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IWASAWA THEORY FOR p-TORSION CLASS GROUP
SCHEMES IN CHARACTERISTIC p

JEREMY BOOHER® anp BRYDEN CAIS

Abstract. We investigate a novel geometric Iwasawa theory for Z,-extensions
of function fields over a perfect field k of characteristic p > 0 by replacing the
usual study of p-torsion in class groups with the study of p-torsion class group
schemes. That is, if - -+ — X2 — X1 — X is the tower of curves over k associated
with a Zp-extension of function fields totally ramified over a finite nonempty
set of places, we investigate the growth of the p-torsion group scheme in the
Jacobian of X, as m — co. By Dieudonné theory, this amounts to studying
the first de Rham cohomology groups of X, equipped with natural actions
of Frobenius and of the Cartier operator V. We formulate and test a number
of conjectures which predict striking regularity in the k[V]-module structure of
the space M, := HO(Xn,Qﬁ("/k) of global regular differential forms as n — oco.
For example, for each tower in a basic class of Z,-towers, we conjecture that
the dimension of the kernel of V" on M, is given by arp2" + Arn+cr(n) for
all n sufficiently large, where a,, A, are rational constants and ¢, : Z/m,Z — Q
is a periodic function, depending on r and the tower. To provide evidence for
these conjectures, we collect extensive experimental data based on new and
more efficient algorithms for working with differentials on Z,-towers of curves,
and we prove our conjectures in the case p=2 and r = 1.

81. Introduction

1.1 Geometric Iwasawa theory

Fix a perfect field k£ of characteristic p > 0, and an algebraic function field K in one
variable over k. Let L/K be a Galois extension with I' :== Gal(L/K) ~ Z,, the group of
p-adic integers. We suppose that L/K is unramified outside a finite set of places S of K
(which are trivial on k) and totally ramified at every place in S.! Let I, := p"Z,, and write
K, = L' for the fixed field of T,,.

In the spirit of classical Iwasawa theory, we seek to understand the growth of the
p-primary part of the class group of K,, as n grows. When L is the constant Z,-extension of
K, the regular growth of the class groups of K,, was indeed Iwasawa’s primary motivation
for the eponymous theory he initiated for number fields [I]. When £ is algebraically closed
in L—which we assume henceforth—the growth of the class groups of K,, with k finite
has been studied by Mazur and Wiles [MW] and Crew [C2, §3] (for S nonempty) and by
Gold and Kisilevsky [GK]. These works analyze the physical class group Clg, of degree zero
divisor classes defined over k modulo linear equivalence, and prove—in perfect analogy with
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the number field setting—that when £ is a finite field, the Iwasawa module lim Clk, [p™]
is finitely generated and torsion over A :=Z,[I'], with no finite submodules. The celebrated
growth formula # Clg [p>®] = p" P "4+ for n > 0 follows.

In this function field setting, however, there is another, far more interesting motivic
interpretation of “class group” provided by the Jacobian of the associated algebraic curve.
Writing X, for the unique smooth, projective, and geometrically connected curve over k
with function field K,, (with Ky = K corresponding to Xj), we obtain a Z,-tower of curves

T = X,— = Xo— X7 — Xo

with X,, — X,y a branched Z/p"Z-cover, unramified outside a finite set of points S of
Xo and totally ramified over every point of S. For each n, the Jacobian Jx, := Picg(n Jk
represents the functor of equivalence classes of degree zero divisors on X,,, and is a rich
algebro-geometric object with no analogue in the number field setting. From this point of
view, the p-primary part of the motivic class group is the full p-divisible (Barsotti—Tate)
group Jx, [p>], which is an inductive system of p-power group schemes. The p-primary
part Clg, [p™]
points of Jx, [p*], which is only a very small piece of Jx, [p*]; for example, when X, =P}

of the “physical” class group is none other than the group of k-rational

and S = {oo} (which is a prototypical case), the abelian group Clg, [p®] is trivial, whereas
the p-divisible group Jx, [p°°] has height 2g,, with g,, the genus of X,,.

Our aim is to understand the structure—broadly construed—of the full p-divisible group
Jx, [p™°] as n — oo. Recent work provides some evidence that there should be an Iwasawa
theory for these objects. By analyzing L-functions, Davis, Wan, and Xiao [DWX] prove
that, for a certain class of Z,-towers {X,, }n>0 with Xo =P! and S = {oo} (a class which
we call “basic” in what follows; see §2.12), the isogeny type of Jx, [p™] over k behaves in
a remarkably regular way as n grows (cf. [KMUI1], [KMU2], [KZ], [RWX+], [X]). However,
isogeny type is a somewhat coarse invariant, as it loses all touch with torsion phenomena. As

>

a first and critical step toward understanding this more subtle torsion in the full p-divisible
group, we will investigate the p-torsion group schemes Jx [p] which are polarized “I-
truncated Barsotti—-Tate groups.” These objects have a rich and extensive history, yet
despite being the focus of much research (e.g., [PU], [O2]) remain rather mysterious. The
goal of this paper is to provide evidence—both theoretical and computational—for the
following Iwasawa-theoretic principle.

PuiLosopHY 1.1. For any Z,-tower of curves {Xy}n>0, the p-torsion group schemes
Jx, [p] behave in a “regular” way as n — oco.

As a first approximation to Jx, [p], we will study the kernel of Frobenius Jx, [F]. Note
that the quotient of Jx, [p] by Jx,[F] is canonically isomorphic to the Cartier dual of
Jx, [F]. In this way, knowledge of Jx, [F] determines Jx, [p] up to a single extension.
The virtue of focusing attention on Jx, [F] is that it can be understood explicitly via
differentials on the curve X,,. Indeed, the group scheme Jx, [F] functorially determines and
is determined by its contravariant Dieudonné module, which by a theorem of Oda [O1] is
naturally identified with the k[V]-module M,, := H O(Xn,Qﬁ(n /i) of global regular 1-forms
on X,, with V acting as the Cartier operator. Thus, to analyze the growth of the group
schemes Jx [F'], we will study the k[V]-module structure of M,, as n grows. In this paper, we
develop efficient algorithms to compute with differentials on Z,-towers in order to provide
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300 J. BOOHER AND B. CAIS

computational evidence for Philosophy 1.1 and we prove instances of the philosophy when
p=2.

Let us describe our contributions in more detail. For each n, Fitting’s lemma gives a
natural direct sum decomposition of k[V]-modules

My, = H*(Xp, QY ) = MY ™ & M, (1.1)

where MY (resp. MY-PY) is the maximal k[V]-submodule on which V is nilpotent (resp.
bijective). As the Z,-tower is totally ramified over the set S, the Deuring-Shafarevich
formula [S5] provides a dimension formula for the p-rank

dy += dimy, MY ™ = p™(do + S| — 1) — (|S| — 1), (1.2)
which is an instance of Philosophy 1.1. Moreover, one has an isomorphism of k[V]-modules
MY P @k~ (kK[V]/(V — 1))

which with (1.2) provides a nearly complete understanding of the behavior of MY PV as n
grows.

As for the V-nilpotent part, taken together the Riemann-Hurwitz and Deuring—
Shafarevich formulae yield the dimension formula

dimy, MY = (g, —d,) = p™(go — do) + p 1) Z sz Ysg(i) —1), (1.3)
QEeS i=1

where sg(4) is the ith break in the upper ramification filtration of I' at Q € S and g,, is
the genus of X,,. As every point in § must be wildly ramified and the very nature of wild
ramification forces sq(i+1) > psq(4) for all @ and 4, if S is nonempty, there is a lower bound
of the form g,, > ep®™ with ¢ > 0 (see [GK, Th. 1] and cf. [KW3, Th. 1.1] and [KW4]). In fact,
it follows from class field theory (see [GK, Rem. 3]) that, for any sequence {s;} of positive
integers satisfying s;11 > ps;, there exists a [-tower {X,} with Xo =P} and S = {oo} in
which sg(i) > s;. In other words, the dimension of MY ™! can grow arbitrarily fast!

In order to have any hope of identifying regular structure in MY ™! as n — oo, we will
therefore restrict our attention to towers in which the upper ramification breaks behave in
a regular way. For the purposes of this introduction—and in much of this paper—we will
focus on the class of basic Z,-towers over k = F, with ramification invariant d, given by
the Artin—Schreier—Witt equation

Fy—y= Z ciw
pJ(z
for ¢; € F, and cq # 0 (see §2.1 and Definition 2.12). Each such tower has base curve Xy = P!
and S = {00}, with s (n) =dp™~! for n > 1, so repeated applications of Riemann-Hurwitz
show that such towers are genus stable [KW3], in the sense that the genus of the nth curve

X, is given by a quadratic polynomial in p” with rational coefficients for n > 0. Explicitly.

d on 1 p+1—d
n=——p"——p"+=—"—— for n>0, 14
Im=omrn? TP Topt) (14)

which is very much in the spirit of (1.2) and provides another validation of Philosophy 1.1.
Note that any basic Z,-tower has M,/ b =0, so dimy MY = dimy, H° (Xn,QX /k)
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As V is nilpotent on MY for each n, the k[V]-module structure of MY " is completely

determined by the sequence of positive integers
a(" = dimy, ker (VT LHO(X,, Q) = HO(X,, Q% /k)).

The integer a,, := ag) is the a-number of the curve X,,, and has been studied extensively
[AMB+], [BC1], [DF], [E2], [EP], [F3], [FGM+], [J], [KW1], [MS], [R2], [WK], [Z]. For any
fized n and r sufficiently large, V" is zero on MY so (1.3) gives a formula for ag) in
such cases. This relies on the Riemann-Hurwitz and Deuring—Shafarevich formulae; there
is no analogous formula for the a-number. Indeed, as p-groups are solvable, the essential
instances of the Riemann—Hurwitz and Deuring—Shafarevich formulae are for a branched
Z/pZ-cover Y — X of smooth projective curves over k, and in general the a-number of Y
cannot be determined by the a-number of X and the ramification data of the covering.
While [BC1] does provide bounds on the a-number of Y that depend only on the a-number
of X and the ramification data, these bounds allow for considerable variation. For a basic
Z,-tower T with ramification invariant d, the bounds imply

(D))o e g)eonnas

D P gn ~ 3 2p

as n — oo, with implicit constants depending only on d and p. If a basic Z,-tower
behaves like a “random” sequence of Z/pZ-covers, we might guess that a,, is asymptotically
%( 1—p H(1—p~2) - gn, since a-numbers of random Z/pZ-covers experimentally seem to be
close to the lower bound with high probability [AMB+, Rem. 1.5(3)].

For any fixed basic Z,-tower {X,, },,>0 and integer r, to compute ag), we must determine
the matrix of V" and its kernel on the g,-dimensional space of holomorphic differentials of
X, As g, grows like cp®™ with ¢ > 0 by (1.4), such computations rapidly become intractable,
even for small values of p. A key contribution of the present paper is the development
of much more efficient algorithms (implemented in Magma [BC2]) for computing with
differentials on a Z,-tower of curves in order to investigate the behavior of ag). After
computing numerous examples, we are led to the following conjecture.

CONJECTURE 1.2. Let {X,,}n>0 be a basic Z,-tower with ramification invariant d. For
each positive integer r, there exist an integer m > 0, a rational number X\, and a periodic
function ¢ : Z/mZ — Q such that

”
2(p+1) (r+ %)

for all n sufficiently large. If D is the prime-to-p part of the denominator of a(r,p) in lowest
terms and D > 1, then m may be taken to be the multiplicative order of p> modulo D. When
in addition m =1, we may take A =0 and ¢ constant.

a{) = a(r,p)dp®™ +An+c(n) with a(r,p):=

REMARK 1.3. We compute that a(1,p) = #jl), so we may take m =1 and A =0 when

r = 1. In other words, we predict that the a-number of the nth level of a basic Z,-tower with
p—1
4p(p+1)

ramification invariant d is
n > 0.

dp®" + ¢ (with the constant ¢ depending on the tower) for

We are able to prove Conjecture 1.2 when p=2 and r = 1.
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THEOREM 1.4 (See Corollary 8.12). Let { X, }n>0 be a basic Za-tower with ramification
invariant d. Then, forn > 1,

A, A1)
24 12

ExamMpLE 1.5. Igusa curves in characteristic 2
Zy-tower { X, },>0. We have

(22n—1+1) (_1)(d—1)/2
3 + 4 '
rigidified using I';(5)) form a basic

an = as) =

o

g(X,)=2"""2-2"41 and a(X,)=2""""forn>1.
See Examples 2.15 and 8.14.

REMARK 1.6. Conjecture 1.2 indicates that the naive guess that a Z,-tower behaves like
a sequence of “random” Z/pZ-covers is wrong, as together with (1.4) it implies that a,, /g,
approaches %(1 —p~1) and not %(1 —p~ 1) (1 —p~2) as the guess would predict. In other
words, a basic Z,-tower has more structure than a “random” sequence of Artin—Schreier
covers which force the a-numbers to be larger.

REMARK 1.7. For a basic Z,-tower {X,,},,>0 with ramification invariant d, and each
n > 1, we have an isomorphism of k[V]-modules

= 0,0k 0 =D (M00)
i>1

for uniquely determined nonnegative integers m,, (7). Conjecture 1.2 implies that for each i,

there exist an integer ¢ > 0, a rational number u, and a periodic function ~y : Z/{Z — Q

such that

2n 1

mn (i) = B(i,p) — +pn+vy(n) with B(i,p) = —— —
(i+E53)% = (i + 259)

for all n sufficiently large, which shows that the k[V]-module H°(X,,, Q&n / ,,)—and therefore
the F-torsion in the motivic class group Jx, —behaves in an astonishingly regular manner

dp
p—1

as n — o0.

To simplify this introduction, we have focused on basic Z,-towers. Later, we will consider
some other classes of towers and see that some form of Philosophy 1.1 continues to hold.
Monodromy-stable towers behave like basic towers, while in other examples agf) still appears
regular but does not behave exactly as in Conjecture 1.2 (see §8§3 and 6).

REMARK 1.8. Writing ¥x, := Jx, [p™] for the p-divisible group of the Jacobian of X,
there is a canonical decomposition of p-divisible groups

Gx, =95 xGP" x Gy

n

into étale, multiplicative, and local-local components. As Clg, [p™] =¥x, (k) =45 (k), the
results of Mazur—Wiles, Crew, and Gold—Kiselevsky can be understood as theorems about
the structure of %)é{tn. Indeed, generalizing [MW, Prop. 2|, Crew [C2, §3] proves that for S
nonempty and k algebraically closed, the projective limit @n Homy, (%)é(tn,Qp /Zy) is free of
finite rank over A, and deduces the structure of lim Clg, [p>] for finite k from this result.
The analogue of this result for the multiplicative part is provided by [C1], which treats
arbitrary pro-p extensions of function fields, and allows S to be empty. The local-local
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components g}én are far more mysterious, and incorporate information about the structure
of MYl

REMARK 1.9. Continuing the notation of the previous remark, when S is empty,
equation (1.3) reads ht(4¥ ) =2p"™(go — ho). As in the cases of the étale and multiplicative
components, this is a numerical shadow of a much deeper fact: the “limit” Dieudonné
module D! := T&lnD(%}én) is free of rank 2(go — ho) over Ay = W(k)[I'] (see [C1]).
Using familiar arguments from Iwasawa theory, this structural result gives complete control
over g)lén as n grows. In particular, for each étale Z,-tower and positive integer r, there

exist by, c, € Q such that agf) =b,.p" + ¢, for n> 0.

This is very different than the behavior for ramified Z,-towers. When S is nonempty, the
Ayw-module DL, = @nD(%)l}n) is mever finitely generated [C1]. One might hope to tame
such wild behavior by suitably enlarging the Iwasawa algebra, and indeed the canonical
Frobenius and Verschiebung morphisms give DI the structure of a (left) module over
the “Iwasawa Dieudonné”-ring Ay [[F,V]. However, it follows from (1.5) that DL is not
finitely generated over Ay [[F, V] either! Indeed, writing M,, := D(%) and M, := Hm M,
the canonical projections M., — M, are all surjective, so if M., were generated by J
generators over Ay [[F, V], then the same would be true of M, /(F,V)M, as a module
over k[I'/T",]; in particular, the k-dimension of M, /(F,V )M, would be bounded above by
O|T'/T,| = dp™. However, we have a natural identification

M, /(F,V )M, = coker (V : HO(Xn,Qﬁ(n/k)V'n“ — H0<XmQ§(n/k;)V_nﬂ>

and the dimension of this cokernel is none other than the a-number a, of X,. As a,, is
bounded below by c¢p?" with ¢ > 0 thanks to (1.5), the putative upper bound of §p" is
violated for n > 0.

REMARK 1.10. Iwasawa theory usually considers the p-part of the class group, not
the p-torsion, whereas in this paper, we mainly look at the p-torsion in the motivic class
group Jx,. However, the usual Iwasawa-theoretic arguments give similar results about the
p-torsion in class groups of number fields (see [M2] for an example where this is spelled out
[in a more general setting)).

1.2 Overview of the paper

As previously discussed, the goal of this paper is to provide computational and theoretic
evidence of Philosophy 1.1. Section 2 reviews information about Z,-towers of curves,
Artin—Schreier—Witt theory, and invariants of towers. Section 3 formulates a more general
version of the conjecture in the introduction for monodromy-stable towers, which are one
natural class of towers to consider.

Sections 4 and 5 are the computational heart of the paper, providing an extensive
set of examples® which support the conjecture for basic towers. Section 4 focuses on the
a-number, whereas §5 addresses higher powers of the Cartier operator. Section 6 presents
some examples that support our conjectures for monodromy-stable towers which are not
basic and that suggest that Philosophy 1.1 continues to hold for nonmonodromy-stable
towers.

2 As these computations take significant amounts of time, we include a large collection of examples as part
of [BC2].
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In §7, we describe an algorithm which we have implemented in the Magma computer
algebra system [BCP] that lets us produce these examples. Computer algebra systems like
Magma have the ability to compute a matrix representing the Cartier operator on the
space of regular differentials on any smooth projective curve over a finite field. We work in
the special setting that the tower is based over the projective line and is totally ramified
over the point at infinity and unramified elsewhere. Our algorithm is much faster as it takes
advantage of the structure of a Z,-tower and incorporates as much theoretical information
as possible. In particular, when a Z,-tower is presented in a standard form, we are able to
use results of Madden [M1] to obtain a simple basis for the space of regular differentials
on each curve in the tower which greatly accelerates the computations. This efficiency is
crucial, as the genus of the curves in a Z,-tower very quickly become too large for the
generic methods provided by Magma to handle. Our algorithm is efficient enough that we
are able to compute sufficiently many levels of Z,-towers with small p to provide convincing
evidence for our conjectures.

Section 8 is the theoretical heart of the paper, where we prove special cases of our
conjectures when p = 2. We do so by proving a general result (valid in any characteristic)
about the trace of differentials on an Artin—Schreier cover that are killed by the Cartier
operator. When p = 2, this is enough to gain control over the a-number. These ideas
give only very limited information about higher powers of the Cartier operator, even in
characteristic 2 (§8.3).

REMARK 1.11. Computations in this paper were done using Magma 2.25-6 and 2.25-8
[BCP] running on several different personal computers® and a server at the University of
Canterbury. Thus, running times for different examples are not directly comparable as they
may have been run on different machines, although they are of a similar magnitude. When
directly comparing running times, the same computer was used.

NoOTATION 1.12. In the rest of the paper, we often want to compare multiple Z,-towers
simultaneously while also avoiding excessive subscripts. To do so, we adopt the following
notation.

e For a tower of curves T, we let 7 (n) denote the nth level of the tower.

e For a curve X, we use the notation ¢g(X), a(X), and a”(X) for the genus, a-number, and
dimension of the kernel of the rth power of Vx on the space of regular differentials.

e We let Jx denote the Jacobian of X.

e Given a tower 7 and point @ in the base curve, Notation 2.5 introduces invariants
50(T(n)), uq(T(n)), and dg(7T (n)), which reflect the ramification of 7 (n) over Q.

Notations 3.3 and 5.1 give constants «(r,p) and m(r,p) appearing in our conjectures.

§2. Towers of curves

Fix a perfect field k£ of characteristic p > 0. By a curve over k, we mean a smooth,
projective, geometrically connected, k-scheme of dimension 1. We refer to a branched cover
m:Y — X simply as a cover. We view the branch locus as a set of k-points of X. We say that

3 The largest examples were done on a 2020 iMac with 3.8-GHz 8-Core Intel Core i7 and 128-GB 2667-MHz
DDR4 RAM.
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the cover is Galois (resp. has Galois group G) if the corresponding extension of function
fields is Galois (resp. has Galois group G).

2.1 Artin—Schreier—Witt theory and Z,-towers
DEFINITION 2.1. A Z,-tower of curves 7T is a sequence of curves over k

T:-=T@B)=T(2)—=T(1)—T(0)

such that 7 (n) is a Galois (branched) cover of 7(0) with Gal(7 (n)/T(0)) ~Z,/p"Z, ~
Z/p"Z, for n > 1. We assume that there is a finite nonempty set S of k-points of 7(0) such
that 7(n) — T(0) étale outside of S and totally ramified over every point of S, for all n.
We refer to T (n) as the nth level (or nth layer) of the tower, and to 7(0) as the base of
the tower.

As we define curves to be geometrically connected, our Z,-towers are automatically
geometric towers in the sense that all 7(n) have constant field .

We can equivalently describe a tower of curves as a Z,-tower of function fields k(7 (n)).
All Z,-towers of curves (equivalently function fields) can be described by Artin—Schreier—
Witt theory. This goes back to [W]: an accessible recent reference is [KW2, §3], which builds
on the theory of Witt vectors which are briefly reviewed in [KW2, §2] and more extensively
reviewed in [R1]. We mainly need the following special cases, which describe Z,-extensions
of k((t)) (which are local) and Z,-towers over the projective line.

Let W(K) denote the Witt vectors of the characteristic p field K with Frobenius F,
and let p: W(K) — W(K) be given by p(y) := Fy—y. We write [-] : K — W(K) for the
Teichmiiller map, which is the unique multiplicative section to the canonical projection
W(K) — K onto the first Witt component. Let v be the p-adic valuation on W(k)
normalized, so v(p) = 1.

Fact 2.2. Let k be a finite field of characteristic p, and fix an element « of k such
that try,/p, (@) # 0. All Zy-extensions of K = k((t)) may be obtained by adjoining a solution
Y1,%Y2,... of the equation

o((W1,2:--)) = F(y1,92,--) = (1,92, =cla]+ Y eft™] (2.1)
ged(i,p)=1
in W(k((t))), where ¢; € W(k) and ¢; — 0 as i — oco. The unique Z/p"Z-subextension K,
arises from adjoining y1,%2,...,y, to K, and depends only on the right side modulo p”.

The conductor of K,, over K is (t“"), where

{1 +max{ip" 17V s ged(i,p) = 1, v(c;) < n}, if there exists i such that v(c;) < n,
Uy =

0, otherwise.

This is [KW3, Exam. 2.4 and Props. 3.1 and 3.3]. Note that this is a local statement,
whereas the next fact is a global statement.

Fact 2.3. Let k be a finite field of characteristic p, and fix an element « of k such that
try,/p, (@) # 0. All Z-extensions of K = k(x) ramified over a set S C P}, (k) may be obtained
by adjoining a solution 71,¥s,... of the equation

o((y1,y2,-..)) = F(y1,y2,...) — (y1,¥2,...) = cla] + Z Z CQ,i[ﬂ—éi],

QeS ged(i,p)=1
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with c € W(k), cq.; € W(k), and with mg =2 —Q if Q € k and 7o = 1/ if Q = oo, such that:

1. for o € Gal(k/k) and Q € Pi(k), we have ocg ;i = ¢y0.i;
2. for every integer n > 1, there exists finitely many cq ; with v(cg) <n.

The unique Z/p™Z-subextension K,, arises from adjoining y1,¥s,...,y, to K, and depends
only on the right side modulo p". The tower is geometric if there exists a cg,; with
valuation 0.

Again see [KW3], especially Proposition 4.9.

REMARK 2.4. The first level of these extensions (given by adjoining y;, or equivalently
working in the truncated Witt vectors Wi (K) and with the right side modulo p) is Artin-
Schreier extensions. For example, (2.1) becomes

Yy —y1 =ca+ Z et
ged(i,p)=1
v(c;)=0
Similarly, the unique Z/p™Z-extension of L = K ({y;}) can be described using the truncated
Witt vectors W, (K). Recall that arithmetic with Witt vectors is not done componentwise,
and is highly nontrivial. In particular, while [cz?] = (cx?,0,0,...), the sum [¢;2z?] + [c;27] is
not (¢;z’ 4 ¢;27,0,0,...).

2.2 Ramification and conductors in towers
NOTATION 2.5. Let T be a Z,-tower of curves over £, and let Q € S.

1. Let dg(7T (n)) be the unique break in the lower ramification filtration of the cover 7 (n) —
T (n—1) at the point above @ (the ramification invariant above Q).

2. Let sg(7T(n)) be the largest break in the upper ramification filtration for the cover
T (n) — T(0) above Q.

3. When £ is finite,” let ug(7(n)) be the exponent of the conductor for the extension of
local fields coming from 7 (n)g — 7(0)g.

Recall that the upper numbering is compatible with quotients, so we can give T
an upper ramification filtration making sg(7(n)) the nth (upper) break above Q. The
lower numbering is compatible with subgroups, and hence the largest break in the lower
ramification filtration of 7(n) — 7(0) above Q is dg(7T (n)).

LEMMA 2.6. Let T be a Z,-tower of curves over k, and let Q € S. For each positive

integer n:
n—1

L. do(T(n))=p" 'sq(T(n)) - Z e(p?)sq(T(5));

7j=1
2. do(T(n+1)) —do(T(n)) = (s(T(n+1)) = so(T(n)))p";
3. if kis finite, ug(T(n)) = so(T (n))+1.
Proof. This result is standard, although we do not know a good reference for this
exact statement. The relationship between the breaks in the upper and lower ramification

4 A finite residue field is necessary to define the conductor using class field theory.
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filtrations in a Z/p"Z-extension of local fields is spelled out in [S1, Exam. IV.3]. There

exist positive integers ig,%1,-..,%,—1 such that the breaks in the upper numbering filtration
are ig,t9 + 41,..-,90 + 41 + -+ + i, and the breaks in the lower numbering filtration are
n—1;

i0,%0 + pi1,...,%0 + pi1 + - p" Yi,_1. In particular, so(7(j)) =io+41+---+14;-1 and
do(T(n)) =io+pi1+---+p " tin_1, and (1) follows. Statement (2) is a formal consequence
of the previous part. When £ is finite, the relationship between the conductor and the upper
ramification breaks in (3) follows from [S1, §XV.2, Cor. 2 to Th. 1]. 0

LEMMA 2.7. Let T be a Z,-tower totally ramified above a finite set S of k-points of
T7(0). Then,

29(T (n)) =2 =p"(29(T(0)) =2)+ Y > 0" )(do(T(@)) +1)
Q

€Si=1

=p"(29(T(0)) =2)+ D> > () (s@(T (i) +1).

Qesi=1
Proof. Apply the Riemann—-Hurwitz formula. 0

REMARK 2.8. As remarked in the introduction, for Z,-towers in characteristic p,
there is always “a lot” of ramification. In particular, if 7 is totally ramified above @,
then so(7(n)) > psg(T(n—1)). Using Lemma 2.6(1) to convert to the lower ramification
filtration, it follows that dg (7 (n)) > (p? —p+1)do(T(n—1)). Using Lemma 2.7, for any
ramified Z,-tower, there is a constant ¢ > 0 such that g(7(n)) > cp®".

2.3 Types of towers
We next identify several nice kinds of Z,-towers which we will focus on.

DEFINITION 2.9. Let T be a Z,-tower of curves over £ with branch locus S.

1. We say that T is monodromy-stable, or has stable monodromy, if for every ) € S, there
exist cq,dg € Q such that for n>> 0,

sq(T(n)) = cq +dop"™".

2. We say that T has periodically stable monodromy, or is periodically monodromy-stable,
if for every @ € S, there exist an integer mg, a dg € Q, and a function cq : Z/mgZ — Q
such that for n >0,

5Q(T(n)) = cq(n) +dgp™ .

As the Riemann—Hurwitz formula determines the genus of a cover in terms of the genus
of the base curve and the ramification, the genus of a monodromy-stable (resp. periodically
monodromy-stable) Z,-tower is of the form ap®™ + bp" + ¢ for n >0 (resp. is of the form
a(n)p®™ +b(n)p"™ + c(n), where a,b,c are eventually periodic functions). This behavior is

referred to as being genus stable (resp. periodically genus stable). For later use, we record
the following lemma.
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LEMMA 2.10. If T is monodromy-stable and Q € S with sq(T(n)) = cq+dgp™™* for
n >0, then there exists C’Q € Q such that

2n—1

dQ(T(n)):dQZ+1 +cg forn>0.
2n
Furth L g(T(n) i toticall d .
urthermore, g(T(n)) is asymptotically Z o 1)

QeS

Proof. For the first, use the definition of monodromy stability plus Lemma 2.13(2). Then
the second statement follows using Lemma 2.7. O

REMARK 2.11. Monodromy-stable towers are a very natural class of towers to consider
as all Z,-towers of “geometric origin” are monodromy-stable [KM2].

Many of our computations will deal with a particularly simple class of Z,-towers over P,l€
where k is finite, which we refer to as basic Z,-towers. Fix a coordinate x on the projective
line P}ﬁ.

DEFINITION 2.12. Let d be a positive integer that is prime to p, and let k& be a finite
field of characteristic p. A basic Z,-tower T with ramification invariant d is the Z,-tower
over P} given by the Artin-Schreier-Witt equation

d
Fy—y= > [ea']
i=1
(i,p)=1
with ¢; € k and ¢q # 0. (It is convenient to then define ¢; =0 when pli.)

These are also called wnit-root Z,-extensions [KW3, Exam. 4.10]. By Fact 2.3, the
function field of 7 (n) is the Z/p™Z-extension of k(z) given by adjoining y1,y2, ...,y where
(Y1,Y25---Yn) € Wy(k(z)) is a solution of the Witt vector equation

d
F(y1,y2,--syn) — (Y1,Y2, .- - Yn) = Z(Cﬂ’,O,...,O). (2.2)
i=1
d .
In particular, 7 (1) is the Artin-Schreier curve given by ) —y; = ch’.
i=1

LEMMA 2.13. A basic Zy-tower T with ramification invariant d is totally ramified over
oo and unramified elsewhere. Recalling Notation 2.5, we have that

Uoo (T(n)) =1 =55 (T(n)) =dp™ ' and that duo(T(n)) =d- T 1
p
In particular, basic Zy,-towers are monodromy-stable (recall Definition 2.9) and the genus
satisfies
d p+1+d
2g(T 2= ——p
9(T (n)) UL

+dp™~! using Fact 2.2. By Lemma 2.13, we obtain

Proof. We see that us(7(n)) =
d , and g(7(n)). See also [KW3, Exam. 4.10]. O

1
the formulas for s.(7(n)), deo (7T (n))
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REMARK 2.14. When working with a basic Z,-tower T, each layer T (n) — 7 (0) = P}
is totally ramified over the point at infinity, and unramified elsewhere. We will therefore
often write u(7(n)) instead of us (7 (n)) (and similarly for s(7(n)) and d(T (n))).

Another nice example of a monodromy-stable tower is the Igusa tower.

EXAMPLE 2.15. We work over k = F,, and let Ig(n) denote the curve representing the
moduli problem of elliptic curves over k£ with an Igusa-level structure of level p™ and a
ZP-level structure for a suitable auxiliary moduli problem & (see [KM1, Chap. 12]).

For example, when p # 5, we could choose to use & =I'1(5), which satisfies the hypotheses
of [KM1, Th. 12.9.1], as the auxiliary moduli problem. (It is standard to compute that the
moduli problem I'; (5) has degree 24 and has four cusps.) Note that Ig(n) is a smooth proper
curve over k, and it is connected. (It suffices to check this for X;(5) over C.) Then Ig(1) is
a (Z/pZ)* /{%1}-cover of X;(5); ~ P} totally ramified over the supersingular points and
[KM1, Cor. 12.9.4] gives a Z,-tower

Ig: - —1g(3) = Ig(2) — Ig(1),

totally ramified over the p—1 points S of Ig(1) which lie over the supersingular points of
X1(5)k, and unramified elsewhere. We know that dg(Ig(n)) = p>"~Y —1 for each Q € S by
[KM1, Lem. 12.9.3], which implies that g(Ig(n)) = p**1(p—1)/2—-2p"*(p—1)+1 as in
[KM1, Cor. 12.9.4].

83. Conjectures for monodromy-stable towers

For a Z,-tower of curves T over a perfect field of characteristic p, Philosophy 1.1 predicts
that the invariants of Jy(,)[p] should be “regular” for n > 0. This regularity should
furthermore depend only on the local information given by the ramification filtration at
each ramified point.

PuiLosorny 3.1. For a Z,-tower of curves T over a perfect field of characteristic p
ramified over S, invariants of Jy(y)[p] should be a sum of “local contributions” depending
only on the ramification of T at each branch point Q € S.

REMARK 3.2. The genus and p-rank of a monodromy-stable tower illustrate this
philosophy as they include a contribution from each point of ramification. See, for example,
the asymptotic for the genus in Lemma 2.10 and equation (1.2).

In this section, we formulate precise conjectures for monodromy-stable Z,-towers that
exemplify these philosophies. We make these conjectures only for a” (7 (n)) with r > 1, which
are a partial list of invariants for J,)[p]. We restrict ourselves in this manner as:

e the ramification is simple in monodromy-stable towers, so it is much easier to see how
a”(T(n)) is “regular” for n > 0;

e it is feasible to compute with them: a"(7(n)) can be computed using the action of the
Cartier operator on the space of regular differentials, and in monodromy-stable towers,
the dimension of this vector space (the genus) is “only” asymptotic to cp?™ with ¢ > 0.
Other Z,-towers with more complicated ramification will usually have even faster genus
growth.

We begin by considering the asymptotic growth of a”(7(n)) in monodromy-stable
Z,-towers.
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NoTATION 3.3. For a prime p and positive integers d and r, define

r(p—1)
20+ D) ((p—Dr+(p+1))

We will also use the shorthand a(p) := a(1,p).

(3.1)

a(r,p) =

CONJECTURE 3.4. Let T be a monodromy-stable Z,-tower totally ramified over S and
unramified elsewhere. For Q € S, let cg,dg € Q with sq(T (n)) =dop™* +cq forn>0 and
set D = Z dg. Then a” (T (n)) is asymptotically a(r,p)Dp®" for large n; in other words,

Qes

_a(T(n)
a3 a(r,p)Dp**

COROLLARY 3.5. Congecture 3.4 implies that for a totally ramified monodromy-stable
Z,-tower T,

o () rp-1) 1
no g(T(n) — (p=Ur+(p+1) 1+ 25

(3.2)

Proof. For Q € S, as before, let sg(T(n)) =dgp™ ! +cq for n>> 0 with cg,dg € Q and
set D := Z dg. From Lemma 2.10, we know that g(7 (n) is asymptotic to D/(2(p+1))p*".

Qes
Then compare with the asymptotic for a”(7(n)) from Conjecture 3.4. O

For example, in monodromy-stable towers, we predict that

i U (M) _p—1
n—oo g(T(n) 2p

(3.3)

REMARK 3.6. The limit in Corollary 3.5 approaches 1 as r becomes large. Thus,
Conjecture 3.4 predicts that the Cartier operator is essentially nilpotent on H O(Q%’(n)).
This is as expected: the k[Vy(,)]-module H O(Q%-(n)) decomposes as a direct sum of its
V7 (n)-nilpotent and Vi (,-bijective submodules as in (1.1), and the Deuring-Shafarevich
formula (1.2) shows that the k-dimension of the Vi (,)-bijective component is bounded by
a constant times p", whereas the genus (and hence the k-dimension of the Vi(,)-nilpotent
component) is on the order of p?*. In other words, the Cartier operator acts nilpotently on
essentially all of HO(Q%—(M) as n — oo.

We also formulate more precise conjectures about the exact values of a(7(n)) and
a” (T (n)) in monodromy-stable towers. We begin with the a-number, whose behavior seems
simplest.

CONJECTURE 3.7. For every monodromy-stable Z,-tower of curves T over a perfect
field of characteristic p, there exist a,b,c € Q such that

a(T(n)) =a'(T(n)) = ap®™ +bp™ +c for n>> 0.

Note that Conjecture 3.4 predicts the value of a in Conjecture 3.7.
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CONJECTURE 3.8. Fiz r > 1. For every monodromy-stable Z,-tower of curves T over
a perfect field of characteristic p, there exists a positive integer m and functions a,b,c, \ :
Z/mZ — Q such that

a"(T(n)) = a(n)p®™ +b(n)p" +c(n) + A(n)n for n>>0.

Again, Conjecture 3.4 predicts that the function a(n) in Conjecture 3.8 is a constant
function taking on a specific value. Writing sq (7 (n)) = dgp" ' +cq for Q € S and n>> 0
with cg,dg € Q, it predicts that

a(n) = a(rp) [ 3 dg

QeS

In §84-6, we provide evidence for these conjectures. We mainly focus on basic Z,-towers
as they are easiest to compute with; note that Conjecture 1.2, which addressed basic towers,
is compatible with these more general conjectures. We then give some additional examples of
other monodromy-stable towers as well as a few examples featuring nonmonodromy-stable
towers that support Philosophy 1.1 while exhibiting more complicated behavior.

REMARK 3.9. Towers with periodic, nonstable monodromy do not seem to satisfy
Conjecture 3.7. There does appear to be similar formula for the a-number, but unsur-
prisingly the constants depend on the parity of n. However, limited investigations suggest
that towers with periodic monodromy may satisfy Conjecture 3.8 as well (see §6.4).

REMARK 3.10. We are not completely confident that monodromy-stable Z,-towers are
the correct class of Z,-towers to consider. After this paper first appeared as a preprint,
Joe Kramer-Miller and James Upton suggested that these conjectures might only hold for
overconvergent Z,-towers. Basic towers are both monodromy-stable and overconvergent,
so since most of our evidence comes from computing with basic towers, it is difficult to
investigate the difference.

84. a-numbers for basic towers

We first focus on the a-number of curves in basic Z,-towers 7 (Definition 2.12) with
ramification invariant d. By Lemma 2.13 (and noting Remark 2.14), we have s(7(n)) =
dp™~!. Unwinding Notation 3.3, we see that

a(p) =a(l,p) =

In this case, Conjecture 3.4 predicts that

a(T(n)) _

— = 4.1
n—co a(p)dp*” (1)
We now present a refinement of Conjecture 3.7 and the r =1 case of Conjecture 1.2.

CONJECTURE 4.1. For every basic Zy-tower T with ramification invariant d, there exists
a positive integer Ny (depending only on d and p) and c € Q (depending on T ) such that

a(T(n)) =a* (T (n)) = a(p)dp® +c¢ for n > Ny.
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Table 1. Basic towers with p=3 and d =7, five levels.

Level: 1 2 3 4 5
g(T1(n)) 6 66 624 5,700 51,546
a(Ti(n)) 4 25 214 1,915 17,224
a(Ta(n)) 3 24 213 1,914 17,223
a(Tz(n)) 3 24 213 1,914 17,223
07(Ti(n)) 4 4 4 4 4
07(T2(n)) 3 3 3 3 3
07(T3(n)) 3 3 3 3 3

Note that a(p)dp®™ need not be an integer, but it is straightforward to check that
a(p)d(p* —p?) is always an integer when p > 2. Thus, for convenience, we define

8a(T (n)) := a(T (n)) — a(p)d(p™ —p?). (4.2)

Conjecture 4.1 for a basic tower 7 with ramification invariant d is equivalent to 64(7 (n))
being constant for sufficiently large n.

4.1 Examples in characteristic 3
We begin by focusing on Zs-towers in characteristic 3, which we analyzed using the
methods of §7.

ExXAaMPLE 4.2. Let p=3 and d =7. Consider the basic towers
Ti:Fy—y=[@", T:Fy—y=["]-[2"]-[2°], T5:Fy—y=["]-[z"].

These towers have ramification invariant 7, and the corresponding levels of each tower
have the same genus. Table 1 shows they do not have identical a-numbers, although the
a-numbers are highly constrained.

In particular, letting 7 be any of these three towers, we observe that for 1 <n <5,
T
Y
This holds for all of levels of all basic towers in characteristic 3 with ramification invariant 7
that we have computed. (In total, we computed the a-number of the first five levels of 4

towers and of the first four levels of 16 towers.) Note that by [BC1, Th. 6.26],3 <a(7 (1)) <4
for any Zs-tower with ramification invariant 7.

a(T(n)) =7a(3)(3*" - 9) +a(T (1)) (32" —9) +a(T(1)). (4.3)

ExaMPLE 4.3. Let p=3 and d = 5. Consider the basic towers
Ti:Fy—y=[2"]-[2%] and To:Fy—y=[2"]—[z"] - [a].

Table 2 shows that unlike for towers with ramification invariant 7, the a-number of the first
level does not determine the a-number of higher levels for 77 and 7s.
For n > 2, it appears that

_ 5 2n _ o 2n
—24(3 —9)+4 and a(’7'2(n))—24(3 —-9)+3.
These formulae are not valid for n = 1. In particular, this illustrates that the restriction

that n is sufficiently large in Conjecture 4.1 is necessary. Based on our computations with
13 towers (some with only four levels computed), it appears that we may take N5 = 2.

a(Ti(n))
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Table 2. Basic towers with p =3 and d =5, five levels.

Level: 1 2 3 4 5
g(T1(n)) 4 46 442 4,060 36,784
a(T1(n)) 2 19 154 1,369 12,304
a(Tz(n)) 2 18 153 1,368 12,303
05(T1(n)) 2 4 4 4 4
05(T2(n)) 2 3 3 3 3

n= 1 2 3 4 5
9(Ti(n)) 22 226 2,080 18820 169,642
a(Ti(n)) 12 83 706 6,295 56,596
a(Tz(n)) 10 80 702 6,291 56,592
a(T3(n)) 11 81 702 6,291

a(Ta(n)) 12 81 702 6,291

a(Ts(n)) 11 80 703 6,292

53(Ti(n)) 12 14 16 16 16
523(Ta(n)) 10 11 12 12 12
523(T3(n)) 11 12 12 12

523(Ta(n)) 12 12 12 12

523(Ts(n)) 11 11 13 13

Furthermore, note that by [BC1, Th. 6.26], a(7 (1)) = 2 for any basic Zs-tower 7 with
ramification invariant 5.

ExXAMPLE 4.4. Table 3 shows the a-numbers of five selected basic Zs-towers with
ramification invariant 23. The tower T; is Fy —y = [123], whereas the other four towers
are more complicated.” For example, 75 is

Fy—y=[2"]+ o]+ 2"+ [ + [2] = [27] = [27] = [2%] =[] = [2°] + 2] + [2].

We see the same basic phenomena as in Examples 4.2 and 4.3, although the stabilization
is now more complicated. It appears that do3(7 (n)) may not stabilize until the third level,
there are multiple choices for the a-number of level 1, and do3(7 (n)) may jump multiple
times. Still, all of our examples are consistent with Conjecture 4.1 holding with No3 = 3.

REMARK 4.5. For basic Zs-towers, computing the a-number of the fifth level is pushing
the limit of what is feasible to compute as illustrated by Example 4.4. As the genus is
growing exponentially with n, computing with the sixth level would require more time and
memory than is reasonable.’

5 Computing a(71(5)) took around 5 hours because of the tower’s simple description, but it took over a
month to compute a(72(5)). This is why we have declined to compute the a-numbers of the fifth levels
for the remaining towers.

6 This is not just a problem of limited resources. Magma imposes a limit on the number of monomials
allowed in a multivariable polynomial expression. Our program would run into this limit while attempting
to construct an explicit representation of the sixth level as an Artin—Schreier extension of the fifth.
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4.2 Evidence in characteristic 3

In total, we have computed the a-number for the first four or five levels of at least 243
basic Zs-towers.” The largest ramification invariant d with which we have computed is
d =49, and most of the computations of the fifth level of Zs-towers have taken place either
for the tower Fy =y = [#9] or with d relatively small. The computations take increasing
amounts of time for larger d as the genus of the nth level depends linearly on d and the
running time is polynomial in the genus. For larger d, we analyzed five levels for the tower
Fy—y=[29 for d up to 49; as discussed in Remark 7.11, this tower is quicker to compute
with.®

We also computed the first three levels of 510 towers with ramification invariant up
to 30,” carefully chosen so as to have diversity of a-numbers for the first level. For each d,
we searched through a large number of polynomials f € Fs[z] of degree d and computed
the a-number of the Artin—Schreier curve

Criy’—y=f(x).

For each value a of the a-number appearing frequently, we picked 10 polynomials
f= Zg:o ¢z’ (with ¢q #0 and ¢; =0 when p | 4) such that a(Cy) = a and computed
the a-numbers for the first three levels of the Artin—Schreier—Witt tower

d
Tr:iFy—y=> [cia']

i=0
whose first level is CY.

DEFINITION 4.6. An integer n > 1 is a discrepancy of a basic tower T with ramification
invariant d if 04(7 (n)) # 6a(T (n—1)), where d, is as in (4.2).

Conjecture 4.1 is equivalent to the assertion that for each d, the largest discrepancy for
a basic tower with ramification invariant d is bounded independently of the tower. If the
conjecture holds, for n sufficiently large d4(7 (n)) would be the constant term c.

Table 4 shows the discrepancies for all of the towers we have collected data on with d < 50
as well as the number of towers we analyzed for each d. (For small values of d, it is essential
to work over extensions of F3 as there are not that many basic towers defined over Fs.)
This table supports Conjecture 4.1 as it suggests that the discrepancies for towers with a
given ramification invariant are bounded; the first time n = 2 is a discrepancy is for d = 5,
the first time n = 3 is a discrepancy is for d = 11, and the first time n =4 is a discrepancy is
for d = 29. In particular, we expect that for each basic Zs-tower with ramification invariant
d, there exists ¢ € Z such that

a(T(n)) = a(3)d(3** —9)+c for n>>0,
with the threshold for “n > 0” growing slowly with d.

7 As these computations are time-intensive, we have made the results publicly available [BC2,
data_storage].

8 Despite being “quicker,” computing a(7(5)) for the tower 7 : Fy —y = [z*°] took around 40 hours.
9 The results of these computations are stored in [BC2, data_storage_small].
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Table 4. Observed discrepancies for basic towers with ramification invariant d < 50.

d 2 4 ) 7 8 10 11 13 14 16 17 19
Discrepancies: () 0 {2} 0 0 {2y {3} 0 {2} {2} {3} {2}
Towers: 4 25 13 40 25 25 25 36 25 36 36 36
d 20 22 23 25 26 28 29 31 32 34 35 37
Discrepancies: {2} {3} {23} {2} {2} {23} {24} {2} {2} {23} {24} {2}
Towers: 36 47 37 47 46 48 47 10 9 9 10 9
d 38 40 41 43 44 46 47 49

Discrepancies: {2,3} {2,3} {24} {2} {2,3} {2,3} {24} {2,3}
Towers: 10 10 10 9 9 9 9 9

Table 5. T : Fy—y = [2%], T’ also has ramification invariant 35, p = 3.

Level: 1 2 3 4 5
g(T(n)) 34 346 3,172 28,660 258,214
a(T(n)) 20 127 1,072 9,579 86,124
a(T'(n)) 17 122 1,067 9,573

035(T (n)) 20 22 22 24 24
835(T"(n)) 17 17 17 18

Table 6. T is any basic Za-tower with ramification invariant 7, seven levels.

Level: 1 2 3 4 5 6 7
g(T(n)) 3 16 70 290 1,178 4,746 19,050
a(T(n)) 2 5 19 75 299 1,195 4,779
a(T(n))—7(22"—4)/24+1/2 5/2 2 2 2 2 2 2

REMARK 4.7.

1. As described above, we have looked at fewer examples with 30 < d < 50, so are less
confident that we have identified all of the discrepancies possible for basic towers with
that ramification invariant.

2. In all of the examples we have looked at, |54(7T (n)) —d6a(T (n+1))| < 4.

3. As we have very few examples of computations with five levels and large d, and no
computations in level 6, it is difficult to be confident that the a-numbers for towers
that have a discrepancy at level n =4 actually stabilize. For example, while the data in
Table 5 suggest that d35(7'(n)) might stabilize for n >4, we have no direct evidence that
d35(7"(n)) = 18 for n > 4. However, we do see that for small d (where the computations
are fastest), the discrepancies (when there are any) are all very small, and only gradually
increase as d increases, which we find to be convincing evidence that all basic towers
satisfy Conjecture 4.1 for sufficiently large Ny.

4.3 Characteristic 2

We now briefly discuss the a-numbers of Zs-towers in characteristic 2. Note that
a(2)d = d/24. Table 6 gives a representative example; it shows the a-numbers for any
basic Zs-tower with ramification invariant 7.

This is compatible with Conjecture 4.1. In fact, for every positive odd integer d, the
a-numbers of all basic towers with ramification invariant d appear to be the same, and to
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Table 7. Tq: Fy—vy = [z%] with 3 < d <12, four levels, p= 5.

Level: 1 2 3 4 Level: 1 2 3 4
a('E,(n)) 4 64 1,564 39,064 a('E;(n)) 10 170 4,170 104,170
53(7?3(71)) 4 4 4 4 (58(7'8(71)) 10 10 10 10
a('ﬁ(n)) 4 84 2,084 52,084 a(7§(n ) 10 192 4,692 117,192
54(71(71)) 4 4 4 4 (59(7?;(71)) 10 12 12 12
a(Tg(n)) 10 130 3,130 78,130 a(Tu(n)) 14 234 5,734 143,234
56(7%(71)) 10 10 10 10 (511(7'11(71)) 14 14 14 14
a('ﬁ(n)) 8 148 3,650 91,150 a(7’12(n) 16 256 6,256 156,256
57(7’7(71)) 8 8 10 10 512(7'12(71)) 16 16 16 16

support Conjecture 4.1. We are able to prove this: Corollary 8.12 shows that for any odd d
and all n > 1,
d 1 d 1
a(T(n) = (2% =4) +a(T(1)) - 5 = Z(2°" Y~ 1) +a(T(1) - 5.
24 2 6 2
4.4 Other characteristics
Basic Z,-towers for p > 3 are more difficult to compute with as the curves involved
are of even higher genus. (Recall that the genus of the nth level of a Z,-tower with
ramification invariant d is on the order of dp?" by Lemma 2.13.) We have only done
substantial computations with a few simple towers in characteristic 5.

EXAMPLE 4.8. Table 7 shows the a-numbers of the first four levels of the Zs-towers
Ta: Fy—y = [29] for small d. All of these towers support Conjecture 4.1 as §4(7(n)) appears
to be eventually constant. To give context, g(712(4)) = 390,312 and computing the a-number
of T12(4) using the methods of §7 took around 253 hours, whereas g(73(4)) = 97,344 and
computing the a-number of 73(4) “only” took 8.5 hours.

EXAMPLE 4.9. As Z,-towers with p > 5 are much slower to compute with, we have only
been able to compute with the first two levels. This is not enough to address Conjecture 4.1,
but is enough to provide evidence for the leading term by computing

a(T(2)
a(p)dp*

1‘ : (4.4)

We expect it to be close to zero.

e When p =7, we computed the a-number for the second level of slightly over 1,000
Z-towers; this quantity was less than .015 for all of them.

e When p =11, we computed the a-number for the second level of around 650 Z;;-towers;
this quantity was less than .0053 for all of them.

e When p = 13, we computed the a-number for the second level of 11 Zjs-towers; this
quantity was less than .0051 for all of them.

Approximating the leading term using just the second level in fact works better for larger p.
For example, when just looking at the second level, there are Zs-towers with (4.4) larger
than 0.12. Of course, for those Z3-towers, we have computed many more levels which support
the conjectured leading term much better.
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85. Further invariants for basic towers

We now investigate a” (7 (n)) for basic Z,-towers when r > 1. We begin with a more
precise version of Conjecture 3.8 for basic Z,-towers which is a refinement of Conjecture 1.2.

NoOTATION 5.1. For fixed r and p, write the rational number «(r,p) = 2(p+1)((rszz)12+(p+l))
from Notation 3.3 in lowest terms, and let D be its denominator. Let D’ be the maximal
divisor of D which is prime to p. When D’ > 1 (i.e., D is not a power of p), we define
m(r,p) to be the multiplicative order of p? modulo D’. In the edge case that D’ =1, we set
m(r,p) = 0.

CONJECTURE 5.2. Fiz a prime p and positive integers d and r. If m(r,p) =1, then
there exists a positive integer Ng, such that for any basic Z,-tower T with ramification
invariant d, there exists a rational number ¢ € Q such that

a"(T(n)) = a(r,p)dp®" +c  forn> Ng,.

If m(r,p) > 1, then there exists a positive integer Ng , and A\g, € Q such that for any basic
Z,-tower T with ramification invariant d, there exists a function c:Z/m(r,p)Z — Q such
that

a’(T(n)) = a(r,p)dp™ +c(n) +Aar-n forn > Ny,

Note that the denominator of a(1,p) is 4(p+1)p, and hence m(1,p) =1 for any prime p.
Thus, this conjecture is compatible with Conjecture 4.1.

REMARK 5.3. The definition of m(r,p) is natural as a"(7(n)) must be an integer,
whereas a(r,p)dp®" is often not an integer. With D as in Notation 5.1, for n sufficiently
large, the congruence class of p?" modulo D depends only on n modulo m(r,p). To obtain
an integer prediction for a”(7(n)) in the conjecture, it is therefore natural to expect a
formula depending on n modulo m(r,p).

When m(r,p) =0 (i.e., D' = 1), we still expect a” (7 (n)) to be of the form «a(r,p)dp*" +
c(n)+A-n with ¢(n) a function with period m > 1. However, we do not make any prediction
for the period. In these cases, it seems that A and m may depend more subtly on the tower,
rather than just on d,p, and r (see Example 5.9).

For convenience, while testing this conjecture, for a Z,-tower 7 and rational number, A
we define

84 (T (n),A) = a” (T (n)) — (a(r,p)dp*" + An) (5.1)
(cf. equation (4.2)). Analogously, we define the following definition.

DEFINITION 5.4. An integer n > m(r,p) is a discrepancy of a basic tower T with
ramification invariant d for the rth power of the Cartier operator if

5d,T(T(n)a )‘d,r) # Od,r (T (n—=m(r,p)), )‘d,r)-

Conjecture 5.2 is equivalent to dq,,(7(n),Aa,r) being eventually periodic with period
m(r,p) (for an appropriate choice of Ay ). Equivalently, the largest discrepancy with respect
to the rth power of the Cartier operator for towers with ramification invariant d should be
bounded independently of the tower.
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Table 8. T : Fy—y=[2*']+[z"°] + [#"°] + [2'3] + [2°] with (p,d) = (2,21).

n= 1 2 3 4 5 6 7

(T (n)) 10 51 217 885 3,565 14,301 57,277
a'(T(n)) 5 16 58 226 898 3,586 14,338
a*(T(n)) 8 25 94 363 1,440 5,741 22,946
a®(T(n)) 9 31 116 452 1,796 7,172 28,676
a*(T(n)) 10 36 131 517 2,055 8,198 32,776
a®(T(n)) 10 40 142 562 2,242 8,962 35,842
a®(T(n)) 10 43 152 603 2,399 9,563 38,238
a’(T(n)) 10 45 162 635 2,515 10,045 40,150
ad(T(n)) 10 47 169 660 2,610 10,432 41,715
a®(T(n)) 10 48 175 680 2,696 10,760 43,016
at®(T(n)) 10 49 180 696 2,768 11,031 44,116

Table 9. T': Fy—y = [2*"]+ [2"3] + [2°] + [2°] + [#*] with (p,d) = (2,21).

n= 1 2 3 4 5 6 7

g(T"(n)) 10 51 217 885 3,565 14,301 57,277
at(T'(n)) 5 16 58 226 898 3,586 14,338
a*(T'(n)) 8 25 95 363 1,441 5,741 22,947
a®(T'(n)) 9 33 117 453 1,797 7,173 28,677
a*(T"(n)) 10 39 131 519 2,057 8,198 32,778
a®(T"(n)) 10 42 142 562 2,242 8,962 35,842
a®(T"(n)) 10 45 152 603 2,400 9,563 38,238
a’(T'(n)) 10 47 162 637 2,515 10,047 40,150
a®(T"(n)) 10 49 171 662 2,610 10,432 41,718
a®(T"(n)) 10 50 179 683 2,699 10,763 43,019
a'®(T"(n)) 10 51 185 697 2,769 11,031 44,116

5.1 Characteristic 2 examples

Because the constant term in our conjectured formula will often depend on the congruence
class of n modulo m(r,p), the best evidence for this conjecture comes from characteristic 2,
where it is feasible to compute with more levels of the towers. While we have been able
to prove an exact formula for a”(7(n)) in characteristic p =2 when r =1 (for all n) in
Corollary 8.12, we have been unable to generalize this result to larger values of r. As such,
the evidence we collect below is necessarily computational in nature.

EXAMPLE 5.5. We begin by considering two basic Zs-towers with ramification invari-
ant 21. Tables 8 and 9 show the genus and the dimension of the kernel for the first 10 powers
of the Cartier operator for the first seven levels of these two towers. We see that a(7(n)) =
a(T'(n)) for all 1 <n <7, and we see that a" (7 (1)) =a"(7'(1)) for 1 <r <10, which we
prove in Corollary 8.12 and Lemma 8.16(1). Beyond that, a" (7 (n)) will depend on the
tower 7. For example, a?(T(3)) =94 # a%(T'(3)) = 95 and a3(T(2)) =31 # a3(T'(2)) = 33.

Table 10 shows 21a(r,2) and m(r,2) for 1 <r < 10. Our computations with the first
seven levels of 7 and T’ support Conjecture 5.2. For example, we see that for 1 <n <7,

(22" 4+ 1) +n, n odd,
(22" —1)+n+2, n even,

(22" +1)+n+1, n odd,

e [ JEYSSTRNES &
(7( ))—{g (7)) = (2 —1)4+n+2, neven.
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Table 10. Constants for (p,d) = (2,21).

r 1 2 3 4 5 6 7 8 9 10
21a(r,2)  7/8  7/5  7/4 2 35/16  7/3  49/20  28/11 _ 21/8  35/13
m(r,2) 1 2 1 3 1 3 2 5 0 6

Table 11. “Constant terms” for T and T, (p,d) = (2,9).

Level: 1 2 3 4 5 6 7
593(7(71),1/2) 1/10 2/5 11/10 —3/5 1/10 —3/5 1/10

So2(T'(n),1/2)  1/10  2/5 11/10 —3/5 1/10 —3/5 1/10

5o4(T(n),1/3) /21 97/21  1/7  26/21 76/21  1/7  26/21
So4(T'(n),1/3)  5/21  55/21  1/7  26/21 76/21  1/7  26/21
So7(T(n),1/2)  —7/10 16/5  3/10  21/5 —7/10 16/5 —7/10
So7(T'(n),1/2) —7/10 16/5  3/10  21/5 —7/10 16/5 —7/10

Note that m(2,2) = 2 as expected. Likewise, for 2 <n <7,

7 7

a*(T(n)) = e 22" 44, a*(T'(n)) = 122” +5.
Furthermore,
2.22n 4, n=0 (mod 3), 2-22"4n, n=0 (mod 3),
a(T(n)=¢2-22"4+n+1, n=1 (mod3), a*(T'(n))=<{2-22"4n+3, n=1 (mod 3),
2-22" 4 n+2, n=2 (mod 3), 2:2*" +n+4, n=2 (mod 3),

with 1 <n <7 for 7 and 2 <n <7 for T'. Considering the fifth power, for 2 <n <7,

@ (T()) = (T () = 527" +2.

There appear to be similar formulas with A =1 for a" (7 (n)) depending on n modulo 3 for
r =6 and depending on n modulo 2 for » = 7. These are all compatible with Conjecture 5.2.
There are not obvious formulas of a similar nature when » =8 or r = 10, but our conjecture
predicts that the formulas would depend on n modulo 5 or 6. With only seven levels of the
tower and with the invariants taking a couple of levels to stabilize, we would not expect to
see periodic behavior. When r =8 and r = 10, the dimensions are quite close to a(r,p)dp*™
as expected. When r =9, as the denominator of «(9,2) =21/8 is a power of 2, we do not
make a prediction for the period. It appears that the period is 1, as for 4 <n <7,

(T = 29748, (T (m) = 22 410,

EXAMPLE 5.6. Consider the Zs-towers T : Fy —y = [2°] + [23] + [z] and T : Fy—y =
[2°] + [z]. Tt appears that Ago = 1/2, A\g4 = 1/3, and A9y = 1/2. Table 11 shows some
selected values of dq,,(7(n),Aaq,r) and 04.,(7"(n),Aq,r). These all support Conjecture 5.2,
which predicts that the tower will have period 2 (resp. 3, 2) when r =2 (resp. 4, 7). However,
there are now larger discrepancies. For example, it looks as if a?(7T(n)) = a?(T'(n)) =
3-22" /54n/2+ c(n) where c¢(n) =1/10 if n is odd and c(n) = —3/5 if n is even, except for
n=2,3.
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Table 12. “Constant terms” for Fy—y = [2°], p= 2.

Level: 1 2 3 4 5 6 7 8
53,8( ( ) O) —5/11 2/11 —3/11 10/11 —4/11 —5/11 2/11 —3/11
53,10( (n),O) —7/13 —2/13 5/13 —6/13 15/13 —5/13 —7/13 —2/13

Table 18. “Constant terms” for T and T', (p,d) = (2,19).

Level: 1 2 3 4 5 6 7
d19,9(7 (n),0) —1/2 8 8 8 8 8
819.0(T"(n),0) ~1/2 5 6 6 7 7 8

EXAMPLE 5.7. The tower Fy—y = [2®] is simple enough that we have been able to
compute with the eighth level, allowing us to see some slightly longer periods. When r =8
(resp. r = 10), observe that m(r,2) =5 (resp. m(r,2) = 6). Table 12 shows the beginnings of
periodic behavior of the expected period. This example is quite simple as the ramification
invariant is so small; we estimate that A3, =0 and the low levels of the tower do not appear
to have any irregularities relative to the rest of the tower.

EXAMPLE 5.8. When r is large, it is difficult to test Conjecture 5.2 as m(r, p) is often too
big to see periodic behavior given the number of levels we are able to compute. Furthermore,
as V() is nilpotent, for any fixed n, the genus of 7 (n) is equal to a” (7 (n)) for r sufficiently
large, which means that we would need additional levels to see the behavior for large powers
of the Cartier operator.

Consider the Zs-towers

T:Fy—y =[]+ "]+ 7]+ [27) + [27),
T Fy—y =[x+ [z'"]+ [2'°]

S

+
EN
v
=
+
)
X
+
5
_|_
=

We computed a” (7 (n)) for r <200 and n < 7. For r =13 and r = 17, we see the expected
behavior with periods 1 and 2 as predicted. On the other hand, for r = 125, our conjecture
predicts the period to be 1, but we cannot see this; d19125(7(n),0) and d19,125(7"(n),0)
do not appear to be constant. However, this is not so surprising as for n <5 we have that
a?’(T(n)) = g(T(n)) and likewise for 7. It is only for larger values of n that we would
expect to see the finer behavior of a'2°(7T(n)), and computing with n <7 only gives two
“interesting” levels.

ExaMpPLE 5.9. Our conjecture does not predict the period in the edge case that
m(r,2) = 0; this case appears more subtle. For example, «(9,2) =1/8 and hence m(9,2) =0,
while Table 13 shows that d19.9(7(n),0) = a®(T(n)) —19-22"73 for the two towers with
ramification invariant 19 in Example 5.8. It looks like the tower 7 has period 1 and A =0,
whereas 7’ has period 2 with A =1/2.

We have systematically tested Conjecture 5.2 against a collection of at least 221 basic

Z-towers where we analyzed at least five levels. (We analyzed seven levels for 55 of them.)
For each ramification invariant d, we picked one tower 7o where we had computed seven
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Table 14. Some observed discrepancies for basic Za-towers, r = 2.

d 3 5 7 9 11 13 15 17 19 21 23
Discrepancies: 0 {4,5} {3} {3,4,5} © {3,5} {3,45} {3} 0 {3} 0
Towers: 2 4 8 14 24 31 40 36 42 6 6

Table 15. Some observed discrepancies for basic Zs-towers, r = 3.

d 3 5 7 9 11 13 15 17 19 21 23
Discrepancies: 0 {2} 0 {2} {2,4} {2} {2} {2,3,4} {2,3,6} {2,3} {2,4,5}

Table 16. Some observed discrepancies for basic Za-towers, r = 4.

d 3 5 7 9 11 13 15 17 19 21 23
Discrepancies: 0 {5} 0 {4,5} {5} {4,5} {5,6} {4,5} {4,5} {4,5} {4,5,7}

levels and used it to estimate Ay, by computing'’

(0" (To(7)) = a(r,p)dp™*) — (a" (To(7 —m(r,p))) — a(r,p)dp*"—m"P))
m(r,p) '
If Conjecture 5.2 held for n > 7 —m(r,p), this ratio would equal Ag4,. Furthermore, if
Conjecture 5.2 holds and we have the correct Ay, for n large enough, g, (7 (n),Aa,r)
would equal ¢(n).

Tables 14-16 show the discrepancies we have found in our database for d < 24 and
r=2,3,4. Table 14 shows the number of towers under consideration with each ramification
invariant. Note that the smallest possible discrepancy is m(r,2)+1, so is 3 when r =2, 2
when r = 3, and 4 when r = 4. These tables support Conjecture 5.2 as the discrepancies
appear to only occur for relatively small n (7 is the largest potential discrepancy we would
see using our data). When r =5 (and m(r,2) = 1), we only see discrepancies at levels 2 and 3.

REMARK 5.10. In all of the examples we have computed, [04,(7 (1), \a.r) —da.r (T (n+1),
Adr)| <1 when r =2 (resp. <3 when r =3 and <2 when r =4).

5.2 Characteristic 3
Now, let p = 3. The evidence for Conjecture 5.2 is a bit weaker in characteristic 3 as our
computations are limited to at most five levels.

EXAMPLE 5.11. We begin by considering two basic Zs-towers with ramification
invariant 5. Tables 17 and 18 show the genus and the dimension of the kernel of the first 10
powers of the Cartier operator for the first five levels of these two towers. Table 19 shows
5a(r,3) and m(r,3). These examples support Conjecture 5.2.

For 1 <n <5, observe that

(3% —9)+ 21 +4, n odd,

(3*"—1)+2, n even,

@ (T(n)) = a*(T'(n)) = {
16

10 Recall that we predict that \g , depends only on d and 7, and not on the specific tower.
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Table 17. T : Fy—y = [x°] + [22?] with (p,d) = (3,5).

n= 1 2 3 4 5
(T (n)) 4 46 442 4,060 36,784
a*(T(n)) 2 19 154 1,369 12,304
a*(T(n)) 4 26 230 2,052 18,456
a®(T(n)) 4 31 275 2,461 22,145
a*(T(n)) 4 35 305 2,735 24,605
a®(T(n)) 4 39 326 2,930 26,365
ab(T(n)) 4 42 344 3,076 27,680
a’(T(n)) 4 45 362 3,197 28,712
a®(T(n)) 4 46 368 3,281 29,525
a®(T(n)) 4 46 374 3,358 30,197
a'®(T(n)) 4 46 380 3,422 30,756
Table 18. T': Fy—y = [2°] + [22*] + [22] with (p,d) = (3,5).
n= 1 2 3 4 5
(T (n)) 4 46 442 4,060 36,784
a*(T(n)) 2 18 153 1,368 12,303
a*(T(n)) 4 26 230 2,052 18,456
a3(T(n)) 4 31 275 2,461 22,145
a*(T(n)) 4 35 305 2,735 24,605
a®(T(n)) 4 39 326 2,930 26,365
a®(T(n)) 4 42 344 3,076 27,680
a’(T(n)) 4 45 360 3,195 28,710
a®(T(n)) 4 46 368 3,281 29,525
a®(T(n)) 4 46 374 3,358 30,197
a'®(T(n)) 4 46 380 3,422 30,756
Table 19. Constants for (p,d) = (3,5).
r 1 2 3 4 5 6 7 8 9 10
5a(r,3)  5/24  5/16  3/8  5/12  25/56  15/32  35/72 1/2  45/88  25/48
m(r,3) 1 2 2 1 3 4 1 2 5 2
whereas m(2,3) =2 as expected. Similarly, for 1 <n <5, we see
3(22n
BT () = a*(T'(n)) = §(3 1)4+2, nodd,
2(37"—=1)+1, n even.

Furthermore, for 1 <n <5, we have

a*(T(n))=a

5
12

YT (n) = —=(32"—9)+5.

We expect a®(T(n)) to depend on n modulo 3, and one might optimistically conjecture

that for n > 1,
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Table 20. Observed discrepancies for basic Zs-towers, r = 4.

d 2 4 5 7 8 10 11 13 14 16
Discrepancies: 0 0 {2} {2} 0 {2} {2} {2} {2} {2}
Towers: 4 25 13 40 25 25 25 36 25 36
d 17 19 20 22 23 25 26 28 29
Discrepancies: {2,4} {2} {2} {2,4} {2} {2} {2} {2} {2,3,4}
Tower: 36 36 36 47 37 47

This is consistent with our data, but is weaker evidence for Conjecture 5.2, as there is only
one multiple of 3 for which we have computed with 7 (n). As we have chosen the constant
term of the n =0 (mod 3) case so that a®(7(3)) is correct, that case is somewhat vacuous.
It is somewhat of a coincidence that a” (7 (n)) =a"(7T'(n)) for r = 2,3,4,5. These are not
equal when r =1, or when r =7 where we find
35 35
72 72
for 3 <n <5. When r = 10, we see a similar formula with the correct leading term, A =1/2,
and period 2. When r = 8, observe that for n =4,5,

a®(T(n)) = a®(T'(n)) = 32" /2+1/2.

This suggests that the a®(7 (n)) may have period 1, while the predicted period is m(8,3) =2
(This does not contradict Conjecture 5.2, as any function c¢: Z/mZ — Q may be considered

a (T(n)==(3*"-9%)+47 and a"(7T'(n)) = = (3%" —9%) 445,

as a function on Z/mlZ for each positive integer £.) There are no obvious periodic formulas
when =6 or r =9, but our conjecture predicts that these would depend on n modulo 4
or 5, so with only five levels of the tower, we cannot expect to witness periodic behavior.
In these cases, the dimensions are quite close to a(r,3)-d- 3" as expected.

We can systematically test Conjecture 5.2 against the collection of basic Zs-towers
described in §4.2 where we had computed invariants for four or five levels. For most of
these towers, we computed with the first five powers of the Cartier operator. (The unusual
case that m(r,3) =0 does not occur for r < 5.) For fixed d and r, we used one of the towers
T where we had computed five levels (often Fy—y = x?) to predict A4, by computing

(ar (T(5)) - a(r,p)dplo) - (a'r (T(5 - m(r,p))) - a(r’p)dp2(5—m(7yp)))
m(r,p) '
If Conjecture 5.2 holds for 7 (n) with n > 5—m(r,p) > Ny, this ratio is precisely Ay .
Using this prediction for Ag ., Table 20 shows all the discrepancies (recall Definition 5.4)
with » =4 and d < 30, and supports Conjecture 5.2. Note that in this situation m(r,3) = 1.
Similarly, Tables 21 and 22 support Conjecture 5.2 in that the formulas in the conjecture

depend on the parity of n. Note that it is not possible to have a discrepancy at level 2 in
this situation as m(r,3) > 1

Since m(5,3) = 3, we only consider the asymptotic behavior of a®(7(n)) as it is not
feasible to spot patterns with period 3 using only five levels. Out of all of the towers T we
analyzed, the maximum value of

—1 (5.2)
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Table 21. Observed discrepancies for basic Zs-towers, r = 2.

d 2 4 ) 7 8 10 11 13 14 16
Discrepancies: 0 0 0 0 0 0 0 {3} {3} 0
d 17 19 20 22 23 25 26 28 29

Discrepancies: {3} {3} {3} {3} {3} {3} {34} {3} 0

Table 22. Observed discrepancies for basic Zg-towers, r = 3.

d 2 4 5 7 8 10 11 13 14 16
Discrepancies: ) 0 {3} 0 {3} {3} ) U {3} {3}
d 17 19 20 22 23 25 26 28 29

Discrepancies: {3} {3} {3} {3} {3} {3} {3} {3} {3}

Table 23. Tq: Fy—y =[x with 3 <d <12, four levels.

Level: 1 2 3 4 Level: 1 2 3 4

93,5(7(n),0) —21/26 —5/26 —21/26 —5/26 0ds5(7(n),1/2) 53/78 —20/39 53/78 —20/39
04,5(T(n),0) —16/39 —10/39 —16/39 —10/39 d95(7 (n),1/2) 14/13 —15/26 14/13 —15/26
96,5(T(n),0) 5/13  —=5/13 5/13 —5/13 6115(7T(n),1/2) 73/39 —55/78 73/39 —55/78
075(7T(n),1/2) 11/39 —35/78 11/39 —35/78 d125(T(n),1/2) 59/26 —10/13 59/26 —10/13

is less than .0021 for n = 3, less than .0013 for n =4, and less than .00024 for n = 5. This
supports Conjecture 3.4 and that we have the correct main term in Conjecture 5.2.

5.3 Other characteristics
For p > 3, our computations are necessarily more limited in scope. Nevertheless, we record
several examples with p > 3 below.

EXAMPLE 5.12. When p =5, we compute that m(5,5) =2 and m(r,5) > 2 for r = 2,3,4.
Thus, we focus first on the case that » =5, where there is a hope of seeing periodic behavior
with just four levels of a Zs-tower. By eyeballing the towers Ty : Fy —y = x¢ with d < 12, it
looks like Ay 5 =0 for d <7 and \g5 =1/2 for 7 <d < 12. Table 23 shows that dq,5(7 (1), Aa,5)
appears to be periodic with period 2 (as expected) for these towers. This again supports
Conjecture 5.2.

For r € {2,3,4}, we can only meaningfully investigate the leading term. We computed

(T)
a(r,5)d5%"
for these towers: with n = 3, the maximum value was less than .000273 (resp. .000266, .0021)

when r =2 (resp. r = 3, r = 4). For n = 4, the maximum value was less than 6.4-107° (resp.
6.4-107°,9.5-107°) when r =2 (resp. r = 3, r = 4).

ExAMPLE 5.13. When p > 5, we were only able to compute with two levels. We
computed

a"(T(2)
a(r,p)dp*

1!

for a variety of basic Z,-towers with ramification invariant d.
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e When p =7, we analyzed the second level of around 1,000 Z;-towers. The above quantity
was always less than .02 for r € {2,3,4,5}.

e When p =11, we analyzed the second level of around 650 Z1;-towers. The above quantity
was always less than .003 for r € {2,3,4,5}.

e When p = 13, we analyzed the second level of 11 Zj3-towers. The above quantity was
always less than .0042 for r € {2,3,4,5}.

Again, this supports the formula for the leading term in Conjecture 5.2.

86. Beyond basic towers

n §84 and 5, we focused on basic Z,-towers due to their simplicity. In this section, we
provide computational evidence that Conjectures 3.4, 3.7, and 3.8 hold for other
monodromy-stable towers, and provide evidence that Philosophy 1.1 holds for
nonmonodromy-stable towers.

6.1 Monodromy-stable towers with the same ramification as basic towers

So far, we have focused on basic Z,-towers as they have a particularly simple description
using Artin-Schreier-Witt theory. Now, we consider more complicated Z,-towers that are
totally ramified over a single point and have the same ramification as a basic Z,-tower.
To do this, we pick basic Z,-towers Tpasic : F'y —y = Zle[cixi], and consider the related
Z,-towers

QU
s

d d—1 -1
Tmod:Fy—y:ch +Zd]pxj :Z ciz’,0,0,...) + (O,dj:cjp,(),...),

i=1 j=1

where we let d; be 0 or 1 at random when p{j (and d; =0 when p | j). The first levels
of these modified towers agree with that of the basic tower, whereas higher levels do not.
However, by Fact 2.2, we know that they have the same ramification breaks above infinity
(and are unramified elsewhere).

We did this extensively in characteristic p = 3, picking around 100 basic towers with
ramification invariants up to 19 and considering 10 modifications of each. We computed
a”(T(n)) for the first four levels of all of these towers and 1 < r < 10. The modified
towers always supported Conjectures 3.4, 3.7, and 3.8. In fact, we almost always found that
a” (Thasic(n)) = a" (Tmoda(n)). There were only some scattered examples where they differed,
and only for r = 8.

6.2 Towers ramified over multiple points

We now consider monodromy-stable towers of curves which are totally ramified over
multiple points. Because of the multiple points of ramification, we cannot use the program
described in §7. As it is quite slow to compute examples without this program, we content
ourselves with a couple of examples with a-numbers in characteristic p = 3 and a general
result in characteristic p = 2.

ExamMpPLE 6.1. Let p =3, and consider the towers over P%p defined by the Artin—
Schreier—-Witt equations

T:Fy—y=[2°]+[z7°] and T':Fy—y=[z"]+[z""].
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Table 24. Invariants of T, T',Ts, and Tz, characteristic 3,

levels 1-4.

n= 1 2 3 4
g(T(n)) 10 100 910 8,200
a(T(n)) 4 36 306 2,736
g(T'(n)) 12 120 1,092 9,840
a(T’(n)) 6 44 368 3,284
g(7}) (n)) 4 46 442 4,060
a(T5 (n)) 2 19 154 1,369
g(7—7(n)) 6 66 624 5,700
a('ﬁ(n)) 4 25 214 1,915

Using Magma’s built-in functionality for computing a-numbers, we can compute the
a-numbers of the first four levels of these towers. These are shown in Table 24, along with
data for the the basic towers T5 and T; given by Fy—y = [2°] and Fy—y = [7], respectively.
We were unable to investigate higher levels as Magma’s built-in functionality for computing
with the Cartier operator is much less efficient than the (inapplicable) methods of §7; for
example, computing a(7'(4)) took around 38 hours. (For reference, Section 7 includes a
systematic comparisons of the running time of our algorithm and Magma’s default methods
when they both apply.)
We have that «(3) =1/24. For 2 <n <4, notice that

a(T) = 5a(3)(3°" —9) +5a(3)(3*" ~9) +6 = %3% + %
a(T') = 50(3)(37" ~9) + Ta(3)(3*" ~9) 48 = ;3" + L.

These support Conjectures 3.4 and 3.7. Note that the a-numbers for 7 and 7" are almost
a “sum” of the a-numbers of the basic towers:'! we see that for 2 <n <4,

a(T(n)) = a(Ts(n)) +a(T5(n)) =2 and a(T"(n)) = a(T5(n)) +a(Tz(n)).

This supports Philosophy 3.1, as each point of ramification makes a contribution to the
a-number.

EXAMPLE 6.2. Consider the Igusa tower Ig in characteristic 3 as in Example 2.15. There
are two supersingular points of Ig(1) ~ X;(5); (this uses that p = 3), so the tower given
by T(n):=Ig(n+1) is totally ramified over two points and unramified elsewhere. The
ramification invariant at level n above each of the points is 9"~ — 1. We know that the
genus is

g(Ig(n)) =3-32~1 —4.3771 41,

Table 25 shows invariants of Ig(n) for those small values of n where we could compute it."?
In particular, notice that it appears a(Ig(n)) = 32(n=1) _ 1. Using Lemma 2.6, we see that

I Note that there is an isomorphism of 75 with the tower Fy —y = [z ~°] lying over the automorphism
z+— ! of PL.

12 The analogous computation of the a-number for level 4 (genus 2,080) ran for more than 1,005 hours,
using 23 GB of memory, without completing.
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Table 25. Invariants of Ig(n),
characteristic 3, three levels.

n= 1 2 3

g(Ig(n)) 0 16 208
a(Ig(n)) 0 8 80
a?(Ig(n)) 0 12 120
a®(Ig(n)) 0 14 144

nth break in the lower numbering filtration of 7 is 12-3"~! —4 above each of the ramified
points. Then, as 12«(3) = 1/2, Conjecture 3.7 predicts that the a-number of Ig(n) =T (n—1)
will be

(12+12)a(3)32" Y 4 ¢ = 32D ¢ for n>> 0.

Our data for a-numbers therefore support Conjectures 3.4 and 3.7. Likewise, it appears
that

3 32(7},—1) _ §

2
I =—-
o (g(n)) = )
in line with Conjectures 3.4 and 3.8. Similarly, for the third power, Conjecture 3.4 predicts
that a®(Ig(n)) is asymptotically 9/5-32(»=1), We compute that

a®(Ig(2)) a®(Ig(3))
TU82)) ~ 864, and 2800 o ggs,
9/5-32 M Ty

(Note that 23%"=1 — 2 = g3(Ig(n)) for n = 1,3, but for n =2 this expression is not an

integer. However, taking its floor gives a(Ig(2)).) Again, these support Conjecture 3.4 for

monodromy-stable towers with multiple points of ramification and reflect Philosophy 3.1.
To compute with this Igusa tower, we worked with the universal elliptic curve over X (5)

E:y? +(1+t)ay+ty =25 4+ ta”.

(Obtaining this equation is a relatively standard calculation, e.g., carried out in [S3, §2.2].)
To obtain the function field of Ig(n), we adjoin the kernel of the Verschiebung V" : E®") — E
to F,(t). We can obtain a formula for V' from the multiplication by 3 map on E, and then
iterate it (with appropriate Frobenius twists on coefficients) to obtain a polynomial with
the coordinates of ker V™ as roots. Given this description of the function field of Ig(n),
Magma can compute a basis for the regular differentials on Ig(n) and a matrix for the
Cartier operator with respect to this basis.

We can also prove that similar behavior for a-numbers in towers with multiple points of
ramification happens in characteristic 2 under a technical hypothesis (see Corollary 8.10).
Again, each point of ramification makes a contribution.

EXAMPLE 6.3. Let p =2, and consider the Zs-towers T : Fy—y = [23] + [z7%] +
[(z—1)73] and T': Fy—y = [2%] + [] + [#7] + [(x — 1)7°]. These are towers over the
projective line ramified over 0, 1, and oo. We have that do(7(n)) = doo (T (n)) =d1(T(n)) =
do(T'(n)) =271 +1, that di(T'(n)) = 2(22"~* +1), and that doo (77 (n)) = (22"~ +1)/3.
Table 26 shows data for the first four levels of these towers. (As there are multiple points
of ramification, we can only use magma’s slower generic methods, so look at fewer levels.)
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Table 26. Tower over P! ramified at three points,

p=2

n= 1 2 3 4
g(T(n)) 5 24 98 390
a(T(n)) 3 6 24 96
g(T'(n)) 5 24 98 390
a(T'(n)) 2 7 25 97

The a-numbers satisfy the formula (8.11) even though the technical hypothesis

Y (do(T(n)~1)/2>2g(T(n—1)) -2

QES

is not satisfied for n =4 (and similarly for 7).

6.3 Towers over other bases

We now briefly discuss Z,-towers whose base is not the projective line. A simple way
to obtain such towers is to start with a Z,-tower 7 over the projective line, and—for any
fixed m—forget the first m levels of the tower to obtain a Z,-tower over 7 (m). It is worth
pointing out that our conjectures are compatible with this procedure:

LEMMA 6.4. Suppose that T is a monodromy-stable Z,-tower totally ramified above a
set S, and for a fized integer m > 1, let T’ be the Zy-tower --- — T (m+1) — T (m). Then
T satisfies Conjecture 3.4 (resp. Conjecture 3.7 or 3.8) if and only if T' does.

Proof. This is essentially [KM2, Prop. 5.5], although we include a proof for the
convenience of the reader. Note that 7" is totally ramified ramified above a set S’ of points
in 7(m), and for each @ € S, there is a unique point @’ € S’ lying above it. As the Galois
group of the tower 7' is a subgroup of the Galois group of the tower T, we can directly
compare the lower numbering filtrations. In particular, do (7 (n+m)) =dg (T (n)).

Note that for a tower T ramified over @, having sq(7T'(n)) = dp"~'+c for n > 0 is
equivalent to sq(T(n+1)) —sq(T(n)) =d(p—1)p"~! for n>> 0. Using Lemma 2.6, we
compute

s/ (T'(n+1))) = sq/(T'(n)) = (do!(T"(n+1)) —do (T'(n)))p™"

= (do(T(m+n+1)) —do(T(m+n)))p™"

= (sQ(T(m+n+1)) —sq(T (m+n)))p™.
Since 7T is monodromy-stable, there exists dg € Q such that sq(7T(m+n+1)) —
so(T(m+n)) =dg(p—1)p"T™! for n large enough. Thus, we see that so/ (7' (n+1)) —
sg(T'(n)) = dgp*™(p—1)p"~! for n large enough and hence 7’ is monodromy-stable.
In particular, taking dg: = dgp®™, we have s (7" (n)) =dgp" ' +cg for n>> 0.

Now, notice that
a(r,p)dep*™ ™ = a(r,p)dop™";

the left side is the contribution of @ to the leading term of a” (7 (n+m)) predicted by
Conjecture 3.4, and the right side is the contribution of Q" to a”(7'(n)) predicted by
Conjecture 3.4. Thus, T satisfies Conjecture 3.4 if and only if 7' does.
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Table 27. Three genus 2 hyperelliptic

Curves.

¢ 9(0) a'(C) a*(0)
@ 2 0 0
Co 2 1 1
Cs 2 1 2

The implications for the other two conjectures follow from this and absorbing other terms
involving m into the unspecified constants. [

Investigating examples that do not arise in the above manner necessitates the use of
Magma’s native functionality for computing with function fields, rather than the program
described in §7 (which only works for Z,-towers over the projective line). We must therefore
limit ourselves to examples with p =2 in levels n <5.

ExamMpPLE 6.5. Working in characteristic p = 2 over k£ = F5, we consider the three
Zy-towers over hyperelliptic (=Artin-Schreier over P}) curves given by

1 1
Cr:y’—y=z—=— , Ti:Fz—z=|(a"+x)y),
r x—1
1
Cory’ —y=ua"~—, To: Fz—z=xy],
x
Cy:y?—y=2a", Ts: Fz—z=1y].

For i = 1,2,3, the curve C; is a genus 2 branched Z/2Z-cover of P}, and 7T; is a Z-tower,
totally ramified over the unique point Q; on C; lying over oo on P}, with (lower) ramification
breaks

22n=141
B T

(Indeed, in each case, the function has an order 5 pole at @); and is regular elsewhere.) In

dq,(Ti(n)) =5 (6.1)

particular,

2n—1

o(Tim) = 25—
for i =1,2,3 and all n > 1. Note that 7; is not a Zs-tower over P}: one can check (using
Magma or by hand'?) that the degree-4 cover 7;(1) — Pj} is not Galois for i = 2,3, and
is Galois with group Z/2Z x Z/2Z for i = 1. Table 27 summarizes some basic data about
the C;. This represents all possible behaviors, as a result of Ekedahl [E1, Th. 1.1] shows that
if V.=0on H°(C, Qé / ) for a hyperelliptic curve C over a perfect field k of characteristic p,
then 2¢g(C) <p—1if (¢9(C),p) # (1,2); in particular, there is no genus 2 hyperelliptic curve
in characteristic p = 2 with a-number 2.

+3-2"71 (6.2)

13 For example, if T3(1) — P} were Galois, there would be an automorphism o of k(7z(1)) with o(y) = y+1.
Then w := z+4 o (z) would be an element of k(73(1)) satisfying w? + w4+ 1 = 0, which is impossible as
F5 is algebraically closed in k(73(1))
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Table 28. Differences a” (Ti(n)) — (a(r,p)-5-22" +¢,.).

05,-(T1(n),0) —cr 05,»(T2(n),0) —cr 05,»(T3(n),0) —cr
r=1 2 3 4 5 r=1 2 3 4 5 r=1 2 3 4 5
n=1 -1/2 0 0 -4/7 -3/4 -1/2 0 1 10/7 5/4 3/2 4 4 24/7 13/4
2 0 0 1 5/7 1 0 1 1 5/7 1 2 5 6 47/7 8
3 0 1 1 =1/7 0 2 1 2 20/7 4 2 3 5 48/7 10
4 0 0 1 3/7 0 2 2 2 17/7 6 2 5 5 45/7 10
5 0 1 1 12/7 0 2 1 2 12/7 6 2 4 5 47/7 10

To investigate the behavior of a”(7;(n)) for i =1,2,3, we tabulate the differences

1/3, ifr=3,
5.+ (Ti(n),0) —c, = a"(Ti(n)) — (a(r,2)-5-2*" +¢,) where ¢, := / )
2/3, otherwise,
and «o(r,2) = 573y is as in Notation 3.3; the constant term ¢, was selected to render most

of the table entries integral.

If m(r,p) is as in Notation 5.1, we have m(r,2) =1 if r = 1,3,5, whereas m(2,2) = 2 and
m(4,2) = 3. The facts that the r = 1,3,5 columns in Table 28 appear to stabilize to constant
functions, and the r = 2 columns appear to be stabilizing to periodic functions with period 2
(with possibly nonzero linear term A-n when i = 2,3), support Conjectures 3.4, 3.7, and 3.8,
and suggest that a more precise variant of Conjecture 3.8 along the lines of Conjecture 5.2
should be true in this context as well. The r =4 columns appear to be less structured,
but they are nonetheless consistent with Conjectures 3.4 and 3.8, and a possible analogue
of Conjecture 5.2, which would predict a period of m(4,2) = 3 that large relative to the
modest number (n =5) of levels we have been able to compute.

REMARK 6.6. We note that the a-number formula (8.11) appears to hold for 7;(n) in
all levels n, despite the fact that the technical hypothesis (8.10) does not hold: indeed,
writing d,, := dg,(7;(n)) and g, := g(Ti(n)) (noting that these numbers are independent of
i by (6.1)-(6.2)), we compute

5.22n 41 5.22n -2
— (29, -2)= L —3-2"+2=3(1-2"),
3 3
which is negative for n > 1. Note that as 7;(0) is ordinary, one knows a priori that the
a-number of 77(1) is given by (8.11) due to Remark 8.11. For i = 2,3, it appears that

a(Ti(n)) = a(Ta(n)) +2

dn+1 -1
2

for all n (resp. all n > 3) when i = 3 (resp. ¢ = 2); in particular, the formula (8.11) appears
to be off by 2 for these two towers when n > 3.

EXAMPLE 6.7. Let C be the hyperelliptic curve over F3 given by the equation y? =
2% 4+ 22 +1. The function f = zy has a pole of order 7 at the unique point @ at infinity
on C. We obtain a Zs-tower 7 with 7(0) = C' from the Artin—Schreier—Witt equation
Fz—z=[f]. (Magma computes that Aut(7 (1)) = Ss3, so T (1) cannot be a Galois Z/3™Z-
cover of P! for any m > 2 and C is the only curve for which 7(1) is a Z/3Z-cover. This
shows that the tower 7 is not related to a Z,-tower over the projective line by adding an
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Table 29. The tower Fz —z = [xy] over C:y* =a® + 2% +1.
Level  a'(T(n) a*(T(n) a’(T(n) a'(T(n) a’(T(n)

1 3 5 7 8 9
p 24 38 47 51 53
3 213 321 386 430 464
4 1,914 2,874 3,450 3,832 4,107

extra layer or modifying the base). We can compute dg(7 (n)) using Fact 2.2 and check
that the tower is monodromy-stable. Table 29 shows some invariants of 7 (n) for small n.

This supports Conjectures 3.7 and 3.8 and exhibits very similar behavior to basic towers
with ramification invariant 7 like the one in Example 4.2. In fact, the a-numbers look
exactly the same, whereas a"(7(n)) for r > 1 exhibits slight variation. For example, note
that 7a(4,3) = 7/12 and that for n =3 and n =4, we have

A (T(n)) = % (32" —9) + 10,

6.4 Towers with periodically stable monodromy

We next compute examples with towers 7 which are not monodromy-stable. While
the behavior of a”(7(n)) in these examples does not exactly match that of monodromy-
stable towers as predicted by Conjectures 3.7 and 3.8, it nevertheless appears to be quite
structured, in line with Philosophy 1.1. We consider some selected towers with periodically
stable monodromy, although we do not attempt to explore this situation exhaustively.

EXAMPLE 6.8. Let p=2 and d be odd. We consider the tower

Ta: Fy—y =[]+ 3 p D72 = ) 4?9 1 P (69
i=1
This is ramified only over infinity. Using Fact 2.2 and Lemma 2.6, we see that u(74(n)) =
sn+1and s(73(n)) = sp, where s,,41 = (d+2)2" —2 if n is even, and s, 11 = (d+2)2"—1if n
is odd. (Note that for n odd, the value of u(73(n)) comes from the term s,,_p" 1~ (=2 =
PSn—1 appearing in the maximum in Fact 2.2.)
A straightforward computation with the Riemann—Hurwitz genus formula yields

d+2 (2?7 -1 5 (=DM ao1 7 d+1 /271 net1| 2" =7
9(Ta(n)) ) < 3 ) <2+ 5 ts 3 3 + 3| th

the second expression being visibly an integer. Using Corollary 8.10, we will be able to
prove that

a(Ta(n))

d+2 /2271 41\ 1(=2)"—1 (-1 -1
-4 ( : )+( ) +( ) , (6.4)

valid for all n and d. Note that to fit into the framework of our previous conjectures where
the a-number is a quadratic polynomial in 2", we would need the polynomial to depend on
whether n is even or odd because of the presence of the (—2)" term. For monodromy-stable
towers, Conjecture 3.7 predicts that the a-number is given by a single formula and does
not exhibit periodic behavior. However, as the monodromy in this tower has period 2, it is
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not surprising that the formula (6.4) for the a-number depends on the parity of n; indeed,
this is already the case for the genus.

Based on these formulae, and following the lead of Conjecture 3.4, we are led to guess
the asymptotic formula

: a”(Ta(n)) : a"(Ta(n))
lim = lim =1
n—oo a(’r‘,2)(d—{— 2)22'” n— oo ﬁ (%) 22n

with a(r,p) from Notation 3.3. This visibly holds for » = 1. For 2 <r <8, odd d with
3<d<35,and all 2<n <7, we computed that

a” (Ta(n))
) (%52) 220

—1| <27, (6.5)

6

This is consistent with the existence of a secondary term of the form ¢(n)-2" for some
periodic function c¢: Z/mZ — Q.

In light of the above, it is tempting to believe that Conjecture 3.8 may hold for arbitrary
monodromy periodic towers. Direct evidence for this is somewhat elusive due to the presence
of the secondary term of order 2™ and the fact that our computations are limited to small
values of n and p. Furthermore, we have only computed with the single tower 7Ty for each
value of d rather than looking at multiple towers with the same limiting ramification breaks.
The behavior is clearest for » = 5, where our computations support the exact formula

a”(Ta(n))

_d+2(5-22”_2+1> 1(=2)"1-1 (-7 -1
4 3

valid for all odd d with 3 <d <35 and all 3 <n <7, with the sole exception of (d,n)=(3,3).
In fact, further computation shows that this formula holds as well for all odd d in the range
3 <d <161 and all 3 <n <6, again with the sole exception (d,n) = (3,3).

Unfortunately, we were unable to find similar exact formulae for other values of r that
are uniform in d and n for n sufficiently large. Nonetheless, our limited computations
support that something like Conjecture 3.8 should hold for any monodromy periodic tower,
although the periodic “coefficient” functions occurring therein would appear to have a rather
complicated and subtle dependence on dg and the function cg(n) giving the (periodic)
upper ramification breaks as in Definition 2.9.

6.5 Towers with faster genus growth

Next, we collect data and make observations on a few towers with much faster genus
growth. In order to be in a situation where we can have some hope of identifying patterns,
we limit ourselves to cases where the genus growth is sufficiently regular. The rapid growth
of the genus in these examples limits our computations to characteristic p = 2 and levels
n < 6.

EXAMPLE 6.9. Let d be a positive odd integer. In characteristic p = 2, we consider the
towers

Tg:Fy—y= ZQ”[:BS"]

n>0
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Table 30. Leading constants for Tq.

T 1 2 3 4 5 6 7 8 9 10
a(r) 3 37 9L 63 &) 78 64 169 41 81
8 64 128 80 89 89 71 184 44 86

with s, := (d+2)-22"*+1 — 1. Note that s.(7g(n)) = s,,_1 for n > 1. Using the Riemann-
Hurwitz formula in the form of Lemma 2.7, we have

o(Ta(m) = T2 g1y 941

We computed a”(Tg(n)) for r < 10 and n < 6, with d € {1,3,5,7,9}. Inspired by
Conjecture 3.4 and Corollary 3.5, we first analyzed the ratio

a”(Ta(n))

@) on (6.6)

7

for each value of r and d, and all n < 6. For each fixed r, this ratio appears to stabilize
as n increases, to a value that appears not to depend on d. Working in level n = 6 and
truncating the resulting limiting values to six decimal places, we then used continued
fraction expansions to find best possible rational approximations with comparatively small
denominator, which leads to the following guesses for the main term of a”(74(n)).

DEFINITION 6.10. For r <10, define
d+2 n
Var(n) = {704(7“)23 J ,
where a(r) is given in Table 30.
Thanks to Corollary 8.10, we have the exact formula

_3 .d+2 d—5__d+2<32&%2+1>_1

8 7 14 2 7 2

a(Ta(n)) ;

for all n and d, which provides a proof that the ratio (6.6) tends to 3/8 as n —oc0. In a
similar spirit, we compute that

A(Titn+ 1) =8 (Ta(n) =373 7| T2 (6.7

for all d € {1,3,5,7,9} and 2 <n <5, and

7, 3<n<5,
(6.8)

a®(Ta(n+1)) —8a>(Tg(n)) = {3’ n=2,

for all d € {1,3,5,7,9}. These lead to the conjectural exact formulae
37 d+2 d—5_{d—1J_d+2<3T?m1”+5>_1+dnmd8—2

2 _ 7 7.2377, 3
o (Ta(m) = 51— 9y 8 8 7 8

for n > 2 (where d mod 8 denotes the least nonnegative residue of d modulo 8) and
91 d+2

223 1 =13(d+2)2°" 7 1

@ (Taln) = 1o+
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for n > 3. These conjectural formulae support the given values of a(r) for r = 2, 3; note that
these values of « arise naturally from (6.7) and (6.8) and the computed values of a”(7T3(n))
for n = 2. Thus, it is perhaps unsurprising that the values of o do not appear to satisfy a
simple formula.

REMARK 6.11. The special formulae

2(To(1)) = 3d+(_i)(d_l)/2 1 and @*(TA(2) :6(d+2)+%

hold for all (positive, odd) values of d less than 30 in levels 1 and 2, respectively. However,
we could not discern any pattern for the values of a3(73(1)) in level 1.

For r > 3, the differences a”(74(n+1)) —8a"(T4(n)) are comparatively small, but do not
seem to obey any obvious pattern. Nonetheless, for all values of r, d, and n for which
we computed a”(74(n)), this integer is remarkably close to vg,(n), and we tabulate the
differences a” (Tg(n)) —var(n) for 4 <r <10, d € {1,3,5,7,9,11}, and 1 <n <6 in Table 31.

6.6 Non-Z,-towers

In contrast, we now give an example of a sequence of Artin—Schreier covers in
characteristic 3 which are not part of a Zs-tower but have the same ramification as we
would see in a basic Z,-tower.

EXAMPLE 6.12. Take p=3 and k =F,. Let Cy = P}, with function field k(z), and for
1 <i <4, construct the curve C; by adjoining a root of y3 —y; = f; to k(C;_1), where f; =27,
fo =ax'y, f3 =2y, and fy = 2'%y5. It is straightforward to verify that C; — C;_; is
totally ramified over the point above infinity, with ramification invariants 7,49,427,3,829.
This is the same sequence of layer-by-layer ramification breaks and genera as for basic
Z3-towers with ramification invariant 7, which we looked at in Example 4.2. However, these
curves do not form the first four layers of a Zs-tower—one can check (using Magma, or
directly) that k(C2) is not normal over k(z). Similarly, define C! for 1 <i <4 using f] =27,
fy=aty + 2%, fi= (212 +22%)ys +2y1, and f; = 2'1%y3 +25ys + 22, where we have added
some lower-order terms to the Artin—Schreier equations for C;. Table 32 records invariants
of these sequences of curves.

They are much less structured that what we have seen for Z,-towers. For example, based
on the first three curves, it would be reasonable to guess that

5.9, 1_, 15
= E?) + ES + 6
as this holds for n =1,2,3 and the proposed formula has relatively small denominators. This
would predict that the a-number of Cy and C} would be 2,058. While a(C}) is close, a(C})

is considerably different. Higher powers of the Cartier operator display similar irregularity.
a(Ca) .14 a(Cy)
9(Ca) 9(C4)
much closer to % for basic Zs-towers having similar ramification. This suggests that it is
crucial that a sequence of Artin—Schreier covers actually form a Z,-tower in order to obtain

exact (or even just asymptotic) formulae for a"(C,,) when n > 0.

a(Cpn) = a(CY)

Furthermore, are around .361 and .355, respectively, whereas this ratio is

It is also curious that this ratio is not particularly close to $(1—p~)(1—p~2) =8/27~
0.296, the naive guess articulated below equation (1.5). Possibly that guess is wrong. On the
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Table 31. a"(Ta(n)) —va,r(n).

(a) d=1 (b)y d=3
n "l 4 ) 6 7 8 9 10 n Tl 4 ) 6 7 8 9 10
1 0 0 -1 -1 -1 -1 -1 1 0 0 -1 -1 -1 -1 -1
210 0 0 0o -1 -1 -1 210 2 2 1 1 0 -1
3| o -1 -2 -2 -3 -3 =2 3| -1 0 1 -1 -2 -2 -1
410 -3 -3 -3 -1 -3 -6 41 -1 0 0 1 4 -1 =5
5| —1 3 -4 -3 -4 -1 -4 5/-1 -2 1 -1 1 -4 3
6/ 0 -4 -3 -3 -7 -—-12 -14 6| 0 -3 2 2 =2 =7 =12
(c)d=5 (d)yd=7
24 5 6 7T 8 9 10 2l4 5 6 7 8 9 10
1 0 O -1 -1 -1 -1 -1 110 O -1 -1 -1 -1 -1
2 0 1 1 2 2 1 0 211 2 4 4 3 2
3 0 -1 1 -1 -2 =2 0 311 2 4 0 -1 -1
4 1 -2 0 1 4 2 -3 412 0 1 2 11 5 -2
5 1 -3 0 -1 -1 =2 6 513 -2 3 3 8 2 16
6 2 -3 4 4 -6 -7 -16 6/5 -1 9 11 7 -3 =5
(e)d=9 () d=11
W4 5 6 7T 8 9 10 W45 6 7 8 9 10
i1/1 0 -1 -1 -1 -1 -1 i1/1 0 -1 -1 -1 -1 -1
211 2 1 2 2 2 2 211 2 4 4 3 3 3
311 0 1 2 0 0 2 312 2 3 2 0 0 2
413 1 2 4 5 3 0 414 2 4 6 12 8 2
512 -1 4 6 9 2 2 514 0 7 5 8 7 17
6|4 1 11 12 6 -2 —18 6|7 2 18 17 10 4 —13
Table 32. Invariants of Cn, and C), for 1 <n <4.
1 2 3 4 1 2 3 4
a(Chp) 4 27 231 2,057 a(Cl) 4 27 231 2,025
a2(Cn) ) 39 364 3,329 aQ(Cn) ) 39 353 3,079
a3(Cn) 6 49 442 4,113 a?’(Cn) 6 49 429 3,806
a4(Cn) 6 54 490 4,550 a4(C’n) 6 54 479 4,305

other hand, these are examples in which n =4 and it would be reasonable to expect noise
on the order of 3% ~ 0.0123. Furthermore, we chose the Z/3Z-covers, so they could be
described by Artin—Schreier equations with relatively few terms, which is not the generic
behavior of random covers.
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§7. Computing with the Cartier operator in towers

Let k be a finite field of characteristic p, and let 7 be a Z,-tower over k. Suppose that the
base of the tower is the projective line (i.e., 7(0) = P}) and that 7 is totally ramified over
infinity and unramified elsewhere. In this section, we describe how to compute efficiently
with the Cartier operator on the space of regular differentials on 7 (n). The key difficulty
is that g(7(n)) grows at least exponentially in n (see Remark 2.8), so the dimension of the
space of regular differentials on 7 (n) quickly becomes intractably large as n increases. In
order to compute with enough levels of T to have any hope of systematically investigating
Philosophy 1.1, we must be as efficient as possible.

The Magma computer algebra system has extensive, robust algorithms for function
fields; in particular, it has the ability to compute with Witt vectors and Artin—Schreier—
Witt extensions in characteristic p, and to compute a matrix representation of the Cartier
operator on the space of regular differentials on the smooth projective curve associated with
any function field over k. Unfortunately, these algorithms are not efficient enough to compute
beyond the first few levels in a Z,-tower, which severely limits the computational support
they can provide for our conjectures. For example, Table 33 shows the time needed to
compute the a-number of the first few levels of the basic Zs-tower Tiime : Fy —y = [#7] + [2°]
in characteristic 3 using Magma’s default methods and using our more efficient methods.'*
(These computations also use substantial amounts of memory. For example, our method
used several gigabytes of memory for the fifth level.)

We have implemented our algorithm in Magma [BC2] in order to build on Magma’s
support of efficient computations with polynomials and efficient linear algebra over finite
fields. The key improvement is incorporating theoretic information about the space of
regular differentials in a Z,-tower. An overview of our algorithm is as follows.

1. Perform computations with Witt vectors to turn a description of a Z,-tower using Artin—
Schreier-Witt theory into a description of the tower as a sequence of Z/pZ-covers.
This uses techniques and functions developed by Finotti for performing computations
with Witt vectors [F'1], [F'2] which are substantially faster than the native Witt vector
algorithms of Magma.

2. Rewrite the sequence of Artin—Schreier Z/pZ-covers describing the tower in a standard
form (discussed in §7.2).

3. Using results of [M1] for Z/p™Z-covers of P} in the above standard form, write down
an explicit basis of regular differentials on 7 (n) (see §7.3).

Table 33. Approximate running times to
compute a(T (n)) for the Zz-tower Tyime :
Fy—y=[z"]+[2’].

Level Magma Our method
2 .08 seconds .01 seconds
3 12 seconds .16 seconds
4 48 hours 25 seconds
) 7 hours

14 These were run on a virtual server at the University of Canterbury equivalent to an Intel Core Processor
(Skylake) CPU at 2600 MHz with 67,036 MB of RAM.
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4. Recursively compute the images under the Cartier operator of a subset of this basis
which suffices to compute the image of any differential using semilinearity.

5. Build a matrix representing the Cartier operator and compute the kernel of its rth power
to obtain a” (T (n)).

In the remainder of this section, we explain these steps in detail.

REMARK 7.1. We will not present a careful asymptotic analysis of the running time
of the algorithm because it is still exponential in n like Magma’s default functionality.
Roughly speaking, the algorithm is polynomial time in the genus of 7 (n); this is very bad
as g(T (n)) grows exponentially in n. Therefore, this can only be practical for small n. (For
a basic Z,-tower with ramification invariant d, Lemma 2.13 says that g(7(n)) = ©(dp®")).
The advantage of our algorithm over the default methods available in Magma is that it is
much faster in practice, allowing us to compute further with basic towers and provide much
stronger evidence for our conjectures.

REMARK 7.2. For p > 2, the bottleneck in our algorithm is usually the computations
with the Cartier operator in step 4. Writing down the tower in standard form and carrying
out the linear algebra are substantially faster than carrying out the computations with the
Cartier operator for the fifth level.

When p = 2, other parts of the computation are the bottleneck. For example, we are able
to compute with the seventh level of many Zs-towers (and sometimes the eighth level for
very simple towers like the one in Example 5.7). In these examples, writing a basic Zs-tower
in standard form (step 2) is often the bottleneck, or occasionally the computations with
Witt vectors (step 1). For towers with faster growth like in §6.5 in characteristic 2, the
linear algebra computations (step 5) are actually the bottleneck.

REMARK 7.3. When Magma does a similar computation, most of the time is spent
finding a basis of the regular differentials on 7 (n). After Magma has pre-computed a basis
for the regular differentials on 7 (n) (e.g., in the course of computing the genus), Magma can
produce a matrix representing the Cartier operator and compute a” (7 (n)) quickly relative
to the time spent finding the basis.

REMARK 7.4. Our program assumes that the base of the Z,-tower is the projective
line and that the tower is totally ramified over infinity and unramified elsewhere. The first
assumption is essential to present the tower in standard form and use the results of [M1]
to write down a basis of regular differentials. If the tower has a different base, it may not
be possible to write it in standard form (see §7.2).

The second assumption, that there is only one point of ramification, is not essential, but
makes many of the computations simpler. In particular, it allows representing differentials
as polynomials instead of rational functions. As the bulk of computation time is spent
performing computations with these polynomials, this is an important simplification.

7.1 Computations with Witt vectors

The polynomials defining addition (and multiplication) for the length-n Witt vectors
become increasingly complicated as n increases. Such computations are necessary to convert
the Artin-Schreier-Witt description of a Z,-tower as in §2 into explicit Artin—Schreier
equations for each layer of the tower as a Z/pZ-cover of the previous layer. Magma has the
functionality to compute with Witt vectors, but we use the methods of Finotti [F'1], [F2],
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which are more efficient. The calculations with Witt vectors are rarely the limiting factor in
our computations—for example, these computations (using either method) for the fourth
level of the Zs-tower Tiime appearing in Table 33 take well under a second, whereas the
overall computation is substantially longer. It is only for a Zo-tower like 77 : Fy —y = [27]
in characteristic 2 where the ramification invariant is very small and the Artin—Schreier—
Witt equation is very simple that the computations with Witt vectors take substantial
time compared with the other parts of the computation. In particular, the Witt vector
computations needed to analyze the eighth level of 77 using Finotti’s algorithms took about
6 hours (and then around 40 more minutes to compute the a-number), whereas Magma’s
native functionality did not finish the Witt vector computations within 24 hours.

7.2 Standard form for Artin—Schreier—Witt towers

Let 7 be a Z,-tower over a finite field & of characteristic p ramified over S C 7(0).
For Q € S, let Q(n) be the unique point of 7 (n) over Q. The function field of 7 (n) is
an Artin—Schreier extension of 7(n —1), given by adjoining a root of the Artin—Schreier
equation

yg_yn:fn

for some f,, € k(T (n—1)). This representation is of course not unique: making the change
of variable vy, = y,, + z replaces f,, by f], = fn+ 2P —z but gives an isomorphic extension of
fields.

DEFINITION 7.5. We say that the functions (f1, fa,...) present the tower T in standard
form provided that for all positive integers n, we have dq(7 (n)) = ordg(,—1)(fn) for all
Q € S and f, is regular away from the points of 7(n —1) over S. We can analogously talk
about a single Z/pZ-cover being presented in standard form.

REMARK 7.6. Over the projective line, the theory of partial fractions allows one to
write every Z/pZ-cover of the projective line in standard form.

If do(T(n)) # ordg(n—1)(fn), it is always possible to locally modify the presentation of
T(n) — T (n—1) so that do(T (n)) =ordg, (f;,) by making a change of variable y,, = y,, + 2
where z has the appropriate local behavior at Q(n —1). However, it is not always possible
to do so at each ramified point while keeping f; regular away from the points of 7 (n —1)
above S (see [S2, §7], especially the second example after Proposition 49). Therefore, the
following result of Madden about towers over the projective line is initially surprising.

Fact 7.7 [MI1, Th. 2]. Every Z,-tower over the projective line can be presented in
standard form.

While it is essential for our computations that we work with a tower in standard form,
the description of the tower as a sequence of Artin—Schreier extensions produced by Artin—
Schreier—Witt theory need not be in standard form. Thus, a key step in our computations
is to explicitly rewrite the given Artin—Schreier—Witt description of a tower in standard
form.

Let 7 be a Z,-tower with base the projective line (with function field k(z)) that is
totally ramified over infinity and unramified elsewhere. Let P(n) be the unique point of
T (n) above infinity. Suppose that the first n— 1 levels of the tower are written in standard
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form using Artin-Schreier equations y? —y; = f;. We will describe how to rewrite the nth
level in standard form.
Let the nth level be given by an Artin—Schreier equation

Yn—Yn =1,
where f is a polynomial in z and yi,...,yn—1. Note that ordp(;)(y;) = ordp(i_1)(fi) =
doo(T (i) for i <n. The nth level is not in standard form precisely if ordp(,—1)(f) is a
multiple of p, which necessarily must be larger than d(7(n)) [S4, Prop. 3.7.8]. We may
effectively write it in standard form if we can always produce a function z on 7 (n—1)
with a pole of order ordp(,—1)(f)/p at P,_1 that is regular elsewhere: changing variables
by an appropriate multiple of z, which replaces f by f -+ (cz)? — cz, will cancel out the
leading term, after which we repeat this process. The proof of [M1, Th. 2] shows that there

exists nonnegative integers v and ay,...,a,_1 such that 2 =x"y{*,...,y>" 7" has the desired
valuation (see in particular [M1, Lem. 3] and the subsequent decomposition of L(a=1)).

REMARK 7.8. While conceptually easy, this is still computationally nontrivial as f can
have an enormous number of terms and require many iterations of the above procedure
before ending up in standard form. For example, putting the first five levels of the Zs-tower
Tiime : F'y—y = [27] +[2°] in standard form took a bit over 3 minutes.

7.3 A basis for regular differentials

As before, let T be a Z,-tower over a finite field £ of characteristic p whose base is the
projective line, totally ramified over infinity and unramified elsewhere. We identify k(x)
with the function field of 7(0), and present the tower in standard form as a sequence
of Artin—Schreier extensions given by y? — vy, = f,. Using the presentation of the tower
in standard form, Madden’s work [M1] gives us an explicit basis for the space of regular
differentials on 7 (n).

DEFINITION 7.9. Let .#, be the set of n+ 1 tuples of integers (v,aq,...,a,) such that:
1. 0<a; <p for all i;
2. 0<p < D P doolT())(p—1—0;) | —=p"—1.
j=1
For s = (v,aq,...,a,) € %y, define the differential

ws ="yt . yrde.

As T is presented in standard form, [M1, Lem. 5] gives the following result.
FacT 7.10. The set {ws: s € .7,} is a basis for HO(T(n),Q%-(n)).

7.4 A matrix for the Cartier operator
We continue with the notation of §7.3. To represent the Cartier operator on
HO(T(n),QlT(n)) as a matrix, it suffices to compute Vi(,,)(ws) for s € ;. As the Cartier

1

operator is p~'-semilinear, we have

v, ai An—1

V) (Yt .. ypndr) = Vi) (x”yf” Yy (Y — fn)“"d:v)

on a ) a n— —1
=>. < z‘n> Yn Vi) ("Y1 oy (= fa) ).
1=0
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Notice that x7y{* ...yn" 7" (— fn) ~*dz does not depend on y,,, and is a rational differential
one-form on 7 (n —1). Thus, we may compute Vi (,)(ws) by applying the Cartier operator
to (several) differentials on 7 (n —1). This gives a recursive method to compute with Vi,
ultimately reducing to computing with the Cartier operator on the base curve, the projective
line.

This is the most computationally expensive step of the algorithm. The genus g(7 (n))
grows (at least) exponentially with n, and we must evaluate the Cartier operator on g(7 (n))
differentials. Furthermore, the function f,, can have an enormous number of terms; its order
at the point above infinity is —d.o (7 (n)), which is also growing (at least) exponentially in n.

REMARK 7.11. The basic tower Fiy—y = [29] is always substantially faster to compute
with precisely because the polynomials f, presenting the tower in standard form are
(somewhat) simpler. For example, building a matrix representing the Cartier operator on
the fifth level of the Zsz-tower given by Fy—y = [2?] takes less than 15 minutes, whereas
doing the same for Fy —y = [2*] + [2?] takes more than 3.5 hours.

To implement the step described above, we first pre-compute

Vi) (@Y1t .oy da) (7.1)

with 0<v<pand 0<a; <pfor 1 <i<m for m=1,2,...,n. The computation at level
m makes use of the pre-computations at level m — 1. Note that the semilinearity of the
Cartier operator allows us to compute Vi) (ws) as a k(z)-linear combination of these
special values quickly.

REMARK 7.12. To give some context, for the basic Zs-tower Time : Fy—y = [27] + [2°],
the pre-computations up to level 5 took about 6 hours. Once they are completed, it takes
less than 4 minutes to use them to build a matrix for the Cartier operator on the fifth level
of the tower. As g(Ttime(5)) = 51,546, this matrix has more than 2.6 billion entries!

REMARK 7.13. As all of the p™*! pre-computations of (7.1) with0 <v <pand0<a; <p
for level m can be performed independently using the results from level m — 1, this step
would be amenable to parallelization.

7.5 Linear algebra over finite fields

Linear algebra over small finite fields is very efficient in Magma. For a basic Zs-tower
like Trime : F'y —y = [27] + [2°], whose fifth level has genus 51,546, computing the dimension
of the kernel of the 51,546 by 51,546 matrix representing the Cartier operator on the space
of regular differentials takes about 1.5 minutes. Some of the matrices we consider, such as
those in §6.5, are of course even larger, and consume many gigabytes of memory in storage.

88. Theoretical evidence

In this section, we study the interaction of the trace map on differential forms with
the Cartier operator in Artin—Schreier extensions. We use this to provide theoretical
evidence for our conjectures about the g-number in characteristic 2, in particular proving
Conjecture 4.1 for basic Zs-towers and more generally proving Conjecture 3.7 for Zs-towers.

The following fact is standard and will be used repeatedly (see, e.g., [BC1, Lem. 3.7]).

Fact 8.1. Letm:Y — X be a Z/pZ-cover of curves over a perfect field & of characteristic
p, with Artin—Schreier equation y? —y = . If the defining equation is in standard form at a
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branch point ¢ with ramification invariant dg (i.e., ordg(¢) = —dg), then a meromorphic
p—1

differential w = Zw,’yi on Y is regular above @ if and only if
i=0

(p—1—i)dq

ordg(wi) > — { 5

-‘ for0<i<p-—1.

8.1 Vanishing trace

Let m: Y — X be a Z/pZ-cover with branch locus S, and for @ € S, let dg be the
ramification invariant above Q.

Associated with the finite map 7 is a canonical Ox-linear trace morphism 7,23, s Q% Ik
which is dual, via Grothendieck—Serre duality, to the usual pullback morphism Ox — 7,0y
on functions. We will write 7, for the induced trace map on global differential forms.
Note that the Cartier operator is induced by the trace morphism F, attached to absolute
Frobenius; since Frobenius commutes with arbitrary ring maps, it in particular commutes
with 7 and it follows that the trace map commutes with the Cartier operator. We will use
the following formula repeatedly

T, = Z g (8.1)
9€EZ/pZ

In characteristic 2, we can be very explicit about the kernel of the trace map.

LEMMA 8.2. Ifp=2, the kernel of m. on H(Y,Qy) is isomorphic to H*(X, Q% (X ges

[d/211Q1))-

Proof. For Q € S, locally express the cover as an Artin-Schreier extension y? —y = f
in standard form at @ with ¢g*y =y +1 for the nontrivial element g € Z/2Z. A general
meromorphic differential on Y may be written as 7 = wg + yw; with wg,w; meromorphic
differentials on X. By (8.1), m.n =0 forces w; = 0, and 7 is regular at @ if and only if
ordg(wo) > —[d/2] (see Fact 8.1). 0

We next analyze the trace of differentials killed by the Cartier operator.

THEOREM 8.3. Ifne€ HO(Y,QL) is killed by Vi, then for every branch point Q € S, we
have ordg(m.(n)) > dg — [dq/p| with strict inequality when dg = |dg/p] mod p.

Proof. We may work locally at (), where the extension is given by an Artin—Schreier
equation y? —y =1 with d :=dg = —ordg(v0). We write d = pg+r with 0 < r < p, and
decompose

p—1
n= Zwiyz
=0

with the w; differentials on X. If 7 is regular above @, Fact 8.1 implies that ordg(w;) >
—[(p—1—1)d/p]. Furthermore, substituting y = y” — 1 in the expression for n above, and
using the fact that V is additive and p~!-linear, we compute (as in [BC1, Lem. 4.1]) that

vy(n):j;l I;z;é(g)vx(wj(_w)a‘—i) Y.
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The assumption that V3 () =0 implies that Vx(w,—1) =0 and that for 0 <i <p—2,

Vielopma (-0 == 3 (1) Vi s (-0 (5.2

j=i
It is straightforward to check that the order of vanishing of the right side of (8.2) at @ is
at least ordg (Vx (wp—2(—1)P~27%)), from which we deduce (replacing i with p—1—1) that

(i—L)d+[d/pl] . (i—r+q+1
p —‘ _—(z—l)q— ’7]9 —‘ (8.3)

m%Wquvwmz—{

Let u be a uniformizer at Q. We may write —¢ = cu~% with ¢ € kX and v a one-

unit in the local ring at Q. Working in the complete local ring at @, as ptd Hensel’s

—d d

lemma implies, there exists a one-unit w with w=% = v, whence —1¢) = cu™%w =% = ¢z~ with

z = uw a uniformizer at (). Let ; be the least nonnegative residue of ir modulo p, so that
id=i(pg+r) =p(ig+[ri/p]) +r;; then
Vx (wp—1(—)") = Vx (wp_lciz*di) = /Py —a=lri/elyy (wp—12""7).

We obtain

ordq (Vi (wp—1(—v)")) = —iqg — ri/p] + ordg(Vx (wp—12"")). (8.4)

Combining this with (8.3) gives

As z is a uniformizer, the set {z'}o<i<) is a p-basis for o x,Q =~ k[[2]], so we may write
_ dz
wpr = (fz+ f22 4+ fy 2P 1+f52p)7> (8.5)

where f; are local functions. Since Vx (wp—1) =0, we have f, =0, and we compute
. dz
V(wp,12 l):fmj'

Therefore, we conclude that for 1 <i<p-—1,

ordo(fr) —1 > g+ {’;J - [(Z_Wp*q“w (8.6)

Let s; be the least nonnegative residue of (i —1)r + ¢+ 1 modulo p, so that

) 3 07
-‘ :(i—l)r—l—q—l—l—si—l—{p 57

[(i—l)r—i—q—&-l
0, 81‘20.

p
We find

OI“dQ(ffini—Z) 2pq+p<sz _ {(2)744_(14_-‘ +1> +7ri—p VZJ -1
z P P P

(i—l)r+q+1w

:pq-f—ri—l-p—l—p’V »
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, S 0
qu+7‘i+p—1—(i—1)r—(q—l—1)+si—{p 7&0
y Si =
, S 0
=(pq+r)(q+1)+p1+si{p 7&0
, S =
Si_]-u Si#07
=d—[d/pl+
p—1, s, =0.

If ¢ # r mod p, we claim that there exists ¢ with 1 <i <p—1 and s; = 1. Indeed,
i=(1—¢qr~! mod p) does the trick. On the other hand, if ¢ =r mod p, then (i —1)r+¢=
ir mod p, which is never 0 mod p, so that s; # 1 for all 4 with 1 <7 <p—1 in this case. We
conclude that

ordg(wp—1) > d— {d-‘ ,
p

and that the inequality is strict if ¢ = r mod p, or what is the same, if |d/p| =d mod p. [

COROLLARY 8.4. Suppose that Z(dQ —[dg/pl) > 29(X) —2, with strict inequality

QEeS
when dg # |dg/p) mod p for all Q € S. If n € HY(Y, Q%) is killed by Vi, then m.(n) = 0.

Proof. As the differential 7, (n) is regular when 7 is, the corollary follows immediately
from the fact that for an effective divisor D, one has HY(X,Q(—D)) = 0 whenever

deg(D) > 29 —2. 0
Finally, for a Z,-tower 7 totally ramified over a nonempty set S, we investigate the
hypothesis
Y (do(T(n+1)) = [do(T(n+1))/p]) > 29(T (n)) - 2. (8.7)
QES

For convenience, we define

Ap =Y (do(T(n+1)) = [do(T(n+1))/p]) — (29(T (n)) - 2).
QES

LEMMA 8.5. Suppose that there exists an integer N such that

D (sQ(T(j+1)) = 250(T(4)) > 29(T(0)) =2+ #S  for all j > N. (8.8)
Qes

If (8.8) is an equality for all j > N, assume moreover that Ay > 0. Then T satisfies (8.7)
forn>0.

Proof. Aswe only deal with one tower in this proof and its corollary, to simplify notation,
we will let dg ., (resp. sQ.n, gn) denote dg(7T(n)) (resp. sq(7T(n)) and ¢(7(n))). From
Lemma 2.6(2), we get for @ € S that

dQ.n+1— [dgn+1/P] = (5Qn+1 = 5Qn)(P") +dg.n— [dgn/pl,
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and by induction that
n

A1 — [dom+1/P] = Y (sq,j+1—5q.5)e(p?) +do,n — [do.N/p].
j=N

From Lemma 2.7, we obtain

(29n—2) =p" (200 — 2) + #SE" = 1)+ > _ > _0(p7)s0.;-
QEeS j=1

Therefore, we conclude that for n > N,

Ap=An+ > > (sqir1—250,)e(’) = (0" —p") (290 —2+#S).  (8.9)
J=N4+1Qes

If ¢ is any constant with > 5 ¢(sq,j+1 —25g,;) > ¢ for all j > N, then we obtain
A, > A+ " —pY)(c— (290 — 2+ #8S)).

Our hypotheses ensure that we may take ¢ > 2gg — 2+ #S5, and in the case of equality, that
Ay >0, so it follows that A,, > 0 for all n sufficiently large; that is, (8.7) is satisfied for
n > 0. i

COROLLARY 8.6. If p>2, then (8.7) is satisfied for n > 0.
If p=2, suppose that T is monodromy-stable with sq(T (n)) =dgp" ™ +cq forn>0 for
each Q € S. Then (8.7) is satisfied for n>> 0 provided

D (=) >2g0 -2+ #S8.

QEeS

Proof. 1f p> 2, then sq ji+1—25q,; > $q,; as sQ,j+1 > Psq,;- Hence, 3 o s(sQn+1 —
25¢,n) is larger than 2gg — 2+ #S for n sufficiently large.

If p=2 and 7 is monodromy-stable, we compute that sq j11 —2s¢ ; = —cg. (Note that
we must have cg <0 as sg jy1 > 2sQ7j.) The claim follows from Lemma 8.5. U

In particular, notice that (8.7) holds for basic towers over the projective line in
characteristic 2 as the genus of the base curve is 0, the tower is ramified only over infinity,
and co. = 0. It is also satisfied for any Zs-tower over P! with #S =2, since Ay > 0 and
(8.8) holds automatically as the right side is 0 and the left side is nonnegative.

REMARK 8.7. Consider a sequence of positive integers {s, } such that ptsg, Sp+1 > psn,
and whenever p divides s,,11, we have s,41 = ps,. Then, using Fact 2.2, we can construct a
local Artin—Schreier—Witt extension such that the breaks in the upper ramification filtration
are s,. This shows that there is a large variety of potential ramification behavior in Z,-
towers. In light of this, Lemma 8.5 shows that not satisfying condition (8.7) for n>>0is a
very restrictive hypothesis on the ramification of a tower.

For example, consider monodromy-stable towers over a fixed base with fixed branch
locus S. Writing sq (7 (n)) =dgp™ ! +cg for Q € S, if we fix each dg € Q, then there are
finitely many choices of {cq }ges for which the tower does not satisty (8.7) for n>> 0. Using
Corollary 8.6, this is because we must have cg <0, and for fixed dg the requirement that
dop™ ' +cg € Z for n > 1 gives a bound on the denominator of cg.
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8.2 a@-numbers in characteristic 2

NoTATION 8.8. Let C be a curve over a perfect field k£ of characteristic p. Given an
effective divisor D on C, we let a"(Q5 (D)) denote the dimension of the kernel of V5 on
HO(C,QL(D)). We use a(2,(D)) as a shorthand for a'(Q4(D)).

We now specialize to working over a field of characteristic p = 2, where we can compute
the a-number in a cover using the base curve.

PROPOSITION 8.9. Suppose that w:Y — X is a Z/2Z-cover totally ramified over S C X.
For Q €S, let dg be the ramification invariant above Q. If

S (g 1)/22 29(X) 2, (5.10)
QeSs
with strict inequality when dg =1 (mod 4) for all Q € S, then

dQ—l-l
2

aV)=a| Q% | D

QES

@]

Proof. The a-number of Y is the dimension of the kernel of the Cartier operator on
H°(Q3). By Corollary 8.4, this is a subspace of the kernel of the trace map, and so by
Lemma 8.2,

av)=a |k | ldo/2@) | | =a [0k [ X 20l ). 0
Qes Qes

COROLLARY 8.10. With the notation and hypothesis of Proposition 8.9, we have

dog—1 do+1
av)= Y Q4 + > Q4 : (8.11)
Qes Qes
dg=1(mod4) dg=3(mod4)

Proof. By definition, the Tango number of X is

n(X) :=max Z {ordz(df)J D fER(X)—k(X)P

zeX (k) p

In [T1], Tango proves that whenever D is a divisor on X with degD > n(X), the
pullback map along absolute Frobenius F : HY(X,Ox(—D)) — H' (X, Ox(—pD)) is injec-
tive. Applying Grothendieck—Serre duality, the Cartier operator Vy : H(X,Q% (pD)) —
HO(X,Q% (D)) is then surjective for such D. When deg(D) > 0, the Riemann-Roch
formula thereby yields an exact formula for the dimension of the kernel of Vx on
H°(X,Q%(pD)), which may be parlayed into a formula for the dimension of the kernel
of Vx on H(X,Q% (D)) for any D’ of sufficiently large degree (see [BC1, Cor. 6.13] for the
precise statement). As p =2, we have [(29(X)—2)/p| = ¢(X)—1>n(X) thanks to [T1,
Lem. 10], and the hypothesis (8.10) ensures that the divisor D" := 3%, g %[Q] has large
enough degree to apply [BCI, Cor. 6.13], whereby Proposition 8.9 yields the stated exact

formula for a(Y). 0

REMARK 8.11. This formula was already known to hold when X is ordinary [V, Th. 2]
without needing the hypothesis of equation (8.10).
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For a Zs-tower T, we may apply Corollary 8.10 to compute a(7 (n)) for n>> 0 in terms
of the ramification of the tower, assuming a mild technical hypothesis on the ramification
(recall Lemma 8.5 and Corollary 8.6). This is exactly as we would expect based on
Philosophy 1.1. Since the ramification may be quite poorly behaved (see Remark 2.8), while
the a-number in 7T is “regular” in the sense that it depends on the ramification breaks of
the tower, the resulting formula (like the general Riemann-Hurwitz formula of Lemma 2.7)
may not be especially simple. Of course, for towers whose ramification breaks behave in a
regular manner, the a-number—Ilike the genus—will admit a simple formula.

COROLLARY 8.12. Let T be a basic Zo-tower with ramification invariant d. Then, for
n>1,

%22”—1-%, d (mod 4),

1
L2 4 423 4 =3 (mod 4),

(8.12)

a(T(n)) = {

which proves Conjecture 4.1 when p=2. More concisely,

A(T(n)) = a2 (%"~ 4) +a(T(1) ~ 5 = S (2D 1) 4a(T(1)) - 5.

Proof. By Corollary 8.6, basic towers satisfy the hypothesis (8.7). Then combine
Corollary 8.10 with Lemma 2.13, and note that a(7 (1)) = (d—1)/4 if d=1 (mod 4) and
a(T(1))=(d+1)/4if d=3 (mod 4). 0

COROLLARY 8.13. Let T be a monodromy-stable Zo-tower totally ramified over S C
T(0), so for Q € S, we have sq(T(n)) =cq+dgp™™ " for n>>0. Suppose that > ges(—cqQ)>
29(T(0)) —2+#S. Then there exist a,c € Q such that a(T (n)) = a2?" +c for n>> 0, and

do

take a = —=.

we may take a Z 24
Qes

This proves Conjecture 3.7 when p =2 and Conjecture 3.4 when p =2 and r = 1 under

the additional technical assumption that >, g(—cq) > 29(T(0)) — 2+ #5.

Proof. Combine Lemma 2.10 with Corollary 8.10, and note that the hypotheses in the
latter are automatically satisfied for n > 0. O

ExaMPLE 8.14. We apply this to the Igusa tower Ig in characteristic 2, working over
k =F5. We rigidify as in Example 2.15 by adding an additional I';(5)-level structure, and
obtain a Zo-tower

o= Ig(3) — Ig(2) — Ig(1) ~ Py,

totally ramified over the unique supersingular point of Ig(1) and unramified elsewhere, with
g(Ig(n)) =22""2—2"+1 and d(Ig(n)) = 22"~ — 1. As there is a single point of ramification,
the technical hypothesis (8.7) holds (Corollary 8.6), so applying Corollary 8.10, we obtain
a(Ig(n)) = 22"~ for n > 1.

REMARK 8.15. Examples 6.3 and 6.5 look at examples of monodromy-stable Zs-towers
which do not satisfy the technical inequality in Proposition 8.9. They still appear to
satisfy the conclusions of Corollary 8.13, although not always the precise formulas given by
Corollary 8.10.
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8.3 Powers of the Cartier operator
The previous techniques do not suffice to compute a" (7 (n)) for a Zs-tower when r > 1.
We can currently only prove the following limited lemma.

LEMMA 8.16. Let T be a Zo-tower with T(0) =PL and branch locus S.
1. Writing D=3 g W[Q], for any r > 1, we have
r r do(T(1)) +1
T() =0 (@ (D) = deg(D) - 3 [“TEEL],
QEeS
2. Suppose that T furthermore satisfies dg(7T(2)) =3dg(T (1)) for all Q € S and that

do(7(1))—3
C;QQ > —4. (8.13)

If Q(1) is the unique point of T(1) over Q € S and D' = ZQeSW[Q(l)],
then

a*(T(2)) = a*(Q ) (D) = quleJ " Vdclzfj 7J)

Qes

The hypothesis dg(7(2)) = 3dg(T (1)) says that dg(7(2)) is as small as possible (see
Remark 2.8) and is the behavior seen in basic Zs-towers. The inequality (8.13) is satisfied
unless there are a large number of ) € S with dg = 1. The expression involving floor
functions avoids a large number of case-by-case formulas depending on dg modulo 16.

Proof. We may assume that k is algebraically closed as a"(7(n)) is independent of
extension of scalars. As T(0) = P}, we may represent the extension of function fields
corresponding to 7(1) — 7(0) as an Artin—Schreier extension y? —y; = f1 in standard
form (recall Definition 7.5). Then every meromorphic differential on 7 (1) may be written
W = wo + 1w with wy,w; meromorphic differentials on P1: if w is regular, then w; is
a differential on P,l'C without poles by Fact 8.1. That is, w; = 0 and we conclude that
HO(T(l),QlT(l)) = H(P},Qp:(D)). The formula then follows from the usual, explicit
description of H°(P},Qp. (D)) using partial fractions and a straightforward calculation
with the Cartier operator.

For the second assertion, write the extension of functions fields corresponding to 7 (2) —
T (1) as y2 —y2 = fo with fo a function on 7 (1) and note that the hypothesis of Corollary 8.4
holds for 7(1) — T (0) by inspection. It also holds for 7(2) — 7 (1) using hypothesis (8.13) as

3" do(T(2) ~ [do(T(2)) /21 = 3 XeTIW=Lang 9907 (1)) ~2= 44+ 3 (do(T(1)) +1).

Qes QEeS QEeS

By Fact 7.7, we may assume the functions (fi, f2) present 7(2) — 7 (0) in standard form, or
what is the same that ordg1) fo = —3dg(7 (1)) for all Q € S. For w = wo +yow: € HO(QIT(Q))
in the kernel of V72—(2)7 we know that 7, (Vr(2)(w)) =0 by Corollary 8.4. We compute that

Vir(2) (wo +yaw1) = Vi) (wo + (y3 + f2)wi) = V1) (wo + fowr) + y2 Vi1 (wi)
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and thus V7 (1)(w1) = 0. Again using Corollary 8.4, we conclude that 7,(w;i) = 0; in other
words, wy is the pullback of an element (also denoted wy) of H?(Q} 7(0)(D)). We also obtain

V%(z)(w) = Vf%u)(wo + faw1) = 0. (8.14)

Suppose w; # 0. We know that ordg;)(w1) is even as Vi(q)(wi) = 0. (Con81der the local
expansion at Q(1).) A small calculation shows that ordg(1)(w1) =dg(T (1)) +1 (mod 4) as
w is the pullback of a differential on 7/(0). As ordg(1)(f2) = —3dq (7T (1)), we conclude that
ordg1)(fawi) = —3dq(T (1)) +do(T(1))+1=3 (mod 4) as dg(7 (1)) is odd. By considering
the local expansion at Q(1), we conclude that ordQ(l)(Vf-(l)(fgwl)) (—3dg(T (1)) -3+
ordg(1y(w1))/4. By Fact 8.1, we know that ordgi)(wo) > —w and hence using
(8.14) we conclude that

—3dg (T (1)) +ordg(wn) > — 4T W) 1

Summing over ) € S, we conclude that

deg (w1

3do(T (1) -1
y> 3 3T =1

However, as this is larger than 2¢g(7(1)) —2= —4+3 5 5(do(T (1)) +1) by (8.13), there
are no nonzero differentials of this degree. Thus, w; =0 and w is the pullback of a global
section of Q%_(l)(D’ ) by Fact 8.1. We therefore conclude that

a*(T(2)) = a*(Qyy(D")).
It remains to compute aQ(QlT(l)(D’)). Set
pr= v Metlo v etlg ua = Y @

Qes 4 QES 4 QeS

dg=1(mod4) dg=3(mod4) dg=3(mod4)
so that D' =2D" 4+ R. Observe that deg D" > g(’T(l)) —1as

Qes QeSs QesS
dg=1(mod4) dg=3(mod4)

Thus, by Tango’s theorem [T1, Th. 15], we conclude that

Vi) : H Q1) (D) = H° (1) (D" + R))

is surjective. As we know the dimension of the domain and codomain, the kernel of this
map has dimension deg(D"”) and we conclude that

a* () (D)) = deg(D") +a' (1 (D" + R)). (8.15)

Thus, we are reduced to studying the kernel of the Cartier operator on 7(1).
Consider a rational differential w = wg + w1y on T (1) with wp,w; rational on P!. If
Vr)(w) =0, then Vi) (wo + fiwr) +y1 V(o) (w1) =0, and we get that

Vry(wi) =0 and  Vi(g)(wo) = V) (fiwr).
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Note that the condition ordg;yw > —n is equivalent to ordgw; > —[n/2] and ordgwy >
—[(n+dg)/2]. If w e H(Qp,(D" + R)), then we claim w; = 0. As Vi g)(w1) =0, we

have that ordg(wi) = 2m is even for @ € S, and hence ordg (Vo) (fiw1)) = dQH +m.
On the other hand, from the definition of D” 4+ R, we deduce that ordg(wo) > [7dQ /8].
(Throughout, we implicitly verify various simplifications of floor and ceiling functions by
checking them for all congruences classes of dg modulo the denominator.) Therefore, we
see that for Q € S,

1|7d
ordg V(o) (wo) > — {2 {SQ-H

The requirement that V(wg) = V(fiw;) then forces

s datl [177a]] L,
- 2 21 8 -

note that to check the last inequality, it suffices to check it for dg < 16. Therefore, wy is

regular on 7(0) = P!, and hence w; = 0 as claimed. This implies that

@Oy (D + R) =l | 0, (3 [Tdo/811Q) | = 3 15 [7da/81).

Qes Qes
Combining this with equation (8.15) gives that

a?(T (2)) = deg(D" +Z do/8]) =3 Q?’dQ;lJ 4 Vdcl?;q),

QeSs QeS

where again we verify the simplifications of the floor functions by checking on congruence
classes of d modulo 16. U

This is the limit of what can be shown using just ramification information for the
tower. In Example 5.5, we saw basic Zs-towers 7 and 7’ over the projective line with
identical ramification (which satlsfy the hypotheses and conclusions of Lemma 8.16) such

that a®(7 (3)) # a*(T"(3)) and a*(T(2)) # a*(T"(2)).
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