo/Ce ratios for Aleutian lavas, serpentinized
peridotites (magenta diamonds) and AOC (yellow diamonds). Dashed rectangle represents the bounds of Fig. 7D. (D) Inset in Fig. 7C. Magenta dashed lines in (B), (C)
and (D) represent mixing calculations between bulk serpentinized peridotite (VAN-85-43) and DM. Horizontal axes of Fig. 7C in logarithmic scale.
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