

Validating IoT Devices with Rate-Based Session Types 278:3

Intuitively, the notion of rate can be thought of as the ratio of messages actions performed to a
given period of time. For example, in addition to the communication structure described above, the
Car Key protocol specifies that both processes must complete their interactions from one Wake
Up to the next Wake Up within a period of (e.g.) 100 ms – i.e., they must operate at the same

rate. Reciprocation of message actions alone is not sufficient to guarantee correctness for such
systems. It is incorrect to implement either process to operate at a slower rate than the other – e.g.,
by performing the reciprocal interactions as expected but over a longer period – the execution
of systems composed from such rate-incompatible processes will result in errors such as rate
mismatches, which standard session types do not verify. The impact of such errors can vary from
garbled audio, to lost messages, to systems that produce mathematically incorrect results.

Contributions. This paper proposes a session types framework for implementing and validating
rate-based message passing systems, common in embedded and IoT domains. The Car Key protocol
is a simple example involving a single session between two processes operating over the same period,
100ms. We explore rate-based message passing systems that involve multiple sessions between
numerous processes operating over different periods. To handle these more general applications,
we introduce a novel notion of rate compatibility (RC) between periodic, communicating processes
that may be operating over differing periods. Rate compatibility is decidable through a connection
of session compatibility to the notion of superperiods (also known as hyper-periods) from real-time
scheduling [Liu and Layland 1973]. In addition to standard communication safety, a well-typed
system of rate-compatible processes is guaranteed free of rate errors – interacting processes safely
exchange messages at the same rate.

The rest of the paper is organized as follows. Section 2 gives an overview of our framework and
explores making session types rate aware. We examine the heart rate sensor functionality of the
PineTime Smartwatch [Pine64 2019] as a concrete example. Section 3 provides an overview of our
proposed system and motivates the design through examples. Section 4 formalizes our session
calculus and operational semantics. To model the indefinite repetition present in embedded and IoT
systems, we introduce a timed session calculus with a periodic recursion construct. This allows us
to model the rate-based processing and communications inherent to our target application domain.
Section 5 first defines rate compatibility (RC), a new rate-based session compatibility relation that
determines when processes with differing periods but matching rates may safely interact. RC is
defined by synthesizing and checking a common superperiod type, defined by a new expansion
relation, that aligns communication rates between processes. We then present our type system for
rate-based session types based on RC. We prove type preservation and rate error freedom for well-
typed systems, and show a decidable method for type checking based on computing superperiods.
Full proof details are in supplemental material. Section 6 presents an implementation of our type
system and the RC relation via an embedding in the Rust type system, as part of a framework for
safe construction of rate-based systems. We use our framework to implement a range of examples,
including Android software sensors, the PineTime Smartwatch, a Bluetooth protocol, the keyless
entry protocol given above, and sound processing. A working deployment of the heart rate sensor
to FreeRTOS on micro-controller hardware validates the feasibility of applying our implementation
to these resource constrained systems. This is available as a corresponding software artifact.

2 MOTIVATING EXAMPLE: THE PINETIME SMARTWATCH

Let us consider how we might type the communication protocol for the signal processing in a
smartwatch heart rate sensor. The PineTime [Pine64 2019] is a smartwatch with open-source 1

firmware. A graphical representation of this pipeline flow is shown in Fig. 2. Each signal processing

1Available at https://github.com/InfiniTimeOrg/InfiniTime/blob/241d364/src/components/heartrate/Ppg.cpp

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:5

just structural, as they have completely different rates. The sample rate is linked to the mathematical
correctness of the computation. In our Low-Pass Filter block, there is a set of constants which
determine the frequency response of the filter. Using these constants with a wrong sample rate
would render our watch unable to detect a heartbeat. The correct AGC type for our example would
be :1 : l40<BC .!f32.C . These two views of the channel are shown in Fig. 2. Note that while the body
is only half of the length, the period is too. Thus the rate is preserved. Clearly, both have a rate of
one communication per 40 milliseconds. Structurally however, they differ.
Looking only at the infinite behavior as a fixed point is too permissive, incorrectly allowing

sessions with mismatched rates. A more restricted view of duality that considered only exact
matches in syntactic structure would be safe. When periods differ between processes, however,
that view is overly restrictive and would immediately reject the program. The desired type system
would allow differences in period, but still reject programs with incompatible rates. Reconciling
these types is the key challenge in providing rate-based sessions.

3 OUR PROPOSED SYSTEM — COMBINING RATES AND SESSIONS

A type system for rate based sessions must be able to distinguish between processes with the
same structure but different rates. Nevertheless, it must also allow processes with the same rates
but different structures. Reconciling these observations requires reasoning about the behavior of
types over time, not just their structure. To accomplish this our system will need a new notion of
compatibility. It must be rate aware so it can type check programs where communicating processes
have different periods, including periods that are not multiples of one another. Our type system
relies on a definition of expansion, which allows us to reason about communications over time.
We base compatibility on a generalization of expansion which allows us to reason about the type
safety of programs which have communicating processes with periods that are not multiples of
one another. Programs which type-check in our system will enjoy freedom from rate errors. We
introduce these concepts intuitively through examples in this section, building on the PineTime
example, and formalize them in the following sections.

Rate Compatibility. Traditionally, we say that the typings of two processes are compatible if
and only if the types of channels in them are dual. Duality is a structural property of types. So
as a first attempt, let us define duality of these periodic session types, referred to as dualityl ,
structurally. To be dual, we require that the annotations of l match, enforcing that the tasks have
the same period. In our smart watch example, we would say the dual of :1 : l40<BC .?f32.?f32.C is
:1 : l40<BC .!f32.!f32.C This guarantees that the types have the same number of communications
and same period, and thus the same rate.

This approach captures rate information but is overly restrictive. Consider our smartwatch again.
The type in the AGC block was :1 : l40<BC .!f32.C . This is not the dual we were looking for. Our
loop runs twice as often and performs half the communications per iteration. The sample rate
is maintained, thus this is a safe replacement for our prior version. Unfortunately, the type is
structurally different. Treating it as just an infinite stream of sends does not resolve our problem
now that we have introduced rates. Consider the type :1 : l40<BC .!f32.!f32.C . This is not the same
behavior. It has twice as many communications in the same period and thus twice the rate. If we
were to implement the AGC this way, we would encounter a rate error. This hypothetical incorrect
AGC block would be producing values faster than the LPF would consume them. If deployed, this
could result in the AGC process stalling or unbounded channel growth, eventually resulting in an
out-of-memory crash. Our heart rate sensor would fail.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:8 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

taken by the LPF block. We need the rate-compatibility relation to generalize dualityl and allow
these pairings to type check.

Formalization. Capturing this behavior formally requires introducing new machinery for reason-
ing about periodic processes and their types. We first examine how to encode and reason about
these processes in Section 4. A new process calculus variant allows us to define what a rate-error
means in these systems. To prevent these errors, we then introduce a corresponding type system
in Section 5. We prove these types statically prevent timing errors: Section 5.3. The techniques
developed in the formal model then allow us to realize rate-based compatibility in a Rust library in
Section 6. We revisit these examples and show how they can be translated into Rust and verified
with the existing Rust type-checker. Our implementation leads to a working deployment of a heart
rate sensor to FreeRTOS on a micro-controller, shown in Fig. 7.

4 A SESSION CALCULUS FOR RATE-BASED SYSTEMS

We formalize a process calculus for modeling rate-based concurrent message passing systems as
found in embedded systems and IoT domains. Our calculus is based on the session calculus of Honda
et al. [1998] to which we add two key features: periodic recursion and timing.

Periodic recursion prd(=) - (G̃, :̃) = % in & describes a recursive process % (with “name” -)
that is expected to be executed periodically with a period of =. This construct allows us to model
the systems of (indefinitely) periodic processes in our target use cases, as demonstrated in Sec. 2.
Conceptually, the period is the length of time between starting one iteration of % and the next –
i.e., it determines the frequency at which % repeats. The next iteration will not be started until the
current period has elapsed, but a safe execution requires all the work described in % , including
communications dependent on other processes, being completed before then.
Our formalism abstracts from physical timing and details such as the absolute amount of time

taken to perform actions by specific implementations or deployments. It focuses on safety in
rate-based systems in terms of the relative timing between the processes of a system. Thus a period
= may be written to mean = milliseconds (assuming milliseconds is a consistent unit across the
system), but the crucial point is to capture the ratio between the periods of all such interacting
process. In general, a period or time = in our formalism denotes = logical timesteps.

4.1 Syntax

Let ℓ, ℓ ′, . . . range over labels; :, : ′, . . . range over channels; -,., . . . range over process variables;
E, E ′, . . . range over values (e.g., integers and booleans); G,~, . . . range over variables (for values);
and 4, 4′, . . . range over expressions, i.e., values, variables and computations (definitions omitted)

that do not involve communications. The notation (e.g.) :̃ stands for a (possibly empty) sequence
of distinct :8 ; and (e.g.) % [E/G] means substitute E for G in % . Fig. 8 defines processes %,&, '.

Periodic recursion prd(=) - (G̃, :̃) = % in & is the major addition to the syntax. It associates
process variable - with the static definition (or simply, definition) % , that takes parameters G̃ and

channels :̃ , in the scope of the run-time process & . It also specifies the period of - is = ∈N1. We
may simply say process - when referring to the % associated with - . Periodic processes may
terminate. We do not permit mutually recursive process definitions (restricted by typing, cf. (T-Prd)
in Sec. 5.2). This simplification is because our formalism targets systems with periods that are
statically specified and non-variant (i.e., constant) during execution.

The definition of a periodic recursion may contain static process invocations - [4̃, :̃], representing

a new iteration of process - with arguments 4̃ and channels :̃ . A run-time process invocation

-3 [4̃, :̃] represents a pending invocation of - during the execution of some process. The deadline

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:9

%,&, ' ::= process

0 inaction

| :![4]; % data sending

| :?(G); % data reception

| : ⊳ ℓ ; % branch select

| : ⊲ {ℓ8 : %8 }8 ∈ 1..= branch offer

| if 4 then % else & conditional

| % | & parallel composition

| (a:) % channel scope

| prd(=)- (G̃, :̃) = % in & periodic recursion

| - [4̃, :̃] process invoc. (static)

| -3 [4̃, :̃] process invoc. (run-time)

Fig. 8. Syntax of processes. 4 ranges over values E and expressions of base sorts (e.g., integers and booleans).

3 ∈N0 is the global time (explained in Sec. 4.2) at which the invocation is scheduled, i.e., a deadline
by which all prior work (the proceeding process prefixes) is required to be completed. We often
simply say invocation as short for process invocation. The definition of a periodic recursion must
represent the static definition of a single task in a system. We thus prohibit run-time invocations
and parallel processes from appearing in these definitions. Typing enforces this distinction and we
formalize it as static % in Sec. 5.2.

All other process terms are standard [Honda et al. 1998] with the following notes. For simplicity,
values E do not include channels : , i.e., we do not model session delegation, as it does not feature
in any of our practical use cases. The meaning of communication rates in the presence of channel
mobility is a topic of future work. We also omit the terms for session initiation (similarly to, e.g.,
Gay and Hole [2005]) as orthogonal to the present work; our calculus simply models established
communication sessions directly (i.e., session initiation is implicit from session scoping).
Communication occurs as synchronizations between data sending and reception, and between

branch select and offer. On synchronizing, data sending will evaluate the expression 4 and proceed
as % , while data reception will proceed as % with the evaluation result substituted for bound variable
G . Branch select will proceed as % , while branch offer will proceed with the %8 corresponding to the
selected ℓ . The conditional, parallel composition and channel scoping terms are standard.
The sets of free variables fv(%), channels fc(%), and process variables fp(%) of process % are

defined in the expected way. Fig. 13 (bottom) defines the deadline on a channel : of % , dl: (%) ∈N0∪

{∞}, the earliest possible deadline 3 on run-time invocations that occur within % and pass the
channel : . We define dl: (%) for a : with no attached deadline in % to be∞ (representing that %
has unlimited time to complete its actions on :). Processes without free variables, channels, or
process variables are called programs.

Example 4.1. Recall the Low Pass Filter (LPF) example from Sec. 2. Here, we consider a simplified
variant with equal input and output rates.

prd(1)- (:i, :o) = :i?(G); :o![hpf(G)]; - [:i, :o] in -
0 [:i, :o]

This filter is recursively defined as a process - with a period of 1 timestep. (As discussed, the
absolute value of a period is not important, but how it relates to the periods of processes it interacts
with.) - takes two channel parameters :i and :o . The definition of - specifies that in each iteration
(i.e., within each period of 1 timestep): it will input on :i, do some local computations (the hpf(G)
expression) and output the result on :o, before proceeding to the next iteration - [:i, :o] when the
period ends. The process is bootstrapped by - 0 [:i, :o], i.e., at system time 0 (the initial timestep in
a system execution), invoke - to run on (pre-established) channels :i and :o.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:10 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

% | 0 ≡ % % ≡ & if % ≡U & (a:) 0 ≡ 0

% | & ≡ & | % % | (& | ') ≡ (% | &) | ' (a:) % | & ≡ (a:) (% | &) if : ∉ fc(&)

0 ≡ prd(=)-
(

4̃, :̃
)

= % in 0
(

prd(=)-
(

4̃, :̃
)

= % in &
)

| ' ≡ prd(=)-
(

4̃, :̃
)

= % in (& | ') if - ∉ fp(')

Fig. 9. Structural congruence % ≡ &

4.2 Operational Semantics

Modeling time. Wemodel the advance of time globally as a series of logical timesteps, formalized as
a monotonically increasing, system-wide counter 2 ∈N0. Our formalism stratifies system execution
(→) into (a) steps that perform communication actions and local computations but do not advance
time (→•), and (b) steps that increment global time. Generally speaking, system execution proceeds
by alternating between (a) some number (possibly 0) of →• steps and (b) one →◦ step. Our model
is designed to exclude scenarios where processes are able to perform work, but instead idle and
trivially miss deadlines. Specifically, it does not allow a →◦ step (i.e., global time is not allowed to
advance) unless all processes have met all their deadlines up to the current system time (cf. the
(Delay) rule); our model treats a system in which a process cannot meet a deadline as stuck. In
Sec. 5.3, we formalize systems stuck in this manner as rate errors.

As we are interested in the relative rate compatibility between processes, not the absolute time
taken to perform communications or local computations, our model assumes that periods span
sufficient physical time for (safely rate compatible) processes to perform all the (inter)actions in
each step. If a system is not safely rate compatible in this model, then its design is inherently
flawed regardless of how much physical time a concrete implementation may allocate to the
conceptual timestep. In practice, the specific duration of timesteps/periods is often part of the
protocol specification. In the case of our Low Pass Filter example, these would be derived from the
sample rate of the hardware sensors and must agree with the formula for hpf.

State reduction. A state f is a pair ⟨%, 2⟩ of a process % and a system time (or simply, time) 2 ∈N0.
An initial state is a state ⟨%, 0⟩ where % is a program. State reduction f → f ′ is the union of relations
f →• f

′ and f →◦ f
′ given by the rules in Fig. 10. As noted above, reduction is defined in two

parts: steps that perform computation (→•), and steps that advance time (→◦).
We first explain computations→•. The reduction of process % is mostly standard [Honda et al.

1998], leaving the time C unchanged. Rule (Com) is for synchronous communication of a value
between an input process and an output process on a channel : . The notation 4 ↓ E means evaluate
4 to a value E . Similarly, rule (Bra) is for communication of a branch label. Rule (IfT) is for the
true case of a conditional; we omit the corresponding (IfE) rule. Rules (Par), (Chan) and (Str) are
standard context rules for parallel composition, channel hiding and structural congruence. Structural
congruence for processes (Fig. 9) is also standard [Honda et al. 1998]. The notation ≡U means U-
equivalence. The structural congruence rule for periodic recursion (for syntactically shuffling
definitions into redex position) is analogous to that of standard recursive process definitions.
Structural congruence is lifted to states by: ⟨%1, 21⟩ ≡ ⟨%2, 22⟩ if and only if %1 ≡ %2 and 21 = 22.

We now explain the behavior of periodic recursion. Rule (Inv) models the repetition of a periodic

process at the desired intervals. The form -3 [4̃, :̃] denotes a running process that has completed
the work (i.e., prior prefixes) of its current iteration and is waiting to commence the next at deadline
3 . When the current time reaches the deadline, the invocation can be replaced by the definition

of - with arguments Ẽ respectively given by evaluating 4̃ and channels :̃ . Occurrences of static
invocations are replaced by (future) run-time invocations with deadline 3+=, i.e., period = timesteps

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:11

(Com)
4 ↓ E

⟨:![4]; % | :?(G); &, 2⟩ →• ⟨% | & [E/G], 2⟩
(Bra)

1 ≤ 9 ≤ =

⟨: ⊲ {ℓ8 : %8 }8∈1..= | : ⊳ ℓ9 ; &, 2⟩ →• ⟨% 9 | &, 2⟩

(IfT)

4 ↓ true

⟨if 4 then % else &, 2⟩ →• ⟨%, 2⟩

(Par)

⟨%, 2⟩ →• ⟨% ′, 2⟩

⟨% | &, 2⟩ →• ⟨% ′ | &, 2⟩

(Chan)

⟨%, 2⟩ →• ⟨% ′, 2⟩

⟨(a:) %, 2⟩ →• ⟨(a:) % ′, 2⟩

(Str)

% ≡ % ′ ⟨% ′, 2⟩ →• ⟨& ′, 2⟩ & ′ ≡ &

⟨%, 2⟩ →• ⟨&, 2⟩

(Prd)

⟨&, 2⟩ →• ⟨& ′, 2⟩

⟨prd(=)- (G̃, :̃) = % in &, 2⟩ →• ⟨prd(=)- (G̃, :̃) = % in & ′, 2⟩

(Inv)
4̃ ↓ Ẽ 3 = 2

⟨prd(=)- (G̃, :̃) = % in -3 [4̃, :̃], 2⟩ →• ⟨prd(=)- (G̃, :̃) = % in % [Ẽ/G̃] [-3+=/-], 2⟩

(Delay)
∀:. dl: (%) > 2

⟨%, 2⟩ →◦ ⟨%, 2+1⟩

Fig. 10. State reduction: (top) performing computations f →• f
′, and (bo�om) advancing time f →◦ f

′.

ahead of the current deadline 3 . Rule (Prd) is a context rule analogous to that for standard recursive
process definitions.
Finally, →◦ has a single rule (Delay). It allows system time to be advanced globally by one

step provided all deadlines that occur in the running system are greater than the current time. As
mentioned, our model prevents degenerate scenarios where a process can perform communications
but instead trivially misses a deadline by idling. In our model, an invocation with deadline 3 but
which cannot be reduced within timestep 3 (e.g., due to being blocked under other non-reducible
communication prefixes) causes state reduction to become stuck overall. Such states can arise in
logically incorrect systems due to rate errors, as we formalize and use to prove rate safety in Sec. 5.3.

Example 4.2. Let initial f0 = ⟨(a:8) (a:>) (% |&), 0⟩ where % is the process from Ex. 4.1, and & is
prd(2) . (G, :i, :o) = :i![G]; :o?(~); :i![~]; :o?(I); . [I, :i, :o] in .

0 [42, :i, :o]. f0 may reduce by:

f0
...Inv
−−−−→•

...Inv
−−−−→•

...Com
−−−−−→•

...Com
−−−−−→•

Delay
−−−−→◦ f1

...Inv
−−−−→•

...Com
−−−−−→•

...Com
−−−−−→•

Delay
−−−−→◦ f2

...Inv
−−−−→•

...Inv
−−−−→• ...

The numerical subscript of the f states indicates the timestep in which the reductions occur. The
(e.g.) ...Inv label indicates the leaf rule of the reduction step is (Inv), enabled by context rules
(Chan), (Par), (Prd), etc. In timestep 0, the two processes are invoked, allowing the first pair of
communications to be performed, leaving (the run-time process within) % at the end of its first
iteration. The system time is incremented, and % is invoked again, allowing the second pair of
communications. Finally, both % and & are at the end of their current iterations, and the periodic
behavior of the system as a whole (cf. the superperiod, Sec. 5.1) may repeat.

5 RATE-BASED SESSION TYPE SYSTEM

We develop a rate-based session type system for our timed session calculus. Our type system is
based on that of Honda et al. [1998], employing a linear context for typing process behaviors in
terms of channel usages. To reason about safety for rate-based systems, we introduce: (a) periodic
recursive types (or simply, periodic types) for communication behaviors featuring periodic recursion;

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:12 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

) ::= !(.) | ?(.) | ⊕ {ℓ8 :)8 }8∈1..= | &{ℓ8 :)8 }8∈1..= | l=C .) | l3
=C .) | C | end (::= int | bool | . . .

!(.) = ?(.) ?(.) = !(.) ⊕{ℓ8 :)8 }8∈1..= = &{ℓ8 :)8 }8∈1..= &{ℓ8 :)8 }8∈1..= = ⊕{ℓ8 :)8 }8∈1..=

l=C .) = l=C .) l3
=C .) = l3

=C .) C = C end = end

Fig. 11. (top) Syntax of binary session types with periodic recursive types; (bo�om) duality) =) ′.

(b) timing-aware mechanisms for unfolding and expansion of periodic types; and (c) a notion of rate
compatibility to determine when periodic behaviors may be safely composed.

Analogously to the process syntax, our type system integrates two forms of periodic types. One
form l=C .) is used to type the static definition of a periodic process with period =. The other l3

=C .)

carries the constraint of deadline 3 to type run-time instances of such processes, denoting the
timestep by which the process must complete its current iteration and commence the next. In a rate
error state, the constraints imposed by the deadlines are unsatisfiable. These processes get stuck
when they fail to meet a deadline. Rate safety means a well-typed system is statically guaranteed
not to reduce to a rate error. This requires tracking not only the rates of communications but also a
phasing constraint. Having the deadline appear in the type of states at run-time allows us to rule
out problematic initial states where the execution of processes is misaligned. In the simplest case,
two processes may communicate at the same rate, but one may begin at 31 = 2, at which point its
partner’s deadline 32 = 1 has already passed. All of the systems we have considered start uniformly
with all deadlines at 0, avoiding this issue. Tracking the deadlines explicitly in the types of run-time
invocations allows us to prove this alignment is preserved throughout execution.

Key to safety is our formulation of rate compatibility)1 ⊲⊳)2 between communication behaviors.
An intuitive observation is that periodic processes may safely interact despite operating over hetero-
geneous periods provided they are structurally compatible in such a way that their communication
rates align. We must forgo traditional treatments [Gay and Hole 2005; Honda et al. 1998] of recursive
types, subtyping and process subsumption, that seek to freely equate all syntactic (un)foldings of a
given recursive type or process. Instead, we formulate notions of expansion and compatibility for
periodic types that are additionally sensitive to communication rates. With our types that capture
periods and deadlines in their behavioral characterization of periodic processes, this allows us to
reason about rate safety for rate-based systems.

5.1 Rate-Based Session Types and Rate Compatibility

Fig. 11 (top) defines our syntax of session types for rate-based systems. !(.) and ?(.) are for sending
and receiving data of sort (. We assume a set of base sorts for values and expressions. ⊕{ℓ8 :)8 }8∈1..=
and &{ℓ8 :)8 }8∈1..= are for branch select and offer. Let C, C

′, . . . range over recursion variables (distinct
from time C in Sec. 4 based on context). As discussed above, l=C .) and l3

=C .) are periodic recursive
types (or simply, periodic types), binding the recursion variable C within) . As in the process syntax,
= ∈N1 is the period and 3 ∈N1 is the deadline. Session termination is denoted end. We often say
type as short for session type.
We assume periodic types are contractive. Our system imposes some further restrictions on

periodic types and the definitions of periodic recursions. We require that periodic types are not
nested. This means in any periodic type l=C .) (or l3

=C .)), the body type) may not contain
any occurrence of another periodic type. E.g., in our system l2C .!int.C is permitted, whereas

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:13

l2C .l2C
′ .!int.C ′ andl2C .l3C

′ .&{ℓ1 : !int.C, ℓ2 : !int.C
′} are not. Our type system implicitly disallows

these types by forbidding a periodic recursion definition from using any other process variable.3

Looking ahead (cf. Sec. 5.2), this restriction is enforced by typing rule (T-Prd) (by restricting
the process context Θ when typing the definition %). It corresponds with a common restriction
in our target application domains that periodic tasks cannot dynamically change their periods
during run-time. In embedded system design, allowing dynamically changing periods precludes a
static schedule and hampers static guarantees. In our system, allowing general mutually recursive
tasks would correspond to allowing dynamically changing periods. In all of the example systems
we explore, the period of each task is explicitly fixed and statically known. We note the rate of
communications on a channel can still change as our system allows different branches of choice
constructs to have differing numbers of communications.
Our system also requires that the definition of a periodic recursion corresponds to a single

static definition, as formalized by static % (Fig. 14). Notably, a definition cannot contain a parallel
composition: this restriction mirrors our target domains where tasks are started at system boot
and not created dynamically. A definition cannot contain a nested definition nor run-time process

invocations -3 [:̃, 4̃]. static % on periodic recursion definitions is enforced by typing rule (T-Prd).

Preliminaries. We define the key concepts leading up to rate compatibility (RC), before presenting
state typing based on RC in Sec. 5.2.
First, Fig. 11 (bottom) defines the duality relation on types, which represents reciprocation of

communication structures. All cases are standard [Honda et al. 1998]; the cases for periodic types
are as for standard recursive types `C .) , yielding the reciprocal structure over the same period =.
Next, we define the one-iteration unfolding of a type) :

unfold(l=C .)) =) [l=C .) /C] unfold(l3
=C .)) =) [l3+=

= C .) /C]

and unfold()) =) for all other cases of) . The first and third cases are as for standard recursive
types. The second case is key: conceptually, unfold(l3

=C .)) represents performing one additional it-
eration of a running periodic process. The deadlines of all the subsequent invocations are accordingly
advanced by one period to 3+=.
Lastly, we express a new notion of type expansion in the form of a subtyping relation)1 <:)2,

signifying that)2 is an expansion of)1; i.e., the (shorter) type)1 can be expanded to the (longer)
type)2. Expansion represents the scaling up of a (periodic) behavior, in terms of its communication
structure, over some number of periods. We use an auxiliary function:

expC (), 1) =) expC (),<) = expC (),<−1) [) /C] for< > 1

In the context of a periodic recursion with recursion variable C , it expands type) by the factor<.
It is used in the expansion rules to scale the period (and deadline) accordingly. By this definition,
an expansion factor of 1 is identity, whereas a factor of, e.g., 3 yields a type that performs triple the
number of communications over a three-times-longer period. Expansion thus crucially preserves
the rate of communication between behaviours, which lies at the heart of rate compatibility (RC).
Fig. 12 (top) defines the expansion relation Σ ⊢)1 <:)2. The set of assumptions Σ is standard

to subtyping relations over iso-recursive types [Pierce 2002] and tracks assumptions of recursion
variables already considered. The notation)1 <:)2 is a shorthand when Σ is empty. Expansion
is reflexive and transitive. It would be possible to formulate a symmetric version of expansion,
making it an equivalence. We define expansion in this antisymmetric form because the (partial)
ordering yields a decidable algorithm for RC, as we explain below. Expansion includes unfolding, as
necessary for RC to relate running processes that are at staggered period phases due to asynchrony

3In the supplemental material, we give an explicit syntactic predicate to clarify the types permitted by this condition.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:14 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

Σ ⊢)1 <:)2

Σ ⊢!(.)1 <: !(.)2

Σ ⊢)1 <:)2

Σ ⊢?(.)1 <: ?(.)2

)1 <:)2 ∈ Σ

Σ ⊢)1 <:)2 Σ ⊢ end <: end

Σ ⊢)8 <:)
′
8

Σ ⊢ ⊕{ℓ8 :)8 }8∈1..= <: ⊕{ℓ8 :)
′
8 }8∈1..=

Σ ⊢)8 <:)
′
8

Σ ⊢ &{ℓ8 :)8 }8∈1..= <: &{ℓ8 :)
′
8 }8∈1..=

Σ, C1 <: C2 ⊢)1 <:)2

Σ ⊢ l=C1 .)1 <: l=C2 .)2

Σ, C1 <: C2 ⊢)1 <:)2

Σ ⊢ l3
=C1 .)1 <: l3

=C2 .)2 Σ ⊢ l3
=C .) <: unfold(l3

=C .))

Σ ⊢ l=1×<C1 .expC1 ()1,<) <: l=2
C2 .)2

Σ ⊢ l=1
C1 .)1 <: l=2

C2 .)2

Σ ⊢ l3 ′

=1×<C1 .expC1 ()1,<) <: l32
=2
C2 .)2 3′ = 31 + =1 (<−1)

Σ ⊢ l
31
=1
C1 .)1 <: l32

=2
C2 .)2

(RC)
)1 <:)3)2 <:)3

)1 ⊲⊳)2

Fig. 12. (top) Expansion Σ ⊢) <:) ′; (bo�om) Rate Compatibility) ⊲⊳) ′.

Let † ::= ! | ? ‡ ::= ⊕ | & l★

= C .) ::= l=C .) | l3
=C .)

rl(†(.)) = 1 + rl()) rl(‡{ℓ8 :)8 }8∈1..=) = 1 +max8∈1..= (rl()8)) rl(l3
=C .)) = rl(C) = rl(end) = 0

bl(†(.)) = bl()) bl(‡{ℓ8 :)8 }) = max8∈1..= (bl()8)) bl(l★

= C .)) = rl()) bl(C) = 0

pd(†(.)) = pd()) pd(‡{ℓ8 :)8 }) = max8∈1..= (pd()8)) pd(l★

= C .)) = =

dl(†(.)) = dl()) dl(‡{ℓ8 :)8 }8∈1..=) =<8=8 ∈ 1..= (dl()8)) dl(l3
=C .)) = 3 dl(end) = ∞

dl: (0) = ∞ dl: (:
′![4]; %) = dl: (%) dl: (:

′?(G); %) = dl: (%) dl: (:
′
⊳ ℓ ; %) = dl: (%)

dl: (:
′
⊲ {ℓ8 : %8 }8 ∈ 1..=) =<8=8 ∈ 1..= (dl: (%8)) dl: (if 4 then % else &) =<8=(dl: (%), dl: (&))

dl: (% | &) =<8=(dl: (%), dl: (&)) dl: ((a:
′)%) = dl: (%) if : ≠ :′, otherwise ∞

dl: (prd(=)- (G̃, :̃) = % in &) = dl: (&) dl: (-
3 [4̃, :̃]) = 3 if : ∈ :̃ , otherwise ∞

Fig. 13. Definitions of (top) remainder length rl()) ∈N0, body length bl()) ∈N0, and type period pd()) ∈N1;

(bo�om) deadline of types dl()), and deadline of processes dl: (%) across a channel

.

in execution – process invocation (i.e., unfolding the next iteration for a new period) is a local
action performed independently by each process.

In summary, expansion paves the way to addressing the essential challenge of safely relating peri-
odic behaviours with different periods and deadlines, arising due to both systems with heterogenous
periods and the technicalities of asynchronous invocations.

Communication rates and Rate Compatibility. We are now ready to formalise the notions of
communication rate and rate compatibility. Recall that nesting of periodic types is not permitted.

Fig. 13 (top) defines the remainder length rl()), body length bl()), and period pd()) of a type) .
Here, max8∈1..= is defined as the maximum of the cases that are defined, provided there is at least
one such case. rl()) signifies the number of communication actions remaining to complete an
unfolded iteration of a periodic type, i.e., the prefixes “outside” of the periodic type. For branch

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:15

types, it takes that of the longest case. Traditional communication safety ensures that the labels
presented in a branch remain compatible. By choosing the maximum length branch, we obtain
a single measure of length that is consistently preserved by expansion. bl()) correspondingly
signifies the number of communications within the body of the periodic type. Choosing the longest
branch when determining both bl()) and rl()) ensures rl(unfold(l3

=C .))) = bl(l3
=C .)) We use

this property to count the number of unfoldings performed in the proof of Theorem 5.9. Note
that unfolding preserves bl, and expansion preserves rl. The period of a periodic type) is pd()).
Fig. 13 (bottom) defines the deadline of a type) , dl()) ∈N0∪{∞}. Similarly to dl: (%), this function
finds the earliest possible deadline 3 on periodic types that occur within) .

We then define the communication rate (or simply, rate) of a type) as the ratio of its body length

to its period, '()) = bl())
pd())

. As periods are positive numbers, the rate '()) is always a positive

rational number if defined. It is always, and only, defined for a type that contains a periodic type.
Rate is preserved by both unfolding and expansion.

We can now define rate compatibility (RC) in terms of expansion. Fig. 12 (bottom) defines the RC
relation between types)1 ⊲⊳)2, which says)1 is rate compatible with)2 if there exists a)3 that is

an expansion of)1 such that the dual)3 is an expansion of)2. Intuitively, two periodic behaviours
are safely compatible if there exists some common protocol to which both behaviours can be scaled
up (expansion), preserving their communication rates, whereupon they are in direct agreement
on the communication structure (duality). RC is symmetric, and subsumes duality. RC implies rate
equivalence, i.e.,)1 ⊲⊳)2 implies '()1) = '()2).

We formulate RC in the above way for two related reasons. One is to yield a practical algorithm
for checking RC, which we implement in our Rust framework. We discuss the algorithm in Sec. 6.1.1,
but we note here that it relies on the fact that RC can expand and unfold in one direction only, as
opposed to standard equirecursive session subtyping [Gay and Hole 2005] that can freely fold and
unfold recursives types in both directions.
The other reason is expressiveness. Traditional compatibility [Vallecillo et al. 2006] between

session types)1 and)2 directly relates)1 ≤)2, where ≤ means the standard session subtyping [Gay
and Hole 2005]. Since our system permits expansion and unfolding in one direction only, we define
RC between)1 and)2 via duality of a common expansion)3. This allows RC to relate a larger
set of safely compatible periodic behaviours where both types must be expanded to a common
superperiod before duality holds (Sec. 6.1.1).4

5.2 Type System

Following Honda et al. [1998], a sorting Γ, Γ′, . . . is a map from names and variables to sorts; a
typing Δ,Δ′, . . . is a map from channels to types or ⊥; and a basis Θ,Θ′, . . . is a map from process
variables to sequences of sorts and types. Note ⊥ is not itself a type; it denotes that a session
channel is used by two safely compatible and complete types. We write Δ completed to mean

for all : ∈ dom(Δ), Δ(:) is end or ⊥. The notation (e.g.) G̃ : (̃ means a (possibly empty) sequence

of mappings G8 : (8 . We write Δ · : :) (or Θ · - : (̃,)̃ or Γ · G : () for the addition of a (disjoint)

mapping : :) (or - : (̃,)̃ or G : () to a typing (or basis or sorting).
We extend RC to typings and define composition of RC typings. Typings Δ1 and Δ2 are RC,

written Δ1 ≍ Δ2, iff Δ1 (:) ⊲⊳ Δ2 (:) for all : ∈ dom(Δ1) ∩ dom(Δ2). Note, ⊲⊳ is defined only for types
and not for ⊥. If Δ1 ≍ Δ2, then the composition of Δ1 and Δ2, written Δ1 ◦Δ2, is the typing such that
(Δ1 ◦Δ2) (:) is (1) ⊥ if : ∈ dom(Δ1) ∩ dom(Δ2); (2) Δ8 (:) if : is present in Δ8 but not Δ{1,2}\8 ; and
(3) undefined otherwise.

4See the supplementary material for an example derivation of RC for the “2-3 Producer Consumer” process from Fig 4

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:16 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

(T-Send)
Γ ⊢ 4 ⊲ (Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : :)

Θ; Γ ⊢ ⟨:![4]; %, 2⟩ ⊲ Δ · : : !(.)
(T-Recv)

Θ; Γ · G : (⊢ ⟨%, 2⟩ ⊲ Δ · : :)

Θ; Γ ⊢ ⟨:?(G); %, 2⟩ ⊲ Δ · : : ?(.)

(T-Select)

Θ; Γ ⊢ ⟨% 9 , 2⟩ ⊲ Δ · : :)9 1 ≤ 9 ≤ =

Θ; Γ ⊢ ⟨: ⊳ ℓ9 ; % 9 , 2⟩ ⊲ Δ · : : ⊕{ℓ8 :)8 }8 ∈ 1..=

(T-Offer)

Θ; Γ ⊢ ⟨%8 , 2⟩ ⊲ Δ · : :)8

Θ; Γ ⊢ ⟨: ⊲ {ℓ8 : %8 }8 ∈ 1..=, 2⟩ ⊲ Δ · : : &{ℓ8 :)8 }8 ∈ 1..=

(T-If)

Γ ⊢ 4 ⊲ bool Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ Θ; Γ ⊢ ⟨&, 2⟩ ⊲ Δ

Θ; Γ ⊢ ⟨if 4 then % else &, 2⟩ ⊲ Δ

(T-Par)

Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ Θ; Γ ⊢ ⟨&, 2⟩ ⊲ Δ′
Δ ≍ Δ

′

Θ; Γ ⊢ ⟨% | &, 2⟩ ⊲ Δ ◦ Δ′

(T-Inact)
Δ completed

Θ; Γ ⊢ ⟨0, 2⟩ ⊲ Δ
(T-Bot)

Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : : end

Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : : ⊥
(T-Chan)

Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : : ⊥

Θ; Γ ⊢ ⟨(a:) %, 2⟩ ⊲ Δ

(T-Prd)

- : (̃,)̃ ; Γ · G̃ : (̃ ⊢ ⟨%, 2⟩ ⊲ :̃ :)̃ ′
Θ · - : (̃,)̃ ′′; Γ ⊢ ⟨&, 2⟩ ⊲ Δ 3 ≥ 2

static %)̃ = (l=C8 .)8)8∈1..<)̃ ′
= unfold()̃))̃ ′′

= (l3
=C8 .)8)8∈1..<

Θ; Γ ⊢ ⟨prd(=)-
(

G̃ ; :̃
)

= % in &, 2⟩ ⊲ Δ

(T-Inv-S)

Γ ⊢ 4̃ ⊲ (̃)̃ = (l=C8 .)8)8∈1..< Δ completed

Θ · - : (̃,)̃ ; Γ ⊢ ⟨- [4̃; :̃], 2⟩ ⊲ Δ · :̃ :)̃

(T-Inv-R)

Γ ⊢ 4̃ ⊲ (̃)̃ = (l3
=C8 .)8)8∈1..< Δ completed

Θ · - : (̃,)̃ ; Γ ⊢ ⟨-3 [4̃; :̃], 2⟩ ⊲ Δ · :̃ :)̃

(T-Fold)
Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : : unfold(l3

=C .))

Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : : l3
=C .)

static - [4̃, :̃] static 0

static % static &

static if 4 then % else &

static %

static :![4]; %

static %

static :?(G); %

static %

static : ⊳ ℓ ; %

static %1 ... static %=

static : ⊲ {ℓ8 : %8 }8 ∈ 1..=

Fig. 14. (top) State typing Θ; Γ ⊢ f ⊲ Δ. (bo�om) Static process definition condition static % .

Our type system uses two forms of judgement. The judgements on expressions Γ ⊢ 4 : (type 4 with
sort (under sorting Γ, and are defined as expected; expressions do not involve any communication
behaviour. Fig. 14 defines the judgements on states Θ; Γ ⊢ f ⊲ Δ.
We first explain the rules that are standard [Honda et al. 1998]. Rule (T-Send) types a send of

sort (on channel : followed by a continuation of type) . Dually, rule (T-Recv) for a receive of
sort (. Rule (T-Offer) types a branch offering labels ℓ1..= with corresponding continuations)1..= .
Dually, rule (T-Select) types the branch select of label ℓ9 from some ℓ1..= options followed by the
corresponding continuation)9 . Rule (T-If) types the cases of a conditional by the same typing; note,
(T-Select) allows the conditional cases to select different labels of the branch.

Rule (T-Inact) types the inactive process 0 by requiring all channels in the typing map are
complete, i.e., end or ⊥. Rule (T-Par) types the composition of processes % and & provided their
typings are compatible. Although this rule itself is standard, composability of typings in our system
is determined by rate compatibility of (periodic) behaviours. Composition sets an RC channel
pairing to ⊥ in the resulting typing, enforcing the binary aspect of our sessions. Rule (T-CRes)
ensures that channel behaviours are safely completed and composed within their scope.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:17

We now explain our new rules. (T-Prd) types the periodic recursion construct, enforcing several
key properties. First, the definition % of the periodic process must satisfy static % . It must also be

typed with a basis mapping process variable - to the sorts (̃ and the static periodic types)̃ of its

parameters, and the sorting extended with (̃ . Note, this basis contains only - (it does not extend
Θ), restricting % from referring to other processes with potentially different periods. Hence, our
periodic processes cannot be mutually recursive. The structure of our rules only allows a type to
be unfolded here as part of a processes definition. The prohibition on mutually recursive processes
guarantees that only one definition is relevant to the typing of a channel. Thus this restriction
also prevents the use of nested periodic types, as unfolding during type checking would require
statically nesting mutually recursive processes definitions. Specifically, it is impossible to type
a state using nested periodic types (unless that assumption were already to appear in the basis
Θ). This reflects the assumption of our formalism that periods are non-variable during execution.

The notation (...)1..< means a sequence of 8 ∈ 1..< indexed items, and unfold()̃) stands for the

sequence of unfoldings of each)8 ∈)̃ . The resulting typing of % must map the channel parameters
to the corresponding one-iteration unfoldings, i.e., % must implement one iteration of the periodic
behaviour.

Second, the run-time process& is typed with the basis given by replacing the static periodic types
with run-time periodic types with a deadline 3 . The rule requires that the deadline has not passed,
i.e., 3 ≤ 2 . Rule (T-Fold) allows behaviours of & that can effectively be folded to those run-time
periodic types. The overall typing of the periodic recursion is given by the typing of the & .

Within the static definition of a process - , rule (T-Inv-S) may be used to type static invocations
of - with the corresponding parameters. An invocation represents reaching the end of an iteration:
all channel parameters are expected to match the periodic types prior to the original unfolding by
the (T-Prd) premise. Similarly, rule (T-Inv-R) types run-time invocations of - within the run-time
process & of periodic recursions. It matches the invocation deadline to that in the basis – rule (T-
Prd) checks that the deadline is not actually missed w.r.t. the current system time. Rules (T-Inv-S)
and (T-Inv-R) do not permit partially executed iterations of periodic behaviours to be carried over
an invocation, i.e., a periodic behaviour must be fully completed before commencing a new iteration.
Incomplete behaviours at an invocation boundary cannot be typed, which we exploit via type
preservation to show the execution of well-typed systems is from such errors (Sec. 5.3).

In conjunction with (T-Prd), rule (T-Fold) permits an iso-recursive treatment of periodic types,
but only allows subsumption in one direction — there is no converse of (T-Fold). This corresponds
to the fact that time is monotonic, and the static definition of a periodic process must implement an
iteration to productively follow the advance of time. Limiting (T-Fold) to folding (cf. expansion in
RC) imposes a bound on the type checking of individual processes. Folding reduces the remainder
length of a type, and thus its structure puts a limit on how many times (T-Fold) can be applied.
Combined with the LCM observation for RC, this yields a simple decidable algorithm for type
checking overall.

5.3 Type System Properties

We establish the key properties of our rate-based session type system. We formalize the notion
of rate error and prove that well-typed states are safe in terms of rate safety, i.e., the execution of
well-typed states is guaranteed free of rate errors. First, we present supporting auxiliary results.

Lemma 5.1 (Weakening). Let Θ; Γ ⊢ f ⊲ Δ. (1) If - ∉ dom(Θ), then Θ · - : (̃,)̃ ; Γ ⊢ f ⊲ Δ; (2) if
G ∉ dom(Γ), then Θ; Γ · G : (⊢ f ⊲ Δ; and (3) if : ∉ dom(Δ) and) is ⊥ or end, then Θ; Γ ⊢ f ⊲ Δ · : :) .

Lemma 5.2 (Substitution). If Θ; Γ · G : (⊢ ⟨%, 2⟩ ⊲ Δ and Γ ⊢ E : (, then Θ; Γ ⊢ ⟨% [E/G], 2⟩ ⊲ Δ.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:18 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

Lemma 5.3 (Congruence). If Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ and % ≡ & , then Θ; Γ ⊢ ⟨&, 2⟩ ⊲ Δ.

Lemma 5.4 (Continuation). (1) If !(.)1 ⊲⊳ ?(.)2, then)1 ⊲⊳)2; and (2) if ⊕ {ℓ8 :)8 }8∈1..= ⊲⊳

&{ℓ8 :)8
′}8∈1..= , then ∀1 ≤ 8 ≤ =.)8 ⊲⊳)8

′.

Lemma 5.5 (Deadline Substitution). Let)̃ = (l=C8 .)8)8∈� where � = 1..<. If - : (̃,)̃ ; Γ ⊢

⟨%, 2⟩ ⊲ :̃ : unfold()̃) with static % and 3 ≥ 2 , then - : (̃, (l3+=
= C8 .)8)8∈� ; Γ ⊢ ⟨% [-3+=/-], 2⟩ ⊲ :̃ :

unfold((l3
=C8 .)8)8∈�).

Lemma 5.6 (Type-Process Deadline Relation). If Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ · : :) , then dl()) ≤ dl: (%).

In addition to standard session types properties, we introduce three key lemmas for our system.
Lemma 5.4 states if two types are compatible, then their relevant continuations are compatible.
Lemma 5.5 states that instantiating a well-typed static definition of a periodic process into a run-
time process with deadline 3 is well-typed provided the deadline is not passed. Lemma 5.6 relates
the deadlines that appear in a process with the deadlines that appear in the types of its channels.
Specifically, the deadline of a type must be no later than the deadline in any process that uses a
channel with that type.
We can now present the first major result, type preservation. Our typing ensures pairings of

channel behaviors are rate compatible, composing them as ⊥ regardless of their specific behavior.
The essence of the proof is thus to show after any reduction step that RC pairings remain RC. Our
proof follows that of Yoshida and Vasconcelos [2007], with duality generalized by rate compatibility
(and without the cases for session delegation). We outline the proof below, leaving the full details
to the supplemental material. A technicality of note, our operational semantics (c.f. Sec. 4.2) models
deadline violation via stuck states: reduction by (Delay) is prohibited when it would result in a
deadline miss. This prevents trivial violations of type preservation via repeated use of (Delay).
Theorem 5.9.1 Rate Error Freedom guarantees well-typed states never get stuck due to rate errors.

Theorem 5.7 (Preservation). If Θ; Γ ⊢ f1 ⊲ Δ and f1 → f2, then Θ; Γ ⊢ f2 ⊲ Δ

Proof Sketch. By induction on the derivation of the reduction step, proceeding by cases on the
last rule applied. We illustrate two key cases.

Case (Com) depends on the property that RC between two types is preserved by the continuations
of those types. From (Com), after accounting for context rules, (e.g. (T-Bot)), we have Δ = (Δ1 ◦Δ2) ·

: :⊥. From (T-Par), (T-Send) and (T-Recv), we know Θ; Γ ⊢ ⟨%, 2⟩ ⊲ Δ1 · : :)1 (and analogous for
&). Using Lemma 5.2, we obtain Θ; Γ ⊢ ⟨& [E/G] , 2⟩ ⊲ Δ2 · : :)2 We must show that the composition
is well-typed under the original typing, i.e., Θ; Γ ⊢ ⟨% | & [E/G] , 2⟩ ⊲ Δ for (T-Par). In particular,
we need Δ1 · : :)1 ≍ Δ2 · : :)2. This follows from Lemma 5.4 Continuation and the definition of
typing compatibility.

Case (Inv) handles process invocation by connecting the types of static definitions and run-time

iterations of periodic processes. From (T-Inv-R) and (T-Prd), we know Δ = Δ0 · :̃ :)̃
′ where)̃ ′

=

(l3
=C8 .)8)8∈� and Δ0 completed. The typing of the static definition in (T-Prd) and Lemma 5.2 gives us

- : (̃,)̃ ; Γ · G̃ : (̃ ⊢ ⟨% [Ẽ/G̃], 2⟩ ⊲ :̃ : unfold()̃))̃ = (l=C8 .)8)8∈� � = 1..<

By applying Lemma 5.5 with 3 = 2 and then using (T-Prd):

Θ; Γ ⊢ ⟨prd(=)- (G̃, :̃) = % in % [Ẽ/G̃] [-3+=/-], 2⟩ ⊲ :̃ : unfold((l3
=C8 .)8)8∈�)

By applying Lemma 5.1 and (T-Fold), the above is also well-typed under the original typing:

Θ; Γ ⊢ ⟨prd(=)- (G̃, :̃) = % in % [Ẽ/G̃] [-3+=/-], 2⟩ ⊲ Δ0 · :̃ :)̃ ′

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:19

We use type preservation to show the second major result, rate safety. Consider this run-time
scenario of a critical rate compatibility error. Process % is trying to communicate with process & ,
but & is at a process invocation (i.e., & has completed its current iteration). % must wait for & to
reach its deadline 32 (i.e., for its current period to expire) and commence its next iteration, before %
can complete its blocked communication action. If % has a deadline 31 (i.e., on an invocation after
its currently blocked communication prefix) for an earlier timestep than & is waiting for (31 <32),
then it is impossible for % to meet its deadline. The following formalizes this notion of rate error.

Definition 5.8 (Errors). A process % is communicating on : if it is one of the following forms: (1)
:![4]; % ′, (2) :?(G); % ′, (3) : ⊳ ℓ ; % ′, or (4) : ⊲ {ℓ8 : %

′
8 }8 ∈ 1..= .

• A :-redex is a parallel composition of two processes congruent to (a) :![4]; % | :?(4); % ′, or

(b) : ⊳ ℓ ; % | : ⊲ {ℓ8 : % ′
8 }8 ∈ 1..= . A state f is a communication error if f ≡ ⟨prd(=)- (G̃, :̃) =

% in (a:̃ ′) (& | '), 2⟩ and & is parallel composition of two or more processes communicating on
: that is not a :-redex.

• A state f is a rate error if

f ≡ ⟨(a:̃) ((prd(=?)- (G̃? , :̃?) = % ′ in %) | (prd(=@) . (G̃@, :̃@) = & ′ in .3@ [4̃, :̃@]) | '), 2⟩

where % is communicating on : ∈ :̃@ and dl: (%) <3@ .

A state f is an error if it is a communication error or a rate error.

Theorem 5.9 (Rate Safety). If Θ; Γ ⊢ f ⊲ Δ for a state f , then f is not an error.

Proof Sketch. Assume a well-typed state f is a rate error. Then f ≡ f ′
= ⟨(a:̃) (% | & | '), 2⟩

by Def. 5.8. Assume the case where % is communicating on : as an external choice; the other

cases are analogous or simpler. Thus let % = prd(=?)- (G̃? , :̃?) = % ′ in : ⊲ {ℓ1 : %
′
1; . . . ; ℓ= : % ′

=},

& = prd(=@) . (G̃@, :̃@) = & ′ in .3@ [4̃, :̃@], and : ∈ :̃@ . Let)% and)& be the typings of % and & on
channel : . Since f ′ is well-typed (Lemma 5.3), by (T-Par) there exists a type)3 such that)% ⊲⊳)&
by (RC). We then show such an f ′ cannot be well-typed by analyzing the relationship between)% ,
)& and)3 from two separate perspectives, and finding a contradiction. These perspectives stem
from analyzing the run-time state f ′ in terms of (i) the constraints on deadlines present in % and & ,
versus (ii) the number of remaining communications in % and & before the next superperiod begins.

In both cases, we consider the expansions of)% and)& to)3 and)3; these expansions involve
zero or more unfoldings for each expansion to reach superperiod type)3. In each case, we derive
an inequality that relates the periods =? of)% and =@ of)& , to factors 01 and 02 which count the
number of times)% and)& must be unfolded to match the type)3 in order for RC to hold. We find
that by deadline, the number of unfoldings multiplied by the period in)% (01·=?) must be greater
than in)& (02·=@). This stems from & having a later deadline than % , so it will take more unfolding
for % to catch up. Looking at the remaining communications, we find the opposite: the number for
)% (01·=?) must be less than or equal to that for)& (02·=@). Process & is waiting to repeat, so it has
no remaining communications. Thus we need to unfold)& at least as far into the future as)% for&
to catch up on communications. These inequalities are in direct contradiction, and thus we can
conclude f cannot be well-typed. In more detail:

(i) Deadlines. From Def. 5.8, dl: (%) < dl: (&), and by Lemma 5.6, dl()%) ≤ dl: (%). By (T-Prd),

dl: (&) = dl()&), and we can infer dl()%) < dl()&). By duality, dl()3) = dl()3), hence we can
equate the deadline dl()?) +01·=? = dl()@) +02·=@ , and can conclude (1) 01·=? > 02·=@ .

(ii) Number of communications. We first determine the remaining communications in the current
iterations from types)% and)& when scaled up and unfolded to the superperiod type)3. For % , let

A3=rl()3)=01 ·bl()%) + rl()%). Similarly for& and by duality, A3=rl()3)=02 ·bl()&) + rl()&).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:20 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

Looking at the structure of & , we need to apply (T-Inv-R) to .3@ [4̃, :̃@] to get)& . Thus we
can conclude)& starts with a periodic construct and rl()&) = 0. Remainder length is non-
negative, so we also know rl()%) ≥ 0. Since 01· bl()%) + rl()%) = 02· bl()&) + rl()&), we have
(2) 01· bl()%) ≤ 02· bl()&). Let the communication rate '()3) = D. Since rates are preserved by

expansion and duality, we know bl()%)
=?

=
bl()&)

=@
. With (2), we obtain 01·

bl()%)
=?

·=? ≤ 02·
bl()&)

=@
·=@ ,

and we can conclude (3) 01·=? ≤ 02·=@ .

Conclusions (1) and (3) are contradictions and show that no such well-typed f ′ exists.
□

Corollary 5.9.1 (Rate Error Freedom). Let →∗ be the reflexive and transitive closure of state

reduction→. A well-typed state f never reduces to a state f →∗ f ′ where f ′ is an error.

6 IMPLEMENTATION AND APPLICATIONS IN RUST

We demonstrate an implementation of our framework as a Rust library (known in Rust as a crate).
The core of this implementation is an embedding of our session type system into the native type
system of Rust. We encode the RC relation as a Rust trait and leverage the Rust compiler’s type
checker to check whether two types are RC. This allows the unmodified Rust compiler to statically
verify rate safety of periodic systems without requiring external preprocessing or code generation
steps. By working within the type system of Rust, we gain support for programming of periodic
processes with generic periods, and inference of periods in certain cases. A key motivation of
using Rust is the existing support and tooling for embedded systems: as an example, we highlight
an implementation of the PineTime Heart Rate Sensor from Sec. 2 using our framework. We
reimplemented all stages of the pipeline in Rust based on the open-source C++ implementation5,
and run it on FreeRTOS [FreeRTOS 2003], the same real-time operating system used by the PineTime
smartwatch. We have deployed our implementation on an STM32F407 ARM Cortex-M4 micro-
controller6 using 64 KiB of RAM (Fig.7).
This section also summarizes a range of other application protocols from the embedded and

IoT domains expressed in our framework. The artifact [Iraci et al. 2023] accompanying this paper
includes our framework as a Rust library, the examples showcasing its functionality, a port of our
framework to FreeRTOS, and the full implementation of the Heart Rate Sensor.

6.1 Overview: Smartwatch Heart Rate Sensor

Recall the Automatic Gain Control (AGC) stage of the Heart Rate Sensor (Sec. 2). Fig. 15 lists the
session-typed Rust code for the AGC task programmed and type checked using our framework. The
full implementation uses existing open-source Rust crates for various hardware interfaces, such as
the heart-rate sensor and display; we omit those details here, but include them in the artifact.

Programming periodic tasks in Rust. Fig. 15 gives a Rust function task_agc that constructs a new
AGC task. We summarise how our framework is used to define this task. For convenience, our
framework provides helper macros that expand into the full constructs and types of our embedding.
In Rust, a macro call is distinguished by a ‘!’ symbol after the macro name.
The return type of task_agc is coded using the macro Task![N; S; T̃]. In general, the macro

defines an underlying Rust type that represents a periodic task prd(=)- (G̃, :̃) = % in & , where

N is a (zero-sized) type representing =, S is the sort of G̃ , and T̃ are the types of :̃ . For task_agc

5Available at https://github.com/InfiniTimeOrg/InfiniTime/blob/241d364/src/components/heartrate/Ppg.cpp.
6PineTime development units were unavailable at the time of implementation – we restricted our deployment to 64 KiB

RAM (of the 192 KiB on the STM32F407) to match the 64 KiB RAM on the nRF52832 used in the PineTime.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:21

1 fn task_agc() -> Task![ONE; AGC; Prd<ONE, P, Recv<f32, P>>, Prd<ONE, P, Send<f32, P>>] {

2 task![mut agc : AGC; k1, k2 : Recv<f32, P>, Send<f32, P> => {

3 let (x, k1) = k1.recv(); // Note: the macro implicitly types k1 as Chan<Recv<f32, P>>

4 let y = agc.step(x);

5 let ((), k2) = k2.send(y); // ...and k2 as Chan<Send<f32, P>>

6 Continue(chans![k1, k2], agc)}]

7 }

Fig. 15. Session-typed Rust code implementing the PineTime AGC process from Sec. 2.

specifically, N is ONE, and S is a Rust struct AGC containing the data for the computations performed
by this task. The two session types are explained next.

Our framework takes session types encoded by the programmer into a set of provided Rust types:

Jl=C .) K = Prd<J=K, P, J) K> J!S.) K = Send<S, J) K> J?S.) K = Recv<S, J) K> JCK = P

J&{ℓ :)!, A :)'}K = Offer<J)!K, J)'K> J⊕{ℓ :)!, A :)'}K = Select<J)!K, J)'K> JendK = End

An AGC task uses two channels: one for input and one for output. Specifically, the input channel
has the associated session type l1C .?f32.C , encoded as Prd<ONE, P, Recv<f32, P>>, where P is a
special type used to denote recursion variables. Similarly, the output channel has the session type
l1C .!f32.C , encoded as Prd<ONE, P, Send<f32, P>>. The encoding of send/receive types is similar
to that of Jespersen et al. [2015]; periodic types are new to this work.

The macro task![s: S; k̃: T̃] encodes the static definition % of a task prd(=)- (G̃, :̃) = % in & ,

with s: S corresponding to G̃ and its sort, and k̃: T̃ to :̃ and the bodies of their periodic types.
Specifically, agc: AGC, and k1, k2with the body types of the above Prd types. Uses of this macro can
be read as defining the main loop to be executed by the periodic task. The session type annotation
) in the macro is used to specify the channel type Chan<T>, which is parameterised by the session
type) . The Rust keyword mut specifies the internal state agc is mutable.

Our Rust channels offer functions for performing the I/O actions of their corresponding sessions.
Each function returns both its result and a channel with the appropriate continuation type. E.g., a
Chan<Send<T, K>> type offers a function send(v: T) -> ((), Chan<K>) – note the constraints on T

and K between the channel and function types. Similarly, a Chan<Recv<T, K>> offers a function recv()

-> (T, Chan<K>). The agc.step(x) function call performs the local computation of the AGC (details
omitted). For branching, Chan<Select<L, R>> exposes two functions: left() -> ((),Chan<L>) and
right() -> ((),Chan<R>). On the offering side, Chan<Offer<L, R>> provides the function offer()

-> ((), Either<Chan<L>, Chan<R>>), where pattern matching on the value of Either<Chan<L>,

Chan<R>> determines which branch to take.
A task ends its current iteration and waits to commence the next by returning a special Continue

value. Continue requires the type of every channel parameter to be P, ensuring the implementation
performs a complete iteration of the task. The macro chans![...] constructs (session) typed sets
of channel values, similar to Rust’s vec! macro for vectors. To terminate, a task can return an
analogous Terminate, whose constructor requires the type of every channel to be End. Typing thus
ensures all channel behaviors are completed.
Our framework does not include Rust representations of the run-time entities in our theory,

i.e., run-time invocations and periodic types that carry deadline information. Users program the
static definitions of periodic tasks, which are typed by static typing entities (cf. rule (T-Prd)); our
framework effectively types user programs as initial states (Sec. 4.2, i.e. at system time 0), and with
run-time processes of all periodic tasks that initially invoke at time 0. Our framework does not
perform any dynamic checks for rate safety. The run-time entities in our theory are only for the
theoretical representation of run-time states and their typing, for proving the theorems in Sec. 5.3.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:22 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

Linear usage of session channels. The above illustrates how our Rust channel types statically
ensure that I/O actions performed on any channel correspond to its associated session type. For
example, static type checking would not permit performing a send on channel k1 at any point
in Fig. 15. The next key aspect of a session typing system is to enforce linear usage of channels,
corresponding to the linear treatment of the Δ environment in our type system.

A notable feature of Rust is support for affine typing. All the variables in Fig. 15 – crucially, the
channel variables – are affinely typed by Rust, i.e., every variable may be used at most once. In
Rust, the affine property of type checking would not permit using the channel k1 to recv twice.

To obtain linearity, we structure the typing constraints of Continue and Terminate to ensure every
channel variable is used at least once to construct the return value. Since tasks are implemented
as Rust functions, failing to return one of these return values will lead to a type error. In Fig. 15,
static type checking requires the Continue to be provided a collection of two channels, where
the type of each channel must correspond to the periodic recursion variable of its associated
session type: the type of k1 on line 6 corresponds to the P of Recv<f32, P>, and the type of k2

corresponds to the P of Send<f32, P>. Crucially, the only way to obtain values that satisfy the typing
requirements of Continue is by using channel variables (i.e., by performing I/O operations) at least
once. Starting from the initial k1 declared on line 2, the only way to obtain the k1 corresponding
to P for the Continue on line 6 is to peform the recv. Similarly, a Terminate must be provided End

channels, which can only be obtained by performing I/O operations at least once. Since P and End

are distinct, the protocol will only allow one of Continue or Terminate to be constructed. Together,
these mechanisms statically ensure linearity of channel usages, i.e., exactly once usage of every
channel variable, in accordance with our type system.

6.1.1 Rate Compatibility in Rust. Key to safety in our practical framework, and a key difference
from previous implementations of session types in Rust [Jespersen et al. 2015], is our embedding of
RC checking into Rust type checking. We first outline how our formulation of RC from Sec. 5.1
yields a decidable algorithm for checking whether two periodic session types are RC. We then
demonstrate how this decision procedure is used in our framework.

An algorithm for checking RC. Recall Rule (RC) from Fig. 12, for which we will now provide an
algorithmic decision procedure. To determine whether session types)1 and)2 are RC, we must

either (i) find a)3 where)3 is an expansion of)1 and)3 is an expansion of)2 ()1 <:)3 and)1 <:)3),
or (ii) show no such)3 exists. We observe the following properties of expansion:

– Applying the exp by< operation to a type with period = yields a type with period< · =. Duality
between types is preserved by applying exp by< to both, and no other rule changes the period.

– The period of any such)3, pd()3), is thus a multiple of pd()1), and pd()3) is a multiple of pd()2).

Duality preserves periods, so pd()3) = pd()3) and is a common multiple of pd()1) and pd()2).
– Any common multiple of two numbers must be a multiple of their least common multiple. A
corresponding property holds for expansion. Any expansion to a common multiple period must
itself be an expansion of one to the least common multiple period.

From these observations, we can conclude any)3, such that)1 <:)3 and)1 <:)3, must thus be
an expansion of a) ′

3 where pd()
′
3) is the least common multiple of pd()1) and pd()2). Since this

transformation preserves duality,)3 meets the requirements for (RC) if and only if) ′
3 also does.

This logical equivalence extends to any multiple of) ′
3 .

Note that the exp operation (used in expansion) and duality are purely syntactic operations and
decidable. Thus we can use an expansion to any common period as a representative)3 to test. This
leads to the following algorithm for determining whether two types)1 and)2 are RC:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:23

1 fn main() {

2 // ... Parse the input data and create the channels ...

3 let (kai, kao) = new_chan!(Prd<ONE, P, Recv<f32, P>>, Prd<ONE, P, Send<f32, P>>);

4 let (kbi, kbo) = new_chan!(Prd<ONE, P, Recv<f32, P>>, Prd<ONE, P, Send<f32, P>>);

5 let _agc = spawn!(task_agc(), || chans!(kai, kbo), || AGC::new(400.0, 0.971, 2.0));

6 // ... Instantiate the rest of the pipeline and run indefinitely ...

7 }

Fig. 16. Allocation of rate-compatible channels to safely compose AGC with its pipeline neighbors.

Let 8 ∈{1, 2}, =8 = pd()8), and = be a common multiple of =1 and =2, i.e., = =<8 ·=8 for
some <8 . Let)

′
8 = exp()8 ,<8), i.e., the transformation of)8 into a type with period

<8 ·=8 ==. If)
′
1 =) ′

2 , then)1 and)2 are RC. Otherwise)1 and)2 are not RC.

This approach works for any common multiple of =1 and =2. For simplicity, we choose =1 · =2 in
our Rust embedding. Choosing the least common multiple would give the minimal expansion.

Session channels in Rust. Fig. 16 is an extract of the Rust code that creates and checks two RC
channels for AGC to communicate with its pipeline neighbours. Our framework provides a macro
new_chan!<L, R> to create channel endpoint pairs analogous to (a:) construct in the session calculus.
This macro expands to a call to a channel creation function with a type annotation that requires a
type to implement the Compat<L: Protocol, R: Protocol> trait. There exists such a type only if
the RC relation holds on the corresponding session types. We elaborate on the implementation of
this mechanism below. If session types L and R are not RC, this type annotation fails to check and
the Rust compiler statically rejects the program as badly-typed. Lines 3 and 4 each create a pair of
RC channels, one endpoint for repeated input and one for output.
On line 5, the spawn operation provided by our framework spawns a new concurrent periodic

task. It takes three arguments representing: a new instance of an AGC task (created by task_AGC

from Fig. 15), a channel set containing the appropriate endpoint of each channel required by the
task, and an initial data struct. (Note, the Rust notation || expr forms a closure from expr; it is not
to be confused with parallel composition in process calculi.) The channel endpoints supplied to
this spawn are accordingly (see the definition of the AGC task in Fig. 15)) the input endpoint for the
AGC task to receive from the preceding pipeline task (HPF), and send to the next (LPF). The Rust
compiler statically checks that appropriate channels are supplied.
In this way, a complete system is formed by creating the concurrent periodic tasks and session

typed channels, and allocating the appropriate channel endpoints to each task. The rest of the
Heart Rate Sensor pipeline is implemented similarly to the above, producing a rate-safe periodic
system that can be run indefinitely.

Checking RC via Rust trait embedding. The static RC check performed by new_chan is implemented
as an embedding into Rust type checking. In Rust, traits are sets of behaviors that types can
implement, similar to the concept of a typeclass in languages like Haskell. Traits in Rust define a
collection of functions available on values of implementing types. As part of type checking, the
Rust compiler will determine if the types provided implement the traits required by their usage
in a trait resolution step. A common technique in Rust is the use of marker traits, which have no
functions but where implementing the trait is a marker of some property. In our framework, the
Rust type encodings of session types (as summarized earlier) implement a shared Protocol marker
trait. Only the types implementing Protocol are allowed to be used as session type encodings.

Our framework encodes the RC relation via the trait Compat<L: Protocol, R: Protocol>. This is
a marker trait, where a type implementing Compat<L: Protocol, R: Protocol> indicates proof that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:24 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

the corresponding session types are RC. We encode our decision procedure for RC via a collection
of helper traits that combine to form an implementation of Compat<L: Protocol, R: Protocol>.
Like typeclasses in Haskell, a Rust type can either implement a trait directly, or by implementing
another trait which in turn provides an implementation. Notably, this indirection through auxillary
traits allows us to transform our decision procedure into a search by the Rust compiler for a chain
of trait implementations ending in Compat<L: Protocol, R: Protocol>. If this search succeeds and
a type implements Compat<L, R>, then there is a corresponding execution of our decision procedure
that shows the types represented by L and R are RC.

Given two types L and R, the macro asserts the existence of a type CompatProof<L, R, ...> that
implements the Compat<L, R> trait. Here, CompatProof<L, R, ...> is a zero-sized type, meaning
it has no run-time representation. It is still treated like any other type during type checking and
will force the expansion of L and R during trait resolution. The type CompatProof<L, R, ...> can
implement the Compat<L, R> trait via series of auxiliary traits which implement operations such
as expC (),<), substitution, and duality. The omitted type params (. . .) above must be filled by
zero-sized types which encode the steps of the decision procedure for RC. The procedure is fixed,
so the macro always expands to the same types with L and R inlined appropriately. Verifying these
types implement the corresponding traits acts as an execution of the encoded decision procedure.
Interested readers can find the full encoding in the corresponding software artifact.

Summary of the Rust framework. Our framework puts all the above pieces together to statically
ensure rate-safe session programming – i.e., freedom from session communication and rate errors
(Theorem 5.9.1) – through native Rust type checking. Systems are constructed in two phases:

Implement individual tasks. The programmer encodes our session types as Rust types, and
implements the individual periodic tasks that operate on session-typed channels. Static Rust
type checking ensures that I/O actions performed on a channel variable/instance correspond
to the associated session type. Moreover, a task implementation does not permit any form of
folding/unfolding or expansion of the associated session type – the period of the task derives solely
from its declared type. Correspondingly, the number of I/O actions on a given channel in a task
implementation must be the same as the number of syntactic I/O prefixes in the associated type.
This restriction corresponds to the fact that our formal typing system does not allow rule (T-Fold)
to be applied to the static definitions of periodic recursions. The rule (T-Prd) allows exactly one
unfolding to be used to type the task body, and (T-Fold) applies only to run-time periodic types.
Rust type checking ensures that each channel variable/instance in a task is used exactly once.
Compose tasks using RC channels. The programmer creates pairs of channel endpoints using
the declared session types. Static Rust type checking ensures the declared session types in each
pair of channel endpoints are RC. They then instantiate a set of periodic tasks, compose the tasks
by giving the appropriate channel endpoints to each task, and spawn the tasks to run concurrently.
The RC check performed by new_chan is the only construct in the framework that allows expansion
and unfolding of periodic types. In contrast, the task definition allows exactly one unfolding, where
the body is typed against the once unfolded session type as per rule (T-Prd).

6.1.2 Composable DSP Blocks With Generic Sessions. An advantage of building within existing
Rust type system is we can reuse Rust type checking features. Importantly, we get the entire Rust
generics system. We can use this for making tasks generic over values and even periods. This is
useful for creating a reusable task definition, as some tasks only care about ratios of rates, not the
concrete period. We use this to define a library of useful generic tasks that perform common signal
processing and stream manipulation operations. The function printer in Fig. 17 shows a task that
prints values — with any period and type desired.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:25

fn printer<V, N>() ->

Task![N; (); Prd<N, P, Recv<V, P>>]

where V: RustSend+Debug, N: Nat+NonZero {

task![_; c : Recv<V, P> => {

let (v, c) = c.recv();

println!("{:?}", v);

(chans!(c), ())}]

}

type ProdOut = Prd<TWO, P, Send<i32, P>>;

type PairIn = Prd<FOUR, P,

Recv<i32, Recv<i32, P>>>;

type PairOut = Prd<FOUR, P, Send<(i32, i32), P>>;

type PrintIn = Prd<FOUR, P, Recv<(i32, i32), P>>;

fn main() {

let (ka1, ka2) = new_chan!(ProdOut, PairIn);

let (kb1, kb2) = new_chan!(PairOut, PrintIn);

let p1 = spawn!(counter(), || chans!(ka1), || 1);

let _p2 = spawn!(pair(), || chans!(ka2, kb1), || ());

let _p3 = spawn!(printer(), || chans!(kb2), || ());

let _ = p1.join(); // Run forever

}

Fig. 17. The Generic Printer.

We can then instantiate these blocks in a larger system, for example, Fig. 17. We observe three
advantages of the type encoding. First, as protocols are simply Rust types, we can define type
aliases for convenience. Thus we name the various sessions e.g. PrintIn. Second, we do not need
to specify the type of value the printer will be receiving when we instantiate it. The Rust compiler
is able to infer the value type from the type we gave for the channel. Since the channel is passing
(i32, i32), that must be the value type V of the printer. Third, this type inference even extends
to task periods. We defined printer to have a generic period N. Because the period of a process
must match the period of all its channel endpoints, Rust can infer the printer must have a period
of 4. We specified in the channel type that PrintIn had period FOUR, so too must the printer. By
creating an encoding of sessions as Rust types, we find that these programs only need channel type
annotations. From there, Rust can infer the rest — even when the blocks are generic.

6.2 Examples and Features

Table 1 lists application protocols covering various features of our framework, including a small
set of reusable DSP blocks used to implement them. Most of the examples feature heterogeneous
periods and thus exercise full RC including expansions; some feature simpler protocols that require
only 3D0;8C~l to type. “Generic” means the protocols and processes are defined with generic periods
or sorts. Each example is classified as a pipeline (P) with one-way communications (common in our
target domains), or a system with bidirectional (B) communications. In addition to basic indefinite

Table 1. Example protocols expressed using rate-based session types in our framework.

Example Domain 3D0;8C~l Generic Pipe. Indef., Branch.

or full-RC or Bidi. or (Pot.) Term.

PineTime Heart Rate [Pine64 2019] Wearables 3D0;8C~l ✓ P I

Watch Rate Transform Wearables RC ✓ P I

Periodic Bluetooth [Bluetooth SIG 2023] IoT Sensors RC B I

Keyless Entry [Wouters et al. 2019] Embedded RC B I, B

Gravity [Android 2009] Android RC P I

Linear Acceleration [Android 2009] Android RC P I

Orientation [Android 2009] Android RC P I

Wake Word [Warden 2020] Audio RC P I

IIR Filter [Collins et al. 2018] DSP 3D0;8C~l ✓ P I

File Reader Utility 3D0;8C~l P I, B, T

DSP Blocks DSP RC ✓ P I

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:26 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

(I) periodic processes, our framework also supports (binary) labeled branching (B), and (potentially)
terminating (T) processes where a branch may offer both a recursive and terminating case. The
protocols in our examples are safely RC. In the case of a rate mismatch error, our framework rejects
the program as badly-typed. For example, these types cause a static type error if given to new_chan!:

type P2X = Prd<TWO, P, Send<i32, Send<i32, Send<i32, P>>>>;

type C3 = Prd<THREE, P, Recv<i32, Recv<i32, Recv<i32, P>>>>;

6.3 Distribution Across Devices

Our theory represents processes executing concurrently subject to a single global measure of
time. With sufficient support from networking libraries, our Rust crate could be extended to cover
both communications between threads on a single device and communications across the network
between devices. Embedded systems typically impose constraints on the networking hardware
and protocol that make this possible. To illustrate this, let’s consider an example. In wireless
systems, rate compatibility is necessary for statically specified power-saving sleep intervals to
be safe. Bluetooth Low Energy (BLE) [Bluetooth SIG 2023] contains a feature known as “periodic
advertisements” which allows receivers to go into a sleep mode between communications. During
the sleep interval, the receiver stops listening for messages and will miss any communications
sent to it. For this to work properly, the receiver must know when to expect the next message
and wake up in time to receive it. The BLE standard specifies the exact parameters of the radio
communications channel. This means messages take a fixed, known time in transit. Thus clock
synchronization with accuracy is possible and messages are physically guaranteed to arrive in order.
Our theory models the passage of time as a single global clock. The periodic advertisement protocol
in BLE faithfully implements this model by requiring all participants to maintain an accurate
and stable local time reference and injecting timekeeping communications at the beginning of
each period to keep them synchronized and prevent drift. In BLE, a rate error would mean the
receiver and transmitter disagree on when the next message is coming. In our theory, a rate error
results in a process term getting stuck on a deadline. In a BLE system, that error would manifest as
communications occurring while the receiver was asleep. These communications would be ignored
and thus lost, comparable to a hardware failure.

7 RELATED WORK

Session types Our system is based on the theory of binary session types. First proposed in [Honda
1993] and [Honda et al. 1998], we utilize the refined formulation and proofs given in [Yoshida and
Vasconcelos 2007]. The important difference from the classic approach to binary session types
is our treatment of recursion. Typically, the recursive construct `C .) is viewed as a fixed point.
Crucially, the types `C .!int.C and `C .!int.!int.C would be considered equivalent. This corresponds
to an equi-recursive view of typing in which these types actually represent infinite trees. We depart
from this approach and do not treat l3

=C .) as a fixed point. This is critical to our approach for two

reasons. First, we want to distinguish a type l3
=C .!int.C as different from l3

=C .!int.!int.C . These
types have different rates, as they perform a different number of communications over the same
period. Second, viewing these types as infinite trees loses the period annotation on the l . Thus our
approach to reasoning about the periods of processes mandates an iso-recursive approach.

For the systems introduced in Section 2, we examine pipelines and sensor fusion problems. For
these applications, the communication model is acyclic. Thus for these systems, we are able to
use multiple binary channels without encountering deadlocks. In future work, we plan to support
cyclic process topologies with deadlock freedom in a multiparty session type system [Bettini et al.
2008; Honda et al. 2008; Scalas and Yoshida 2019].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:27

Timed session types. Existing work has explored adding timing to session types [Bocchi et al.
2019, 2014]. Similar to these approaches, we separate delays from computations. The critical differ-
ence lies in where we encode timing. Prior work [Bocchi et al. 2014] ties timing to communication
via the addition of timing constraints over local clocks. Instead, we attach timing to a control
flow construct – namely the periodic construct. Timing constraints are relative to a global clock,
mirroring the approach taken in real-time system design [Liu and Layland 1973].
Prior work adding timing to binary types [Bocchi et al. 2019] introduces a subtyping relation

over timed sessions. This subtyping relation allows faster processes to replace slower ones. As this
model is asynchronous, it is viewed as safe for a message to be enqueued earlier than necessary.
When applied to indefinite processes, however, this approach breaks down. While it would maintain
progress, a new issue arises: unbounded channel size. If we allowed a process with period one,
l1C .!int.C , to replace one with period two, l2C .!int.C , messages would be produced at double the
expected rate. In an asynchronous system, this would mean the channel queue would grow without
bound, as one message is removed for every two inserted. In a synchronous model, this becomes
even more problematic. Now the faster process is blocked, waiting for the slower one. Thus it
is unable to meet its stated deadline, leading to an error. While our system can prevent these
timing errors and corresponds to bounded channels, we lose the ability to model communication
latency. We operate under a model where all communications and computations are assumed to
have zero cost. The reintroduction of delay in processes used in prior work [Bocchi et al. 2019,
2014] would allow more expressive cost models. This is important when the computation costs
between communications mean an expanded process may have different timing behavior.
Work on intuitionistic linear logic based session types [Balzer and Pfenning 2017; Caires and

Pfenning 2010] has also considered notions of timing. [Das et al. 2018] extends session types with
temporal modalities. This system explicitly uses a next modality to specify the exact time for
communications. Applied to our domain, this would require a statically known schedule to be
encoded in the type. In our system, we define the notion of deadline and allow communications
to happen any time up to the deadline. Allowing this flexibility enables reuse of a task between
different systems without defining new types for it. We leverage this in examples from Sec. 6.
Session types in Rust. We extend the original formulation of Rust session types presented

in [Jespersen et al. 2015; Munksgaard and Jespersen 2015]. Ferrite [Chen et al. 2022] is a more
recent session type implementation based on an encoding of intuitionistic linear logic session types
in Rust’s type system. This linear logic formulation lacks an explicit notion of duality. Instead,
channels are oriented along client-server roles. Without a duality relation, it is unclear where to
add compatibility. In contrast, classical linear logic session types [Wadler 2012] do utilize a duality
relation and may provide some initial insight. We consider this an interesting area for future work.

8 CONCLUSION AND FUTURE WORK

We introduce a variant of session types capable of tracking communication rates — an important
concept in many IoT signal processing domains. A new timed process calculus with periodic
tasks allows us to define rate errors. We then provide a corresponding type system and show
it can statically prevent such errors by rejecting programs with rate mismatches. We consider
extending rate-based reasoning to multiparty session types an important area for future work. The
corresponding software artifact, including Rust crate, is available from ACM DL [Iraci et al. 2023].

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No.
SHF 2211997, SHF 1749539, and the Graduate Research Fellowships Program.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

278:28 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

REFERENCES

Kazi Masudul Alam and Abdulmotaleb El Saddik. 2017. C2PS: A Digital Twin Architecture Reference Model for the

Cloud-Based Cyber-Physical Systems. IEEE Access 5 (2017), 2050–2062. https://doi.org/10.1109/ACCESS.2017.2657006

Android. 2009. Motion Sensors. https://developer.android.com/guide/topics/sensors/sensors_motion

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. Proc. ACM Program. Lang. 1, ICFP, Article

37 (aug 2017), 29 pages. https://doi.org/10.1145/3110281

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2008.

Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR 2008 - Concurrency Theory, 19th International

Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201),

Franck van Breugel and Marsha Chechik (Eds.). Springer, 418–433. https://doi.org/10.1007/978-3-540-85361-9_33

Bluetooth SIG 2023. Bluetooth Core Specification. Bluetooth SIG. 5.4.

Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2019. Asynchronous Timed Session

Types. In Programming Languages and Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 583–610.

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014. Timed Multiparty Session Types. In CONCUR 2014 – Concurrency

Theory, Paolo Baldan and Daniele Gorla (Eds.). Vol. 8704. Springer Berlin Heidelberg, Berlin, Heidelberg, 419–434.

https://doi.org/10.1007/978-3-662-44584-6_29 Series Title: Lecture Notes in Computer Science.

Richard R. Brooks and S. S. Iyengar. 1998. Multi-Sensor Fusion: Fundamentals and Applications with Software. Prentice-Hall,

Inc., USA.

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR 2010 - Concurrency

Theory, Paul Gastin and François Laroussinie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 222–236.

Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite: A Judgmental Embedding of Session Types in Rust. In

36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

22:1–22:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.22

Travis F. Collins, Robin Getz, Di Pu, and Alexander M. Wyglinski. 2018. Software-Defined Radio for Engineers. Artech House.

https://www.analog.com/en/education/education-library/software-defined-radio-for-engineers.html

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Parallel Complexity Analysis with Temporal Session Types. Proc.

ACM Program. Lang. 2, ICFP, Article 91 (jul 2018), 30 pages. https://doi.org/10.1145/3236786

FreeRTOS. 2003. FreeRTOS Kernel. Amazon Web Services. https://www.freertos.org/

Simon Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2 (Nov. 2005),

191–225. https://doi.org/10.1007/s00236-005-0177-z

Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 509–523.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language primitives and type discipline for structured

communication-based programming. In Programming Languages and Systems, Gerhard Goos, Juris Hartmanis, Jan

van Leeuwen, and Chris Hankin (Eds.). Vol. 1381. Springer Berlin Heidelberg, Berlin, Heidelberg, 122–138. https:

//doi.org/10.1007/BFb0053567 Series Title: Lecture Notes in Computer Science.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)

(POPL ’08). Association for Computing Machinery, New York, NY, USA, 273–284. https://doi.org/10.1145/1328438.1328472

Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek. 2023. Rate Based Session Types: Rust Implementation.

https://doi.org/10.1145/3580415

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session Types for Rust. In Proceedings

of the 11th ACM SIGPLAN Workshop on Generic Programming (Vancouver, BC, Canada) (WGP 2015). Association for

Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/2808098.2808100

Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. 2017. A Survey on Internet of Things: Architecture,

Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal 4, 5 (2017), 1125–1142.

https://doi.org/10.1109/JIOT.2017.2683200

C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J.

ACM 20, 1 (jan 1973), 46?61. https://doi.org/10.1145/321738.321743

Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. 2014. Sensor Cloud: A Cloud of Virtual Sensors. IEEE Software 31, 2 (2014),

70–77. https://doi.org/10.1109/MS.2013.141

Umberto Maniscalco and Riccardo Rizzo. 2017. A virtual layer of measure based on soft sensors. Journal of Ambient

Intelligence and Humanized Computing 8, 1 (2017), 69–78. https://doi.org/10.1007/s12652-016-0350-y

Dominik Martin, Niklas Kühl, and Gerhard Satzger. 2021. Virtual Sensors. Business & Information Systems Engineering 63, 3

(2021), 315–323. https://doi.org/10.1007/s12599-021-00689-w

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

Validating IoT Devices with Rate-Based Session Types 278:29

Philip Munksgaard and Thomas Bracht Laumann Jespersen. 2015. Practical Session Types in Rust. Master’s thesis. Department

of Computer Science, University of Copenhagen.

Benjamin C. Pierce. 2002. . The MIT Press, Chapter 21.11, 311–312.

Pine64. 2019. PineTime. Pine64. https://www.pine64.org/pinetime/

QNX. 2001. QNX Neutrino. QNX. https://www.qnx.com/products/intl/neutrino_rtos/

Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang. 3,

POPL (2019), 30:1–30:29. https://doi.org/10.1145/3290343

Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee. 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial

Informatics 15, 4 (2019), 2405–2415. https://doi.org/10.1109/TII.2018.2873186

Agnes Tegen, Paul Davidsson, Radu-Casian Mihailescu, and Jan A. Persson. 2019. Collaborative Sensing with Interactive

Learning using Dynamic Intelligent Virtual Sensors. Sensors 19, 3 (2019). https://doi.org/10.3390/s19030477

Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. 2003. Typing the Behavior of Objects and Components using

Session Types. Electronic Notes in Theoretical Computer Science 68, 3 (2003), 439–456. https://doi.org/10.1016/S1571-

0661(05)80382-2 Foclasa 2002, Foundations of Coordination Languages and Software Architectures (Satellite Workshop

of CONCUR 2002).

Antonio Vallecillo, Vasco T Vasconcelos, and Antonio Ravara. 2006. Typing the Behavior of Software Components using

Session Types. (2006), 16.

Philip Wadler. 2012. Propositions as Sessions. SIGPLAN Not. 47, 9 (sep 2012), 273–286. https://doi.org/10.1145/2398856.

2364568

Pete Warden. 2020. TinyML: Machine learning with tensorflow on Arduino, and ultra-low Power Micro-controllers. O’REILLY

MEDIA.

Patrick Wechselberger, Patrick Sagmeister, and Christoph Herwig. 2013. Real-time estimation of biomass and specific

growth rate in physiologically variable recombinant fed-batch processes. Bioprocess and Biosystems Engineering 36, 9

(2013), 1205–1218. https://doi.org/10.1007/s00449-012-0848-4

Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart Preneel. 2019. Fast, Furious and Insecure: Passive

Keyless Entry and Start Systems in Modern Supercars. IACR Transactions on Cryptographic Hardware and Embedded

Systems 2019, 3 (May 2019), 66–85. https://doi.org/10.13154/tches.v2019.i3.66-85

Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. 2008. Wireless sensor network survey. Computer Networks 52, 12

(2008), 2292–2330. https://doi.org/10.1016/j.comnet.2008.04.002

Nobuko Yoshida and Vasco T. Vasconcelos. 2007. Language Primitives and Type Discipline for Structured Communication-

Based Programming Revisited: Two Systems for Higher-Order Session Communication. Electronic Notes in Theoretical

Computer Science 171, 4 (July 2007), 73–93. https://doi.org/10.1016/j.entcs.2007.02.056

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 278. Publication date: October 2023.

	Abstract
	1 Introduction
	2 Motivating Example: The PineTime Smartwatch
	3 Our Proposed System — Combining Rates and Sessions
	4 A Session Calculus for Rate-Based Systems
	4.1 Syntax
	4.2 Operational Semantics

	5 Rate-Based Session Type System
	5.1 Rate-Based Session Types and Rate Compatibility
	5.2 Type System
	5.3 Type System Properties

	6 Implementation and Applications in Rust
	6.1 Overview: Smartwatch Heart Rate Sensor
	6.2 Examples and Features
	6.3 Distribution Across Devices

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

