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Heat and desiccation tolerances predict bee 
abundance under climate change

Melanie R. Kazenel1 ✉, Karen W. Wright1,2, Terry Griswold3, Kenneth D. Whitney1 & 
Jennifer A. Rudgers1

Climate change could pose an urgent threat to pollinators, with critical ecological and 
economic consequences. However, for most insect pollinator species, we lack the 
long-term data and mechanistic evidence that are necessary to identify climate-driven 
declines and predict future trends. Here we document 16 years of abundance patterns 
for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines 
with experimentally determined heat and desiccation tolerances, and use climate 
sensitivity models to project bee communities into the future. Aridity strongly 
predicted bee abundance for 71% of 665 bee populations (species × ecosystem 
combinations). Bee taxa that best tolerated heat and desiccation increased the most 
over time. Models forecasted declines for 46% of species and predicted more 
homogeneous communities dominated by drought-tolerant taxa, even while total 
bee abundance may remain unchanged. Such community reordering could reduce 
pollination services, because diverse bee assemblages typically maximize pollination 
for plant communities3. Larger-bodied bees also dominated under intermediate to 
high aridity, identifying body size as a valuable trait for understanding how climate- 
driven shifts in bee communities influence pollination4. We provide evidence that 
climate change directly threatens bee diversity, indicating that bee conservation 
efforts should account for the stress of aridity on bee physiology.

Reports of alarming declines in terrestrial arthropod biodiversity high-
light the need to pinpoint which insect taxa and ecosystem services are 
most threatened and why5. Bee declines are particularly concerning, 
because bees are the most important pollinators of many wild and 
agricultural plants6,7, accounting for billions of dollars in crop produc-
tion annually8. Bumblebee declines and honeybee colony losses are 
well-documented9–11, and some evidence indicates decreasing bee 
diversity in Europe and North America12,13. However, for most of the 
world’s approximately 20,000 bee species, more than 98% of which 
are neither bumblebees nor honeybees14, we lack the data to assess 
trends in abundance or causes of biodiversity declines.

Growing evidence implicates climate change as an important driver 
of bee declines10,15–21, but it remains less studied relative to other stress-
ors6,22 such as habitat loss, disease and pesticides. Climate change 
could directly reduce bee fitness when ambient conditions exceed 
physiological tolerances, but these tolerances have not been measured 
for most bee species23 (but see refs. 18,24,25). Climate studies have 
largely focused on geographical or phenological shifts, particularly 
potential phenological mismatches between bees and plants, often 
finding that mismatches are unlikely6,26. However, climate change 
could affect bees directly as well as indirectly via floral resources23. 
Recent studies indicate that climate is correlated with bumblebee 
distributions10,17 and native bee abundances19,20, and relate bumble-
bee population trends to historic thermal habitat and heat shock tol-
erance18. These studies suggest the probable importance of direct 

climate threats to bees, and highlight the urgent need for mechanistic 
research on diverse species. In particular, predicting vulnerability to 
no-analogue future climates requires understanding the physiology 
underlying animals’ climate sensitivities. Insects have high water loss 
relative to their metabolic rates, making it critical to measure both 
thermal and desiccation tolerances, which very few studies have done27 
(but see ref. 28).

In addition, body size may be a critical trait for understanding climate 
vulnerability and its ecological consequences across diverse organisms. 
Surface area:volume ratio scales with body size, affecting heat reten-
tion and water loss in ectotherms29. In bees, body size correlates with 
nutritional requirements30, competitive ability31, flight distance32 for 
floral resource acquisition, and disease transmission33. Size could thus 
mediate climate effects on bees directly by governing physiological 
responses, or indirectly by determining interactions with plants, com-
petitors or natural enemies, especially when floral resources decline. 
Studies show contrasting patterns of change in bee body size along 
spatiotemporal gradients in temperature19,34–37, as well as differing body 
size–thermal tolerance relationships in bumblebees18,38, establishing 
the value of examining this trait and highlighting the need to clarify its 
role across the bee phylogeny and across ecosystems. Body size also 
links bees’ climate vulnerabilities to their ecological consequences for 
pollination via size matching with flowers4,39. Forecasts of changes in 
body size could thus enable community-level predictions of climate 
change threats to critical pollination services.
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Understanding bees’ climate vulnerability requires considering 
their sensitivity to changes in both climate mean and climate vari-
ability, which has increased over time in many regions but has been 
little-studied40,41. Climate sensitivity functions (CSFs) describe how 
an organism’s abundance tracks the distribution of a climate variable 
(mean and variance)2. Specifically, a nonlinear CSF signals that climate 
variability alone will affect abundance, even if the climate mean does 
not change; this is referred to as Jensen’s inequality (Fig. 1a). Labora-
tory trials suggest that greater variance in temperature can reduce 
insect population growth40, but CSFs are unexplored for bees, imped-
ing predictions of future bee biodiversity under increasingly variable 
climate conditions. In the southwestern USA, a global hotspot of bee 
diversity42, the climate has become drier and more variable from year 
to year2 (Extended Data Fig. 1a,b), providing an ideal test bed to assess 
the climate vulnerabilities of bees.

We combined 16 years of bee survey data (from 2002–2019, with the 
exception of 2016–2017, comprising 339 species) from the Sevilleta 
Long-Term Ecological Research Program (SEV-LTER) carried out in New 
Mexico, USA, with physiological tolerance and body size measurements 
to address the following questions spanning population to ecosystem 
scales. (1) Population scale: How sensitive is bee abundance to climate, 
and how will abundance change under future climate scenarios? Do 
thermal and desiccation tolerances explain which bees are winners and 
which are losers under climate change? We hypothesized that bee abun-
dance tracks aridity with species-specific patterns of physiologically 
tolerant winner species and vulnerable loser species. (2) Community 
scale: How have bee biodiversity and body size tracked climate over 
time, and what changes are expected under future climate scenarios? 
We hypothesized that hot, dry years favour larger-bodied bees with 
high heat and desiccation tolerances, shifting communities toward 
dominance by larger bees and reducing bee diversity. (3) Ecosystem 
transitions: Will climate-induced ecosystem transitions alter bee vul-
nerabilities to future climates43? We addressed this question using bee 
monitoring data from three common ecosystem types of the south-
western USA (Extended Data Fig. 2). We hypothesized that predicted 

transitions in which desert grasslands overtake plains grasslands and 
shrublands engulf grasslands43 will reshape future bee communities 
to be less diverse but more resistant to aridity.

Bee abundance strongly tracked aridity
Bee abundance strongly tracked aridity at the population level, dem-
onstrating an important linkage between climate and bee population 
health (Fig. 1b). As an aridity metric, we used the inverse of the standard-
ized precipitation evapotranspiration index (SPEI), which integrates 
temperature and precipitation. Positive aridity values indicate hotter 
and drier conditions relative to the mean, and negative values represent 
cooler and wetter conditions (Methods). Seventy-one per cent of bee 
populations were sensitive to change in the aridity index (474 out of 
665 species × ecosystem combinations; Supplementary Fig. 1 and Sup-
plementary Table 1); these populations represented 243 species. Results 
derive from mixed effects models of maximum yearly bee abundance 
as a function of the aridity index, built for each of the 665 populations 
(Methods). Among the populations that tracked aridity, 35% had linear 
relationships with aridity signalling sensitivity to changes in mean arid-
ity alone (Fig. 1b), 16% had quadratic relationships indicating sensitivity 
to the variance but not the mean of aridity (nonsignificant linear param-
eter; Fig. 1b), and 9% were sensitive to mean and variance additively 
(significant linear and quadratic parameters; Fig. 1b). However, 40% of 
populations had cubic relationships with aridity, signalling sensitivity 
to the interactive effects of more arid and variable climate conditions 
(Fig. 1b). Most aridity-insensitive populations (29% of all populations) 
were rare species for which there was low statistical power to detect 
trends (Supplementary Table 2).

Additional model comparisons indicated that approximately half 
of bee species may experience lagged effects of climate change. The 
aridity of the present year best predicted abundance for 48% of popu-
lations, whereas that of the previous year best predicted abundance 
for 52% of populations. Spring season aridity predicted abundance 
better for a slightly larger number of populations (56%) than summer 
monsoon season aridity (44%). These results suggest the importance 
of considering time lags, seasonal specialists and bee phenology to 
understand population-level sensitivities to climate change. Our find-
ings are consistent with evidence that desert bees use environmental 
cues to emerge in favourable years and remain in diapause in unfavour-
able ones, and ‘bet-hedge’ such that in any given year, some individuals 
remain in diapause to spread risk across years44–46.

Physiology predicted winners and losers
The bee genera that were most tolerant of heat and desiccation in 
field-based physiological trials (Methods) were those that increased 
most strongly under historical climate change (Fig. 2a,b and Supple-
mentary Table 3). A metric that combined thermal and desiccation 
tolerance predicted both sensitivity to mean aridity (linear param-
eter from CSFs; likelihood R2 = 0.37) and the magnitude of change in 
bee taxon abundance over time (likelihood R2 = 0.80), indicating the 
importance of considering insect water relations in conjunction with 
temperature regulation (Fig. 2a,b and Supplementary Table 3). Among 
individual metrics of bee physiology, tolerance to vapour pressure 
deficit (VPD at the time bees lost responsiveness in thermal trials) best 
predicted change in abundance over time, again suggesting that tem-
perature and water regulation together govern bee performance (Sup-
plementary Table 3). In our models, physiological tolerance metrics 
did not predict sensitivity to variance in aridity (best quadratic model: 
P = 0.42). We therefore suggest that heat and drought tolerance more 
strongly underlie bee responses to climate mean rather than climate 
variance. Thermal tolerance differed by 37% between the least and most 
tolerant bee genera, and vapour pressure deficit tolerance differed by 
138%. Relating thermal tolerances to future aridity, on average across 
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Fig. 1 | CSF theory and summary of results. a, A nonlinear relationship between 
aridity and an ecological variable signals the importance of climate variability, 
in addition to climate mean, in determining the ecological response, which 
depends on the shape of the nonlinearity. A concave up quadratic function 
(blue) signals a net benefit of increasing variance around the mean (black 
arrows), whereas a concave down relationship (red) signals a net cost of 
increasing variance. Under a cubic relationship (full curve), variance may be 
either costly or beneficial, depending on the climate mean, indicating a 
mean × variance interaction. b, Summary of the CSFs relating aridity to 
maximum yearly abundance for 474 climate-sensitive bee populations out of 
665 populations in total. The climate-sensitive populations represented 243 
bee species across 3 ecosystems. The count indicates the number of populations 
for which a given model type was best. Orange bars represent sensitivity to 
shifts in mean aridity alone, whereas teal bars indicate sensitivity only to 
variance in aridity. Purple bars denote sensitivity to changes in the mean and 
variance of aridity, with light purple indicating additive effects of mean and 
variance, and dark purple indicating interactive effects.
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general circulation models (GCMs) of global climate under a moderate 
climate change scenario through 2100, we project that in 17% of the 
next approximately 80 years, monsoon season conditions will exceed 
the thermal maxima of the least tolerant bee taxa (range across GCMs: 
5–26%; Extended Data Fig. 3a). These results derive from our direct 
measurements of critical thermal maxima (CTMax) and desiccation 
tolerances (time to loss of responsiveness under dry conditions) of 
bee individuals netted in the field, using experimental methods27. Bee 
evolutionary history, as represented by the current bee phylogeny, did 
not predict the combined physiological tolerance metric (Blomberg’s 
K = 0.91, P = 0.054), the change in bee species abundance (K = 0.054, 
P = 0.936; Fig. 2c), or sensitivity to mean aridity (K = 0.59, P = 0.424). 
Thus, across the focal bee community, climate tolerance traits were 
not phylogenetically conserved.

Most desert bees overwinter as prepupae (last-instar larvae) that 
can remain in extended diapause until favourable conditions occur45. 
Drought resistance of larvae could thus strongly influence bee species’ 

responses to climate change. Measuring larval physiological tolerance 
for multiple species would be extremely difficult but could explain 
some of the variance in Fig. 2a,b, as adult and larval tolerances may 
not correspond47. Demographic models that incorporate life his-
tory transitions could elucidate mechanisms of reduction in fitness 
under climate change (for example, how do thermal or hydric stress 
in adults versus larvae, and changes in floral resource quantity or qual-
ity, influence stage-specific survival and reproduction?). However, 
collecting sufficient data would be extremely challenging given our 
species-rich bee assemblage dominated by ground-nesting species 
with difficult-to-study larval stages45.

For the 243 bee species that are sensitive to aridity, our models 
projected that 10% will ‘win’ (increase in abundance) under future cli-
mate conditions48, 46% will ‘lose’ (decrease in abundance), and 44% 
will experience no net change in abundance by 2100 (Fig. 2c and Sup-
plementary Table 4). To obtain these results, we used projected future 
aridity values from ClimateNA49, with data originating from six different 
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Fig. 2 | Physiology predicts sensitivity to aridity and change in abundance 
over time. a, Combined thermal and desiccation tolerance predicted how bee 
abundance varied with aridity (linear parameter estimate from climate 
sensitivity analysis), for 12 focal bee genera. Higher physiological tolerance 
values indicate greater resilience to aridity. b, Combined thermal and 
desiccation tolerance predicted the magnitude of change in bee abundance 
over time (2002–2019), for 12 bee genera. βtime estimates are from models of 
total abundance as a function of year. a,b, Points represent means across 
individuals within a genus and error bars indicate s.e.m. (mean n = 11 for 

thermal tolerance and 16 for desiccation tolerance; see Methods for sample 
sizes per species and statistical methods). Error bands represent 95% confidence 
intervals, and statistical results are from mixed effects models with phylogeny 
incorporated as a random effect (Methods). c, Phylogeny of the 339 bee species 
collected at the Sevilleta National Wildlife Refuge from 2002–2019, labelled by 
genus, with direction of predicted change in abundance from 2002–2100 
(decrease, increase, no change, or insufficient data) based on averaged 
projections from six GCMs of global climate. Coloured dots indicate focal genera. 
See Extended Data Fig. 4 for the phylogeny with species names as tip labels.
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GCMs, in the CSF equations from above to predict the abundance of 
each bee population during 2020–2100 for three Intergovernmental 
Panel on Climate Change (IPCC) scenarios representing low, moder-
ate and extreme climate change (moderate scenario results averaged 
across GCMs are presented here; see Supplementary Table 4 for other 
results). To capture uncertainty, separate model runs for each of the 
six GCMs indicated that decreases could occur for 41–58% of species, 
increases could occur for 0–19% of species, and no change could occur 
for 40–48% of species (Supplementary Tables 4 and 5). In contrast to 
physiological traits, bee life history traits (sociality, overwintering life 
stage and diet breadth) did not predict ‘winner’ versus ‘loser’ status 
(Supplementary Table 6).

These results suggest the concerning likelihood of climate-driven 
declines in bee diversity in the southwestern USA. However, they also 
indicate the resilience of many dryland bees to climate change, given 
that population increases or stability were predicted for 54% of species. 
Some of these desert species appear well-adapted to aridity, increasing 
as mean aridity increased. But for 94 species (39%), future increases in 
the year-to-year variability in aridity may buffer against declines caused 
by increasing mean aridity. We thus highlight that understanding bees’ 
climate responses requires attention to the nonlinearities that signal 
sensitivity to climate variance in addition to changes in the mean. Adap-
tations underlying bees’ resilience to climate may be physiological, 
in accordance with our results, or could relate to morphological or 
behavioural traits that have not yet been commonly measured across 
diverse bee taxa. Our results align with studies of arid-adapted bee 
species in Australia and Brazil, where some bee species are predicted 
to undergo range expansions with increased aridification21,50, and also 
align with occupancy models that predict expansion of potential habitat 
for some bumblebees in North America and Europe10.

Both diet specialists and generalists were among predicted win-
ner and loser bee species (Supplementary Table 6), indicating that 
specialists and their host plants may not be most vulnerable to losses 
in drylands, as can occur in some locations51. For instance, Diadasia 
rinconis, a Cactaceae specialist, is predicted to remain stable over time, 
whereas Lasioglossum (subgenus Dialictus) semicaeruleum, a broad 
generalist, is projected to increase in abundance up to intermediate 
aridity (as in previous findings for this subgenus52), but then to decline 
under the most arid conditions. These results highlight the importance 
of considering bees’ direct responses to climate to predict future pol-
lination outcomes for plants.

Larger bees dominated under aridity
At the community scale, larger-bodied bees were more abundant than 
smaller bees during years with intermediate to high monsoon season 
aridity (Fig. 3 and Supplementary Table 7). Historically, body mass 
(community-weighted mean) increased linearly with aridity across the 
three focal ecosystems (Fig. 3a). However, the ecosystems diverged 
in predicted future trends: models generally projected increases in 
community-level bee body mass in the plains grassland, but suggested 
future nonlinear dynamics in the two desert ecosystems, with average 
body mass peaking at moderate aridity and decreasing at the high-
est predicted aridity levels, which exceeded conditions recorded in 
the historic data (moderate scenario, Fig. 3b–g; results from other 
climate scenarios are presented in Extended Data Fig. 5). Intraspecific 
body mass did not change over time within 16 of the most common 
bee species preserved yearly as museum specimens (Extended Data 
Fig. 6), suggesting little phenotypic plasticity or evolutionary change 
within species. Instead, historic change in community-level body mass 
occurred through shifts in the relative abundances of large versus small 
bee species.

We hypothesize that non-physiological mechanisms underlie 
increases in community-level body mass, because mass did not predict 
bee species’ physiological tolerances to heat or desiccation (P = 0.86, 

R2 = 0.10 for the best model; Supplementary Table 8). The greater for-
aging distances typical of larger bees32 may be advantageous when 
floral resources are most scarce, such as under arid conditions in the 
southwestern USA (Extended Data Fig. 7). Loss of floral resources 
under agricultural expansion favoured larger female bees capable 
of flying greater distances to reach food53, and a similar mechanism 
could be at play in drylands. Drought-induced floral scarcity may also 
amplify interspecific competition, which could favour larger-bodied 
bees that can outcompete smaller species31. Small bees may also be 
at a disadvantage because they have high nutritional requirements 
relative to their size owing to the allometric scaling of metabolic rate 
with body mass54. However, during extremely dry future years in the 
two desert ecosystems, resource scarcity might disproportionately 
harm larger-bodied bees owing to their greater absolute resource 
needs, countering any advantages conferred by longer flight distances, 
better competitive abilities or lower metabolism, and generating the 
predicted hump-shaped nonlinear dynamics with aridity (Fig. 3f,g).

Our results pinpoint body size as an important and tractable trait that 
links increasing aridity with consequences for pollination services and 
bee susceptibility to non-climate stressors. Bee–flower size matching 
increases fruit set and promotes plant–pollinator interaction network 
stability4, indicating that climate-induced community-level shifts in 

Desert shrubland

Desert grassland

Plains grassland

–0.5 0 0.5 1.0 1.5 2.0

INM–CM4

CSIRO–Mk3.6.0

CNRM–CM5

CCSM 4.0

CanESM2

ACCESS 1.0

INM–CM4

CSIRO–Mk3.6.0

CNRM–CM5

CCSM 4.0

CanESM2

ACCESS 1.0

INM–CM4

CSIRO–Mk3.6.0

CNRM–CM5

CCSM 4.0

CanESM2

ACCESS 1.0

Linear parameter
estimate (aridity) 

Desert shrubland

Desert grassland

Plains grassland

–0.5 0 0.5 1.0 1.5
Quadratic parameter

estimate (aridity)

Desert shrubland

Desert grassland

Plains grassland

–0.04 –0.02 0 0.02
Linear parameter
estimate (year) 

Combined historic and predicted future datasets (2002–2100)

–2 –1 0 1 2
5

10

15

20

25

30

35

Aridity index

a

C
W

M
 b

od
y 

m
as

s 
(m

g)

Historic dataset (2002–2019)

CWM body mass ~ aridity CWM body mass ~ year

c f

b e

d g

i

h

j

Aridity effect: P < 0.0001
Conditional R2 = 0.89

Fig. 3 | Change in community-weighted mean bee body mass with aridity 
and over time. a–g, Community-weighted mean (CWM) body mass closely 
tracked the monsoon season aridity index in the long-term historic dataset 
across ecosystems (visreg plot showing fitted values from mixed effects model) 
(a) and in the combined historic and predicted future data up to 2100 under the 
moderate climate change scenario, in each of three common ecosystem types 
of the southwestern USA (b–g). h–j, Models generally projected future increases 
or no change in CWM body mass depending on the ecosystem and GCM.  
b–j, Mean and s.e.m. of the linear or quadratic effect of aridity or year on CWM 
body mass using results from each of six GCMs (listed on the y axis). Positive 
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bee body size could destabilize pollination networks. Larger-bodied 
bees may also transmit pathogens more readily than small bees, sug-
gesting that increases in large bee species could reduce overall bee 
community health33.

Ecosystem transitions may enhance declines
Future ecosystem transitions43 could alternatively aggravate or dampen 
the vulnerabilities of bees to climate change. Specifically, in the south-
western USA, desert grassland is predicted to overtake plains grassland, 
and desert shrubland is predicted to overtake grassland43. In our study, 
143 bee species occurred in more than 1 ecosystem. For 87% of these spe-
cies, sensitivity to aridity differed among ecosystems (Supplementary 
Table 1). In the drier desert ecosystems (Extended Data Fig. 2), a greater 
percentage of species decreased in abundance as aridity increased 
(47% and 58% of species in the desert grassland and shrubland versus 
32% in the plains grassland).

These results suggest that the vulnerabilities of bees to heat and 
drought will intensify as ecosystem transitions progress. This pat-
tern may arise from a limited availability of microclimates that enable 
behavioural thermoregulation in the more arid ecosystems55, or from 
ecosystem differences in floral abundance, diversity or phenology56. 
Similar ecosystem-specific patterns were recently detected for small 
mammals across the southwestern USA57, indicating that differing 
vulnerabilities to climate among ecosystems may be common for dry-
land animals. Given that our three focal ecosystems differed in both 
bee community composition and seasonal turnover patterns1, state 
transitions among them could alter bee communities through multiple 
mechanisms. Future work could document each bee’s floral resources to 
evaluate the relative importance of indirect climate effects via changes 
in floral composition, abundance or phenology56, which was beyond 
the scope of this study. Decreases in floral abundance and changes in 
plant community composition or phenology under increasing aridity 
could exacerbate bee declines in ways that our current models do not 
capture, making our estimates of declines conservative.

Models also predicted potential ecosystem divergence in future 
community body mass trends. Average bee body mass was generally 
projected to increase in all ecosystems (Fig. 3h–j). However, future 
body mass increases are expected to be largest in the plains grassland, 
whereas increases may be followed by declines past a threshold of 

aridity intensification in the two desert ecosystems (Fig. 3 and Sup-
plementary Tables 5 and 7; results from other climate scenarios are 
presented in Extended Data Fig. 5). These findings indicate that eco-
system transitions will contribute to determining the consequences 
of climate change for the community-level pollinator effectiveness 
of bees, as mediated by body size39. In addition, the projected poten-
tial for community-level increases in body mass reinforces evidence 
against the hypothesis that body mass declines are a universal biologi-
cal response to climate warming58. The key to accurate prediction is 
contextualizing species traits and physiology within the appropriate 
exogenous climate context.

Our models projected lower interannual variability in future mean 
body mass relative to the historic period, particularly for the desert 
ecosystems. As projected future aridity has variance comparable to the 
historic record (Extended Data Fig. 1), this reduced variability in body 
mass probably resulted from our models not capturing non-climate fac-
tors that can drive fluctuations in bee communities, such as bet-hedging 
strategies, nest availability, parasitism, disease, predation and flo-
ral dynamics that are not explained by climate45. These factors may 
dampen the ability to detect a direct influence of climate-induced 
changes from long-term observational data.

Abundant but less diverse communities
Our models project a rise in the dominance of a small number of bee spe-
cies (10%) that benefit from increasing aridity, offsetting the declines 
predicted for 46% of species (Fig. 4a). As a result, total bee abundance 
across ecosystems is projected to remain stable over time on average 
across GCMs (Fig. 4b, P = 0.11; results from other climate scenarios 
are presented in Extended Data Fig. 5). Separate model runs for each 
GCM aligned with this result in the majority (50%) of cases, although 
particular GCMs predicted small increases (17% of GCMs) or decreases 
(33%) in total bee abundance (Supplementary Table 5). Individual 
species projected to increase most in abundance were members of 
the genera Agapostemon, Eucera and Melissodes, whereas species of 
Lasioglossum, Osmia, Melecta, Halictus and Perdita were projected to 
decline, and opposing trends were predicted for different species of 
Diadasia (Fig. 4a). We thus anticipate an abundant but less diverse and 
more homogeneous future bee community for the region. Our results 
bolster the pattern of biotic homogenization as a general community 
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response to diverse anthropogenic perturbations59. Although bee spe-
cies’ responses to climate change may vary globally, we reveal that 
climate change and physiological mechanisms are likely to be of broad 
importance, and create an analytical framework that can be widely 
applied.

Conclusions
Here we reveal that direct physiological responses to heat and drought 
can underlie bees’ vulnerability to climate change. Experimental 
field trials uncovered a mechanistic link between bees’ physiological 
tolerances and their population dynamics, expanding on previous 
studies that documented correlations between bee abundance and 
climate variables10,20. Our results align with findings from freshwater 
invertebrates for which desiccation resistance predicted community 
response to experimental drought, suggesting potential generality 
across invertebrate taxa28. Results also demonstrate that understand-
ing bees’ responses to climate requires attention to nonlinearities that 
signal sensitivity to climate variance, in addition to changes in mean 
climate2. Concerningly, our models predict abundance declines for 
46% of 243 bee species studied in the southwestern USA, projecting 
less diverse, more homogeneous future bee communities dominated 
by species with high aridity tolerances and large body mass. This com-
munity reordering could have critical ecosystem-level consequences 
because bee functional diversity promotes pollination services3.

Evidence of a strong link between climate and bee population dynam-
ics highlights that efforts to restore native habitat, reduce pesticide 
use or manage disease prevalence in bees22 will be most successful 
if they account for the physiological stress simultaneously imposed 
by climate change. To mitigate this stress, habitat restoration could 
intentionally integrate microclimates that provide refuge from heat55. 
Bees experiencing high heat may have greater nutritional require-
ments54, creating a need for drought-tolerant floral plantings that cre-
ate phenological diversity in food resources6. Under heat and drought 
stress, bees may be particularly vulnerable to disease, and evidence sug-
gests that pathogens can lessen bees’ heat tolerance60, enhancing the 
importance of reducing disease burdens6. Strategies such as assisted 
migration, although controversial, could prevent species losses due to 
thermoregulatory stress and conserve diverse pollinator communities 
in the face of climate change.

In sum, we demonstrate that identifying and mitigating bee declines 
requires knowledge of the direct, trait-mediated effects of climate on 
pollinator fitness and population persistence. This understanding is 
key to preserving the pollination services that are needed to main-
tain global crop production and ecosystem functionality for future 
generations.
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Methods

Study system
The Sevilleta National Wildlife Refuge (SNWR; Socorro, NM) spans 
93,000 ha and includes five ecosystem types that together represent 
~80 million ha of the southwestern USA. We focus on three common 
ecosystems in the Refuge that feature distinct plant communities 
(Extended Data Fig. 2): Chihuahuan Desert shrubland (dominated by 
creosote bush, Larrea tridentata), Chihuahuan Desert grassland (domi-
nated by black grama grass, Bouteloua eriopoda), and plains grassland 
(dominated by blue grama grass, Bouteloua gracilis). Transitions among 
these ecosystem types are predicted to occur under climate change, 
with desert shrubland encroaching upon desert grassland, which is 
predicted to replace plains grassland61–63. The two desert sites are sepa-
rated by ~3 km and are ~10 km from the plains grassland site (Extended 
Data Fig. 2). Mean climate conditions are depicted in Extended Data 
Fig. 8; ~60% of precipitation falls during the summer monsoon season 
from June–September. The two desert sites are more arid on average 
than the plains grassland site (Extended Data Fig. 2); mean monthly 
cumulative precipitation for the period of the study was 19.9 mm for the 
desert sites and 20.9 mm for the plains grassland site; mean monthly 
temperatures were 14.5 °C and 15.3 °C, respectively.

Bee collection
The SEV-LTER has continuously collected bee abundance data at the 
SNWR since 2002. Here we report results using data from 2002–2019, 
excluding 2016 and 2017 owing to a temporary reduction in sampling 
effort during those two years. Bees are sampled from March–October 
(two weeks per month) in the three focal ecosystem types using passive 
funnel traps1,64 (Extended Data Fig. 2). One trap is located at each end 
of five 200 m transects per ecosystem type. Traps are opened each 
March as close as possible to the first day of spring, and left open for 
14 days, after which the bee specimens are collected. The traps are 
then closed for 14 days. This two-week cycle is repeated until the end 
of October. Funnel traps provide a measure of bee activity, not a meas-
ure of presence, and may be biased by bee taxon, sociality, sex, pollen 
specialization, floral resource availability and microsite conditions65,66. 
However, they mitigate human bias associated with net collection, 
enable long-term sampling simultaneously at multiple sites, and allow 
for the detection of temporal trends.

Bee identification
Bees were identified to species by K.W.W. and T.G. using dichotomous 
or interactive keys and reference specimens from the USDA-ARS Pol-
linating Insects Research Unit’s US National Pollinating Insects Col-
lection and the University of New Mexico’s Museum of Southwestern 
Biology, where voucher specimens were deposited. Information 
related to these specimens is available via the Symbiota Collections 
of Arthropods Network (https://scan-bugs.org; dataset identifier: 
UNM-MBA).

Sensitivity of bee abundance to climate
All statistical analyses were performed in R67. We built CSFs to exam-
ine how bee abundance varied with level of aridity at the population 
(species × ecosystem) level. We modelled ecosystem-specific climate 
sensitivity because ecosystems differed in climate conditions and plant 
community composition, the latter of which could influence bees’ 
climate responses by altering microclimate conditions and resource 
availability. As an aridity metric, we used the SPEI, the standardized 
difference between precipitation and potential evapotranspiration 
(PET). SPEI reduces model complexity by integrating temperature 
and precipitation, providing a proxy for the effects of both heat and 
humidity, and has decreased over the past century in our study area 
(that is, aridity has increased)2, whereas precipitation alone does not 
show a temporal trend68.

We calculated PET using the Thornthwaite method69, as variables 
needed for more complex PET calculations were not available in the pro-
jected future climate dataset (see the next section). The Thornthwaite 
metric is a temperature-only approximation that does not account for 
the potential effects of surface radiation, windspeed, or humidity. As a 
result, its use may bias SPEI values in a hotter, drier direction, and could 
overestimate the magnitude of increasing aridity and bees’ responses 
to it. To consider this potential bias, we used 15 years of half-hourly data 
from two on-site eddy covariance flux towers (Ameriflux Program) to 
calculate PET with the Penman–Monteith equation, which incorporates 
additional climate variables, for the years 2008–2022 (Supplementary 
Information). We then calculated PET using the Thornthwaite method 
for the same data, and compared SPEI values derived from the two PET 
estimation methods (Supplementary Information). For the monsoon 
season, the Thornthwaite method yielded higher estimates of aridity 
in some years (40% of years in the plains grassland, 53% of years in the 
desert ecosystems), but lower estimates in other years (60% of years in 
the plains, 47% of years in the desert; Extended Data Fig. 3b). We thus 
did not observe a consistent Thornthwaite overestimation of a drying 
trend in the historic data. In addition, for both PET estimation methods, 
year-to-year variation in SPEI was 4–5 times greater in magnitude than 
within-year differences between methods (Extended Data Fig. 3b). 
Based on these results, we suggest that the Thornthwaite method cap-
tures sufficiently realistic year-to-year fluctuations in aridity to enable 
consideration of future bee abundance trends.

SPEI values were calculated using climate data from two on-site mete-
orological stations (Chihuahuan Desert station: 34.335° N, −106.729° W; 
Plains station: 34.335° N, −106.632° W) for 6-month spans representing 
the climate leading up to the spring and monsoon seasons of each year 
(spring: December–May; monsoon: April–September) for the years 
2002–202069. The Chihuahuan Desert station is located between the 
two desert sites, ~679 m from the desert grassland and ~718 m from the 
desert shrubland. The Plains station is located ~261 m from the plains 
grassland site. A longer time series would capture additional variability 
in SPEI. However, the period of our study at the SNWR had temporal 
increases similar to the 100-year regional record for both mean aridity 
and year-to-year variability2. A six-month SPEI integration allowed us 
to consider seasonality while acknowledging that our bee abundance 
estimates reflect processes that occur at different timepoints during 
the year (for example, survival, reproductive output, emergence from 
diapause). To confirm the utility of SPEI as a proxy for heat and dryness, 
we regressed SPEI against temperature, precipitation, humidity, and 
vapour pressure deficit for the spring and monsoon seasons, for each 
weather station (Extended Data Fig. 9).

Separately for each bee species × ecosystem combination, using 
2002–2019 bee abundance data, we built mixed effects models70 
examining maximum yearly bee abundance (maximum abundance 
recorded on a given sampling transect in a given year) as a function of 
SPEI (main results presented using inverse SPEI for ease of interpreta-
tion). Maximum yearly abundance values were square-root transformed 
to improve normality of residuals and homogeneity of variances. 
Our models included the random effect of transect. We chose maxi-
mum yearly bee abundance to examine seasonal dynamics in climate 
response, based on the hypothesis that spring versus monsoon aridity 
levels would more strongly correspond with abundance maximum 
rather than total, which incorporates cross-season dynamics. Results 
were robust to using total rather than maximum yearly abundance as 
the response variable because these two metrics were very highly cor-
related (99% of populations had r ≥ 0.90; 96% had r ≥ 0.95).

We used a corrected Akaike information criterion (AICc)-based model 
selection process71 to determine whether abundance was best predicted 
by models containing linear, quadratic, or cubic effects of SPEI, allow-
ing consideration of how climate mean versus variability influenced 
bee abundance. We similarly compared models containing the effects 
of present versus prior year’s aridity, to examine potential time lags in 
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climate responses, and spring versus monsoon season aridity, to pin-
point the time of year most important for predicting bee population 
dynamics. Finally, we compared models containing different covariance 
structures to account for temporal autocorrelation (no covariance 
structure versus first or second order autoregressive). Models contain-
ing autoregressive terms (specified using the ‘correlation’ argument) 
tested if observations covaried with those from the same transect in the 
previous year (first order autoregressive) or previous two years (second 
order). All models were assessed relative to a null model containing only 
random effects. We considered a population to be ‘climate-sensitive’ 
if at least one model containing SPEI had a lower AICc value than the 
null model; for each of these populations, we identified a single best 
model that had the lowest AICc value71. We used power analysis72 to 
assess probability of detecting trends for populations in which aridity 
did not predict abundance.

Bee abundance change under future climate scenarios
To predict future bee abundances, we obtained projected mean 
monthly temperature and total monthly precipitation data for 2021–
2100 from the ClimateNA v. 5.21 software package49 for three IPCC 
climate scenarios: RCP 2.6, RCP 4.5, and RCP 8.5. These represent low, 
moderate, and extreme climate change, respectively. Data originated 
from six different GCMs produced as part of the IPCC’s CMIP5 project 
that have high validation statistics73 and were available via ClimateNA: 
ACCESS 1.0, CanESM2, CCSM 4.0, CNRM-CM5, CSIRO-Mk3.6.0, and 
INM-CM4. RCP 2.6 data were only available for the CanESM2 GCM, 
while RCP 4.5 and 8.5 data were available for all GCMs. Studies indi-
cate that CMIP5 models yield relatively similarly projections to more 
recent CMIP6 models for North American monsoon patterns74 and 
precipitation/temperature75. ClimateNA uses downscaling to calculate 
climate values for a specific location based on longitude, latitude, 
and elevation, with the PRISM interpolation method. We interpolated 
temperature and precipitation values for the centre point between our 
three study sites (34.335320° N, −106.682701° W), as evidence suggests 
that PRISM interpolation methods do not have the resolution to accu-
rately predict climate variation within the SNWR ( J.A.R., unpublished 
data). We used the temperature and precipitation values to calculate 
SPEI for six-month spans as above for each scenario × year × season 
(spring or monsoon) combination, using the historic data from the 
two on-site meteorological stations for the reference period specified 
in the calculation69.

Next, for each bee population (species × ecosystem combination), 
we obtained the CSF equation that best described the relationship 
between bee abundance and SPEI in our long-term data (2002–2019; 
see above). Separately for each GCM, we used the future SPEI val-
ues from ClimateNA in each CSF equation to predict bee population 
abundance in each year from 2020–2100. We eliminated unreal-
istically high (outlier) predicted bee abundance values that were 
greater than five times the maximum abundance recorded in the 
historic data on a transect × year combination. Other outlier removal 
methods produced similar results in subsequent statistical analyses. 
Then, for each species × year, we calculated transect-level mean pre-
dicted abundance across GCMs, summed abundance across sites, 
and regressed abundance against year to evaluate change over time 
from 2002–210076. We also completed this step using predicted future 
bee abundance data from each GCM separately. Finally, to consider if 
life history traits predicted winners or losers under climate change, 
we used Pearson chi-squared tests with Monte Carlo simulation for  
P values to examine relationships between traits and projected future 
trends (increase, decrease, no change) from the regressions of mean 
predicted abundance averaged over the individual GCMs, for the 
subset of species for which trait data were available. Traits considered 
were sociality (levels: social, solitary, parasitic), diet breadth (levels: 
specialist, generalist, parasitic), and overwintering life stage (levels: 
adult, prepupae).

Thermal and desiccation tolerances
To assess thermal tolerance, we measured CTMax on individual bees 
from June–October 2020 and May–October 2021. Bees were collected 
via aerial netting and immediately placed in individual wells within a 
field-portable environmental chamber covered with a shading tent 
(Extended Data Fig. 2). Bees were held initially at 25 °C for 10 min. We 
then increased the temperature at a rate of 0.5 °C min−1, periodically 
applying a puff of air to each bee to test its responsiveness. CTMax was 
determined as the temperature at which each bee lost responsiveness. 
We used iButtons adhered to alternating wells in the chamber to record 
temperature and humidity once per minute for the duration of each 
trial. After losing responsiveness, each bee was immediately removed 
from the chamber. Prior to analyses, we removed low outliers (bees 
with thermal tolerances less than 38 °C) that may have resulted from 
compromised health.

We acknowledge the caveats associated with our method for estab-
lishing CTMax; in insects, measured CTMax can vary with factors includ-
ing experimental ramping rate, developmental stage, acclimation 
temperature, age, and feeding status47,77. However, the latter three 
factors did not alter CTMax in studies of honeybees or bumblebees25,77. 
In addition, we chose a ramping rate of intermediate value to minimize 
biases associated with both high and low ramping rates, according 
to published recommendations77. We recognize that other tolerance 
assays are available18,47,78; however, we focus on CTMax as a prevalently 
calculated metric that has been shown to relate to species’ responses 
to urban and experimental warming24,79. We emphasize that we exam-
ined whether intergeneric differences in CTMax relate to patterns in 
long-term data, rather than interpreting CTMax values in absolute 
terms. Sample sizes: 133 bee individuals representing 12 genera (Aga-
postemon: n = 2, Anthidium: n = 5, Anthophora: n = 4, Anthophorula: 
n = 3, Colletes: n = 6, Diadasia: n = 31, Lasioglossum: n = 38, Macrotera: 
n = 8, Megachile: n = 1, Melissodes: n = 21, Perdita: n = 11, Svastra: n = 3).

To measure desiccation tolerance, we collected bees as above, first 
placing them in individual vials that each contained a small piece of 
sponge soaked in water to prevent bee dehydration during transport. 
Vials containing bees were placed in a cooler and transported to Albu-
querque, NM, where the bees were weighed to the nearest 0.0001 g and 
placed in individual wells (with no water source) of the same environ-
mental chamber described above, this time situated indoors. We held 
the bees for a maximum of 3 h prior to testing, and only tested bees that 
showed no visible signs of stress. For each trial, we held the bees at 25 °C 
(far below CTMax), and measured temperature and humidity using 
iButtons as above. We checked each bee every 20 min for the first 8-9 h, 
held them overnight for ~6 h, and then again checked each one every 
20 min until it lost responsiveness, which we assessed using a puff of air 
as above. Time to loss of responsiveness was recorded as a desiccation 
tolerance metric, following evidence that dehydration occurs much 
more quickly than starvation27,80. Statistical results were robust to use of 
critical water content27 as an alternative desiccation tolerance metric. 
We immediately removed each bee after it lost responsiveness and 
weighed it to the nearest 0.0001 g. To determine dry mass, we placed 
each bee in a drying oven at 60 °C for 72 h, and immediately weighed 
it. Sample sizes: 188 bee individuals representing 12 genera (Agaposte-
mon: n = 11, Anthidium: n = 6, Anthophora: n = 14, Anthophorula: n = 3, 
Colletes: n = 17, Diadasia: n = 22, Lasioglossum: n = 46, Macrotera: n = 6, 
Megachile: n = 10, Melissodes: n = 7, Perdita: n = 39, Svastra: n = 7). For 
24 individuals, loss of responsiveness occurred during the ~6-h lapse 
period; for these, we assigned end time as the midpoint between the 
lapse period’s start and end times; statistical results were unchanged 
when we instead either removed these individuals or included time 
discovered unresponsive as the end point.

For each bee genus, we modelled the magnitude (slope) of change 
in abundance over time for the tested species as a function of mean 
thermal or desiccation tolerance, incorporating phylogeny as a random 



effect81. We built similar models with linear parameter estimate from 
CSFs as the response variable. We constructed the phylogeny using 
genus-level tree data82, adding species as polytomies83,84. To consider 
how thermal and desiccation tolerances together related to abun-
dance change, we first z-scored the genus-level thermal and desic-
cation tolerance data (standardized each dataset to a mean of zero 
and standard deviation of one). We then added the z-scored thermal 
and desiccation values for each genus to create a combined metric  
of the two.

Because humidity decreased during the thermal tolerance trials, 
we also calculated vapour pressure deficit tolerance (VPD at the time 
of loss of responsiveness)85. We then used the Akaike information 
criterion to compare models that respectively contained thermal, 
desiccation, combined thermal and desiccation, or VPD tolerance 
metrics to determine which best predicted change over time or lin-
ear CSF parameter, respectively. We tested for phylogenetic signal 
in abundance change over time across GCMs, linear CSF parameter, 
and physiological tolerance using <phylosignal>86. Models were built 
at the genus level to enable inclusion of data from species for which 
we were able to collect thermal but not desiccation tolerance data, or  
vice-versa.

Relation of bee body size to climate over time and changes 
expected under future climate scenarios
We measured intertegular distance (ITD), a standard bee body size 
metric87,88, on female individuals of 256 species for which specimens 
were available. These species represented ~99% of total abundance in 
the long-term dataset. We measured a minimum of three individuals 
per species whenever possible, and measured males when no females 
were available for a given species. We photographed the thorax of each 
bee from above and measured the distance between the wing bases 
(tegulae) using ImageJ v. 1.5289 or a microscope imaging system with 
an integrated measurement capability (VHX-S650E free-angle obser-
vation system, Keyence). We then estimated total body mass (mg) 
using established allometric equations87,88. After calculating mean 
body mass for each species, we determined community-weighted 
mean (CWM) body mass for each transect × year combination in the 
historic and predicted future data from each GCM separately by mul-
tiplying each species’ mean body mass by its fractional contribution 
to total abundance. Then, using mixed effects models90, we tested for 
change in CWM body mass as a function of year in each ecosystem, 
running models separately for each GCM and including the random 
effect of transect. We used the same framework to model CWM body 
mass as a function of monsoon SPEI in each ecosystem, including the 
random effects of transect and year, and comparing models with or 
without the quadratic effect of SPEI based on AICc. When models were 
within two AICc values of one another, we chose the simplest model 
for presentation. For just the historic data pooled across ecosystems, 
we separately modelled CWM body mass as a function of monsoon 
SPEI, including ecosystem as a fixed effect that interacted with SPEI 
and the random effects of year and transect, and visualized the result 
using visreg91.

We took additional body mass measurements to validate the inter-
pretation that community-level body mass shifts were driven by spe-
cies’ relative abundance changes rather than within-species evolution 
or phenotypic plasticity. For 16 of the most abundant species, we 
measured ITD on a minimum of 10 individuals per species whenever 
possible from each of at least 5 years spaced throughout the dataset, 
using specimens stored within our collections. We then regressed 
body mass (estimated from ITD above) on year for each species. No 
species changed in body mass over time (Extended Data Fig. 6). Num-
ber of individuals measured per species: Agapostemon angelicus: 57, 
Anthophora affabilis: 239, Anthophora lesquerellae: 61, Anthophora 
montana: 176, Ashmeadiella meliloti: 159, Diadasia australis: 219,  
D. rinconis: 331, Halictus ligatus: 112, H. tripartitus: 80, Lasioglossum 

sp. A: 119, L. deludens: 180, L. hudsoniellum: 341, L. semicaeruleum: 118,  
L. sisymbrii: 199, Osmia watsoni: 77, Perdita callicerata: 45.

Ecosystem transitions and bee vulnerabilities to future climates
We examined how bee species’ climate sensitivities and population 
trends differed among ecosystems to consider how the expansion 
of some ecosystem types and contraction of others could influence 
vulnerability to aridity. For 143 bee species with sufficient data in 2 or 
more ecosystems, we calculated the proportion of species for which 
the best CSF, determined above, differed among ecosystems in shape 
(linear, quadratic or cubic) and/or direction (positive versus negative 
linear parameter estimate). Then, within each ecosystem, we calculated 
the proportion of species with positive versus negative linear parameter 
estimates from the best CSF.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets generated and/or analysed during the current study are 
publicly available. Long-term bee monitoring data are available via 
the Environmental Data Initiative (EDI) at https://doi.org/10.6073/
pasta/cdc8381b8b2be97188daeffcd6310e9b. Also available via EDI 
are the SEV-LTER meteorological data (https://doi.org/10.6073/pasta/
decdaa0c695cb2070c73f5b684a32e73), plant phenology data (https://
doi.org/10.6073/pasta/ceb693495ef57b8b1ba075ca1ee0f7ed), and 
plant biomass data (https://doi.org/10.6073/pasta/5d6fa085c3d31bc1b
c352081ec9e839a). Bee body mass, life history trait, and physiological 
tolerance data are available via the Open Science Framework (OSF) at 
https://doi.org/10.17605/OSF.IO/H2YV6. Projected future climate data 
are available from ClimateNA at https://climatena.ca/.

Code availability
Computer code used in the analyses is available via Zenodo at https://
doi.org/10.5281/zenodo.8412361 (ref. 92).
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Extended Data Fig. 1 | Temporal trends in historic and predicted future 
aridity (inverse SPEI). (a, b) Trends for the monsoon season in Socorro, NM, 
USA. In (a), points show the 6-month integrated aridity index, calculated from 
temperature and precipitation data recorded since 1900, with positive values 
indicating hotter and drier conditions relative to the mean. In (b), points show 
the coefficient of variation (CV) in the aridity index for non-overlapping 5-yr 
time windows (adapted from Rudgers et al., Ecology, 2018). (c) Predicted future 
monsoon season aridity trends for the Sevilleta National Wildlife Refuge  

(NM, USA) under low, moderate, and high CO2 emissions scenarios (RCP 2.6, 
4.5, and 8.5, respectively), using projected future climate data from six 
General Circulation Models (ACCESS 1.0, CanESM2, CCSM 4.0, CNRM-CM5, 
CSIRO-Mk3.6.0, and INM-CM4). RCP 2.6 data were only available for the 
CanESM2 GCM. Positive and negative values indicate hotter/drier and cooler/
wetter conditions relative to the historic mean (2002–2019), respectively. In all 
panels, error bands represent 95% confidence intervals.
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Extended Data Fig. 2 | Research sites and equipment. Left: Map of sampling 
sites at the Sevilleta National Wildlife Refuge, NM, USA (beige polygon in upper 
map). Bees were sampled in three focal ecosystem types: Chihuahuan Desert 
shrubland (green points), Chihuahuan Desert grassland (black points), and 
plains grassland (blue points). To sample bees, we installed one passive funnel 
trap at each end of five 200 m transects/site; traps are indicated by colored 
points in the lower panel. Maps were generated via ArcGIS v. 10.1 (ESRI 2012, 
Redlands, CA) using the World Imagery basemap93 (sources: Esri, Maxar, GeoEye, 
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the 
GIS User Community; accessed 23 February 2022 via https://www.arcgis.com/
home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9). Upper right: 
Differences between sites in climate conditions (table) and plant community 
composition (figures). Table values are results from paired, two-sided t-tests 
comparing temperature and precipitation metrics from the month of greatest 
difference between the Plains and Chihuahuan Desert meteorological stations. 

Figures are NMDS plots94 illustrating differences among ecosystems in plant 
cover for all species, and with the dominant species removed. Lower right:  
(a) Images of the environmental chamber used to assess thermal and desiccation 
tolerances of bees. The chamber consisted of an insulated ice chest (IceKool, 
Queensland, Australia). In the chamber, air temperature was controlled using a 
162-W Peltier device (model AC-162, TE Technology, Traverse City, MI) and a 
custom-built controller that incorporated a TE Technology digital display  
(MP-2986) and control card (TC-36-25-RS486). (b) Traps used for bee collection. 
Each consisted of a 946 mL paint can filled with ~275 mL of propylene glycol and 
topped with a plastic automotive funnel (funnel height = 10 cm, top diameter = 
14 cm, bottom diameter = 2.5 cm). The funnels’ interiors were painted with 
either blue or yellow fluorescent paint (Krylon, Cleveland, OH or Ace Hardware, 
Oak Brook, IL). Each trap was placed on a 45 cm high platform that was 
surrounded by a 60 cm high chicken wire cage to prevent wildlife and wind 
disturbance.
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Extended Data Fig. 3 | Relationship between air temperature and aridity, 
and alternate aridity index calculations. (a) Aridity index (inverse SPEI) as a 
function of maximum air temperature for the period leading up to the monsoon 
season (April–September), for the historic period (2002–2020) in the plains 
and Chihuahuan Desert ecosystems, and for 2021–2100 under three predicted 
future climate scenarios (RCP 2.6, 4.5, and 8.5) for the midpoint between 
ecosystems, using data from six General Circulation Models (ACCESS 1.0, 

CanESM2, CCSM 4.0, CNRM-CM5, CSIRO-Mk3.6.0, and INM-CM4). The red bar 
with an asterisk on the x-axis indicates the critical thermal maximum (CTMax) 
of the least thermally tolerant bee taxon in the dataset. The error band represents 
the 95% confidence interval. (b) Year-to-year variation in the aridity index 
calculated using two different PET estimation methods (Thornthwaite and 
Penman) for the spring and monsoon seasons in the plains ecosystem and 
Chihuahuan Desert ecosystems.
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Extended Data Fig. 4 | Bee phylogeny and predicted change in abundance 
over time. Phylogeny of the 339 bee species collected at the Sevilleta National 
Wildlife Refuge (NM, USA) from 2002–2019, with direction of predicted future 

change in abundance from 2002–2100 based on averaged projections from six 
General Circulation Models of global climate (white = insufficient data).



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Projected trends in community-weighted mean body 
mass and total abundance under low and high climate change scenarios.  
(a) Change in community-weighted mean (CWM) bee body mass with monsoon 
season aridity (inverse SPEI) and over time in the combined historic and 
predicted future datasets, for low (RCP 2.6) and high (RCP 8.5) climate change 
scenarios. Points represent means and error bars indicate s.e.m. for the linear or 
quadratic effect of aridity or year on CWM body mass using results from each of 
six General Circulation Models (GCMs; listed on y-axis). RCP 2.6 data were only 
available for the CanESM2 GCM. Positive and negative aridity values indicate 
hotter/drier and cooler/wetter conditions relative to the historic mean  
(2002–2019), respectively. Statistical results are from mixed effects models 

(see Methods). (b) Change over time in total bee abundance across study sites, 
using long-term historic data and predicted future data for low and high 
climate change scenarios (RCP 2.6 and 8.5). Each point represents the sum  
for each ecosystem × year combination of all species-level mean predicted 
abundance values that were calculated by averaging across predictions from the 
six GCMs. Points are colored by monsoon aridity averaged across the six GCMs. 
Positive and negative aridity values indicate hotter/drier and cooler/wetter 
conditions relative to the historic mean (2002–2019), respectively. Error bands 
represent 95% confidence intervals. Statistics are from linear regression 
analysis.



Extended Data Fig. 6 | Body mass of 16 bee species as a function of time. Points represent means and error bars indicate s.e.m. (mean n = 15 bee individuals/
species/year; see Methods for sample sizes per species). Statistical results are from linear regressions. Mean body mass did not change over time within any species.
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Extended Data Fig. 7 | Aridity predicts floral availability. Relationship 
between spring or monsoon season aridity and proportion of forb and shrub 
individuals in flower from long-term plant phenology data (2002–2019), in 
three focal ecosystem types. Positive and negative aridity values indicate 

hotter/drier and cooler/wetter conditions relative to the mean, respectively. 
Error bands represent 95% confidence intervals. Statistical results are from 
mixed effects models.



Extended Data Fig. 8 | Monthly climate trends. Mean air temperature and 
total monthly precipitation trends for the plains ecosystem and Chihuahuan 
Desert ecosystems (grassland and shrubland) at the Sevilleta National Wildlife 

Refuge, for each month averaged across the years 2002–2019 (top) and for each 
month within each year (bottom).



Article

Extended Data Fig. 9 | Relationships between aridity and other climate 
variables. Monthly aridity index (inverse SPEI) as a function of four other 
climate variables (temperature, precipitation, relative humidity, and vapor 

pressure deficit) for each month of the year (1–12). Data are from two 
meteorological stations at the Sevilleta National Wildlife Refuge (Chihuahuan 
Desert and Plains). Error bands represent 95% confidence intervals.
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