Article

Heat and desiccation tolerances predict bee
abundance under climate change

https://doi.org/10.1038/s41586-024-07241-2

Received: 13 May 2022

Accepted: 26 February 2024

Melanie R. Kazenel'™, Karen W. Wright'?, Terry Griswold?, Kenneth D. Whitney' &
Jennifer A. Rudgers'

Published online: 27 March 2024

M Check for updates

Climate change could pose an urgent threat to pollinators, with critical ecological and
economic consequences. However, for most insect pollinator species, we lack the

long-term data and mechanistic evidence that are necessary to identify climate-driven
declines and predict future trends. Here we document 16 years of abundance patterns
for ahyper-diverse bee assemblage’in awarming and drying region?, link bee declines

with experimentally determined heat and desiccation tolerances, and use climate
sensitivity models to project bee communities into the future. Aridity strongly
predicted bee abundance for 71% of 665 bee populations (species x ecosystem
combinations). Bee taxa that best tolerated heat and desiccation increased the most
over time. Models forecasted declines for 46% of species and predicted more
homogeneous communities dominated by drought-tolerant taxa, even while total
bee abundance may remain unchanged. Such community reordering could reduce
pollination services, because diverse bee assemblages typically maximize pollination
for plant communities®. Larger-bodied bees also dominated under intermediate to
high aridity, identifying body size as a valuable trait for understanding how climate-
driven shifts in bee communities influence pollination®*. We provide evidence that
climate change directly threatens bee diversity, indicating that bee conservation
efforts should account for the stress of aridity on bee physiology.

Reports of alarming declinesinterrestrial arthropod biodiversity high-
light the need to pinpoint whichinsect taxa and ecosystem services are
most threatened and why’. Bee declines are particularly concerning,
because bees are the most important pollinators of many wild and
agricultural plants®’, accounting for billions of dollars in crop produc-
tion annually®. Bumblebee declines and honeybee colony losses are
well-documented’®™, and some evidence indicates decreasing bee
diversity in Europe and North America'>**. However, for most of the
world’s approximately 20,000 bee species, more than 98% of which
are neither bumblebees nor honeybees™, we lack the data to assess
trends in abundance or causes of biodiversity declines.

Growing evidence implicates climate change asanimportantdriver
ofbee declines'®?, butit remains less studied relative to other stress-
ors®?such as habitat loss, disease and pesticides. Climate change
could directly reduce bee fitness when ambient conditions exceed
physiological tolerances, but these tolerances have not been measured
for most bee species? (but see refs. 18,24,25). Climate studies have
largely focused on geographical or phenological shifts, particularly
potential phenological mismatches between bees and plants, often
finding that mismatches are unlikely®?*. However, climate change
could affect bees directly as well as indirectly via floral resources®.
Recent studies indicate that climate is correlated with bumblebee
distributions'®" and native bee abundances'®?, and relate bumble-
bee population trends to historic thermal habitat and heat shock tol-
erance’®. These studies suggest the probable importance of direct

climate threats to bees, and highlight the urgent need for mechanistic
research ondiverse species. In particular, predicting vulnerability to
no-analogue future climates requires understanding the physiology
underlying animals’ climate sensitivities. Insects have high water loss
relative to their metabolic rates, making it critical to measure both
thermaland desiccation tolerances, which very few studies have done?
(butseeref. 28).

Inaddition, body size may be a critical trait for understanding climate
vulnerability and its ecological consequences across diverse organisms.
Surface area:volume ratio scales with body size, affecting heat reten-
tion and water loss in ectotherms?. In bees, body size correlates with
nutritional requirements®, competitive ability®, flight distance® for
floral resource acquisition, and disease transmission®. Size could thus
mediate climate effects on bees directly by governing physiological
responses, or indirectly by determining interactions with plants, com-
petitors or natural enemies, especially when floral resources decline.
Studies show contrasting patterns of change in bee body size along
spatiotemporal gradients in temperature'®**¥, as well as differing body
size-thermal tolerance relationships in bumblebees’®*, establishing
the value of examining this trait and highlighting the need to clarify its
role across the bee phylogeny and across ecosystems. Body size also
links bees’ climate vulnerabilities to their ecological consequences for
pollination via size matching with flowers**, Forecasts of changes in
body size could thus enable community-level predictions of climate
change threats to critical pollination services.
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Fig.1|CSF theory and summary of results. a, Anonlinear relationship between
aridity and an ecological variable signals the importance of climate variability,
inaddition to climate mean, in determining the ecological response, which
depends ontheshape of the nonlinearity. A concave up quadratic function
(blue) signals anet benefit ofincreasing variance around the mean (black
arrows), whereas a concave down relationship (red) signals a net cost of
increasing variance. Under a cubic relationship (full curve), variance may be
either costly or beneficial, depending on the climate mean, indicating a
mean x variance interaction. b, Summary of the CSFsrelating aridity to
maximum yearly abundance for 474 climate-sensitive bee populations out of
665 populationsin total. The climate-sensitive populations represented 243
beespeciesacross 3 ecosystems. The countindicates the number of populations
for whichagiven model type was best. Orange bars represent sensitivity to
shiftsinmeanaridity alone, whereas teal bars indicate sensitivity only to
varianceinaridity. Purple bars denote sensitivity to changesin the mean and
variance of aridity, with light purple indicating additive effects of meanand
variance, and dark purpleindicating interactive effects.

Understanding bees’ climate vulnerability requires considering
their sensitivity to changes in both climate mean and climate vari-
ability, which has increased over time in many regions but has been
little-studied***., Climate sensitivity functions (CSFs) describe how
anorganism’s abundance tracks the distribution of a climate variable
(mean and variance). Specifically, a nonlinear CSF signals that climate
variability alone will affect abundance, eveniif the climate mean does
not change; this is referred to as Jensen’s inequality (Fig. 1a). Labora-
tory trials suggest that greater variance in temperature can reduce
insect population growth*®, but CSFs are unexplored for bees, imped-
ing predictions of future bee biodiversity under increasingly variable
climate conditions. In the southwestern USA, a global hotspot of bee
diversity*, the climate has become drier and more variable from year
toyear? (Extended Data Fig.1a,b), providing anideal test bed to assess
the climate vulnerabilities of bees.

We combined 16 years of bee survey data (from 2002-2019, with the
exception of 2016-2017, comprising 339 species) from the Sevilleta
Long-Term Ecological Research Program (SEV-LTER) carried outin New
Mexico, USA, with physiological tolerance and body size measurements
to address the following questions spanning population to ecosystem
scales. (1) Population scale: How sensitive is bee abundance to climate,
and how will abundance change under future climate scenarios? Do
thermal and desiccation tolerances explain whichbees are winners and
which arelosers under climate change? We hypothesized that bee abun-
dance tracks aridity with species-specific patterns of physiologically
tolerant winner species and vulnerable loser species. (2) Community
scale: How have bee biodiversity and body size tracked climate over
time, and what changes are expected under future climate scenarios?
We hypothesized that hot, dry years favour larger-bodied bees with
high heat and desiccation tolerances, shifting communities toward
dominance by larger bees and reducing bee diversity. (3) Ecosystem
transitions: Will climate-induced ecosystem transitions alter bee vul-
nerabilities to future climates**? We addressed this question using bee
monitoring data from three common ecosystem types of the south-
western USA (Extended Data Fig. 2). We hypothesized that predicted

transitions in which desert grasslands overtake plains grasslands and
shrublands engulf grasslands* will reshape future bee communities
to beless diverse but more resistant to aridity.

Bee abundance strongly tracked aridity

Bee abundance strongly tracked aridity at the population level, dem-
onstrating animportant linkage between climate and bee population
health (Fig.1b). Asan aridity metric, we used theinverse of the standard-
ized precipitation evapotranspiration index (SPEI), which integrates
temperature and precipitation. Positive aridity values indicate hotter
anddrier conditions relative to the mean, and negative values represent
cooler and wetter conditions (Methods). Seventy-one per cent of bee
populations were sensitive to change in the aridity index (474 out of
665 species x ecosystem combinations; Supplementary Fig.1and Sup-
plementary Table1); these populations represented 243 species. Results
derive from mixed effects models of maximum yearly bee abundance
asafunctionofthe aridity index, built for each of the 665 populations
(Methods). Among the populations that tracked aridity, 35% had linear
relationships with aridity signalling sensitivity to changes in mean arid-
ity alone (Fig.1b),16% had quadratic relationships indicating sensitivity
tothevariance but not the mean of aridity (nonsignificant linear param-
eter; Fig. 1b), and 9% were sensitive to mean and variance additively
(significant linear and quadratic parameters; Fig.1b). However, 40% of
populations had cubic relationships with aridity, signalling sensitivity
totheinteractive effects of more arid and variable climate conditions
(Fig.1b). Most aridity-insensitive populations (29% of all populations)
were rare species for which there was low statistical power to detect
trends (Supplementary Table 2).

Additional model comparisons indicated that approximately half
of bee species may experience lagged effects of climate change. The
aridity of the present year best predicted abundance for 48% of popu-
lations, whereas that of the previous year best predicted abundance
for 52% of populations. Spring season aridity predicted abundance
better for aslightly larger number of populations (56%) than summer
monsoon season aridity (44%). These results suggest the importance
of considering time lags, seasonal specialists and bee phenology to
understand population-level sensitivities to climate change. Our find-
ings are consistent with evidence that desert bees use environmental
cuestoemergeinfavourable years and remainin diapause in unfavour-
able ones, and ‘bet-hedge’ suchthatinany given year, some individuals
remain in diapause to spread risk across years***¢,

Physiology predicted winners and losers

The bee genera that were most tolerant of heat and desiccation in
field-based physiological trials (Methods) were those that increased
most strongly under historical climate change (Fig. 2a,b and Supple-
mentary Table 3). A metric that combined thermal and desiccation
tolerance predicted both sensitivity to mean aridity (linear param-
eter from CSFs; likelihood R? = 0.37) and the magnitude of change in
bee taxon abundance over time (likelihood R*= 0.80), indicating the
importance of considering insect water relations in conjunction with
temperature regulation (Fig. 2a,b and Supplementary Table 3). Among
individual metrics of bee physiology, tolerance to vapour pressure
deficit (VPD at the time beeslost responsiveness in thermal trials) best
predicted changeinabundance over time, again suggesting that tem-
perature and water regulation together govern bee performance (Sup-
plementary Table 3). In our models, physiological tolerance metrics
did not predict sensitivity to variancein aridity (best quadratic model:
P=0.42). We therefore suggest that heat and drought tolerance more
strongly underlie bee responses to climate mean rather than climate
variance. Thermal tolerance differed by 37% between the least and most
tolerant bee genera, and vapour pressure deficit tolerance differed by
138%. Relating thermal tolerances to future aridity, on average across
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Fig.2|Physiology predicts sensitivity to aridity and changeinabundance
over time.a, Combined thermal and desiccation tolerance predicted how bee
abundance varied with aridity (linear parameter estimate from climate
sensitivity analysis), for 12 focal bee genera. Higher physiological tolerance
valuesindicate greater resilience to aridity. b, Combined thermal and
desiccation tolerance predicted the magnitude of change inbee abundance
over time (2002-2019), for12bee genera. ;.. estimates are from models of
totalabundance as afunction of year. a,b, Points represent means across
individuals withinagenus and error barsindicate s.e.m. (mean n=11for

general circulation models (GCMs) of global climate under amoderate
climate change scenario through 2100, we project that in 17% of the
next approximately 80 years, monsoon season conditions will exceed
the thermal maxima of the least tolerant bee taxa (range across GCMs:
5-26%; Extended Data Fig. 3a). These results derive from our direct
measurements of critical thermal maxima (CTMax) and desiccation
tolerances (time to loss of responsiveness under dry conditions) of
beeindividuals netted in the field, using experimental methods?. Bee
evolutionary history, as represented by the current bee phylogeny, did
not predict the combined physiological tolerance metric (Blomberg’s
K=0.91, P=0.054), the change in bee species abundance (K= 0.054,
P=0.936; Fig. 2c), or sensitivity to mean aridity (K= 0.59, P=0.424).
Thus, across the focal bee community, climate tolerance traits were
not phylogenetically conserved.

Most desert bees overwinter as prepupae (last-instar larvae) that
canremainin extended diapause until favourable conditions occur®.
Droughtresistance of larvae could thus strongly influence bee species’
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thermal tolerance and 16 for desiccation tolerance; see Methods for sample
sizes per species and statistical methods). Error bands represent 95% confidence
intervals, and statistical results are from mixed effects models with phylogeny
incorporated as arandom effect (Methods). ¢, Phylogeny of the 339 bee species
collected at the Sevilleta National Wildlife Refuge from 2002-2019, labelled by
genus, withdirection of predicted change in abundance from2002-2100
(decrease, increase, no change, orinsufficient data) based onaveraged
projections fromsix GCMs of global climate. Coloured dots indicate focal genera.
See Extended DataFig. 4 for the phylogeny with species names as tip labels.

responses to climate change. Measuring larval physiological tolerance
for multiple species would be extremely difficult but could explain
some of the variance in Fig. 2a,b, as adult and larval tolerances may
not correspond?’. Demographic models that incorporate life his-
tory transitions could elucidate mechanisms of reduction in fitness
under climate change (for example, how do thermal or hydric stress
inadults versus larvae, and changes in floral resource quantity or qual-
ity, influence stage-specific survival and reproduction?). However,
collecting sufficient data would be extremely challenging given our
species-rich bee assemblage dominated by ground-nesting species
with difficult-to-study larval stages®.

For the 243 bee species that are sensitive to aridity, our models
projected that 10% will ‘win’ (increase in abundance) under future cli-
mate conditions*3, 46% will ‘lose’ (decrease in abundance), and 44%
will experience no net change in abundance by 2100 (Fig. 2c and Sup-
plementary Table 4). To obtain these results, we used projected future
aridity values from ClimateNA*’, with data originating fromsix different



GCMs, in the CSF equations from above to predict the abundance of
each bee population during 2020-2100 for three Intergovernmental
Panel on Climate Change (IPCC) scenarios representing low, moder-
ate and extreme climate change (moderate scenario results averaged
across GCMs are presented here; see Supplementary Table 4 for other
results). To capture uncertainty, separate model runs for each of the
six GCMs indicated that decreases could occur for 41-58% of species,
increases could occur for 0-19% of species, and no change could occur
for 40-48% of species (Supplementary Tables 4 and 5). In contrast to
physiological traits, bee life history traits (sociality, overwintering life
stage and diet breadth) did not predict ‘winner’ versus ‘loser’ status
(Supplementary Table 6).

These results suggest the concerning likelihood of climate-driven
declinesinbee diversity in the southwestern USA. However, they also
indicate the resilience of many dryland bees to climate change, given
that populationincreases or stability were predicted for 54% of species.
Some of these desert species appear well-adapted to aridity, increasing
asmean aridity increased. But for 94 species (39%), future increasesin
the year-to-year variability in aridity may buffer against declines caused
byincreasing mean aridity. We thus highlight that understanding bees’
climate responses requires attention to the nonlinearities that signal
sensitivity to climate variance inaddition to changesin the mean. Adap-
tations underlying bees’ resilience to climate may be physiological,
in accordance with our results, or could relate to morphological or
behavioural traits that have not yet been commonly measured across
diverse bee taxa. Our results align with studies of arid-adapted bee
speciesin Australia and Brazil, where some bee species are predicted
toundergo range expansions with increased aridification”*°, and also
alignwith occupancy models that predict expansion of potential habitat
for some bumblebees in North America and Europe™®.

Both diet specialists and generalists were among predicted win-
ner and loser bee species (Supplementary Table 6), indicating that
specialists and their host plants may not be most vulnerable to losses
indrylands, as can occur in some locations™. For instance, Diadasia
rinconis, a Cactaceae specialist, is predicted to remain stable over time,
whereas Lasioglossum (subgenus Dialictus) semicaeruleum, a broad
generalist, is projected to increase in abundance up to intermediate
aridity (as in previous findings for this subgenus®?), but then to decline
under the mostarid conditions. These results highlight theimportance
of considering bees’ direct responses to climate to predict future pol-
lination outcomes for plants.

Larger bees dominated under aridity

Atthe community scale, larger-bodied bees were more abundant than
smaller bees during years with intermediate to high monsoon season
aridity (Fig. 3 and Supplementary Table 7). Historically, body mass
(community-weighted mean) increased linearly with aridity across the
three focal ecosystems (Fig. 3a). However, the ecosystems diverged
in predicted future trends: models generally projected increases in
community-level bee body massin the plains grassland, but suggested
future nonlinear dynamicsin the two desert ecosystems, with average
body mass peaking at moderate aridity and decreasing at the high-
est predicted aridity levels, which exceeded conditions recorded in
the historic data (moderate scenario, Fig. 3b-g; results from other
climate scenarios are presented in Extended DataFig. 5). Intraspecific
body mass did not change over time within 16 of the most common
bee species preserved yearly as museum specimens (Extended Data
Fig.6), suggestinglittle phenotypic plasticity or evolutionary change
withinspecies. Instead, historic change in community-level body mass
occurred through shifts inthe relative abundances of large versus small
bee species.

We hypothesize that non-physiological mechanisms underlie
increasesin community-level body mass, because mass did not predict
bee species’ physiological tolerances to heat or desiccation (P=0.86,
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Fig.3|Changein community-weighted meanbee body mass with aridity
and over time. a-g, Community-weighted mean (CWM) body mass closely
tracked the monsoon seasonaridity index in the long-term historic dataset
across ecosystems (visreg plot showing fitted values from mixed effects model)
(a) and in the combined historic and predicted future dataup to 2100 under the
moderate climate change scenario, in each of three common ecosystemtypes
ofthesouthwestern USA (b-g). h-j, Models generally projected futureincreases
orno change in CWMbody mass depending on the ecosystem and GCM.
b-j,Meanands.e.m.ofthelinear or quadratic effect of aridity or year on CWM
body mass using results from each of six GCMs (listed on the y axis). Positive
and negative aridity valuesindicate hotter/drier and cooler/wetter conditions,
respectively, relative to the historic mean (2002-2019). Statistics in all panels
are from mixed effects models (Methods).

R?*=0.10for the best model; Supplementary Table 8). The greater for-
aging distances typical of larger bees* may be advantageous when
floral resources are most scarce, such as under arid conditions in the
southwestern USA (Extended Data Fig. 7). Loss of floral resources
under agricultural expansion favoured larger female bees capable
of flying greater distances to reach food*, and a similar mechanism
could be at play in drylands. Drought-induced floral scarcity may also
amplify interspecific competition, which could favour larger-bodied
bees that can outcompete smaller species®. Small bees may also be
at a disadvantage because they have high nutritional requirements
relative to their size owing to the allometric scaling of metabolic rate
with body mass®*. However, during extremely dry future years in the
two desert ecosystems, resource scarcity might disproportionately
harm larger-bodied bees owing to their greater absolute resource
needs, countering any advantages conferred by longer flight distances,
better competitive abilities or lower metabolism, and generating the
predicted hump-shaped nonlinear dynamics with aridity (Fig. 3f,g).
Our results pinpoint body size asanimportant and tractable trait that
linksincreasing aridity with consequences for pollination services and
bee susceptibility to non-climate stressors. Bee-flower size matching
increases fruit set and promotes plant—pollinator interaction network
stability*, indicating that climate-induced community-level shifts in
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Fig.4|Winners andlosersinbee communities under climate change.
a,Magnitude of predicted changein bee species abundance over time for each
ofthe 50 mostabundantbee species (2002-2100 averaged projections from
six GCMs; moderate climate change scenario; points indicate mean slope and
errorbarsrepresents.e.m.) asafunction ofeachspecies’abundancerankinthe
historic dataset (2002-2019). Each pointrepresents abee species, colour-coded
by genus. Error bar and point circumference colour indicates whether change
over time was significant (black) or not significant (grey). b, Total bee abundance

bee body size could destabilize pollination networks. Larger-bodied
bees may also transmit pathogens more readily than small bees, sug-
gesting that increases in large bee species could reduce overall bee
community health®,

Ecosystem transitions may enhance declines

Future ecosystem transitions** could alternatively aggravate or dampen
the vulnerabilities of bees to climate change. Specifically, in the south-
western USA, desert grassland is predicted to overtake plains grassland,
anddesertshrublandis predicted to overtake grassland®. In our study,
143 bee species occurredinmore than1ecosystem. For 87% of these spe-
cies, sensitivity to aridity differed among ecosystems (Supplementary
Table1).Inthedrier desert ecosystems (Extended DataFig. 2), agreater
percentage of species decreased in abundance as aridity increased
(47% and 58% of species in the desert grassland and shrubland versus
32% inthe plains grassland).

These results suggest that the vulnerabilities of bees to heat and
drought will intensify as ecosystem transitions progress. This pat-
tern may arise fromalimited availability of microclimates that enable
behavioural thermoregulation in the more arid ecosystems®, or from
ecosystem differences in floral abundance, diversity or phenology*®.
Similar ecosystem-specific patterns were recently detected for small
mammals across the southwestern USAY, indicating that differing
vulnerabilities to climate among ecosystems may be common for dry-
land animals. Given that our three focal ecosystems differed in both
bee community composition and seasonal turnover patterns’, state
transitions among them could alter bee communities through multiple
mechanisms. Future work could document each bee’s floral resources to
evaluate therelativeimportance of indirect climate effects via changes
in floral composition, abundance or phenology*®, which was beyond
the scope of this study. Decreases in floral abundance and changes in
plant community composition or phenology underincreasing aridity
could exacerbate bee declines in ways that our current models do not
capture, making our estimates of declines conservative.

Models also predicted potential ecosystem divergence in future
community body mass trends. Average bee body mass was generally
projected to increase in all ecosystems (Fig. 3h—j). However, future
body massincreases are expected to be largestin the plains grassland,
whereas increases may be followed by declines past a threshold of
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aridity intensification in the two desert ecosystems (Fig. 3 and Sup-
plementary Tables 5 and 7; results from other climate scenarios are
presented in Extended Data Fig. 5). These findings indicate that eco-
system transitions will contribute to determining the consequences
of climate change for the community-level pollinator effectiveness
of bees, as mediated by body size®. In addition, the projected poten-
tial for community-level increases in body mass reinforces evidence
against the hypothesis that body mass declines are a universal biologi-
cal response to climate warming®®. The key to accurate prediction is
contextualizing species traits and physiology within the appropriate
exogenous climate context.

Our models projected lower interannual variability in future mean
body mass relative to the historic period, particularly for the desert
ecosystems. As projected future aridity has variance comparable tothe
historic record (Extended Data Fig.1), this reduced variability inbody
mass probably resulted from our models not capturing non-climate fac-
torsthat candrive fluctuations in bee communities, such as bet-hedging
strategies, nest availability, parasitism, disease, predation and flo-
ral dynamics that are not explained by climate*. These factors may
dampen the ability to detect a direct influence of climate-induced
changes from long-term observational data.

Abundantbutless diverse communities

Ourmodels projectarisein the dominance of asmallnumber of bee spe-
cies (10%) that benefit fromincreasing aridity, offsetting the declines
predicted for46% of species (Fig.4a). Asaresult, total bee abundance
across ecosystems is projected to remain stable over time on average
across GCMs (Fig. 4b, P=0.11; results from other climate scenarios
are presented in Extended Data Fig. 5). Separate model runs for each
GCM aligned with this result in the majority (50%) of cases, although
particular GCMs predicted smallincreases (17% of GCMs) or decreases
(33%) in total bee abundance (Supplementary Table 5). Individual
species projected to increase most in abundance were members of
the genera Agapostemon, Eucera and Melissodes, whereas species of
Lasioglossum, Osmia, Melecta, Halictus and Perdita were projected to
decline, and opposing trends were predicted for different species of
Diadasia (Fig.4a). We thus anticipate anabundantbut less diverse and
more homogeneous future bee community for the region. Our results
bolster the pattern of biotic homogenization as a general community



response to diverse anthropogenic perturbations®. Although bee spe-
cies’ responses to climate change may vary globally, we reveal that
climate change and physiological mechanisms are likely to be of broad
importance, and create an analytical framework that can be widely
applied.

Conclusions

Here we reveal that direct physiological responses to heat and drought
can underlie bees’ vulnerability to climate change. Experimental
field trials uncovered a mechanistic link between bees’ physiological
tolerances and their population dynamics, expanding on previous
studies that documented correlations between bee abundance and
climate variables'®?, Our results align with findings from freshwater
invertebrates for which desiccation resistance predicted community
response to experimental drought, suggesting potential generality
acrossinvertebrate taxa®. Results also demonstrate that understand-
ingbees’ responses to climate requires attention to nonlinearities that
signal sensitivity to climate variance, in addition to changes in mean
climate?. Concerningly, our models predict abundance declines for
46% of 243 bee species studied in the southwestern USA, projecting
less diverse, more homogeneous future bee communities dominated
by species with high aridity tolerances and large body mass. This com-
munity reordering could have critical ecosystem-level consequences
because bee functional diversity promotes pollination services>.

Evidence of astronglink between climate and bee population dynam-
ics highlights that efforts to restore native habitat, reduce pesticide
use or manage disease prevalence in bees* will be most successful
if they account for the physiological stress simultaneously imposed
by climate change. To mitigate this stress, habitat restoration could
intentionally integrate microclimates that provide refuge from heat™.
Bees experiencing high heat may have greater nutritional require-
ments*, creating aneed for drought-tolerant floral plantings that cre-
ate phenological diversity in food resources®. Under heat and drought
stress, bees may be particularly vulnerable to disease, and evidence sug-
gests that pathogens can lessen bees” heat tolerance®, enhancing the
importance of reducing disease burdens®. Strategies such as assisted
migration, although controversial, could prevent species losses due to
thermoregulatory stress and conserve diverse pollinator communities
inthe face of climate change.

Insum, we demonstrate that identifying and mitigating bee declines
requires knowledge of the direct, trait-mediated effects of climate on
pollinator fitness and population persistence. This understanding is
key to preserving the pollination services that are needed to main-
tain global crop production and ecosystem functionality for future
generations.
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Methods

Study system

The Sevilleta National Wildlife Refuge (SNWR; Socorro, NM) spans
93,000 ha and includes five ecosystem types that together represent
~80 million ha of the southwestern USA. We focus on three common
ecosystems in the Refuge that feature distinct plant communities
(Extended Data Fig. 2): Chihuahuan Desert shrubland (dominated by
creosotebush, Larreatridentata), Chihuahuan Desert grassland (domi-
nated by black grama grass, Bouteloua eriopoda), and plains grassland
(dominated by blue gramagrass, Bouteloua gracilis). Transitions among
these ecosystem types are predicted to occur under climate change,
with desert shrubland encroaching upon desert grassland, which is
predicted toreplace plains grassland® . The two desert sites are sepa-
rated by -3 kmand are -10 km from the plains grassland site (Extended
Data Fig. 2). Mean climate conditions are depicted in Extended Data
Fig.8;-60% of precipitation falls during the summer monsoon season
fromJune-September. The two desert sites are more arid on average
than the plains grassland site (Extended Data Fig. 2); mean monthly
cumulative precipitation for the period of the study was 19.9 mm for the
desert sites and 20.9 mm for the plains grassland site; mean monthly
temperatures were 14.5 °C and 15.3 °C, respectively.

Bee collection

The SEV-LTER has continuously collected bee abundance data at the
SNWRsince 2002. Here we report results using data from 2002-2019,
excluding 2016 and 2017 owing to a temporary reductionin sampling
effort during those two years. Bees are sampled from March-October
(twoweeks per month) inthe three focal ecosystem types using passive
funnel traps*** (Extended Data Fig. 2). One trap is located at each end
of five 200 m transects per ecosystem type. Traps are opened each
March as close as possible to the first day of spring, and left open for
14 days, after which the bee specimens are collected. The traps are
then closed for 14 days. This two-week cycle is repeated until the end
of October. Funnel traps provide ameasure of bee activity, not ameas-
ure of presence, and may be biased by bee taxon, sociality, sex, pollen
specialization, floral resource availability and microsite conditions®>®.
However, they mitigate human bias associated with net collection,
enablelong-term sampling simultaneously at multiple sites, and allow
for the detection of temporal trends.

Beeidentification

Beeswereidentified to species by KW.W.and T.G. using dichotomous
orinteractive keys and reference specimens from the USDA-ARS Pol-
linating Insects Research Unit’s US National Pollinating Insects Col-
lection and the University of New Mexico’s Museum of Southwestern
Biology, where voucher specimens were deposited. Information
related to these specimens is available via the Symbiota Collections
of Arthropods Network (https://scan-bugs.org; dataset identifier:
UNM-MBA).

Sensitivity of bee abundance to climate

All statistical analyses were performed in R¥”. We built CSFs to exam-
ine how bee abundance varied with level of aridity at the population
(species x ecosystem) level. We modelled ecosystem-specific climate
sensitivity because ecosystems differed in climate conditions and plant
community composition, the latter of which could influence bees’
climate responses by altering microclimate conditions and resource
availability. As an aridity metric, we used the SPEI, the standardized
difference between precipitation and potential evapotranspiration
(PET). SPEI reduces model complexity by integrating temperature
and precipitation, providing a proxy for the effects of both heat and
humidity, and has decreased over the past century in our study area
(that is, aridity has increased)? whereas precipitation alone does not
show a temporal trend®,

We calculated PET using the Thornthwaite method®’, as variables
needed for more complex PET calculations were not availablein the pro-
jected future climate dataset (see the next section). The Thornthwaite
metricisatemperature-only approximation that does not account for
the potential effects of surface radiation, windspeed, or humidity. Asa
result, its use may bias SPEI valuesin a hotter, drier direction, and could
overestimate the magnitude of increasing aridity and bees’ responses
toit. To consider this potential bias, we used 15 years of half-hourly data
from two on-site eddy covariance flux towers (Ameriflux Program) to
calculate PET with the Penman-Monteith equation, whichincorporates
additional climate variables, for the years 2008-2022 (Supplementary
Information). We then calculated PET using the Thornthwaite method
for the same data, and compared SPEl values derived from the two PET
estimation methods (Supplementary Information). For the monsoon
season, the Thornthwaite method yielded higher estimates of aridity
insome years (40% of years in the plains grassland, 53% of years in the
desert ecosystems), but lower estimates in other years (60% of yearsin
the plains, 47% of years in the desert; Extended Data Fig. 3b). We thus
did not observe aconsistent Thornthwaite overestimation ofadrying
trendin the historic data. Inaddition, for both PET estimation methods,
year-to-year variationin SPElwas 4-5 times greater in magnitude than
within-year differences between methods (Extended Data Fig. 3b).
Based ontheseresults, we suggest that the Thornthwaite method cap-
tures sufficiently realistic year-to-year fluctuationsin aridity to enable
consideration of future bee abundance trends.

SPElvalues were calculated using climate data from two on-site mete-
orologicalstations (Chihuahuan Desert station: 34.335° N, -106.729° W;
Plains station: 34.335° N, -106.632° W) for 6-month spans representing
the climateleading up to the springand monsoon seasons of each year
(spring: December-May; monsoon: April-September) for the years
2002-2020%. The Chihuahuan Desert station is located between the
two desertssites, ~-679 mfromthe desert grassland and -718 mfromthe
desert shrubland. The Plains station is located ~261 m from the plains
grassland site. Alonger time series would capture additional variability
in SPEL. However, the period of our study at the SNWR had temporal
increases similar to the 100-year regional record for both mean aridity
and year-to-year variability®. A six-month SPEI integration allowed us
to consider seasonality while acknowledging that our bee abundance
estimates reflect processes that occur at different timepoints during
the year (for example, survival, reproductive output, emergence from
diapause). To confirmthe utility of SPEl as a proxy for heatand dryness,
we regressed SPEI against temperature, precipitation, humidity, and
vapour pressure deficit for the spring and monsoon seasons, for each
weather station (Extended DataFig. 9).

Separately for each bee species x ecosystem combination, using
2002-2019 bee abundance data, we built mixed effects models™
examining maximum yearly bee abundance (maximum abundance
recorded onagiven sampling transectinagiven year) as afunction of
SPEI (main results presented using inverse SPEI for ease of interpreta-
tion). Maximumyearly abundance values were square-root transformed
to improve normality of residuals and homogeneity of variances.
Our models included the random effect of transect. We chose maxi-
mum yearly bee abundance to examine seasonal dynamics in climate
response, based on the hypothesis that spring versus monsoon aridity
levels would more strongly correspond with abundance maximum
rather than total, whichincorporates cross-season dynamics. Results
were robust to using total rather than maximum yearly abundance as
theresponse variable because these two metrics were very highly cor-
related (99% of populations had r > 0.90; 96% had r > 0.95).

We used a corrected Akaike information criterion (AICc)-based model
selection process™ to determine whether abundance was best predicted
by models containing linear, quadratic, or cubic effects of SPEI, allow-
ing consideration of how climate mean versus variability influenced
bee abundance. We similarly compared models containing the effects
of present versus prior year’s aridity, to examine potential time lagsin
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climate responses, and spring versus monsoon season aridity, to pin-
point the time of year most important for predicting bee population
dynamics. Finally, we compared models containing different covariance
structures to account for temporal autocorrelation (no covariance
structure versus first or second order autoregressive). Models contain-
ingautoregressive terms (specified using the ‘correlation’ argument)
tested if observations covaried with those from the same transectin the
previousyear (first order autoregressive) or previous two years (second
order). Allmodels were assessed relative to anullmodel containing only
random effects. We considered a population to be ‘climate-sensitive’
if at least one model containing SPEI had a lower AICc value than the
null model; for each of these populations, we identified a single best
model that had the lowest AICc value™. We used power analysis” to
assess probability of detecting trends for populations in which aridity
did not predict abundance.

Bee abundance change under future climate scenarios

To predict future bee abundances, we obtained projected mean
monthly temperature and total monthly precipitation data for 2021~
2100 from the ClimateNA v. 5.21 software package* for three IPCC
climate scenarios: RCP 2.6, RCP 4.5, and RCP 8.5. These represent low,
moderate, and extreme climate change, respectively. Data originated
fromsix different GCMs produced as part of the IPCC’s CMIPS project
that have high validation statistics”> and were available via ClimateNA:
ACCESS 1.0, CanESM2, CCSM 4.0, CNRM-CMS, CSIRO-Mk3.6.0, and
INM-CM4. RCP 2.6 data were only available for the CanESM2 GCM,
while RCP 4.5 and 8.5 data were available for all GCMs. Studies indi-
cate that CMIP5 models yield relatively similarly projections to more
recent CMIP6 models for North American monsoon patterns™ and
precipitation/temperature”. ClimateNA uses downscaling to calculate
climate values for a specific location based on longitude, latitude,
and elevation, with the PRISM interpolation method. We interpolated
temperature and precipitation values for the centre point between our
three study sites (34.335320° N, -106.682701° W), as evidence suggests
that PRISMinterpolation methods do not have the resolution toaccu-
rately predict climate variation within the SNWR (J.A.R., unpublished
data). We used the temperature and precipitation values to calculate
SPEI for six-month spans as above for each scenario x year x season
(spring or monsoon) combination, using the historic data from the
two on-site meteorological stations for the reference period specified
in the calculation®.

Next, for each bee population (species x ecosystem combination),
we obtained the CSF equation that best described the relationship
between bee abundance and SPElin our long-term data (2002-2019;
see above). Separately for each GCM, we used the future SPEI val-
ues from ClimateNA in each CSF equation to predict bee population
abundance in each year from 2020-2100. We eliminated unreal-
istically high (outlier) predicted bee abundance values that were
greater than five times the maximum abundance recorded in the
historic dataonatransect x year combination. Other outlier removal
methods produced similar results in subsequent statistical analyses.
Then, for each species x year, we calculated transect-level mean pre-
dicted abundance across GCMs, summed abundance across sites,
and regressed abundance against year to evaluate change over time
from2002-21007. We also completed this step using predicted future
bee abundance datafrom each GCM separately. Finally, to consider if
life history traits predicted winners or losers under climate change,
we used Pearson chi-squared tests with Monte Carlo simulation for
Pvalues to examine relationships between traits and projected future
trends (increase, decrease, no change) from the regressions of mean
predicted abundance averaged over the individual GCMs, for the
subset of species for which trait data were available. Traits considered
were sociality (levels: social, solitary, parasitic), diet breadth (levels:
specialist, generalist, parasitic), and overwintering life stage (levels:
adult, prepupae).

Thermal and desiccation tolerances

To assess thermal tolerance, we measured CTMax on individual bees
fromJune-October 2020 and May-October 2021. Bees were collected
via aerial netting and immediately placed in individual wells within a
field-portable environmental chamber covered with a shading tent
(Extended Data Fig. 2). Bees were held initially at 25 °C for 10 min. We
then increased the temperature at a rate of 0.5 °C min™, periodically
applyinga puffofairto eachbeetotestits responsiveness. CTMax was
determined as the temperature at which each bee lost responsiveness.
We used iButtons adhered to alternating wellsin the chamber to record
temperature and humidity once per minute for the duration of each
trial. After losing responsiveness, each bee wasimmediately removed
from the chamber. Prior to analyses, we removed low outliers (bees
with thermal tolerances less than 38 °C) that may have resulted from
compromised health.

We acknowledge the caveats associated with our method for estab-
lishing CTMax;ininsects, measured CTMax canvary with factorsinclud-
ing experimental ramping rate, developmental stage, acclimation
temperature, age, and feeding status*”””. However, the latter three
factors did not alter CTMax in studies of honeybees or bumblebees®”.
Inaddition, we chose aramping rate of intermediate value to minimize
biases associated with both high and low ramping rates, according
to published recommendations”’. We recognize that other tolerance
assays are available'™*’%; however, we focus on CTMax as a prevalently
calculated metric that has been shown to relate to species’ responses
tourban and experimental warming?*’°. We emphasize that we exam-
ined whether intergeneric differences in CTMax relate to patternsin
long-term data, rather than interpreting CTMax values in absolute
terms. Sample sizes: 133 bee individuals representing 12 genera (Aga-
postemon: n=2, Anthidium: n =5, Anthophora: n = 4, Anthophorula:
n=3, Colletes:n = 6, Diadasia: n =31, Lasioglossum: n = 38, Macrotera:
n=_8,Megachile:n=1,Melissodes: n =21, Perdita:n=11, Svastra:n = 3).

To measure desiccation tolerance, we collected bees as above, first
placing them in individual vials that each contained a small piece of
sponge soaked in water to prevent bee dehydration during transport.
Vials containing bees were placed in acooler and transported to Albu-
querque, NM, where the bees were weighed to the nearest 0.0001 g and
placed inindividual wells (with no water source) of the same environ-
mental chamber described above, this time situated indoors. We held
the beesforamaximum of 3 hprior to testing, and only tested bees that
showed no visible signs of stress. For each trial, we held the bees at 25 °C
(far below CTMax), and measured temperature and humidity using
iButtons asabove. We checked eachbee every 20 min for the first8-9 h,
held them overnight for -6 h, and then again checked each one every
20 minuntil it lost responsiveness, which we assessed using a puff of air
asabove. Timetoloss of responsiveness was recorded as adesiccation
tolerance metric, following evidence that dehydration occurs much
more quickly than starvation”®°, Statistical results were robust to use of
critical water content” as an alternative desiccation tolerance metric.
We immediately removed each bee after it lost responsiveness and
weighed it to the nearest 0.0001 g. To determine dry mass, we placed
eachbeeinadrying oven at 60 °C for 72 h, and immediately weighed
it. Sample sizes: 188 bee individuals representing 12 genera (Agaposte-
mon:n =11, Anthidium: n = 6, Anthophora: n =14, Anthophorula:n=13,
Colletes:n=17,Diadasia: n =22, Lasioglossum: n =46, Macrotera:n=6,
Megachile: n=10, Melissodes: n =7, Perdita: n =39, Svastra: n=7). For
24 individuals, loss of responsiveness occurred during the ~6-h lapse
period; for these, we assigned end time as the midpoint between the
lapse period’s start and end times; statistical results were unchanged
when we instead either removed these individuals or included time
discovered unresponsive as the end point.

For each bee genus, we modelled the magnitude (slope) of change
in abundance over time for the tested species as a function of mean
thermal or desiccationtolerance, incorporating phylogeny asarandom



effect®. We built similar models with linear parameter estimate from
CSFs as the response variable. We constructed the phylogeny using
genus-level tree data®, adding species as polytomies®*#*. To consider
how thermal and desiccation tolerances together related to abun-
dance change, we first z-scored the genus-level thermal and desic-
cation tolerance data (standardized each dataset to a mean of zero
and standard deviation of one). We then added the z-scored thermal
and desiccation values for each genus to create acombined metric
of the two.

Because humidity decreased during the thermal tolerance trials,
we also calculated vapour pressure deficit tolerance (VPD at the time
of loss of responsiveness)®. We then used the Akaike information
criterion to compare models that respectively contained thermal,
desiccation, combined thermal and desiccation, or VPD tolerance
metrics to determine which best predicted change over time or lin-
ear CSF parameter, respectively. We tested for phylogenetic signal
in abundance change over time across GCMs, linear CSF parameter,
and physiological tolerance using <phylosignal>*¢. Models were built
at the genus level to enable inclusion of data from species for which
we were able to collect thermal but not desiccation tolerance data, or
vice-versa.

Relation of bee body size to climate over time and changes
expected under future climate scenarios

We measured intertegular distance (ITD), a standard bee body size
metric®®8, on femaleindividuals of 256 species for which specimens
were available. These species represented ~99% of total abundance in
thelong-term dataset. We measured a minimum of three individuals
per species whenever possible, and measured males when no females
were available for agiven species. We photographed the thorax of each
bee from above and measured the distance between the wing bases
(tegulae) using ImageJ v.1.52% or a microscope imaging system with
anintegrated measurement capability (VHX-S650E free-angle obser-
vation system, Keyence). We then estimated total body mass (mg)
using established allometric equations®®®, After calculating mean
body mass for each species, we determined community-weighted
mean (CWM) body mass for each transect x year combinationin the
historic and predicted future datafrom each GCM separately by mul-
tiplying each species’ mean body mass by its fractional contribution
to total abundance. Then, using mixed effects models®®, we tested for
change in CWM body mass as a function of year in each ecosystem,
running models separately for each GCM and including the random
effect of transect. We used the same framework to model CWM body
mass as afunction of monsoon SPElin each ecosystem, including the
random effects of transect and year, and comparing models with or
without the quadratic effect of SPEI based on AICc. When models were
within two AICc values of one another, we chose the simplest model
for presentation. For just the historic data pooled across ecosystems,
we separately modelled CWM body mass as a function of monsoon
SPEI, including ecosystem as a fixed effect that interacted with SPEI
and the random effects of year and transect, and visualized the result
using visreg®'.

We took additional body mass measurements to validate the inter-
pretation that community-level body mass shifts were driven by spe-
cies’relative abundance changes rather than within-species evolution
or phenotypic plasticity. For 16 of the most abundant species, we
measured ITD on aminimum of 10 individuals per species whenever
possible from each of at least 5 years spaced throughout the dataset,
using specimens stored within our collections. We then regressed
body mass (estimated from ITD above) on year for each species. No
species changed inbody mass over time (Extended Data Fig. 6). Num-
ber of individuals measured per species: Agapostemon angelicus: 57,
Anthophora affabilis: 239, Anthophora lesquerellae: 61, Anthophora
montana: 176, Ashmeadiella meliloti: 159, Diadasia australis: 219,
D. rinconis: 331, Halictus ligatus: 112, H. tripartitus: 80, Lasioglossum

sp.A:119, L. deludens:180, L. hudsoniellum: 341, L. semicaeruleum: 118,
L. sisymbrii: 199, Osmia watsoni: 77, Perdita callicerata: 45.

Ecosystem transitions and bee vulnerabilities to future climates
We examined how bee species’ climate sensitivities and population
trends differed among ecosystems to consider how the expansion
of some ecosystem types and contraction of others could influence
vulnerability to aridity. For 143 bee species with sufficient datain 2 or
more ecosystems, we calculated the proportion of species for which
the best CSF, determined above, differed among ecosystemsin shape
(linear, quadratic or cubic) and/or direction (positive versus negative
linear parameter estimate). Then, within each ecosystem, we calculated
the proportion of species with positive versus negative linear parameter
estimates from the best CSF.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All datasets generated and/or analysed during the current study are
publicly available. Long-term bee monitoring data are available via
the Environmental Data Initiative (EDI) at https://doi.org/10.6073/
pasta/cdc8381b8b2be97188daeffcd6310e9b. Also available via EDI
arethe SEV-LTER meteorological data (https://doi.org/10.6073/pasta/
decdaa0c695cb2070c73f5b684a32e73), plant phenology data (https://
doi.org/10.6073/pasta/ceb693495ef57b8blba075caleeOf7ed), and
plant biomass data (https://doi.org/10.6073/pasta/5d6fa085c3d31bclb
¢352081ec9e839a). Bee body mass, life history trait, and physiological
tolerance data are available via the Open Science Framework (OSF) at
https://doi.org/10.17605/0SF.I0/H2YVé. Projected future climate data
are available from ClimateNA at https://climatena.ca/.

Code availability

Computer code used in the analyses is available via Zenodo at https://
doi.org/10.5281/zenodo0.8412361 (ref. 92).
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Extended DataFig.1| Temporal trendsin historic and predicted future
aridity (inverse SPEI). (a, b) Trends for the monsoon seasonin Socorro, NM,
USA.In (a), points show the 6-monthintegrated aridity index, calculated from
temperature and precipitation datarecorded since 1900, with positive values
indicating hotter and drier conditions relative to the mean. In (b), points show
the coefficient of variation (CV) inthe aridity index for non-overlapping 5-yr
time windows (adapted from Rudgers et al., Ecology, 2018). (c) Predicted future
monsoon season aridity trends for the Sevilleta National Wildlife Refuge
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(NM, USA) under low, moderate, and high CO, emissions scenarios (RCP 2.6,
4.5,and 8.5, respectively), using projected future climate data from six
General Circulation Models (ACCESS 1.0, CanESM2, CCSM 4.0, CNRM-CMS,
CSIRO-Mk3.6.0,and INM-CM4).RCP 2.6 datawere only available for the
CanESM2 GCM. Positive and negative valuesindicate hotter/drier and cooler/
wetter conditionsrelative to the historic mean (2002-2019), respectively. In all
panels, error bands represent 95% confidence intervals.
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Extended DataFig.2|Researchsitesand equipment. Left: Map of sampling
sitesat the Sevilleta National Wildlife Refuge, NM, USA (beige polygonin upper
map). Bees were sampled in three focal ecosystem types: Chihuahuan Desert
shrubland (green points), Chihuahuan Desert grassland (black points), and
plains grassland (blue points). Tosample bees, we installed one passive funnel
trap ateach end of five 200 m transects/site; traps areindicated by colored
pointsinthelower panel. Maps were generated via ArcGISv.10.1 (ESRI2012,
Redlands, CA) using the World Imagery basemap® (sources: Esri, Maxar, GeoEye,
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the
GIS User Community; accessed 23 February 2022 via https://www.arcgis.com/
home/item.htmI?id=10df2279f9684e4a9f6a7f08febac2a9). Upperright:
Differences betweensitesin climate conditions (table) and plant community
composition (figures). Table values are results from paired, two-sided t-tests
comparing temperature and precipitation metrics from the month of greatest
difference between the Plains and Chihuahuan Desert meteorological stations.
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Plains Desert
Metric Month daf  t P Mean SE Mean SE
Maximum temperature November 20 -3.20 0.0045 24.40 0.36 23.80 0.29
Minimum temperature October 20 -3.32 0.0034 -0.34 0.79 -1.75 0.79
Mean temperature January 20 -12.99 <0.0001 3.78 0.36 260 0.35
Total precipitation July 20 -1.76  0.0945 56.60 6.96 49.00 5.72
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Figures are NMDS plots®*illustrating differences among ecosystems in plant
cover for all species, and with the dominant species removed. Lowerright:

(a) Images of the environmental chamber used to assess thermal and desiccation
tolerances of bees. The chamber consisted of aninsulated ice chest (IceKool,
Queensland, Australia). In the chamber, air temperature was controlled using a
162-W Peltier device (model AC-162, TE Technology, Traverse City, M) and a
custom-built controller thatincorporated a TE Technology digital display
(MP-2986) and control card (TC-36-25-RS486). (b) Traps used for bee collection.
Each consisted ofa946 mL paint can filled with -275 mL of propylene glycol and
topped with a plasticautomotive funnel (funnel height =10 cm, top diameter =
14 cm, bottom diameter =2.5 cm). The funnels’ interiors were painted with
either blue or yellow fluorescent paint (Krylon, Cleveland, OH or Ace Hardware,
Oak Brook, IL). Each trap was placed on a 45 cm high platform that was
surrounded by a 60 cm high chicken wire cage to prevent wildlife and wind
disturbance.
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Extended DataFig. 3 | Relationship between air temperature and aridity,
and alternate aridity index calculations. (a) Aridity index (inverse SPE/) as a
function of maximum air temperature for the period leading up to the monsoon
season (April-September), for the historic period (2002-2020) in the plains
and Chihuahuan Desert ecosystems, and for 2021-2100 under three predicted
future climate scenarios (RCP2.6,4.5, and 8.5) for the midpoint between
ecosystems, using data from six General Circulation Models (ACCESS 1.0,

CanESM2, CCSM 4.0, CNRM-CMS5, CSIRO-Mk3.6.0, and INM-CM4). Thered bar
withanasterisk on the x-axis indicates the critical thermal maximum (CTMax)
oftheleast thermally tolerantbee taxoninthe dataset. The error band represents
the 95% confidence interval. (b) Year-to-year variationin the aridity index
calculated using two different PET estimation methods (Thornthwaite and
Penman) for the spring and monsoon seasons in the plains ecosystem and
Chihuahuan Desert ecosystems.
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Extended DataFig. 5|Projected trends in community-weighted meanbody
mass and total abundance under low and high climate change scenarios.

(a) Change in community-weighted mean (CWM) bee body mass with monsoon
seasonaridity (inverse SPEl) and over time in the combined historic and
predicted future datasets, for low (RCP 2.6) and high (RCP 8.5) climate change
scenarios. Pointsrepresent means and error barsindicate s.e.m. for thelinear or
quadratic effect of aridity or year on CWM body mass using results from each of
six General Circulation Models (GCMs; listed on y-axis). RCP 2.6 datawere only
available for the CanESM2 GCM. Positive and negative aridity values indicate
hotter/drier and cooler/wetter conditions relative to the historic mean
(2002-2019), respectively. Statistical results are from mixed effects models

(see Methods). (b) Change over time in total bee abundance across study sites,
using long-term historic dataand predicted future data for low and high
climate change scenarios (RCP 2.6 and 8.5). Each point represents the sum

for each ecosystem x year combination of all species-level mean predicted
abundance values that were calculated by averaging across predictions from the
six GCMs. Points are colored by monsoon aridity averaged across the six GCMs.
Positive and negative aridity values indicate hotter/drier and cooler/wetter
conditions relative to the historic mean (2002-2019), respectively. Error bands
represent 95% confidenceintervals. Statistics are fromlinear regression
analysis.
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Software and code

Policy information about availability of computer code

Data collection  To estimate bee body size, we photographed the thorax of each bee from above and measured the distance between the wing bases
(tegulae) using ImageJ v. 1.52 software or a microscope imaging system with an integrated measurement capability (VHX-S650E free-angle
observation system, Keyence Corporation, Ithaca, IL). We obtained projected mean monthly temperature and total monthly precipitation data
for 2021-2100 from the ClimateNA v. 5.21 software package. No other software was used for data collection.

Data analysis Analyses were conducted in Rv. 4.2.2 (2022) and PRIMER v. 7 (2015). Maps were generated via ArcGIS v. 10.1. DOIs for computer code used
in analyses are provided in the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All datasets generated and/or analyzed during the current study are publicly available. Long-term bee monitoring data are available via the Environmental Data
Initiative (EDI) at http://doi.org/10.6073/pasta/cdc8381b8b2be97188daeffcd6310e9b. Also available via EDI are the SEV-LTER meteorological data (https://
doi.org/10.6073/pasta/decdaaOc695ch2070c73f5b684a32e73), plant phenology data (https://doi.org/10.6073/pasta/ceb693495ef57b8b1ba075calee0f7ed), and
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plant biomass data (https://doi.org/10.6073/pasta/5d6fa085c3d31bclbc352081ec9e839a). Bee body mass, life history trait, and physiological tolerance data are
available via the Open Science Framework (OSF) at https://doi.org/10.17605/0SF.I0O/H2YV6. Projected future climate data are available from ClimateNA at https://
climatena.ca/.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description For long-term bee monitoring, we used passive traps to collect bees at three sites, each representing a key ecosystem type of the
southwestern USA: Chihuahuan Desert shrubland, Chihuahuan Desert grassland, and plains grassland. Each site contained 10 bee
traps. Traps were opened for 2 weeks/month from March through October of each year. To measure the physiological tolerances of
bees, we collected bees with aerial nets, placed them in an environmental chamber, and assessed either their thermal or desiccation
tolerance.

Research sample Adult bees (Hymenoptera: Apoidea: Anthophila), both female and male, were captured at the Sevilleta National Wildlife Refuge
(Socorro, NM, USA), at three sites. The samples were meant to represent the bee populations present in these three locations.

Sampling strategy For the long-term monitoring study, all bee individuals collected in the traps during each sampling period were included in the study.
For the physiological tolerance trials, to align with best practices for the collection of trait data, we aimed to measure at least 10
individuals per taxon whenever possible, and at least 3 individuals for taxa with low abundance.

Data collection For the long-term bee monitoring dataset, bee specimens were collected from the traps by KW.W., M.R.K., and research staff. All
bee individuals were identified to species by K.W.W. and T.G. For the thermal and desiccation tolerance trials, M.R.K. completed all
data collection. Individual bees were placed in wells within an environmental chamber. To measure thermal tolerance, the chamber’s
temperature was increased at a rate of 0.52C/min, and thermal tolerance was determined as the temperature at which each bee lost
responsiveness. To measure desiccation tolerance, we held the bees at 252C, and recorded time to loss of responsiveness as a
desiccation tolerance metric. KW.W. identified all bee specimens from the thermal and desiccation tolerance trials.

Timing and spatial scale  For long-term bee monitoring, collection traps were opened for 2 weeks/month from March—October in 2002 through 2019. March—
October is the portion of the year during which adult bees are active in the study system. Opening the traps for 2-week periods
enabled collection of a sufficient number of bee individuals to capture the area’s bee diversity. For the thermal and desiccation
tolerance trials, data were collected from June—October 2020 and May—October 2021, which allowed us to measure physiological
tolerance on representatives of 12 focal bee genera present throughout the bee activity season. Spatially, the two Chihuahuan
Desert sites are separated by ~3 km and are ~10 km from the plains grassland site.

Data exclusions Long-term bee monitoring data from 2016 and 2017 were excluded from analyses due to a temporary reduction in sampling effort
during those two years. Prior to analyzing trends in predicted future bee abundance, we eliminated unrealistically high (outlier)
predicted bee abundance values that were greater than 5x the maximum abundance recorded in the historic data on a transect x
sampling date combination. From the thermal tolerance data, we removed low outliers (bees with thermal tolerances less than 382C)
that may have resulted from bees with compromised health. From one statistical analysis related to how physiology predicts the
quadratic parameter estimate of climate sensitivity functions, we excluded one bee genus that was a very high outlier.

Reproducibility For reproducibility, thermal and desiccation tolerance trials were conducted on a minimum of 3 individuals per taxon for >80% of
taxa (mean n = 11 for thermal tolerance and 16 for desiccation tolerance). For the remaining taxa, this level of reproducibility was not
possible due to low catch rates in the field during the study.

Randomization In the thermal and desiccation tolerance trials, bee individuals were randomly assigned to wells within the experimental chamber
during the trials. Other data collection methods were observational and did not entail randomization.

Blinding Blinding did not occur in the study. In the thermal and desiccation tolerance trials, blinding of bee species identity was not possible,
as each bee needed to be visually checked for responsiveness. Field collection of bees was observational and thus did not involve
blinding.

Did the study involve field work? Yes [ |No

Field work, collection and transport

Field conditions For the long-term bee monitoring dataset, bee collection traps were open continuously for 2 weeks/month, across the full range of
weather conditions that occurred during those periods. Collection of bees for the thermal and desiccation tolerance trials occurred
during conditions known to be conducive to bee activity (temperatures above 152C, wind speeds below 25 kmh, and low cloud
cover).

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<




Location Field work was conducted at the Sevilleta National Wildlife Refuge (Socorro, NM, USA), at three sites, each of which represented a
distinct ecosystem type: Chihuahuan Desert shrubland, Chihuahuan Desert grassland, and plains grassland.

Access & import/export  All site visits and data collection were made pursuant to research permits issued by the Sevilleta National Wildlife Refuge, U.S. Fish
and Wildlife Service to KW.W., M.RK., and J.A.R.

Disturbance Movement around sites was confined to established roads and paths whenever possible to minimize disturbance. Long-term bee
monitoring infrastructure consists solely of minimalist traps that will be removed when the ongoing study is discontinued.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XX XXX X
OooxXxood

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals No laboratory animals were used in the study

Wild animals Adult bees (Hymenoptera: Apoidea: Anthophila), both female and male, were captured using two methods: passive trapping (for the
long-term bee monitoring study) and aerial netting (for thermal and desiccation tolerance trials). In the passive traps, bees were
caught and killed in propylene glycol. Following the thermal and desiccation tolerance trials, all bee individuals were were euthanized
via freezing at -202C. All bees were pinned, labeled, and archived in permanent museum collections. Species-level identification of
most bee species requires microscopy on non-living specimens, necessitating the euthanasia of bees in our study. All transport of
bees occurred by car, with bees held in vials (see below for further detail). Bee individuals are estimated to have ranged in age from
several days to 6 weeks.

Field-collected samples  For thermal tolerance trials, bees were collected via aerial netting, weighed, and immediately placed in individual wells within a field-
portable environmental chamber covered with a shading tent. Bees were held at 252C for 10 min prior to the start of each thermal
trial. For desiccation tolerance trials, bees were collected via aerial netting and placed in individual vials that each contained a small
piece of sponge soaked in water to prevent bee dehydration during transport. The vials were placed in a cooler and transported by
car to Albuquerque, NM, where the bees were weighed and placed in the environmental chamber for the desiccation trial, this time
situated indoors. Bees were held for a maximum of 3 hours prior to desiccation tolerance testing, and we only tested bees that
showed no visible signs of stress. No other housing or maintenance of animals occurred in this study. Following the thermal and
desiccation tolerance trials, all bee individuals were were euthanized via freezing at -2029C.

Ethics oversight The study did not require ethical approval, as no vertebrate animals were involved

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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