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a b s t r a c t

In this work, we study verification and synthesis problems for safety specifications over unknown
discrete-time stochastic systems. When a model of the system is available, barrier certificates have
been successfully applied for ensuring the satisfaction of safety specifications. In this work, we
formulate the computation of barrier certificates as a robust convex program (RCP). Solving the
acquired RCP is hard in general because the model of the system that appears in one of the constraints
of the RCP is unknown. We propose a data-driven approach that replaces the uncountable number of
constraints in the RCP with a finite number of constraints by taking finitely many random samples
from the trajectories of the system. We thus replace the original RCP with a scenario convex program
(SCP) and show how to relate their optimizers. We guarantee that the solution of the SCP is a solution
of the RCP with a priori guaranteed confidence when the number of samples is larger than a specific
value. This provides a lower bound on the safety probability of the original unknown system together
with a controller in the case of synthesis. We also discuss an extension of our verification approach to
a case where the associated robust program is non-convex and show how a similar methodology can
be applied. Finally, the applicability of our proposed approach is illustrated through three case studies.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Ensuring safety and temporal requirements on cyber–physical
ystems is becoming more important in many applications in-
luding self-driving cars, power grids, traffic networks, and inte-
rated medical devices. Complex requirements for such real-life
ractical systems can be expressed as linear temporal logic for-
ulae (Kesten, Pnueli, & Raviv, 1998). Model-based approaches

or satisfying such requirements have been studied extensively in
he literature (Baier & Katoen, 2008; Belta, Yordanov, & Gol, 2017;
irard, 2005; Tabuada, 2009). In the setting of formal approaches
or stochastic systems, a number of abstraction-based methods
as been developed for the verification and synthesis of dynam-
cal systems in order to either verify the desired specifications
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or synthesize controllers enforcing these systems to satisfy such
specifications (Lahijanian, Andersson, & Belta, 2015; Majumdar,
Mallik, & Soudjani, 2020; Svoreňová et al., 2017; Zamani, Esfa-
hani, Majumdar, Abate, & Lygeros, 2014). In order to improve
scalability of abstraction-based methods, some other techniques
such as sequential gridding (Soudjani & Abate, 2013; Soudjani,
Gevaerts and Abate, 2015), discretization-free abstraction (Za-
mani, Tkachev, & Abate, 2017), and compositional abstraction-
based techniques (Soudjani, Abate and Majumdar, 2015) have
been introduced in the literature in order to efficiently deal with
the verification and synthesis problems.

An approach for formal verification and synthesis with re-
spect to safety specifications in dynamical systems is to use a
notion of barrier certificates (Prajna & Jadbabaie, 2004). Barrier
certificates have been the focus of the recent literature as an
abstraction-free technique that is scalable with the dimension of
the system, i.e., they do not require construction of an abstraction
of the system and can provide directly the controller together
with the guarantee on the satisfaction of the safety specifica-
tion (Borrmann, Wang, Ames, & Egerstedt, 2015; Yang, Wu, &
Lin, 2020; Zhang, She, Ratschan, Hermanns, & Hahn, 2010). A
barrier-based methodology is introduced by Prajna and Jadbabaie
(2004) in order to verify safety in deterministic hybrid systems.
Prajna, Jadbabaie, and Pappas (2007) propose a framework for
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afety verification of stochastic systems using barrier certificates
hich is extended to stochastic hybrid systems. Wang, Ames, and
gerstedt (2017) present barrier certificates that ensure collision-
ree behaviors in multi-robot systems by minimizing the differ-
nce between the actual and the nominal controllers subject to
afety constraints. Sloth, Pappas, and Wisniewski (2012) propose
compositional analysis for verifying the safety of an intercon-
ection of subsystems using barrier certificates. Jagtap, Soudjani
nd Zamani (2020) use barrier certificates for the synthesis of
ontrollers against complex requirements expressed as co-safe
inear temporal logic formulas.

The common requirement of the approaches mentioned above
s the fact that they need a mathematical model of the system.
owever, a precise model of dynamical systems is either not
vailable in many application scenarios or too complex to be of
ny use. Therefore, there is a need to develop approaches which
re capable of verifying or synthesizing controllers against safety
pecifications only based on collected data from the system.
Related Literature. Data-driven methods have gained sig-

ificant attentions recently for formally verifying some desired
pecifications. Coulson, Lygeros, and Dörfler (2020) introduce A
ata-enabled predictive control that utilizes noisy data of the
ystem and produces optimal control inputs ensuring the satisfac-
ion of desired chance constraints with high probability. A data-
riven model predictive control scheme is proposed by Berberich,
öhler, Muller, and Allgower (2020) which only requires ini-
ially measured input–output trajectories together with an up-
er bound on the dimension of the unknown system. Tabuada
nd Fraile (2020) develop a methodology in order to make a
ingle-input single-output system stable only based on data. The
tability problem of black-box linear switching systems with de-
ired confidences is investigated by Kenanian, Balkan, Jungers,
nd Tabuada (2019) based on collected data. This approach is
xtended by Wang and Jungers (2019) by providing a methodol-
gy for computing the invariant sets of discrete-time black-box
ystems. A novel Bayes-adaptive planning algorithm for data-
fficient verification of uncertain Markov decision processes is
ntroduced by Wijesuriya and Abate (2019). A framework is pro-
osed by Sadraddini and Belta (2018) to provide a formal guaran-
ee on data-driven model identification and controller synthesis.
alamati, Soudjani, and Zamani (2020) develop a methodology for
roviding a probabilistic confidence over the verification of signal
emporal logic properties for partially unknown stochastic sys-
ems based on collected data. Plambeck, Fey, and Schyga (2022)
ropose a framework to learn a decision tree as a model for a
lack box continuous system.
The work by Dawson, Qin, Gao, and Fan (2022) develops a

ethod to synthesize robust feedback controllers with safety and
tability guarantees. Robey, Lindemann, Tu, and Matni (2021)
ropose a data-driven approach in order to synthesize controllers
or deterministic hybrid systems using barrier certificates while
roviding a correctness guarantee on the obtained barrier certifi-
ate. A data-driven, model-based approach is developed by Abate,
hmed, Giacobbe, and Peruffo (2020) to provide stability guar-
ntees using Satisfiability Modulo Theories (SMT). Niu, Zhang,
nd Clark (2021) developed a data-driven technique to synthe-
ize controllers for unknown deterministic systems. The frame-
ork developed by Clark (2021) computes barrier certificates

or complete- and incomplete-information systems affected by
aussian process and measurement noises under unbounded in-
uts. Majumdar, Salamati, and Soudjani (2023) cosidered the
emory blow-up problem for data-driven learned abstractions
f dynamical systems and proposed a two-step memory effi-
ient method that first trains compact neural reperesentation for
he abstraction and then verifies the soundness of the trained

epresentation.

2

An optimization-based approach is proposed by Robey et al.
(2020) to learn a control barrier certificate through safe trajec-
tories under suitable Lipschitz smoothness assumption on the
dynamical system. A sub-linear algorithm is developed by Han,
Topcu, and Pappas (2015) for the barrier-based data-driven model
validation of dynamical systems which computes the barrier
function using a large dataset of trajectories. Jagtap, Pappas and
Zamani (2020) propose a two-step procedure to synthesize a
controller for an unknown nonlinear system, where the first step
is to learn a Gaussian process as a replacement of the unknown
dynamics, and the second step is to construct the control barrier
function for the learned dynamics.

A data-driven optimization called scenario convex program
(SCP) is introduced by Calafiore and Campi (2006) to solve ro-
bust convex optimizations. This approach replaces the infinite
number of constraints in the robust optimization with a finite
number of constrained by sampling the uncertain variables from
their distributions. The approach relates the feasibility of the
SCP to that of the robust optimization while providing bounds
on the probability of violating the constraints. Kanamori and
Takeda (2012) study the same approach and relates worst-case
violation of the constraints to the probability of their violation.
While Calafiore and Campi (2006) and Kanamori and Takeda
(2012) focus on feasibility, Esfahani, Sutter, and Lygeros (2014)
establish a quantitative relation between the optimal value of the
robust optimization and its associated SCP.

The results by Esfahani et al. (2014) are employed in Ne-
jati, Lavaei, Jagtap, Soudjani, and Zamani (2021) for data-driven
verification of dynamical systems using some inequalities charac-
terizing barrier certificates. Our results presented here differ from
the ones by Nejati et al. (2021) in three main directions. First, our
approach is developed for stochastic dynamical systems subject
to random disturbances with unknown distributions, while the
other work is restricted to deterministic systems. Second, our
approach also tackles controller synthesis problems, while the
other work only deals with the verification ones. Last but not
least, we study a class of non-convex optimization problems that
makes our approach applicable to larger classes of systems, while
the result in the other work is restricted to only convex problems.

Contributions. Here, we propose formal verification and syn-
thesis procedures for unknown stochastic systems with respect
to safety specifications based on collected data. We first cast a
barrier-based safety problem as a robust convex program (RCP).
Solving the obtained RCP is hard in general because the unknown
model of the system appears in the constraints. To tackle this
issue, we resort to a scenario-driven approach by collecting sam-
ples from the system. Using the results by Esfahani et al. (2014),
we connect the optimal solution of the acquired scenario convex
program (SCP) with that of the original RCP. We provide a lower
bound on the safety probability of the unknown stochastic system
using a certain number of data which is related to the desired
confidence. We extend this result to provide a new confidence
bound for a class of non-convex barrier-based safety problems.
We conclude the paper by three case studies to illustrate the
applicability of our approach.

Outline. The structure of this paper is as follows. Section 2
gives the system definition and the problem statement, and
presents the safety verification of stochastic systems using bar-
rier certificates. In Section 3, we introduce the scenario convex
program for the barrier-based safety problem and we connect
its optimizer to that of the original optimization. Our approach
for the safety verification of the unknown stochastic system is
presented in Section 4. In Section 5, we explain our data-driven
synthesis approach which enforces the safety specification with
a certain confidence. An extension of the verification problem for
a class of non-convex safety problems is discussed in Section 6.
To illustrate the effectiveness of our approach, three case studies

are presented in Section 7. Finally, Section 8 concludes the paper.
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. Preliminaries and problem statement

.1. Notations and preliminaries

The set of positive integers, non-negative integers, real num-
ers, non-negative real numbers, and positive real numbers are
enoted by N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .}, R, R+

0 , and R+,
espectively. We denote the indicator function of a set A ⊆ X
by 1A : X → {0, 1}, where 1A (x) is 1 if x ∈ A , and 0
otherwise. Notation 1m is used to indicate a column vector of ones
in Rm×1. We denote by ∥x∥ the Euclidean norm of any x ∈ Rn.
We also denote the induced norm of any matrix A ∈ Rm×n by
∥A∥ = supx̸=0 ∥Ax∥/∥x∥. Given N vectors xi ∈ Rni , ni ∈ N, and
i ∈ {1, . . . ,N}, we use [x1; . . . ; xN ] and [x1, . . . , xN ] to denote
the corresponding column and row vectors, respectively, with
dimension

∑
i ni. The absolute value of a real number x is denoted

by |x|. For a function f : X → Y , we denote its inverse by f −1
:

Y → X , whenever exists. A regularized incomplete beta function
for parameters (z; a, b) is defined as I(z; a, b) =

∫ z
0 ua−1(1−u)b−1du∫ 1
0 ua−1(1−u)b−1du

.
f a system, denoted by S , satisfies a property Ψ during a time
horizon H, it is denoted by S |HH Ψ . We also use |H in this paper
o show the feasibility of a solution for an optimization problem.

The sample space of random variables is denoted by Ω . The
orel σ -algebras on a set X is denoted by B(X). The measurable
pace on X is denoted by (X,B(X)). We have two probability
paces in this work. The first one is represented by (X,B(X),P)
hich is the probability space defined over the state set X with
as a probability measure. The second one, (Vw,B(Vw),Pw),

efines the probability space over Vw for the random variable w
ffecting the stochastic system with Pw as its probability mea-
ure. With a slight abuse of the notation, we use the same P and
w when the product measures are needed in the formulations.
onsidering a random variable z, Var(z) := E(z2)−(E(z))2 denotes
ts variance with E being the expectation operator.

.2. System definition

In this work, we first deal with (potentially) unknown
iscrete-time continuous-space stochastic dynamical systems as
ormalized next.

efinition 2.1. A discrete-time stochastic system (dt-SS) is a
uple S = (X, Vw, w, f ), where the Borel set X ⊂ Rn is the
tate set of the system, the Borel set Vw is the uncertainty space,
:= {w(t) : Ω → Vw, t ∈ N0} is a sequence of independent and

dentically distributed (i.i.d.) random variables on the Borel space
w with some distribution Pw , and the map f : X × Vw → X
s a measurable function that characterizes the state evolution
f the system. The state trajectory of the system is constructed
ccording to

: x(t + 1) = f (x(t), w(t)), t ∈ N0. (2.1)

e denote a finite trajectory of the system by ξ (t) := x(0)x(1) . . .
(t), t ∈ N0.

In this work, we assume that the map f and the distribution
f the uncertainty Pw are unknown. Instead, we assume we can
ollect N independent and identically distributed state pairs (xi, x+

i )
by initializing the system at xi and observing its next state as
x+

i = f (xi, wi) for some random sample wi. The collected dataset
s denoted by

:=

{
(x , x+)

}
⊂ X2, i ∈ {1, . . . ,N}. (2.2)
i i

3

Fig. 1. A set X containing initial and unsafe sets Xin and Xu . The (blue)
dashed line illustrates a safe trajectory of the system, whereas the yellow one
demonstrates an unsafe trajectory. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.3. Problem statement

Definition 2.2. Given a set of initial states Xin ⊂ X , a set of unsafe
states Xu ⊂ X , and a finite time horizon H ∈ N0, the system S is
called safe if all trajectories of S that start from Xin never reach
Xu within horizon H. We denote this safety property by Ψ and its
satisfaction by S is written as S |HH Ψ . A state set X containing
the initial and unsafe sets is illustrated in Fig. 1.

Since the system is stochastic and we do not know the dis-
tribution of w and the map f , we are interested in establishing
a lower bound on the probability that the safety property Ψ is
satisfied by the trajectories of S while using only a dataset of the
form (2.2). Now, we state the main problem we are interested to
solve here.

Problem 2.3. Consider an unknown dt-SS S as in Definition 2.1.
Provide a lower bound (1 − ρ) ∈ [0, 1] on the probability of
satisfying Ψ , i.e., Pw

(
S |HH Ψ

)
≥ 1 − ρ, together with a

confidence (1 − β) ∈ [0, 1] using only a dataset D of the form
(2.2). Moreover, establish a connection between the required size
of dataset D and the desired confidence 1 − β .

Therefore, we are interested in finding a potentially tight
lower bound. The confidence 1− β in the statement of the prob-
lem is with respect to the probability distribution of the dataset
D and is seen from the frequentist interpretation of probability:
any algorithm that solves this problem collects dataset D using
a probability distribution; while running the algorithm multiple
times with different datasets D, the algorithm gives wrong results
(incorrect lower bound on the safety probability) in at most β
portion of the algorithm runs.

Fig. 2 shows an overview of our approach. The block on the
left represents a stochastic safety problem. The RCP block re-
formulates the safety problem as a robust optimization prob-
lem. Blocks SCPN and SCPN,N̂ solve the optimization problem
introduced by the RCP block using finite number of samples. Fi-
nally, Theorem 4.4 connects SCP’s solutions to the original safety
problem.

2.4. Safety verification via barrier certificates

Definition 2.4. Given a dt-SS S = (X, Vw, w, f ), a nonnegative
function B : X → R+

0 is called a barrier certificate (BC) for S if
there exist constants λ > 1 and c ∈ R+

0 such that

B(x) ≤ 1, ∀x ∈ X , (2.3)
in
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Fig. 2. This figure shows an overview of the proposed scenario approach for
erification of the safety specification.

(x) ≥ λ, ∀x ∈ Xu, (2.4)[
B(f (x, w)) | x

]
≤ B(x) + c, ∀x ∈ X, (2.5)

here Xin ⊂ X and Xu ⊂ X are initial and unsafe sets correspond-
ing to a given safety specification Ψ , respectively.

Next theorem, borrowed from Jagtap, Soudjani et al. (2020),
provides a lower bound on the probability of satisfaction of the
safety specification for a dt-SS.

Theorem 2.5. Consider a dt-SS S and a safety specification Ψ .
Assume there exists a non-negative barrier certificate B(x) which
satisfies conditions (2.3)–(2.5) with constants λ and c. Then

Pw
(
S |HH Ψ

)
≥ 1 −

1 + c H
λ

, (2.6)

ith H ∈ N0 being the finite time horizon associated with Ψ .

In this work, we consider polynomial-type barrier certificates
enoted by B(b, x), where b is the vector containing the coeffi-
ients of the polynomial. Such a polynomial with degree k ∈ N0
as the form

(b, x) =

k∑
ι1=0

. . .

k∑
ιn=0

bι1,...,ιn (x
ι1
1 . . . x

ιn
n ), (2.7)

with bι1,...,ιn = 0 for ι1 +· · ·+ ιn > k. Hence, finding a polynomial
barrier certificate reduces to determining the coefficients of the
polynomial, namely bι1,...,ιn . In the next section, we provide our
data-driven approach for the construction of polynomial-type
barrier certificates.

3. Data-driven safety verification

We first cast the barrier-based safety problem in Theorem 2.5
as a robust convex programming (RCP). We then provide a
scenario-based approach in order to solve the obtained RCP using
data collected from the system.

Satisfying the conditions of Theorem 2.5 is equivalent to hav-
ing a non-positive value for the optimal solution of the following
RCP (i.e., K ≤ 0):

RCP :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

d
K

s.t. max
z

(
gz(x, d)

)
≤ 0, z ∈ {1, . . . , 5},∀x ∈ X,

d = [K; λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.1)

n which,

1(x, d) = −B(b, x) − K,
(x, d) = (B(b, x) − 1 − K)1 (x),
2 Xin

4

g3(x, d) = (−B(b, x) + λ− K)1Xu (x),

g4(x, d) =
1 + c H
ρ

− λ− K,

g5(x, d) = E

[
B(b, f (x, w)) | x

]
− B(b, x) − c − K, (3.2)

here (1 − ρ) is a given lower bound for the safety probability.

emark 3.1. The RCP (3.1) is in fact a robust convex optimization.
t is a convex optimization since the constraints are convex with
espect to decision variables in d and objective function. It is
robust optimization since the constraints have to hold for all
∈ X .

emark 3.2. The RCP (3.1) always has a feasible solution. For
nstance, by choosing coefficients of B(b, x) equal to zero, λ = 2,
c = 0, and K ≥

1
ρ

− 2, we get a feasible solution for the RCP.
Moreover, the barrier certificate obtained from this RCP satisfies
conditions (2.3)–(2.5) as long as K ≤ 0.

Finding an optimal solution for the RCP in (3.1) is hard in gen-
eral because the map f is unknown, the probability measure Pw is
lso unknown (thus the expectation in g5 cannot be computed an-
lytically), and there are infinitely many constraints in the robust
ptimization since x ∈ X , where X is a continuous set. To tackle
his, we first assign a probability distribution to the state set, take
i.i.d. samples {x1, x2, . . . , xN} from this distribution, and replace

the robust quantifier ∀x ∈ X with ∀xi ∈ X , i ∈ {1, 2, . . . ,N}.
This results in the following scenario convex program denoted
by SCPN :

SCPN :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
d

K

s.t. max
z

gz(xi, d) ≤ 0, ∀i ∈ {1, . . . ,N},

z ∈ {1, . . . , 5},
d = [K; λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0.

(3.3)

To tackle the issue of unknown Pw , we replace the expectation
in g5 with its empirical approximation by sampling N̂ i.i.d. values
wj, j ∈ {1, . . . , N̂}, from Pw for each xi, which gives the following
scenario convex program denoted by SCPN,N̂ :

SCPN,N̂ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
d

K

s.t. max
z

ḡz(xi, d) ≤ 0, ∀i ∈ {1, . . . ,N},

z ∈ {1, . . . , 5},
d = [K; λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.4)

where ḡz := gz for all z ∈ {1, 2, 3, 4} and

ḡ5(xi, d) :=
1

N̂

N̂∑
j=1

B(b, f (xi, wj)) − B(b, xi) − c + δ − K. (3.5)

n SCPN,N̂ , f (xi, wj) is the next state of the system from the current
state xi with the noise realization wj. Therefore, the solution of
the SCPN,N̂ can be obtained using only the dataset D without
he knowledge of f and Pw . The optimal value for the objective
function of SCPN,N̂ is denoted by K∗(D). We also denote by B̂(b, x |

D) the barrier function constructed based on the solution of
SCPN,N̂ in (3.4).

Note that ḡ5(xi, d) in (3.5) has an additional parameter δ >
0 compared to g5. This parameter is added to make the last
inequality more conservative in order to capture the error coming
from replacing the expectation with the empirical mean. We use
Chebyshev’s inequality (Hernández, 2001) to quantify such an
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rror with the associated confidence. Let us define the variance
f the empirical approximation as

2
:= Var

( 1

N̂

N̂∑
j=1

B(b, f (x, wj))
)
, (3.6)

here the variance is taken with respect to wj. We assume that
here is a bound M̂ such that

ar
(
B(b, f (x, w))

)
≤ M̂, ∀x ∈ X . (3.7)

his assumption gives us a bound for σ 2 in (3.6) as σ 2
≤

M̂
N̂

due
to wj being independent. The idea of replacing the expectation
by the empirical mean in an optimization problem and relating
the associated solutions based on Chebyshev’s inequality is also
used by Soudjani and Majumdar (2018). Next theorem shows that
the barrier certificate computed using the optimal solution of the
SCPN,N̂ is a feasible barrier certificate for SCPN in (3.3) with a
certain confidence.

Theorem 3.3. Let B̂(b, x | D) be a feasible solution of the SCPN,N̂
for some δ > 0, and assume the inequality (3.7) holds with a given
M̂. Then for any βs ∈ (0, 1], we get

Pw

(
B̂(b, x | D) |H SCPN

)
≥ 1 − βs, (3.8)

provided that the number of samples in the empirical mean satisfies
N̂ ≥

M̂
δ2βs

.

roof. By the statement of the theorem, we have B̂(b, x | D) |H

SCPN,N̂ . The difference between the empirical mean in (3.5) and
the expected value in (3.3) can be quantified by invoking the
Chebyshev’s inequality as:

Pw

(
|E

[
B(b, f (x, w)) | x

]
−

1

N̂

N̂∑
j=1

B(b, f (x, wj))| ≤ δ

)
≥ 1 −

σ 2

δ2
,

(3.9)

here δ ∈ R+, and σ 2 is defined in (3.6) (Hernández, 2001). Since
ll the first four feasibility conditions are the same as in (3.3)
nd (3.4), B̂(b, x | D) is a feasible solution for those conditions
f SCPN with probability one. The only remaining concern is the
ast feasibility condition. According to (3.9), one can deduce that
ˆ (b, x | D) is a feasible solution for SCPN with a confidence
f at least 1 −

σ2

δ2
. Furthermore, we have σ 2

≤
M̂
N̂

by having
Var(B(b, f (x, w))) ≤ M̂ , and hence

Pw
(
B̂(b, x | D) |H SCPN

)
≥ 1 −

M̂

δ2N̂
.

y the above inequality, we get βs ≥
M̂
δ2N̂

and consequently
ˆ ≥

M̂
δ2βs

. This completes the proof. □

emark 3.4. When the system has additive noise, i.e.,

x(t + 1) = fa(x(t)) + w(t),

the condition (3.7) can be established by having a bound on fa(·)
and bounds on moments of the noise w. For instance, in the case
of one-dimensional systems (i.e., n = 1), we have B(b, x) =∑k

ι=0 bιx
ι and the variance of B(·) can be expanded as follows:

Var(B(b, f (x, w))) = Var
( k∑

bιf (x, w)ι
)

ι=0

5

= Var
( k∑
ι=0

bι(fa(x) + w)ι
)

= Var
( k∑

ι

ι∑
j=0

bι

(
ι

j

)
fa(x)ι−jwj

)

= Var
( k∑

j=1

gj(x)w
j
)
with gj(x) :=

k∑
ι=j

bι

(
ι

j

)
fa(x)ι−j

=

k∑
j=1

k∑
z=1

gj(x)gz(x)(E[wj+z
] − E[wj

]E[wz
]).

This means the variance can be bounded using upper bounds of
fa(·) and moments of w.

As it can be seen from Theorem 3.3, higher number of samples
N̂ is needed in order to have a smaller empirical approximation
error δ, and to provide a better confidence bound. In fact, N̂ and
δ are required to solve the SCPN,N̂ in (3.4). Later in the next
section, we show how the value of βs affects the total confidence
concerning the safety of the stochastic system.

Remark 3.5. Note that our results presented in this paper are
valid for any choice of the probability distribution P with its
support being the state set X that satisfies a regularity assumption
formulated in the next section (cf. Assumption 4.2). This assump-
tion holds for a wide range of distributions including uniform,
truncated normal, and exponential distributions. From the algo-
rithmic perspective, this distribution affects the collected data
points xi and the optimal solution of the SCPN . The confidence
formulated in our paper is also with respect to this distribution.
We choose P to be a uniform distribution in the case study
section.

4. Safety guarantee over unknown stochastic systems

In the previous section, we established the connection be-
tween the two optimizations SCPN and SCPN,N̂ , and showed that
the solution of SCPN,N̂ is a feasible solution for SCPN with a
certain confidence if the number of samples N̂ is chosen ap-
propriately (cf. Theorem 3.3). In this section, we focus on the
relation between the original RCP and the SCPN utilizing the
fundamental result by Esfahani et al. (2014) and provide an end-
to-end safety guarantee over the unknown stochastic system with
a priori guaranteed confidence. To do so, we need to raise the
following regularity assumptions on the functions and the chosen
probability measure P.

Assumption 4.1. Functions g1, g2, g3, and g5 are all Lipschitz
continuous with respect to x with Lipschitz constants Lx1 , Lx2 ,
Lx3 , and Lx5 , respectively. Therefore, the Lipschitz constant Lx :=

Lx1 + Lx2 + Lx3 + Lx5 is a Lipschitz constant for maxz gz(x, d), z ∈

{1, . . . , 5} \ {4}. In addition, if g1, g2, g3, and g5 are analytic over
a compact domain X , the Lipschitz constant of maxz gz(x, d) is
Lx := max

{
Lx1 , Lx2 , Lx3 , Lx5

}
.

Assumption 4.2. There is a strictly increasing function G : R+

0 →

[0, 1], where G(0) = 0 such that

P[b(x, r)] ≥ G(r) ∀x ∈ X, (4.1)

where b(x, r) ⊂ X is an open ball centered at point x with radius
r .

Note that any probability distribution, for which the above
lower bound function G(r) can be computed, can be used in our
approach for sampling.
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emark 4.3. The probability distribution from which xi is sam-
led must satisfy Assumption 4.2. This assumption requires hav-
ng a strictly increasing function G : R+

0 → [0, 1] that satisfies

[b(x, r)] ≥ G(r), ∀x ∈ X .

hen, the probability distribution P should assign positive proba-
ility to any ball with positive radius. This means no ball b(x, r) ⊂

could be excluded from sampling in the approach with some
on-trivial probability.

Next, we introduce the main result which connects the safety
f an unknown stochastic system directly to data collected from
he system.

heorem 4.4. Consider an unknown dt-SS, as in (2.1), and safety
pecification Ψ . Let Assumptions 4.1 and 4.2 hold with Lipschitz
onstant Lx and function G(r), respectively. Assume N̂ is selected
or the SCPN,N̂ as in Theorem 3.3 in order to provide confidence
− βs. Denote by K∗(D) the optimal value of the optimization
roblem in (3.4) using N samples and parameter ρ ∈ (0, 1]. For

any β ∈ [0, 1], the following statement holds with a confidence of
at least (1 − 3β − βs):

Pw
(
S |HH Ψ

)
≥ 1 − ρ,

if

K∗(D) + Lx G−1(ϵ) ≤ 0, (4.2)

here function G defined in (4.1), and ϵ = I−1(1 − β;Q + 3,N −

− 2).

roof. Denote the optimal values of the RCP and the SCPN by
K∗ and K∗

m(D), respectively. According to Esfahani et al. (2014,
Theorem 3.6), one has

P
(
K∗

m(D) ≤ K∗
≤ K∗

m(D) + LspH(ϵ)
)

≥ 1 − β,

for a chosen ϵ and any N ≥ N(ϵ, β) as in Esfahani et al. (2014,
Theorem 2.2). Equivalently, the above inequality holds for a given
N and ϵ ≤ I−1(1 − β; d,N − d + 1). In this expression, d is
the number of decision variables, and H(·) is a uniform level-set
bound as defied in Esfahani et al. (2014, Definition 3.1). Constant
Lsp is a Slater constant as defined in Esfahani et al. (2014, equation
(5)). Since the original RCP in (3.1) is a min–max optimization
problem, the constant Lsp can be selected as one according to Es-
fahani et al. (2014, Remark 3.5). By choosing d := Q + 3, one
obtains the parameters of the incomplete beta function in the
theorem statement. Based on Esfahani et al. (2014, Proposition
3.8), H(ϵ) = LxG−1(ϵ), where Lx is the Lipschitz constant of RCP
as in Assumption 4.1, and G(·) as in (4.1). Now, one can readily
deduce that

P
(
K∗

≤ K∗

m(D) + LxG−1(ϵ)
)

≥ 1 − 3β. (4.3)

Confidence β is multiplied by 3 since the Lipschitz continuity is
needed in (3.1) in three different regions and, hence, we leverage
the results by Murali, Trivedi, and Zamani (2022) to deal with
this issue by multiplying β by three. On the other hand, due to
the particular selection of N̂ and βs according to Theorem 3.3, we
know that (3.8) holds. Therefore,

P
(
K∗

m(D) ≤ K∗(D)
)

≥ 1 − βs. (4.4)

Define the events A := {D | K∗
≤ K∗

m(D) + LxG−1(ϵ)}, B := {D |

K∗
m(D) ≤ K∗(D)}, and C := {D | K∗(D) + LxG−1(ϵ) ≤ 0}, where

P(A) ≥ 1 − 3β and P(B) ≥ 1 − βs. The inequalities in A and B
satisfy

K∗
≤ K∗ (D) + L G−1(ϵ) ≤ K∗(D) + L G−1(ϵ). (4.5)
m x x 2

6

Note that any element D that belongs to C will make the right-
hand side of (4.5) non-positive. In addition, if this element also
belongs to A ∩ B, the two inequalities in (4.5) will also hold, and
we get K∗

≤ 0.

P(K∗
≤ 0) ≥ P(A ∩ B) ≥ 1 − P(Ac) − P(Bc) ≥ 1 − 3β − βs.

This completes the proof since non-positiveness of K∗ ensures a
safety lower bound (1 − ρ) with confidence of at least 1 − 3β −

βs. □

Corollary 4.5. If samples are collected uniformly from a hyper
rectangular state set with edges of length ηx(i) in each dimension i,

then one can compute G(ϵ) as aϵn∏n
i=1 ηx(i)

, where a =
1
2n

π
n
2

Γ ( n2 +1) with
he Gamma function defined as Γ (k) = 1× 2× 3 . . .× (k− 1) and
(k +

1
2 ) =

1
2 ×

3
2 × · · · (k −

3
2 )(k −

1
2 )π

1
2 for all positive integers.

Corollary 4.6. If the state set is an n-dimensional hypersphere with
radius r̃ and the data is sampled uniformly, then one has

G(ϵ) =
1
2

[
I(1 −

c21
r̃2

;
n + 1
2

,
1
2
) +

ϵn

r̃n
I(1 −

c22
ϵ2

;
n + 1
2

,
1
2
)
]
,

where c1 =
2r̃2−ϵ2

2r̃ , and c2 =
ϵ2

2r̃ .

Remark 4.7. For uniform sampling, the function G(r) is propor-
tional to rn. Therefore, the sample complexity of the proposed
approach is in the order of ( vLx

ϵ
)n, where v is the volume of state

et and n is the dimension of the state set.

emark 4.8. The barrier function constructed based on the finite
umber of samples according to the above theorem together with
he obtained parameters c and λ satisfies the conditions (2.3)–
2.5) in Definition 2.4 with a confidence of at least 1 − 3β −

s.

emark 4.9. Note that the constraint g4 in (3.1) enforces the
onstraint P(S |HH Ψ ) ≥ 1 − ρ for a given ρ. When ρ is not
ixed, one can eliminate this constraint from the optimization and
uarantee directly the following inequality

w(S |HH Ψ ) ≥ 1 −
1 + c∗H

λ

∗

,

where c∗ and λ∗ are the optimal values of the SCPN,N̂ . This
increases the likelihood of getting a feasible optimization and
gives the best possible lower bound on the safety probability.

For the sake of clarity, we present the steps required for
applying Theorem 4.4 in Algorithm 1.

Both Theorem 4.4 and Algorithm 1 require knowing an upper
bound for Lipschitz constant Lx. The following lemma shows how
o get this constant for quadratic barrier certificates and systems
ith additive noises. A similar reasoning can be used for other
olynomial-type barrier certificates by casting them as quadratic
unctions of monomials.

emma 4.10. Consider a nonlinear system with additive noise

x(t + 1) = fa(x(t)) + w(t), t ∈ N0, (4.6)

and a bounded state set X such that ∥x∥ ≤ L for all x ∈ X.
Without loss of generality, we assume that the mean of noise is
zero. Let ∥fa(x)∥ ≤ L1∥x∥ + L2 and ∥Jx∥ ≤ L̂ for some L1, L2, L̂ ≥

,∀x ∈ X, where Jx is the Jacobian matrix of fa(x). Given a quadratic
arrier function xTPx with a symmetric positive definite matrix P, the
ipschitz constant Lx can be upper-bounded by
∥P∥(L1LL̂ + L2L̂ + L).
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Algorithm 1: Safety verification of an unknown dt-SS S =

X, Vw, w, f ) using collected data.
Input: Confidence parameters β ∈ [0, 1] and βs ∈ [0, 1),
parameters ρ ∈ (0, 1], δ ∈ R+, M̂ ∈ R+, Lx ∈ R+, and the
degree of barrier certificate Q

1: Compute the number of samples N̂ ≥ M̂/(δ2βs) to be
used for the empirical average (Theorem 3.3)

2: Choose the number of samples N
3: Compute ϵ = I−1(1 − β;Q + 3,N − Q − 2)
4: Select a probability measure P for the state set X
5: Collect NN̂ state pairs from the system

D = {(xi, x+

ij ) ∈ X2, x+

ij = f (xi, wij)}i,j

6: Solve SCPN,N̂ in (3.4) with D and obtain the optimal
solution K∗(D)

Output: If K∗(D) + LxG−1(ϵ) ≤ 0, then
Pw(S |HH Ψ ) ≥ 1 − ρ with a confidence of at least
1 − 3β − βs.

Proof. We first compute the Lipschitz constant of g5 in (2.5) as

x5 = max
{∂g5(x)∂x

 , x ∈ X, ∥x∥ ≤ L
}
,

here

5(x) =E
[
(f T (x(t)) + wT (t))P(f (x(t)) + w(t))

]
− xT (t)Px(t) − c

=f T (x(t))Pf (x(t)) − xT (t)Px(t) + E
[
wT (t)Pw(t)

]
− c.

By considering Jx = [
∂ f
∂x1
, . . . ,

∂ f
∂xn

], one has

x5 = max
x

∥2(f (x(t))TP Jx − xT (t)P)∥

≤ max
x

2∥f (x(t))T∥∥P∥∥Jx∥ + 2∥xT (t)∥∥P∥

≤ 2(L1L + L2)∥P∥L̂ + 2L∥P∥

= 2∥P∥(L1LL̂ + L2L̂ + L).

Similarly, one can readily deduce that Lx1 = Lx2 = Lx3 = 2L∥P∥,
and Lx4 = 0. Then Lx = max(Lx1 , Lx2 , Lx3 , Lx4 , Lx5 ) = 2∥P∥(L1LL̂ +

L2L̂ + L), which completes the proof. □

Remark 4.11. Note that according to the above lemma, comput-
ing the upper bound for Lipschitz constant Lx depends on ∥P∥. On
the other hand, computing the entries of P depends on Lipschitz
constant Lx. In order to tackle this circulatory issue, we consider
an upper bound for ∥P∥ and enforce it as an additional constraint
while solving the SCP in (3.4). If there is no solution with the
selected upper bound, we iteratively increase the upper bound
until we find a solution or a predefined maximum number of
iterations is reached.

Remark 4.12. If the underlying dynamics is affine in the form of
x(t + 1) = Ax(t) + B + w(t) with A ∈ Rn×n and B ∈ Rn×1, we can
set L1 = L̂ as an upper bound on ∥A∥ and L2 as an upper bound
on ∥B∥.

Remark 4.13. The Lipschitz constant in Assumption 4.1 can also
be estimated directly from the data using Extreme Value Theory
with the estimation approach described in the work by Wood
and Zhang (1996). For instance, to estimate the Lipschitz constant
of g in (3.2), we gather data

{
(x , x ) | i , i = 1, . . . , Ñ

}
and
5 i1 i2 1 2

7

compute

L̂ = max

g5(xi1 ) − g5(xi2 )
xi1 − xi2

 , i1, i2 ∈ {1, . . . , Ñ}. (4.7)

The Lipschitz constant of g5 is computed by fitting a Reverse
Weibull distribution to the samples of the random variable L̂, and
then computing the location parameter of that distribution.

5. Data-driven controller synthesis

In this section, we study the problem of synthesizing a con-
troller for an unknown stochastic control system using data to
satisfy safety specifications. Our approach is to use control barrier
certificates, fix a parameterized set of controllers, and design the
parameters using an SCP. The stochastic control system is defined
next.

Definition 5.1. A discrete-time stochastic control system (dt-
SCS) is a tuple S = (X,U, Vw, w, f ), where X, Vw, w are as in
Definition 2.1, U ⊂ Rm is the input set, and f : X × U × Vw → X
s the state transition map. The evolution of the state is according
o equation

: x(t + 1) = f (x(t), u(t), w(t)), t ∈ N0. (5.1)

We assume that the map f and distribution of w is unknown
ut we can gather data (xi, ui, x+

i ) by initializing the system at xi,
pplying the input ui, and observing the next state of the system
+

i = xi(t + 1). The collected dataset is

:=

{
(xi, ui, f (xi, ui, wj))

}
i,j

⊂ X × U × X . (5.2)

ow, we state the main problem we are interested to solve here.

roblem 5.2. Consider an unknown dt-SCS S as in Definition 5.1,
ith a safety specification Ψ specified by the initial set Xin, unsafe
et Xu, and time horizon H. Using a dataset D of the form (5.2),
ind a controller k : X → U together with a constant ρ ∈ [0, 1)
nd confidence (1 − β) ∈ [0, 1] such that S under this controller
atisfies Ψ with a probability of at least (1 − ρ), i.e., Pk

w

(
S |HH)

≥ 1 − ρ, ∀x(0) ∈ Xin, with a confidence 1 − β . Moreover,
stablish a connection between the required size of D and the
onfidence 1 − β .

Similar to the verification problem discussed in the previous
ections, we use the notion of control barrier certificates with a
arameterized set of controllers introduced by Jagtap, Soudjani
t al. (2020) to get a characterization of the controller together
ith the lower bound on the safety probability.

efinition 5.3. Given a dt-SCS S = (X,U, Vw, w, f ) with U ⊂ Rm,
nitial set Xin ⊂ X , and unsafe set Xu ⊂ X , a function B : X → R+

0
s called a control barrier certificate (CBC) for S if there exist
onstants λ > 1, c ≥ 0, and functions Pℓ(x) : X → R+

0 ,
∈ {1, 2, . . . ,m}, such that constraints in (2.3) and (2.4) hold,

and

E
[
B(f (x, u, w)) | x, u

]
+

m∑
ℓ=1

(uℓ − Pℓ(x)) ≤ B(x) + c

∀x ∈ X, ∀u = [u1; . . . ; um] ∈ U . (5.3)

heorem 5.4. A CBC B(x) as in Definition 5.3 guarantees that
k
w

(
S |HH Ψ

)
≥ 1 − ρ, ∀x(0) ∈ Xin, under the controller

k(x) = [P1(x); P2(x); . . . ; Pm(x)], where ρ = (1 + cH)/λ with
H being the time horizon of the safety specification.
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Let us consider polynomial-type CBC and controllers. The
number of CBC coefficients is denoted by Q. Polynomial Pℓ has
the following form for some k′

∈ N0:

Pℓ(pℓ, x) =

k′∑
ι1=0

. . .

k′∑
ιn=0

pℓι1,...,ιn (x
ι1
1 . . . x

ιn
n ), (5.4)

with pℓι1,...,ιn = 0 for ι1 + · · · + ιn > k′.
The overall number of all coefficients of m polynomials

Pℓ(pℓ, x) is denoted by P . We also assume that the input set U
is a polytope of the form

U =
{
u ∈ Rm

| Au ≤ b
}
, (5.5)

for some A ∈ Rq×m and b ∈ Rq×1.
Under these assumptions, the inequalities in Definition 5.3 and

Theorem 5.4 can be written as an RCP:

RCP :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
d

K

s.t. max
z

gz(x, u, d) ≤ 0,

z ∈ {1, 2, . . . , 5 + q},∀x ∈ X,∀u ∈ U,
d = [K; λ; c; bι1,...,ιn; p

ℓ
ι1,...,ιn

],

K ∈ R, λ > 1, c ≥ 0,

(5.6)

where gz(x, d), z ∈ {1, . . . , 4}, are the same as (3.2), and

g5(x, u, d) = E
[
B(b, f (x, u, w)) | x, u

]
+

m∑
ℓ=1

(uℓ − Pℓ(pℓ, x))

− B(b, x) − c − K,

[g6(x, d); . . . ; g5+q(x, d)] = A [P1(p1, x); . . . ; Pm(pm, x)] −

b − K1q×1. (5.7)

Note that the last inequality in (5.7) encodes the fact that the
ontrol input should be inside the set U specified by the polytope
5.5).

The constraints in the RCP is always feasible. A solution can be
onstructed as follows. Set the coefficients of B(b, x) and Pℓ(pℓ, x)
equal to zero, c = 0, λ = 2, and uℓ = Pℓ(pℓ, x) ∀ℓ ∈ {1, . . . ,m}.
Also select K large enough such that K ≥

1
ρ

− 2 together with
1m×1 ≥ −b.
The RCP in (5.6) is in general hard to solve since the map

and the probability measure Pw are unknown. Hence, similar
o the verification approach discussed in Section 3, we assign a
robability distribution to both state and input sets, and collect
i.i.d. pairs (xi, ui) from this assigned distribution, and replace

he robust quantifiers ∀x ∈ X and ∀u ∈ U with ∀xi ∈ X and
∀ui ∈ U, i ∈ {1, . . . ,N}, respectively. This results in a scenario
convex program called SCPN , which is not presented here for the
sake of brevity.

To address the issue of unknown f and Pw , the expectation
in g5 is replaced with its empirical approximation by sampling N̂
i.i.d. values wj, j ∈ {1, . . . , N̂}, from Pw for each pair of (xi, ui),
which results in the following scenario convex program denoted
by SCPN,N̂ :

SCPN,N̂ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
d

K

s.t. max
z

ḡz(xi, ui, d) ≤ 0,

z ∈ {1, 2, . . . , 5 + q},
∀xi ∈ X, ∀ui ∈ U,∀i ∈ {1, . . . ,N},

d = [K; λ; c; bι1,...,ιn; p
ℓ
ι1,...,ιn

],

(5.8)
K ∈ R, λ > 1, c ≥ 0,
8

where ḡz := gz for all z ∈ {1, 2, . . . , 5 + q} \ {5}, and

ḡ5(xi, ui, d) =
1

N̂

N̂∑
j=1

B(b, f (xi, ui, wj)) +

m∑
ℓ=1

(uiℓ − Pℓ(pℓ, xi)) − B(b, xi) − c + δ − K. (5.9)

sing empirical approximation introduces an error which is
emonstrated by δ in the above optimization problem. We denote
y B̂u(b, x | D) the constructed control barrier certificate with

coefficients computed by solving the SCPN,N̂ .

Remark 5.5. Similar to Theorem 3.3, under the assumption

Var
(
B(b, f (x, u, w))

)
≤ M̂,

for some M̂ > 0, a desired confidence βs ∈ (0, 1], and an error δ,
one has

P
k
w

(
B̂u(b, x | D) |H SCPN

)
≥ 1 − βs, (5.10)

provided that N̂ ≥
M̂
δ2βs

.

To provide the main results here, we need the following as-
sumptions.

Assumption 5.6. Function g5 is Lipschitz continuous with re-
spect to (x, u) with Lipschitz constant L5. Functions g1, g2, g3,
6, . . . , g5+q are also Lipschitz continuous with respect to x with
ipschitz constants L1, L2, L3, L6, . . . , L5+q, respectively. Then, the
ipshitz constat of maximum of these function is L1+L2+L3+L5+
6 + · · · + L5+q. Furthermore, if all functions g are analytic over a
ompact domain X ×U , the Lipschitz constant of their maximum
s max(L1, L2, L3, L5, L6, . . . , L5+q), which we denote it by Lx,u.

ssumption 5.7. There is a strictly increasing function G(r) :
+

→ [0, 1] such that

[b(x, u, r)] ≥ G(r) ∀(x, u) ∈ X × U, (5.11)

here b(x, u, r) is an open ball in the product space X × U
entered at the point (x, u) with radius r .

Now, we have all the ingredients to propose the main results
ere.

heorem 5.8. Consider an unknown dt-SCS as in Definition 5.1 and
safety specification Ψ . Let Assumptions 5.6–5.7 hold with constant
x,u and function G(r). Suppose that K∗(D) is the optimal value of
CPN,N̂ in (5.8) with number of samples N, a given ρ ∈ (0, 1], and for
ˆ selected based on Remark 5.5 with confidence of 1− βs. Suppose

∗(D) + Lx,uG−1(ϵ) ≤ 0, (5.12)

here function G is defined in (5.11) and ϵ = I−1(1 − β;Q + P +

,N −Q−P −2) with confidence parameter β ∈ [0, 1], and Q and
being respectively the number of coefficients of the polynomial

ontrol barrier certificate and the overall number of coefficients of
olynomials Pℓ(pℓ, x) for m inputs. Then, the following statement is
alid with a confidence of at least 1−3β−βs: the system S together
ith the constructed control input

(x) := [P1(p1, x); . . . ; Pm(pm, x)],

or which coefficients pℓ, ℓ ∈ {1, . . . ,m}, are obtained from the so-
ution of SCPN,N̂ , is safe within the time horizon H with a probability
f at least 1 − ρ, i.e.,
k
w

(
S |HH Ψ

)
≥ 1 − ρ. (5.13)
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Fig. 3. A schematic overview of the data-driven synthesis presented in Section 5.

Proof. The proof is similar to the proof of Theorem 4.4 by re-
placing Pw with Pk

w for the RCP (5.6) and its associated SCPs. The
function G(ϵ) is defined as in (5.11). The number of coefficients
is Q + P + 3 where P is the overall number of coefficients of

polynomials defining the controller, which results in the new
rguments of the regularized incomplete beta function I in the
heorem statement. □

orollary 5.9. If samples are collected uniformly from a hyper
ectangular sets X and U, respectively, with edges of length ηx(i)
nd ηu(j) in each dimension i and j, then one can compute G(ϵ) as

aϵn+m∏n
i=1 ηx(i)

∏m
j=1 ηu(j)

, where a =
1

2n+m
π

n+m
2

Γ ( n+m
2 +1)

with Gamma function
defined in Corollary 4.5.

Proof. The proof is similar to the proof of Corollary 4.5 in Ap-
pendix B based on the new definition of G(r) in Assumption 5.7.

emark 5.10. When ρ is not fixed, one can eliminate constraint
4 from (5.6) and directly provide the following inequality

k
w(S |HH Ψ ) ≥ 1 −

1 + c∗H
λ

∗

,

n which c∗ and λ∗ are the optimal solutions of SCPN,N̂ in (5.8).
his increases the likelihood of getting a feasible solution and
ives the best possible lower bound on the safety probability for
. A schematic overview of our synthesis approach is presented
n Fig. 3.

Algorithm 2: Data-driven synthesis for safety specification
on an unknown dt-SCS S = (X,U, Vw, w, f ).

Input: Confidence parameters β ∈ [0, 1], βs ∈ (0, 1],
parameters ρ ∈ (0, 1], δ ∈ R+, M̂ ∈ R+, Lx,u ∈ R+, degree
of the barrier certificate Q, and degree of the polynomial
functions for the controller P

1: Compute the number of samples N̂ ≥ M̂/(δ2βs) for the
empirical average (Remark 5.5)

2: Choose the number of samples N
3: Compute ϵ = I−1(1 − β;Q + P + 3,N − Q − P − 2)
4: Select a probability measure P for the state-input set
(X,U)

5: Collect NN̂ tuples from the system
D := {(xi, ui, x′

ij) ∈ X × U × X, x′

ij = f (xi, ui, wij)}i,j
6: Solve SCPN,N̂ in (5.8) with D and obtain the optimal
solution K∗(D)

Output: If K∗(D) + Lx,uG−1(ϵ) ≤ 0, then
Pk
w(S |HH Ψ ) ≥ 1 − ρ with a confidence of at least

1 − 3β − βs and with the controller
k(x) := [P1(p1, x); . . . ; Pm(pm, x)].
e

9

Next lemma provides an upper bound for Lipschitz constant
Lx,u, which is required in Theorem 5.8, in the case that the system
is affected by an additive noise.

Lemma 5.11. Consider a nonlinear dt-SCS as in Definition 5.1 which
is affected by an additive noise as the following:

x(t + 1) = fa(x(t), u(t)) + w(t), (5.14)

and a bounded state set X and input set U such that ∥x∥ ≤ Lx
for all x ∈ X, and ∥u∥ ≤ Lu for all u ∈ U. Without loss
f generality, we assume that the mean of the noise is zero. Let
fa(x, u)∥ ≤ L1∥x∥+ L2∥u∥+ L3, ∥Jx∥ ≤ L̂x, and ∥Ju∥ ≤ L̂u, for some
x,Lu, L1, L2, L3, L̂x, L̂u ≥ 0, where Jx and Ju are Jacobian matrices
f fa(x, u) with respect to x and u, respectively. Given a quadratic
arrier function xTPx, and a set of quadratic functions xTPℓx, ℓ ∈

1, . . . ,m}, representing each of Pℓ(pℓ, x) with symmetric matrices
and Pℓ, the Lipschitz constant Lx,u can be upper-bounded by
L 2

x + L 2
u , where

Lx = 2LxL1L̂x∥P∥ + 2LuL2L̂x∥P∥ + 2L3L̂x∥P∥

+ Lx∥P∥ + Lx

m∑
ℓ=1

∥Pℓ∥, (5.15)

u = 2LxL1L̂u ∥P∥ + 2LuL2L̂u ∥P∥ + 2L3L̂u ∥P∥ +
√
m.

Proof. We first compute the Lipschitz constant regarding
g5(x, u, d) in (5.7), where

g5(x, u, d) = E
[
(f T (x(t), u(t)) + wT (t))P(f (x(t), u(t))+

w(t))
]
+

m∑
ℓ=1

(uℓ − Pℓ(pℓ, x)) − xT (t)Px(t) − c.

Considering E[w(t)] = 0, we compute the upper bounds for
Lipschitz constant with respect to x and u separately denoted
by L5x and L5u , respectively. We define Jx = [

∂ f
∂x1
, . . . ,

∂ f
∂xn

] and

u = [
∂ f
∂u1
, . . . ,

∂ f
∂um

] as Jacobian matrices with respect to x and u,
respectively.

L5x =max
x,u

∥
∂g5(x, u, d)

∂x
∥ = max

x,u
||2f (x(t), u(t))TP Jx

− xT (t)P − xT (t)
m∑
ℓ=1

Pℓ||

≤2LxL1L̂x∥P∥ + 2LuL2L̂x∥P∥ + 2L3L̂x∥P∥+

Lx∥P∥ + Lx

m∑
ℓ=1

∥Pℓ∥,

nd accordingly,

5u = max
x,u

∥
∂g5(x, u, d)

∂u
∥

= ∥2f (x(t), u(t))TPJu + 1m∥

≤ 2LxL1L̂u ∥P∥ + 2LuL2L̂u ∥P∥ + 2L3L̂u ∥P∥ +
√
m.

Now it can be deduced that L5 ≤

√
L25x + L25u . Similar to the proof

of Lemma 4.10, it is straightforward to compute the upper bounds
of Lipschitz constants for other constraints in (5.7) and show
that the computed upper bound is greater than all of them. We
ignore this part for the sake of brevity. Then, Lx,u ≤ max

(
Li, i ∈

{1, 2, . . . , 5 + q} \ {4}
)

=

√
L25x + L25u which is equivalent to

L 2
x + L 2

u with Lx and Lu as in (5.15). □

Note that one can use similar results as in Remark 4.13 to
stimate the Lipschitz constant via data.
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. Data-driven barrier certificates for non-convex setting

In this section, we extend the proposed result in Section 4 to a
ase of having non-convex constraints. We modify the constraint
2.5) in Definition 2.4 as follows:[
B(f (x, w)) | x

]
≤ κ B(x) + c, ∀x ∈ X, (6.1)

here κ ∈ (0, 1).
According to the fundamental results by Kushner (1967),

hoosing κ in the interval (0, 1) provides a better lower bound
or the probability of safety satisfaction in (2.6), namely:

w

(
S |HH Ψ

)
≥ 1 − ρ,

ith

=

{
1 − (1 −

1
λ
)(1 −

c
λ
) if λ ≥

c
κ

1
λ
(1 − κ)H +

c
κλ

(
1 − (1 − κ)H

)
if λ < c

κ
,

(6.2)

here parameters c , λ, and H are the same as in Definition 2.4.
nother advantage of choosing κ in the interval (0, 1) is that this
ew formulation can be utilized in the context of compositional-
ty and interconnected systems (Swikir & Zamani, 2019; Zamani
Arcak, 2018).
Replacing the last condition of RCP in (3.2) with the modified

onstraint in (6.1) leads to the following optimization problem
hich is not convex anymore:

P :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

d
K

s.t. max
z

(
gz(x, d)

)
≤ 0, z ∈ {1, . . . , 4},∀x ∈ X,

d = [K; λ; c; bι1,...,ιn; κ],
K ∈ R, λ > 1, c ≥ 0, κ ∈ (0, 1),

(6.3)

n which gz(x, d), z ∈ {1, 2, 3}, are the same as in (3.2), and

4(x, d) = E

[
B(f (x, w)) | x

]
≤ κ B(x) + c, ∀x ∈ X . (6.4)

The non-convexity comes from the multiplication of κ and
oefficients of barrier function B(b, xi) in (6.1). With the same
easoning in Section 3, solving the above RP is not straightforward
enerally. Therefore, we construct an SP by taking samples and
hen connect the solution of the obtained scenario programming
o the safety of the stochastic system in (2.1). By collecting i.i.d.
amples xi, i ∈ {1, . . . ,N}, from an assigned probability distribu-
ion over the state set, and approximating the expectation term
n (6.1) results in a non-convex programming as the following:

PN,N̂ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
d

K

s.t. max
z

ḡz(xi, d) ≤ 0, ∀i ∈ {1, . . . ,N},

z ∈ {1, . . . , 4},
d = [K; λ; c; bι1,...,ιn; κ],
K ∈ R, λ > 1, c ≥ 0, κ ∈ (0, 1),

(6.5)

here ḡz := gz for all z ∈ {1, 2, 3} and

¯4(xi, d) =
1

N̂

N̂∑
j=1

B(b, f (xi, wj)) − κ B(b, xi) − c + δ − K. (6.6)

Note that in this new scenario programming, we eliminated the
constraint that forces a fixed probability lower bound 1−ρ on the
safety of the stochastic system, namely, g4 in (3.2). Instead, we are
interested in providing the tightest possible lower bound of the
safety probability according to Remark 4.9. The main issue under-
lying here is that by considering κ ∈ (0, 1), the obtained scenario
program is not convex anymore, and accordingly, one cannot
naively utilize the results proposed in Theorems 4.4. Hence, one
 P

10
cannot solve the SP in (6.5) by simply applying bisection over κ ,
while still utilizing the proposed results in the previous sections.

Now we state the main problem we aim to address in this
section.

Problem 6.1. Consider an unknown dt-SS S as in Definition 2.1.
Compute the largest lower bound (1 − ρ) ∈ [0, 1] on the
probability of satisfying Ψ , i.e.,

Pw
(
S |HH Ψ

)
≥ 1 − ρ,

according to (6.2) together with a confidence (1−β) ∈ [0, 1] using
a dataset D of the form (2.2). Moreover, establish a connection
between the required size of dataset D, the cardinality of the
set from which the parameter κ is selected, and the desired
confidence 1 − β .

In the next theorem, we present our solution to Problem 6.1
by proposing a new confidence bound which is always valid even
for the non-convex scenario program in (6.5).

Theorem 6.2. Consider an unknown dt-SS as in (2.1) together
with the safety specification Ψ . Let M be the cardinality of a fi-
nite set from which κ takes value in (0,1). Suppose that Assump-
tions 4.1–4.2 hold for the RP in (6.3) with function G(·) and Lx :=

max
(
Lx1 , Lx2 , Lx3 , Lx4

)
, where Lxi , i ∈ {1, . . . , 4}, is an upper bound

on the Lipschitz constant of the ith constraint in (6.3). Assume N̂ is
selected for the SPN,N̂ similar to Theorem 3.3 in order to provide con-
fidence 1−βs. Suppose K∗(D) is the optimal value of the optimization
problem in (6.5) using N̂ and N. Furthermore, ϵ = I−1(1−Mβ;Q+

3,N − Q − 2) for β ∈ [0, 1], where Q is the number of coefficients
of the barrier certificate. Then the following statement holds with a
confidence of at least 1 − 3β − βs: if K∗(D) + LxG−1(ϵ) ≤ 0, then

Pw(S |HH Ψ ) ≥ 1 − ρ∗, (6.7)

where ρ∗ is computed as in (6.2) using optimal solutions of SPN,N̂ ,
amely, c∗, λ∗, and κ∗. More importantly, with a confidence of at
east 1 − 3β − βs, B(b∗, x) is a barrier certificate for S, satisfying
2.3), (2.4), and (6.1), where b∗ is the optimal solution of SPN,N̂ .

roof. Denote the optimal values of the RP and its equiva-
ent scenario programming before the empirical approximation
f the expectation term in g4, namely, SPN , by K∗ and K∗

m(D),
espectively. Similar to (4.3), one has(
K∗

≤ K∗

m(D) + LxG−1(ϵ)
)

≥ 1 − 3β,

or any N ≥ Ñ
(
ϵ1, . . . , ϵM, β

)
, where

˜
(
ϵ1, . . . , ϵM, β

)
:=

min
{
N ∈ N |

M∑
z=1

d−1∑
i=0

(
N
i

)
ϵ i
z (1 − ϵz)N−i

≤ β

}
.

lternatively, one can set ϵ := ϵ1 = ϵ2 = · · · = ϵM in the above
xpression to get the inequality ϵ ≤ I−1(1 − Mβ; d,N − d + 1),
here M is the cardinality of the set from which κ is selected, and
is the number of decision variables. By choosing d := Q + 3,
ne gets the parameters of the incomplete beta function in the
heorem statement. On the other hand, due to the particular
election of N̂ and βs similar to Theorem 3.3, it can be deduced
hat

w

(
B̂(b, x | D) |H SPN

)
≥ 1 − βs,

here B̂(b, x | D) is the barrier function whose coefficients are
he optimal solution of SPN . Therefore, we have(

∗ ∗
)

Km(D) ≤ K (D) ≥ 1 − βs. (6.8)
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y defining events A := {D | K∗
≤ K∗

m(D) + LxG−1(ϵ)}, B := {D |
∗
m(D) ≤ K∗(D)}, and C := {D | K∗(D) + LxG−1(ϵ) ≤ 0}, where
(A) ≥ 1 − 3β and P(B) ≥ 1 − βs, it is easy to conclude using
he same reasoning as in the second part of proof of Theorem 4.4
hat

(K ≤ 0) ≥ 1 − 3β − βs,

hich ensures safety of the stochastic system with a lower bound
− ρ and a confidence of at least 1 − 3β − βs. □

. Numerical examples

The simulations of this section are performed on an iMac
.5 GHz Quad-Core Intel Core i7. The optimizations are solved
y CVX Toolbox (Grant & Boyd, 2014) with Mosek (Andersen &
ndersen, 2000) as the solver.

.1. Temperature verification for three rooms

Consider a temperature regulation problem for three rooms
haracterized by the following discrete-time stochastic system:

1(t + 1) =
(
1 − τs(α + αe)

)
T1(t) + τsαT2(t)+

τsαeTe + w1(t)

2(t + 1) =
(
1 − τs(2α + αe)

)
T2(t) + τsα(T1(t) + T3(t))+

τsαeTe + w2(t)

3(t + 1) =
(
1 − τs(α + αe)

)
T3(t) + τsαT2(t)+

τsαeTe + w3(t), (7.1)

here T1(t), T2(t), and T3(t) are temperatures of three rooms,
respectively. Terms w1(t), w2(t), and w3(t) are additive zero-
mean Gaussian noises with standard deviations of 0.01, which
model the environmental uncertainties. Parameter Te = 10 ◦C
is the ambient temperature. Constants αe = 8 × 10−3 and α =

.2 × 10−3 are heat exchange coefficients between rooms and
he ambient, and individual rooms, respectively. The model for
ach room is adapted from Girard, Gössler, and Mouelhi (2016)
iscretized by τs = 5 min. Let us consider the regions of interest
or each room as Xin = [17 ◦C, 18 ◦C], Xu = [29 ◦C, 30 ◦C], and
= [17 ◦C, 30 ◦C]. We assume the model of the system and the
istribution of the noise are unknown. The main goal is to verify
hether the temperature of each room remains in the comfort
one [17, 29] for the time horizon H = 3 which is equivalent to
5 min, with a priori confidence of 99%.
Let us consider a barrier certificate with degree k = 2 in the

polynomial form as [T1; T2; T3]TP[T1; T2; T3] = b0T 2
1 + b1T 2

2 +

2T 2
3 + b3T1T2 + b4T1T3 + b5T2T3 + b6T1 + b7T2 + b8T3 + b9, where

P =

⎡⎢⎢⎢⎢⎣
b0

b3
2

b4
2

b6
2

b3
2 b1

b5
2

b7
2

b4
2

b5
2 b2

b8
2

b6
2

b7
2

b8
2 b9

⎤⎥⎥⎥⎥⎦ . (7.2)

ccording to Algorithm 1, we first choose the desired confidence
arameters β and βs as 0.005

3 and 0.005, respectively. The value of
empirical approximation error is selected as δ = 0.05. We choose

= 0.2. The Lipschitz constant is computed as 1.5 according to
Remark 4.13. By enforcing M̂ = 0.005, the required number of
samples for the approximation of the expected value in (3.4) is
N̂ = 400. Now, we solve the scenario problem SCPN,N̂ with the
number of samples N = 6 × 106 and the computed N̂ = 400,
which gives us the optimal objective value K∗(D) = −0.46. The
computation time is about 5 min. For N = 6×106 and β =

0.005 ,
3

11
Fig. 4. Scatter plotting of the barrier certificate indicating portions of the state
set where the inequalities in (3.4) are enforced for 6 × 106 sampled data.

is computed as 4.36 × 10−6. Function G−1(ϵ) is also computed
as 16.09ϵ

1
3 according to Corollary 4.5.

Since K∗(D) + LxG−1(ϵ) = −0.066 ≤ 0, according to
Theorem 4.4, one can conclude:

Pw(S |H3 Ψ ) ≥ 1 − ρ = 0.80,

with a confidence of at least 1 − 3β − βs = 0.99. The barrier
certificate constructed from solving SCPN,N̂ is as follows:

B̂(b, T1, T2, T3 |D) = 0.112T 2
1 + 0.112T 2

2 + 0.112T 2
3

− 0.004T1T2 − 0.005T1T3 − 0.002T2T3
− 3.761T1 − 3.815T2 − 3.803T3 + 99.93. (7.3)

The computed optimal values for c and λ are 0.627 and 14.872,
respectively. The scatter plot of the obtained barrier certificate
is illustrated in Fig. 4. As can be seen in this figure, the barrier
certificate has less values in the initial set while it has larger
values in the unsafe region.

We remark that the conservatism of our approach is originat-
ing from two sources. (a) The first one is that we are using barrier
certificates for computing the lower bound. A barrier certificate
with a fixed template (polynomial of a certain degree) gives a
lower bound that could have a gap with the best lower bound on
the safety probability. (b) Our sampling approach requires making
the optimization more conservative to account for going from
robust programs over continuous (uncountable) domains to a sce-
nario program with finite number of samples. If one assumes that
the model is known in this case study, the synthesized barrier
certificate has the parameters c = 0.9767 and λ = 31.51. This
gives the lower bound 0.875 on the safety probability. Therefore,
our approach provides a more conservative lower bound 0.80
since it assumes no knowledge of the model.

7.2. Lane keeping system

Lane keeping assist system is a future development of the
modern lane departure warning system embedded in the current
vehicles. This system usually assists the driver through electronic
assistance with the steering force. The characteristics of this
support depends on the distance of the vehicle from the edge
of the lane among other factors such as uncertainties (Verband
der Automobilindustrie, 2020). One of the key challenges in such
assisting systems is verifying the obtained performance which
can be defined as a safety problem.

In this subsection, it is supposed that the model of the vehicle
and the distribution of noise are unknown, and one only has
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ccess to a finite number of samples. This unknown system is
haracterized by a simplified kinematic single-track model of
MW320i which is adapted from the work by Althoff, Koschi, and
anzinger (2017) by discretization of the model and adding noise

o imitate the uncertainties.
The nonlinear stochastic difference equation is as follows:

x(t + 1) = x(t) + τsv cos(ψ(t) + b) + w1(t)
: y(t + 1) = y(t) + τsv sin(ψ(t) + b) + w2(t)

ψ(t + 1) = ψ(t) +
τsv

lr
sin(b) + w3(t), (7.4)

here b =
lr

lr+lf
tan−1(δf ) with δf = 5 degrees as the steering

ngle. Parameters lr = 1.384 and lf = 1.384 are the distances
etween the center of gravity of the vehicle to the rear and
ront axles, respectively. Variables x, y, and ψ denote horizontal
ovement, vertical movement, and the heading angle, respec-

ively. This system is considered to be affected by zero-mean
dditive noises w1, w2, and w3 which are related to uncertainties
f position x, position y, and the heading angle ψ with standard
eviation of 0.01, 0.01, and 0.001 respectively. Other parameters
re the sampling time (τs = 0.1 s), and the velocity (v = 5 m/s).
The state set is considered as X = [1, 10] × [−7, 7] ×

−0.05, 0.05]. The regions of interest are Xin = [1, 2] ×

−0.5, 0.5] × [−0.005, 0.005], Xu1 = [1, 10] × [−7,−6] ×

−0.05, 0.05], and Xu2 = [1, 10]×[6, 7]×[−0.05, 0.05]. Now, the
oal is to verify if the vehicle does not enter the unsafe regions
f the lane for the time horizon of H = 3 or equivalently 0.3 s
ith a desired confidence of 90%.
We consider a barrier certificate of degree k = 2 in the

olynomial form as [x; y;ψ]
TP[x; y;ψ] = b0x2 + b1y2 + b2ψ2

+

3xy+ b4xψ + b5yψ + b6x+ b7y+ b8ψ + b9, where the matrix P
s as in (7.2).

We follow Algorithm 1 to find the barrier certificate and
roviding a probabilistic guarantee on the safety of stochastic
ystem. First, the desired confidence parameters β and βs are
hosen as .095

3 and 0.005, respectively. We also select the em-
irical approximation error δ = 0.02. The desired lower bound
f safety probability is selected as 1 − ρ = 0.80. The Lipschitz
onstant is computed as Lx = 10 according to Remark 4.13. By
enforcing M̂ = 0.006, the required number of samples for the
pproximation of the expected value in (3.4) is N̂ = 3000. Now,

we solve the scenario problem SCPN,N̂ with an arbitrary sample
number N = 6 × 106 and N̂ which gives us the optimal value
K∗(D) = −0.4518. The computation time is about 5 min. For
those values of samples N and β , ϵ is computed as 3.41 × 10−6.
Using Corollary 4.5, G−1(ϵ) is computed as 2.92ϵ

1
3 .

Since K∗(D) + 2.92 Lxϵ
1
3 = −0.01 ≤ 0, according to

heorem 4.4, one can deduce that

w(S |H3 Ψ ) ≥ 1 − ρ = 0.80,

ith a confidence of at least 1 − 3β − βs = 90%. The barrier
ertificate constructed from solving SCPN,N̂ is represented as:

ˆ (b, x, y, ψ | D) =0.39y2 + 0.15ψ2
+ 0.009xψ

− 0.007yψ − 0.015ψ + 0.452. (7.5)

The optimal values of c and λ are 0.57 and 14.04, respectively.
he exact value of the coefficients are reported in the Appendix.
The surface plot of the barrier certificate B(x, y, ψ) =

ˆ (b, x, y, ψ | D) with respect to x and y for a fixed value of
= 0 is depicted in Fig. 5. The blue transparent planes separate

nsafe region on y, while the lower and upper red transparent
lanes demonstrate the thresholds in constraints (2.3) and (2.4),
espectively. Satisfaction of the first and second condition of
arrier certificate in Definition 2.4 can be observed in Fig. 5. The
atisfaction of the third condition is illustrated in Fig. 6.
12
Fig. 5. Surface plot of the barrier certificate B(x, y, ψ) with respect to x and y
for fixed ψ = 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Satisfaction of the third condition in Definition 2.4 (for ψ = 0) B(x, y, ψ)
based on collected data.

7.3. Synthesizing a temperature controller

Consider a temperature regulation problem for a room using
a heater characterized by

S : T(t + 1) =T(t) + τs
(
αe(Te − T(t))+

αh(Th − T)u(t)
)
+ w(t), (7.6)

here w(t) is a zero-mean Gaussian noise with standard devia-
ion of 0.05. Parameters are Te = 15, Th = 45, αe = 8×10−3, αh =

.6 × 10−3, and τs = 5. Regions of interest are defined as Xin =

22 ◦C, 23 ◦C], Xu1 = [27 ◦C, 28 ◦C], Xu2 = [16.5 ◦C, 17.5 ◦C],
nd X = [16.5 ◦C, 28 ◦C]. The input region is [0, 1]. We assume
hat the model of the system and the distribution of the noise
re unknown. The main goal is to design a controller that forces
he temperature to remain in the comfort zone [17.5, 27] for the
time horizon H = 60, which is equivalent to 300 min, with a
priori confidence of 95%.

Let us fix a control barrier certificate with degree k = 4 in the
polynomial form as T TPT = b0T 4

+ b1T 3
+ b2T 2

+ b3T + b4 with
0, b1, b2, b3, b4 ∈ R. The structure of the controller is considered

to be a polynomial of degree k′
= 4 as u(p1, T ) = T TPuT =

T 4
+p T 3

+p T 2
+p T+p . Matrices P and P can be represented
0 1 2 3 4 u
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Fig. 7. The temperature trajectories of 15 different realizations of noise for three
ifferent initial temperature in the range [22◦, 23◦

].

s:

=

⎡⎢⎣b0
b1
2

b2
3

b1
2

b2
3

b3
2

b2
3

b3
2 b4

⎤⎥⎦ , Pu =

⎡⎢⎣p0
p1
2

p2
3

p1
2

p2
3

p3
2

p2
3

p3
2 p4

⎤⎥⎦ . (7.7)

ccording to Algorithm 2, we first choose the desired confidences
and βs as 0.005

3 and 0.045 respectively. We also select the ap-
proximation error δ = 2. The Lipschitz constant Lx,u is computed
s 12 according to Remark 4.13. By considering M̂ = 1.5 × 105,
he required number of samples for the approximation of the
xpected value in (3.4) is N̂ = 833330. Now, we solve the

scenario problem SCPN,N̂ with the selected number of samples
N = 1.5 × 106 and N̂ which gives us the optimal value K∗(D) =

0.41. The computation time is about 2 min. For N = 1.5 × 106

nd β =
0.005

3 , value of ϵ is computed as 1.7424 × 10−5. Using
Corollary 5.9, G−1(ϵ) is computed as 4.91ϵ

1
2 .

Since K∗(D) + Lx,uG−1(ϵ) = −0.164 ≤ 0, one has
p
w(S |H60 Ψ ) ≥ 1 − ρ = 0.80,

ith a confidence of at least 1 − 3β − βs = 95%. The computed
alues for λ and c are 4817 and 16.04, respectively. The control
arrier certificate constructed from solving SCPN,N̂ is:

ˆ (b, T | D) = 11.89 T 4
− 1.07 × 103 T 3

+ 3.61 × 104 T 2

− 5.42 × 105
+ 3.05 × 106.

he obtained controller is:

1(p1, T | D) = 1.45 × 10−5T 3
+ 0.012T 2

+ 0.355.

he temperature trajectories for 15 different realizations of noise
rom three different initial temperature in the range [22◦, 23◦

]

s illustrated in Fig. 7. As can be seen, the temperature in the
ollected trajectories do not enter the unsafe set, which is in gray
olor. We also ran the system to get 104 trajectories, all of them
emain safe. This confirms the theoretical lower bound computed
y our approach.
The conservativeness of our approach in terms of the safety

ound (1 − ρ) and the number of samples is shown in Table 1.
The values are reported for increasing number of samples and
two safety thresholds with ρ ∈ {0.1, 0.2}. As can be seen from
he table, increasing the number of samples makes ϵ smaller and
13
reduces the term Lx,uG−1(ϵ) used in (5.12). In contrast, the values
of K∗(D) become larger. This creates a tradeoff between the two
erms in (5.12). Note that the condition of having a negative value
or Lx,uG−1(ϵ) + K∗(D), thus guaranteeing safety with probability
(1−ρ), is only satisfied in the last two row of the table for ρ = 0.2
(indicated in blue color). Also, notice that the satisfaction of (5.12)
for a higher desired safety probability requires larger number of
samples.

8. Conclusion

We proposed a formal verification and synthesis procedure
for discrete-time continuous-space stochastic systems with un-
known dynamics against safety specifications. Our approach is
based on the notion of barrier certificate and uses sampled trajec-
tories of the unknown system. We first casted the computation of
the barrier certificate as a robust convex program (RCP) and ap-
proximated its solution with a scenario convex program (SCP) by
replacing the unknown dynamics with the sampled trajectories.
We then established that the optimal solution of the SCP gives
a feasible solution for the RCP with a given confidence, and for-
mulated a lower bound on the required number of samples. Our
approach provided a lower bound on the safety probability of the
stochastic unknown system when the number of sampled data is
larger than a specific lower bound that depends on the desired
confidence. We extended the results to a class of non-convex
barrier-based safety problems and showed the applicability of our
proposed approach using three case studies.

Appendix A. Lipschitz continuity of the max function

Lemma A.1. The maximum of Lipschitz continuous functions fi :

X → R, i = 1, 2, . . . ,m, is a Lipschitz continuous function.
The Lipschitz constant of the maximum is the sum of the Lipschitz
constants of fi.

Proof. Suppose that two Lipschitz continuous functions f1 and f2
have Lipschitz constants L1 and L2, respectively. One can rewrite
g = max(f1, f2) as:

g = max(f1, f2) =
f1 + f2 + |f1 − f2|

2
.

Then, we can use triangle inequality to show that

|g(x) − g(y)| ≤
1
2
[|f1(x) − f1(y)| + |f2(x) − f2(y)|+⏐⏐|f1(x) − f2(x)| − |f1(y) − f2(y)|

⏐⏐]
≤

1
2
[L1∥x − y∥ + L2∥x − y∥ + |f1(x) − f1(y)|+

|f2(x) − f2(y)|] ≤
1
2
[L1∥x − y∥ + L2∥x − y∥+

L1∥x − y∥ + L2∥x − y∥] = (L1 + L2)∥x − y∥.

herefore, max(f1, f2) is also a Lipschitz continuous function with
ipschitz constant L1 + L2. This argument can be extended induc-
ively to the maximum of every number of functions. □

emma A.2. For any two analytic functions f1 : X → R and
2 : X → R with a compact domain X, L := max(L1, L2) is a Lipschitz
onstant of max(f1, f2).

roof. Note that

(x) = max(f1(x), f2(x)) =

{
f1(x) if f1(x) − f2(x) ≥ 0

f2(x) if f1(x) − f2(x) ≤ 0.
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Table 1
Conservativeness of the proposed approach.
Number of samples Computed ϵ Lx,uG−1(ϵ) K∗

ρ=0.2(D) K∗

ρ=0.1(D) K∗

ρ=0.2(D) + Lx,uG−1(ϵ) K∗

ρ=0.1(D) + Lx,uG−1(ϵ)

103 0.026 9.5 −0.48 −0.45 9.02 9.05
104 0.003 3 −0.42 0.09 2.58 3.09
105 2.61 × 10−4 0.952 −0.43 1.37 0.522 2.32
1.5 × 106 1.74 × 10−5 0.246 −0.41 2.08 −0.164 2.33
3 × 106 8.71 × 10−6 0.174 −0.35 2.09 −0.176 2.26
.
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The function f1 − f2 is also analytic, thus has a finite number of
zeros in a compact domain. Let us denote the finite set of zeros
as Z . We first show this for one-dimensional compact domains
X ⊂ R. Take two points x, y ∈ X such that x < y, and define
Z ∩ [x, y] = {z1, z2, . . . , zm} such that zi < zi+1 for any i =

1, 2, . . . ,m − 1. Then we have

|g(y) − g(x)| = |fiy (y) − fim (zm) + fim (zm) − fim−1 (zm−1) + · · ·

+ fi2 (z2) − fi1 (z1) + fi1 (z1)
− fix (x)|,

for some appropriate choices of ix, iy, i1, . . . , im all from the set
{1, 2}. Since g(zj) = f1(zj) − f2(zj) = 0, we can set the index of
f to symbol that belongs to the set {1, 2} when the function is
evaluated at any zj. Then, we have

|g(y) − g(x)|
= |fiy (y) − fiy (zm) + fim (zm) − fim (zm−1) + · · ·+

i2 (z2) − fi2 (z1) + fix (z1) − fix (x)| ≤

|fiy (y) − fiy (zm)| + |fim (zm) − fim (zm−1)| + · · · +

fi2 (z2) − fi2 (z1)| + |fix (z1) − fix (x)|
≤ Liy (y − zm) + Lim (zm − zm−1) + · · ·+

Li2 (z2 − z1) + Lix (z1 − x)
L(y − zm) + L(zm − zm−1) + · · · + L(z2 − z1) + L(z1 − x)
= L(y − x),

where L = max(L1, L2) = max(Liy , Lix , Li1 , . . . , Lim ). This concludes
the proof for one-dimensional case.

We now prove the statement for multi-dimensional case. Take
two points x, y ∈ X ⊂ Rn with x = (x1, . . . , xn) and y =

(y1, . . . , yn). The functions f1, f2 have Lipschitz constants L1, L2,
which means

|fi(y1, . . . , yn) − fi(x1, . . . , xn)| ≤ Li∥(y1 − x1, . . . , yn − xn)∥,

i ∈ {1, 2}. (A.1)

Define the line segment that connects these two points as D :=

{λy + (1 − λ)x | λ ∈ [0, 1]}. Let us know restrict the domain of
the function g to D and define:

h : [0, 1] → R, h(λ) := g(λy + (1 − λ)x) =

max(f1(λy + (1 − λ)x), f2(λy + (1 − λ)x)).

We can now apply the first part of the proof to get:

|h(1) − h(0)| ≤ L′
|1 − 0|, (A.2)

where L′ is the maximum of the Lipschitz constants of f1(λy+(1−

λ)x) and f2(λy+ (1−λ)x) with respect to λ. To get these Lipschitz
constants, we use (A.1):

|fi(λ1y + (1 − λ1)x) − fi(λ2y + (1 − λ2)x)| ≤

Li∥(λ1 − λ2)(y − x)∥ = Li|λ1 − λ2| ∥y − x∥
= (Li∥y − x∥) |λ1 − λ2|

Therefore, the Lipschitz constants of f1(λy + (1 − λ)x) for a given
x, y with respect to λ is Li∥y − x∥. Replacing definitions in (A.2),
we have

|g(y) − g(x)| ≤ L′
= max(L1∥y−x∥, L2∥y−x∥) = ∥y−x∥max(L1, L2)

This completes the proof. □
 l
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Appendix B. Proof of Corollary 4.5

The probability distribution from which xi is sampled must
satisfy Assumption 4.2. This assumption requires having a strictly
increasing function G : R+

0 → [0, 1] that satisfies

P[b(x, r)] ≥ G(r), ∀x ∈ X .

Since we assume that samples are collected uniformly, P[b(x, r)]
for every small ball centered at every x ∈ X with radius r = ϵ can
be computed by dividing the volume of this ball by the whole
state set volume. Given that one needs to find the maximum
ball that is valid for ∀x ∈ X , and some points x lie on the
border of the hyper-rectangular state set, the maximum ball is
a semi-hypersphere in general, whose volume can be computed

as
1
2n

π
n
2

Γ ( n2 +1)ϵ
n with the Gamma function defined as Γ (k) = 1 ×

2 × 3 . . .× (k − 1) and Γ (k +
1
2 ) =

1
2 ×

3
2 × · · · (k −

3
2 )(k −

1
2 )π

1
2

or all positive integers. Dividing this value by the whole state set
olume, which is

∏n
i=1 ηx(i) for ηx(i) as the length of the edges in

ach direction, gives us G(ϵ).

ppendix C. Proof of Corollary 4.6

The proof is similar to the proof of Corollary 4.5 in Appendix B.
ere, the centered ball with the maximum volume is the inter-
ection of the whole state set sphere and the small ball r = ϵ

entered at any point on the border of the state set sphere. The
olume of this intersection, which is the volume of two separate
aps, can be computed as:
cap
n (r̃, c1) + V cap

n (ϵ, c2),

here

cap
n (r̃, c1) =

1
2

π
n
2

Γ ( n2 + 1)
r̃nI(1 −

c21
r̃2

;
n + 1
2

,
1
2
),

and

V cap
n (ϵ, c2) =

1
2

π
n
2

Γ ( n2 + 1)
ϵnI(1 −

c22
ϵ2

;
n + 1
2

,
1
2
),

or c1 =
2r̃2−ϵ2

2r̃ , and c2 =
ϵ2

2r̃ . By dividing the intersection volume
by the volume of the whole hypersphere state set, which is

Vn(r̃) =
π

n
2

Γ ( n2 + 1)
r̃n,

ne can compute G(ϵ) as in Corollary 4.6.

ppendix D. Coefficients of the computed barrier certificates
n floating point format with 16 digits.

In the above table, the values in first two columns from top to
he bottom are {b0, . . . , b9} in respective case studies. The values
n the third column from top to the bottom are {b0, . . . , b4} in the
ast case study (see Table D.1).
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Table D.1
Computed coefficient values for the BCs in the case studies.
Temperature verification Lane keeping Synthesizing a
for 3 rooms System Controller

1.118824712343290 × 10−1 2.200050812923097 × 10−4 1.189325015407815 × 10
1.121295401333170 × 10−1 3.901846347425760 × 10−1

−1.070392322770013 × 103

1.122576531449860 × 10−1 1.480240596483330 × 10−1 3.612276124685787 × 104

−3.751401155407000 × 10−3
−2.825312554914731 × 10−4

−5.417521260597183 × 105

−4.728480781000000 × 10−3 9.905388481691000 × 10−3 3.046603167514221 × 106

−2.284303936564000 × 10−3
−6.672383448890000 × 10−3 –

−3.761231117922648 × 100
−6.918249590565419 × 10−4 –

−3.815332731044874 × 100 4.678025224577894 × 10−4 –
−3.803570830339135 × 100

−1.539512818952500 × 10−2 –
9.993049903406006 × 10 4.518033593474370 × 10−1 –
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