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Distributed Inference for Spatial Extremes Modeling in High Dimensions

Emily C. Hector and Brian J. Reich

Department of Statistics, North Carolina State University, Raleigh, NC

ABSTRACT

Extreme environmental events frequently exhibit spatial and temporal dependence. These data are often
modeled using Max Stable Processes (MSPs) that are computationally prohibitive to fit for as few as a
dozen observations. Supposed computationally-efficient approaches like the composite likelihood remain
computationally burdensome with a few hundred observations. In this article, we propose a spatial parti-
tioning approach based on local modeling of subsets of the spatial domain that delivers computationally
and statistically efficient inference. Marginal and dependence parameters of the MSP are estimated locally
on subsets of observations using censored pairwise composite likelihood, and combined using a modified
generalized method of moments procedure. The proposed distributed approach is extended to estimate
inverted MSP models, and to estimate spatially varying coefficient models to deliver computationally
efficient modeling of spatial variation in marginal parameters. We demonstrate consistency and asymptotic
normality of estimators, and show empirically that our approach leads to statistically efficient estimation of
model parameters. We illustrate the flexibility and practicability of our approach through simulations and
the analysis of streamflow data from the U.S. Geological Survey. Supplementary materials for this article are

ARTICLE HISTORY
Received May 2022
Accepted February 2023

KEYWORDS
Bias-variance tradeoff;
Brown-Resnick process;
Divide-and-conquer;
Scalable computing

available online.

1. Introduction

The modeling of spatial extremes using Max-Stable Processes
(MSP) is theoretically and computationally challenging in
high spatial dimensions. The main technical challenge lies in
adequately capturing spatial dependence using low-dimensional
marginal projections of the joint distribution of the spatial
extreme outcomes while controlling the computational burden
of the analysis as the dimension of these marginal distributions
increases (Huser and Wadsworth 2022). To balance these
two fundamental necessities, we propose a data partitioning
approach that leverages recent advances in divide-and-conquer
techniques for dependent outcomes and delivers three new
tools for analysis of spatial extremes: (i) a censored pairwise
likelihood approach for analysis of spatial extremes when the
MSP model is only valid for outcomes above a threshold, (ii) a
computationally and statistically efficient divide-and-conquer
meta-estimator that integrates censored pairwise likelihood
information from the whole spatial domain, and (iii) a flexible
analytic toolbox for spatially varying coefficient MSP models in
high dimensions.

The MSP models pointwise maxima over infinitely many
independent realizations of a spatial process, and provides a
flexible modeling class for spatial extremes (de Haan 1984). The
extremal tail dependence is specified by an exponent function
for which many models have been proposed, such as Smith
(1990), Tawn (1990), Schlather (2002), Kabluchko, Schlather,
and de Haan (2009), Buishand, de Haan, and Zhou (2008), and
Opitz (2013). Theoretical assumptions for MSPs are difficult to

satisfy in practice: extreme events are by definition rare and
there are often not enough replicates to justify the theoretical
approximation to maxima over infinitely many observations.
When pointwise maxima are taken over a small to moderate
number of replicates, the MSP fit is poor (Huang et al. 2016).
A viable solution, censored likelihoods model the dependence
between observations above a threshold (Thibaud, Mutzner, and
Davison 2013; Huser and Davison 2014). This approach uses the
partial information available on the extremal coefficients from
points below the threshold and has been used for spatial and
nonspatial applications (Ledford and Tawn 1996; Smith, Tawn,
and Coles 1997; Bortot, Coles, and Tawn 2000; Coles 2001;
Wadsworth and Tawn 2014; Thibaud and Opitz 2015; Huser and
Davison 2014).

The computational cost of pairwise censored likelihood
methods remains high, and the analysis of extreme values on
large spatial domains persists as an open problem. The analytic
form of (censored) MSP densities is computationally intractable
for all but trivially small spatial fields. Only a few models for
the exponent function have computationally tractable bi- or
tri-variate densities (Schlather 2002; Kabluchko, Schlather, and
de Haan 2009), with higher-order densities typically impossibly
complex. The primary difficulty lies in computing the exploding
number of partial derivatives of the exponent function. For
example, the Brown-Resnick and other max-stable processes
have dth order density consisting of By terms with B; the dth
Bell number (Wadsworth and Tawn 2014). This has led to the
predominant use of the composite likelihood (CL) (Lindsay
1988). The core philosophy of the CL approach is to construct
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marginal likelihoods on subsets of data and integrate them using
working independence assumptions; thus, the CL is not a proper
likelihood, but a product of proper likelihoods. The most widely
used form of the CL, the pairwise CL, assumes pairwise working
independence and replaces the likelihood with the product of
bivariate likelihoods. The seminal work of Padoan, Ribatet, and
Sisson (2010) cemented the pairwise CL as a practical method
for inference with MSPs by formally defining the procedure and
examining its theoretical properties. Since then, the pairwise and
triplewise CL have played a prominent role in computationally
attractive methods for inference with MSPs (Genton, Ma, and
Sang2011; Davison and Gholamrezaee 2012; Huser and Davison
2013; Sang and Genton 2014; Castruccio, Huser, and Genton
2016; Huser and Genton 2016).

The pairwise CL is attractive because it offers a tradeoff
between statistical efficiency and computational speed. More-
over, the maximum CL estimator is consistent and asymptot-
ically normal under mild regularity conditions (Padoan, Rib-
atet, and Sisson 2010). The pairwise CL still suffers from loss
of efficiency that is particularly evident for large dimensions
(Huser, Davison, and Genton 2016). In addition, for d obser-
vation locations, the pairwise CL evaluates bivariate densities
for (g) = O(d?) pairs of observations, which may become
computationally burdensome for d > 102. A common solution
is to use tapered pairwise CL, which only includes ¢ pairs up
to a predefined distance. The number of pairs of observations
is then O(td), which may become computationally burdensome
ford > 10%.

Spatially-varying coefficient models that allow marginal
parameters to vary by observation location are essential for
modeling the spatial distribution of extreme events. While
spatially varying coeflicient MSP model fitting tools are available
in R packages (Ribatet 2015), these have not been investigated
in the CL literature except under a working independence
model (Sass, Li, and Reich 2021), presumably due to the
tremendous computational burden of estimating a large number
of parameters with pairwise CL. A method that simultaneously
analyzes spatially varying coefficients and asymptotic spatial
dependence is desirable to provide more efficient parameter
estimation and estimates of joint exceedences across multiple
spatial locations. A new strategy capable of handling spatially
varying coeflicients that makes use of dependence between some
pairs of observations is desired.

We propose a new local model building approach for spatial
extreme value analysis that constructs censored pairwise CL on
subsets of spatial observations and integrates these dependent
CLs using a modified Generalized Method of Moments (GMM)
objective function (Hansen 1982). The resulting integrated cen-
sored pairwise CL estimator is statistically and computationally
efficient. Our approach hinges on two key observations for the
construction of the GMM weight matrix: (i) the optimal choice
of the weight matrix is the sample covariance matrix of the
pairwise composite score functions, which yields an estimator
with variance at least as small as any other estimator constructed
from the same pairwise score functions; (ii) the variability in the
sample covariance weight matrix introduces finite sample bias in
the integrated estimator. To tradeoft between the desire for both
optimal efficiency and reduced bias, we propose a new weighting

matrix that strikes a balance between these two goals, and show
how the resulting estimator can be estimated using a computa-
tionally appealing meta-estimator implemented in the MapRe-
duce paradigm. We extend this approach to inverted MSPs and
spatially varying marginal regression models for added model-
ing flexibility. We show through simulations that our approach’s
tremendous computational advantage enables MSP and inverted
MSP inference with potentially thousands of spatially dependent
extreme value observations.

We review the MSP construction in Section 2. In Section 3, we
describe the proposed data partitioning and censored pairwise
CL integration approach. Spatially-varying coefficient models
are considered in Section 4. The finite sample performance of
the proposed estimator is investigated through simulations in
Section 5. An analysis of flood frequency data from the U.S. Geo-
logical Survey is presented in Section 6. Derivations, theorem
conditions, proofs, extension to subasymptotic models includ-
ing the inverted MSP, additional simulation and data analysis
results and an R package are available in the supplementary
materials.

2. Problem Set-Up
2.1. The Max-Stable Process

Let S C R? a spatial domain and Y,(s) the outcome value at
location s € S for replicate r € {1,...,m}. Assume that Y(s)
is the block-maximum, that is, Y(s) = max{Yi(s),..., Y, (s)}.
Considering the joint distribution of the point-wise maximum
of the m realizations at all locations in S gives the random field
Y = {Y(s);s € S}. Under regularity conditions, J can be well
approximated by a max-stable process (MSP) for large m; see
also the excellent reviews of Ribatet (2017) and Davison, Huser,
and Thibaud (2019). For simplicity of exposition, we describe
our approach in the context of the MSP model, but note that
the approach can be extended to alternative dependence models
described in detail in the supplementary material. Notably, since
the MSP is an asymptotically justified model, the MSP approx-
imation may not always hold in practice, especially in data
scarce settings. Section 3.2 proposes a thresholding approach to
mitigate this issue; the supplementary materials develops further
modeling strategies.

Assuming the process is max-stable, then the marginal distri-
bution of Y (s) is the Generalized Extreme Value (GEV) distribu-
tion GEV{u(s), o (s), £(s)}, where 11 (s) is the location, o (s) > 0
is the scale, and £(s) is the shape. The GEV parameters can
vary spatially to capture local differences in the magnitude of
extremes. The MSP can be written equivalently as Y (s) = u(s)+
(o (s)/E(S))X()E® — 1], where X = {X(s);s € S} is a MSP
with unit Fréchet margins, X(s) ~ GEV(1, 1, 1). The three GEV
parameters explain spatial variation in the marginal distribution,
whereas the spatial dependence of X explains residual variation.
For example, if Y(s) is the annual maximum (m = 365) of
daily precipitation at s, then p(s), o (s) and &(s) determine the
distribution of the annual maximum across years at s, whereas
the spatial dependence of X determines the likelihood that
two locations will simultaneously experience an above average
rainfall amount in a given year.



The finite-dimensional distribution function of any MSP at
d locations D = {s1,...,s;} has the form Prob{X(s;) <
xi,i = 1,...,d} = exp{—V(x1,...,x4)} for some exponent
function V that satisfies V(Ax,...,Axq3) = V(x1,...,x5)/A
for any x1,...,x4,A > 0. Under the assumption that X(D) =
{X(s1),...,X(sg)} has unit Fréchet marginal distributions, then
the exponent function must satisfy V(x,...,x5) = 1/x; if
x; = oo for all i # j. Of the many possibilities for the exponent
function, we choose the Brown-Resnick model (Brown and
Resnick 1977; Kabluchko, Schlather, and de Haan 2009) because
it gives a stationary process, provides flexibility in modeling the
smoothness of X’ across space and it can capture independence
at large distances. Let ® the standard normal distribution func-
tion. The exponent function that defines the joint distribution
function of the pair X(s;) and X(s;) is V' (x;, xj) = xi_ld:'{a,-j/z —
a;l log(xi/xj)} + xj_ldD{aij/Z - ai]_.l log(xj/x;)}, where a;; =

{2v(si —sp} "2 and v is a semivariogram. Following Huser and
Davison (2013), we use the isotropic semivariogram y (s; — s]-) =
(Ilsi — sjll/¢)* defined by spatial range ¢ > 0 and smoothness
a € [0,2], and denote V(x;, xj; o, ) = V(x;, x;). Our objectives
are to estimate the GEV parameters j.(s), o (s) and £(s) and the
spatial dependence parameters ¢ and o when the number d of
observation locations is large.

2.2. Model and Existing Approaches

We consider the setting with n independent replicates of Y(D)
denoted by Y;(D),...,Y,(D), where Y;(D) = {Yi(s1),...,
Yi(sg)}  and D = {sj }]‘7121 the set of observation locations. Corre-
spondingly, we have n independent replicates of X(D) denoted
by X1(D), ..., Xu(D), where X;(D) = {Xi(s1),...,Xi(sq)}" is

related to Y;(D), i = 1,. .., n, through
oi(sj) (s
Yi(s) = pils) + o 1 Xi(s)"9 — 11, (1)
7= I Si(sj){ ! }

forj = 1,...,d. Let z;(-) be q explanatory variables observed
at locations si,...,s4, i € {1,...,n}. For zj1,zi2,23 € z; of
respective dimensions g1, 42, g3, we posit the model
wils B1) =zin(s) "B, 0ils; B) = explzia(s) " Bo},

£i(s; B3) = zi3(5) ' Bs. 2)
A more flexible spatially-varying coefficient model is introduced
in Section 4, where z;1(-) and z;;(-) correspond to radial basis
functions. Let B = (B 1T, ﬁzT, B 3T)T. To facilitate estimation of
o, ¢, we propose the reparametrization w = log{a/(2 — @)},
¢ = log(¢), or equivalently o = 2 exp(w)/{1 + exp(w)}, ¢ =
exp(¢), and let 0 = (w, g“,ﬁ—r)T € RP. The analytic goal is to
estimate and make inference on 6.

When d = 2 or 3, estimation and inference on 6 using
maximum likelihood is feasible since the full likelihood of the
Brown-Resnick process has a closed form following Huser and
Davison (2013) and Ribatet (2017); see also the supplementary
materials. For d > 3, however, the full likelihood generally
becomes computationally burdensome to evaluate. For general
MSPs, Castruccio, Huser, and Genton (2016) stated that full
likelihood inference seemed limited to d = 12 or 13 by then-
current technologies. More recently, Huser et al. (2019) pro-
posed an expectation-maximization algorithm for full likeli-
hood inference for d > 13. Their approach, however, remains
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computationally prohibitive for large d due to the evaluation of
multivariate Gaussian probabilities, with computation time of
19.8 hr when d = 20. Some approaches, such as the combined
score equation of Wang et al. (2021), make simplifying assump-
tions on the working spatial dependence structure to reduce the
computational burden of estimation. Some Bayesian approaches
have been proposed for large d, although these remain compu-
tationally burdensome; see for example Stephenson et al. (2015)
whose model on d = 17,000 sites takes approximately 50 hr
to run. Lenzi et al. (2021) uses simulated data to train a deep
convolutional neural network to learn a map between data and
parameters. Their approach remains at the proof-of-concept
stage; one potential bottleneck is the need to simulate large
amounts of data for a broad set of potential parameter values,
a problem further exacerbated with spatially-varying coefficient
models.

Composite likelihood (CL) (Lindsay 1988) has therefore
become the method of choice to overcome the computational
burden of full likelihood inference. Denote {D;,...,Dk} a
collection of subsets of D such that D = U{leDk and D;NDy not
necessarily empty for j # k. Denoting y;(D) = {y,-(sj)}]‘.izl, the
log CL assumes working independence between observations in
different sets Dy and takes the form

n K
CLW; yi(D),i = 1,...,n} = log [ [ [ [ Fyi(De): 0}

i=1 k=1

n K
=YD logflyi(Dy); 6},

i=1 k=1

where f{yi(Dy);0} is the multivariate marginal density of
yi(Dy) = {yi(s) : s € Dy}. The pairwise CL has cardinality
|Di| = 20of Dy, K = (g), and has been widely used in spatial
extreme value analysis; see for example the review of Davison,
Padoan, and Ribatet (2012) and references in Section 1. See also
Huser, Davison, and Genton (2016), who conducted a thorough
empirical study of bias and variance with various CL-based
methods.

The pairwise CL remains computationally burdensome when
d is large. This difficulty stems from the need to evaluate analyt-
ically complex bivariate likelihoods at all pairs of observations.
The pairwise CL is not scalable and alternative strategies are
required.

3. A Spatial Partitioning Approach
3.1. Partitioning the Spatial Domain

Following the spirit of the CL, we propose a partition of the
spatial domain D into K disjoint regions Dj, . .., Dk such that
UK Dy = D and denote by di the number of observation
locations in Dy. To facilitate estimation of @ in each subset Dy,
we partition D such that dj is relatively small, for example,
dr = 25; see the supplementary materials for an example
partition of a 400-dimensional domain. While disjoint regions
Dy, ..., Dk are not technically required, overlapping regions
may increase dependence between regions and incur numerical
instability at the integration step; this is discussed further in
Section 3.3. The literature is rich with methods for choosing
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partitions for Gaussian processes; see Heaton et al. (2019). With
MSPs, due to the range parameter ¢, we generally recommend
regions of similar size di based on nearest locations with dj, large
enough to allow for a range of distances. Many of the spatial
partitioning approaches reviewed in Heaton et al. (2019) assume
independence between Dy, which we do not. The local likeli-
hood approach for threshold exceedances of Castro-Camilo and
Huser (2020) resembles the first step of our approach, but the
models bear substantial differences and the authors focus on
dependence parameter estimation.

3.2. Local Likelihood Specification

Let k € {1,...,K}. Since dy may still be large enough to
render full likelihood estimation of @ in Dj intractable, we
propose to estimate 6 in Dy using the pairwise CL. Inference
with pairwise CL for max-stable processes has been ubiquitous
since the seminal paper of Padoan, Ribatet, and Sisson (2010),
but this approach assumes the MSP is an appropriate model for
Yi(s), i = 1,...,n, which may not hold in practice if the block
maxima were taken over blocks with small size m. Huser and
Davison (2014) observed that the MSP defined in Section 2.1
also models extremes of individual observations, and used a
censored likelihood approach for bivariate extremes in the CL
framework to overcome this difficulty.

Inspired by their approach, consider two locations s, s> € Dk
and denote y; = yi(sj), xij = xi(sj), j = 1,2. Let u; =
u(s1),ua = u(sy) be sufficiently high thresholds such that
f(yi1, yi2;0) is a valid model for yi1,yin € {yi(s) : s € Dy}
when yi; > u1,yn > up, i = 1,...,n. Here, f(yi1,y12;0) =
f(xin, xisa, )] (i B)J (yiz; B) is the Dbivariate max-stable
density obtained from the MSP defined in Section 2.1, with
Jacobians J(yi1; B), J(yi2; B) and f(xi1, xi;o,p) = 0% exp{
—V(xi1, xi; 0, §)}/(0xi10xi2) given in the supplementary
materials. We remark that, when insufficient data are available,
it may not be possible to select a threshold high enough for the
MSP approximation to be valid while simultaneously observing
outcomes above this threshold. In this case, we may require
alternative subasymptotic models; these are considered in the
supplementary material, where we also detail the inverted MSP.

Let uj; = {1+ é,’(Sj)(uj — /L,’(Sj)/di(s]‘)}l/éi(sj),j = 1,2. The
likelihood contribution g(yi1, yi2; 0, u1, uz) of the pair (yi1, yi2)
for s1,s, € Dy is

f(xit, xins o, ) (ivs B (vizs B) il > Up,Yip > Uy,

[axl exp {—V (xi1, ui; s ¢)}] Ji B)s yin > un,yin < u,

A

[de exp {—V(ui1, xi; @, ¢)}] J(is B)s  yin < ur,yin > U,

exp {—V(uj1, ups o, )}, yi1 < U,y < up.

Define Py = {(s1,52) : 81,82 € Dy, s1 # s2}. Using the censored
likelihood pairs, the log censored CL (CCL) in Dy takes the
form CCLk(O;u) = (1/n) > 1, > _p, logg(it, yins 0, ur, u2).
Clearly, letting u;,uy — —o0 recovers the uncensored CL.
Here, the CCL uses all locations in region D. In practice, pairs
may be weighted to achieve higher statistical efficiency, although
di should be small enough that only marginal efficiency gains

V(@) =

can be expected from this approach. We obtain the censored
composite score function:

1 n
We®) = ~ > ¥®)
i=1

+
z (i i i o i) CCLL(O) e RP, (3)
dw’ 8L 9By 3B, 3B
with speciﬁc form given in the supplementary materials. Solving
0 yields the maximum CCL estimator (MCCLE)
0k = (@ Gk Bio Bow B3) T of 8. We denote by ix(8) =
Eg[Ve{Wr(0)}] and c(0) = varg{/nW¥i(#)} the sensitivity and
variability matrices, respectively, of Wx(#). Under mild regular-
ity conditions (C1), it follows from Lindsay (1988), Padoan, Rib-
atet, and Sisson (2010), Huser and Davison (2014) that \/n (0 k—

80) > N10,i] (Bo)c; ' (B0)ik(60)), where 8o = (w0, 50, B9) "
is the true value of 0 such that Eg{W,(6)} is uniquely zero at 6.

3.3. Censored Composite Likelihood Integration

Suppose we have successfully obtained the K MCCLEs {ﬁk}kf;
for regions D, k = 1,...,K. We now wish to integrate these
local estimators into one unified estimator of 6 over all K
regions. Huser and Davison (2013) show that the MCCLEs are
less efficient than even trivariate CL estimators, let alone maxi-
mum likelihood estimators. Thus, it is desirable to incorporate
as much spatial dependence for improved statistical efficiency
without incurring an undesirable computational burden. An
efficient model integration procedure should therefore leverage
the dependence between the K MCCLEs, but this dependence
is difficult to estimate directly because we do not have replicates
of these estimators. Alternative bootstrap-type procedures
to estimate this dependence are computationally costly. To
overcome this difficulty, we integrate the censored composite
score functions in equation (3) rather than the MCCLEs.

Define the stacking operation {ak}’;f:l = (a;r, ..,ag)| €
RYk1 bk and (A | = (4],...,40)7 € RIkibuxh for
a; € Rb and Ay € RP*P2 Define the stacked CCL kernel and
score functions ¥, ,;; () = {¢ik(0)}kK:1 e RXP and W, ;(0) =
{‘-Ifk(é’)}kK:1 e RPK, respectively. Denote the sensitivity and
variability matrices of Wo;(9) by i(0) = {ix(0)}5_, € RKp*?
and ¢(0) = varg{/nW,(0)} € REP¥KP respectively. A key
insight is that the stacked censored composite score function
W,1(0) over-identifies #: there are more estimating equations
than there are dimensions on 0. Hansen’s (1982) Generalized
Method of Moments (GMM) minimizes a quadratic form of the
over-identifying moment conditions:

EGMM = arg rr}gin n‘lf;;l @)WWY,;1(0)

K

= i \IJ /‘-IJ/ 5 4
argmaumk;1 KO) W) We @), (4)

where (W) denotes the rows and columns of W corre-
sponding to subsets Dy and Dy, respectively, for any positive
semidefinite weight matrix W. This approach has been suc-
cessfully employed by others (Hector and Song 2021) although
never with a MSP or censored (composite) likelihood, and



has connections to weighted CL (Sang and Genton 2014;
Castruccio, Huser, and Genton 2016). Under mild regularity
conditions (C1) and (C2), 0GMM is a consistent estimator
of # and asymptotically normally distributed as n — oo:

@y — o) 4 N{0,2(80)c(80)2" (80)}, where (6) =
—{iT(00)Wi(00)}_1iT(00)W/.\ From the presence of ¢(f) in
the asymptotic variance of @gmm, dependence between the
K spatial subsets {Dk}f:1 is incorporated in the evaluation of
the estimator’s uncertainty. Thus, the GMM estimator is not
evaluated under working independence assumptions, and the
uncertainty quantification of @ gy is robust to the form of the
between-subset dependence.

Following Hansen (1982), the most efficient choice of W is
clearly ¢71(8¢), which minimizes the diagonal of Q(6o)c(f)
QT (80). This choice is equivalent to using all the dependence
between spatial subsets {Dk}le. On the other hand, when d is
large, for example, d 2 100, estimation of ¢(fy) based on the
sample covariance matrix C(6) = (1/n) Z?Zl Wi’all(O)W;’raH (6)
may introduce bias into @\GMM due to variability in the
estimation of ¢(fo). To overcome this difficulty, we use the fact
that, jointly, /n(@ — 00)F_, L N@©sTB0)c(80)s(60))
(Hector and Song 2021), and so, marginally, \/Z(?)\k — 0y 4
N{0,i] B0)wik(00)ik(00)}, with wx() = {c7'(0)}ix. This
motivates our choice of a weight matrix W that mitigates the
effect of covariance between subsets on the finite-sample bias of
the GMM estimator. We propose W(0) = diag{Wk(O)}le,
with Wi(@) = (C'(@)}x € RP*P to obtain the GMM
estimator,

K
O = argminn Y W[ O)Wi@)W@®).  (5)
k=1
Theorem 1. Under regularity conditions (C1) and (C2), the

GMM estimator Oy in (5) satisfies /7@y — 00) 4
N0, (1(80)} ' g(B0){h" (B0)}~'1as n — oo,

K
h(6) =Y i (0)wi(0)ir(0),
k=1
K
g0) =" il O)wik(0){c(0))kxwi (0)ik (8).
kk'=1

The proof follows immediately from Hansen (1982). The
proposed GMM estimator in (5) thus possesses required sta-
tistical properties for inference while benefiting from a sub-
stantial reduction in computation time. We remark that invert-
ibility of C(f#) may be unstable when regions Dj, ..., Dk are
allowed to overlap, motivating our preference for disjoint sub-
sets. In this case, the Moore-Penrose generalized inverse may be
used.

3.4. Implementation: A Meta-Estimator

The iterative minimization in (5) remains computationally bur-
densome for large d because the censored composite score func-
tion of dy pairs must be evaluated at each iteration of the mini-
mization. Fortunately, this iterative procedure may be altogether
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bypassed through the closed-form meta-estimator derived by
Hector and Song (2021):

Y I @) Wi @10
k=1

K
O =1> I] OOWrOI1(0,)
k=1

(6)

where I;(0) = VoW (0) denotes the sample sensitivity matrix,

and 0 is a suitable consistent estimator of @ specified as follows.

The estimation of Ix(#) and Wi(0) by I (0C) and Wy (05)

respectively, requires careful consideration. These matrices may
be estimated by plugging in the MCCLEs, that is, using It ()
and

n . . T -1
(G oo [wadol]) |
i=1 >

but these estimators may have high variability depending on the
performance of the MCCLESs in each subset. A better estimator
can be constructed from the average of the MCCLEs: §, =

K o
(1/K) > 0. This leads to the following distributed procedure:

k=1
1. Partition the spatial domain D into K disjoint regions
Di,...,Dk. R
2. For k = 1,...,K, estimate 0 in subset Dy using the CCL.

This step can be performed in parallel on K nodes to acceler-
ate computation.

3. Compute the average of the MCCLEs, 0. =
the main computing node.

4. For k = 1,...,K, evaluate and return 1//,,((06) and Ik(OC)
to the main computmg node. This step can be performed in
parallel on K nodes to accelerate computation.

5. Form ¥; all(aC) = {‘ﬁzk(ec)}k , and compute c@,) =

(l/n) ho 11ﬁla11(0c)1/f,a11(9c) W@ = (C l(oc)}kk’ and
m in (6).

Zleb\k/K, on

This distributed approach to estimation of # requires two rounds
of communication between distributed nodes and the main
computing node: the first to return 0, and the second to return
¥i(0.) and Ik(0 ). The derivative I (#) can be estimated as
the sum of the sample covariance of bivariate censored score
functions for each pair of observations in Dg. This results in
a flexible and computationally efficient procedure. Inferential
properties of the estimator 8, in (6) are shown in Theorem 2.

Theorem 2. Under conditions (C1) and (C2), the proposed
estimator @, in (6) is consistent and asymptotically normally
distributed as n — oo:

1 (B = 80) 5 N [o, (h80))~" g(60) {hTwo)}l] :

where the asymptotic covariance ¢ of,, in (6) can be consistently
estimated by J~ 1(6’6) = n_l{H(GC)} 1G(OC){HT(@C)} 1 with

H(®) = ZI}{(())Wklkw),
k=1
K
GO)= Y L OW, ' 0)[COxp W' O)Ik(®). (7)

kk'=1
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The proof of Theorem 2 is a special case of the proofs given
in the supplementary materials for the spatially-varying coeffi-
cient model (see Section 4). From the form of the asymptotic
covariance matrices in Theorems 1 and 2, the meta- est1mator
0, is asymptotically equivalent to the GMM estimator 0GMM,
so that 0,, loses no statistical efficiency but possesses a sub-
stantial computational advantage. Moreover, J(#) can be com-
puted in a distributed fashion using the quantities returned
from the distributed nodes at the second round of communi-
cation. In the supplementary material, we find the distribution

of (U, am, ﬁ;)—r through the Delta method, and show that the
computational complexity of our approach is O(K> + d2,,.),
where dmax = maxy_; g dk, compared to O(td) for the tapered
pairwise CL that uses the nearest ¢ pairs, and O(d) for other

approaches (Huser, Stein, and Zhong 2022).

4. Extension to Spatially Varying Coefficients
4.1. Local Model and Likelihood Specification

When the spatial variation in wi(s) and/or o;(s) is of interest,
we propose a spatially varying coefficient model (Hastie and
Tibshirani 1993) for added modeling flexibility. We prefer the
varying coefficient model over nonparametric kernel smoothing
for its ability to fit in our divide-and-conquer framework; see
Davison and Ramesh (2002) for a univariate (i.e., nonspatial)
nonparametric kernel smoothing approach. Suppose pu;(-)
depends on z;; ¢(-), the tth covariate in z;; () € R?" for replicate
i, through some unknown function b, (1), t = 1,...,q1:
wi(s) = L1 2iLe($)br (). Let {¢ji(- )}02K be radial basis
functions of the functional space to Wthh bt (-) belongs,
t = 1,...,q1. Within each spatial subset Dy, we approximate
bt (D) by a finite linear combination of the basis functions,
thatis, by, (Dy) ~ Z]_l Mjik®Pjt.k (Dk), where J1 is the number
of basis functions for the tth covariate function and 5, =

{m]tk}] 1041 is the unknown Py, -dimensional parameter of inter-

est, py,, = Z?;l J1k fixed. Defining Zi j; (s) = zi1,+(5)jr ik (s) for
j=1L.. it =1,...,q1,s € D, and substituting into
the mean model yields wi(s) = o ]]”kl Zi1,je($)myje for
s e Dk.

Suppose we propose a similar varying coefficient model

expansion for log{c;(s)} with parameter vector 5,;, = {nzﬂk}]t 1
RPm2k, where Jp4 is the number of basis functions for the
tth covariate function in the finite linear approximation of
log{oi(-)} in Dk and py, = Z?ilfﬂk is fixed, k = 1,...,K.
Let iy = (n).n,)" € RP, with pp = py, + py,, fixed.
Due to the difficulty in estimating & (s), we maintain the model
Ei(s;B3) = z,-3(s)Tﬁ3 proposed in Section 2.2. The MCCLE

of §, = (a),g“,nlj,ﬂ;r)—r in subset Dy can be computed as
. -~ o~ ~ T AT

in Section 3.2 and is denoted by 0y = (wk, ¢k, M, ,/33k)
R*P+a, with )] = (4],,7,;). Note that we are not assuming
that ;. = 9y, Ny = 1, we model these marginal parameters
separately for each subset to retain the spatial variation of the
relationship between w;(s), oi(s) and z;1 (s), zi2(s). This results
in heterogeneous marginal parameters. On the other hand, w, ¢
and f; are assumed homogeneous across all subsets.

Let . = (1/K) Y4, @ ¢ = (1/K) X6 & Bse =
(I/K)Zi< By M. = @,....00)" € RP withp =
Zk 1Poand p = () ,...,17K)—r Under conditions (C1),

9. = (@, ;C, 1}6 , ﬂ3c) € RZtPHa3 j5 a consistent estimator of
0= (¢, 77 ﬂ3

4.2. Integration Procedure

The goal of the integration procedure is to update the K esti-
mators %, k = 1,...,K, for the heterogeneous parameters

and to combine the K estimators (51{,?]{,3;()—'—, k=1,...,K,
for the homogeneous parameters while leveraging dependence
between subsets as in Sections 3.3 and 3.4. This will yield an
integrated estimator of @ that retains the spatial variation of
the relationship between wi(s), oi(s) and zi1(s), ziz(s). This
integration can be derived with modification of the framework
developed in Section 3. Denote

@(0)—lzn:% 0) = - 9 9 TCCﬁ(())eRZ
1k\Uk) = " - i1k\Vk) = aw’a; k >
\i(o)—lznﬁ (0)—1 o 9 TCCK(ﬁ)eRPk
= P 2R Ik 9ny ¢ ’
~ 1 <~ 1
Wsk(B) = — 3 ¥ise(O1) = —chck«n 3:0

i=1 3

Let ¥(0x) = {1ﬁ,]k(0k)}]3 5 V@) = {'ﬁlk(f)k)}f:l,
i~: 1,...,nand U (8;) = {¥ k(ok)}j bk =1,...,K Let
V.(0) = {\I/k A 41 Define the estimated sample covariance

) ~ ~ ~ ~T
matrix of ¥;,;(0) as CO) = (1/m) Y7, ¥; (0)¥;(0) €
RCK+p+q3K) x CK+p+q3K)

Let A1,A2 > 0 denote two tuning parameters, Ay €
RHpH43)x(2Hp+43) denote a diagonal matrix with A;’s in the
positions for n; and 0 elsewhere, j = 1,2. We define two sen-
sitivity matrices: Ix(0) = Vak\IlJ(Ok) € RCHPrtq3)x(2+pitqs)
and It(0) = VoW,” (0) € ROTAFa)*CHp+as) =1, K.
By construction of @, I;(6y) is obtained from I (@) by adding
rows of 0s for parameters in 6 that are not in 0. Define

VNVk(O) {5_1(0)}k k- The varying-coeflicient model meta-

Jukq2  estimator is given by

—~ "~ T =T T
0vin = (@vim> Cvims My Bavim)

K -1 kg
@) + Ay, +Agy Y B0 (8)
k=1 k=1

with TIx(0) = T, (0) Wi(0)Ix(8) and TIk(8) = T, (0)Wk(6)
I (0k).

Let iy = Eg[Ve{Wi(0p)}] and ¢(0) = varg {/nW,(8)).
Denote by 6 the unique 0 of Eg {\Ilan (6)}, the true value of 9.

Theorem 3. Suppose conditions (C1) and (C2) with Wx(6),
Wa11(0), ik (9), c(#) replaced with Wi (0x), Wan (0), ik (9) and ()
are satisfied. When A1,A, — 0, 0Vm in (8) is a consistent
estimator of 8. If A, A, are o(n~1/2), then0Vm is asymptotically



normally distributed, with asymptotic covariance consistently
estimated by J~1(8,) = n"'{{H(0.)}"'G@){H (8,)} ",

K

H(0) = Z T15(0) + Ay, + Ay,
k=1

K
GO = Y T, O)Wi(0){CO))w Wi (0)T1 (0.
kk'=1

The asymptotic covariance of (@v, $Vm,'ﬁ$m, ﬁ:Vm)T canbe
recovered using the Delta method. In the supplementary mate-
rials, we recover estimates of ;(s) and o;(s) and their standard
errors and propose a generalized cross-validation statistic for
selecting A1, As.

Due to the heterogeneous nature of 7, 1, the term A, +24,,
induces smoothing of [1;(s) and 5;(s) only within each subset Dy.
As a result, these may exhibit discontinuities at the boundaries
of the subsets Dj. Heaton et al. (2019) also observed this phe-
nomenon for the local approximate Gaussian process and noted
that these discontinuities are typically small enough so as to be
undetectable in visual representations. If spatial smoothness of
i(s) and 0i(s) is critical, spatial interpolation may be used in
post-processing. Alternatively, it is possible to use overlapping
regions and to combine resulting estimates using a weighted
average over the region overlaps to obtain smoother estimates at
boundary points. This approach will retain some discontinuities
but reduce their size. Recently, Manschot and Hector (2022)
eliminated these discontinuities in the longitudinal outcome
setting using a constrained generalized method of moments esti-
mator, but the extension to the spatial domain is nontrivial due

to the two-dimensional boundary between regions Dy, . . ., Dk.
Table 1. Simulation metrics for Settings | and Il in the first set of simulations.
(a) Setting I: uj the 80% quantile, (o, 83) = (0.8,0.2).
Metric K o ] B B2 B2 B3
BIAS x 103 16 0.41 9419 —1.82 —2.97 476 0.26
10 —0.36 11048 —1.53 —3.27 4,76 0.09
8 —0.88 120.11 —1.76 —3.56 565 —0.34
1 —2.07 85.12 —1.62 —256 4,07 —0.86
ASEx 102 16 0.93 107.59 1.63 1.63 4.65 231
10 1.49 111.66 1.60 1.61 4.71 2.36
8 1.43 11091 1.55 1.57 4.69 2.36
1 2.14 113.47 1.56 1.56 496 2.56
CcpP 16 0.95 0.96 0.95 0.95 0.94 0.93
10 0.94 0.95 0.94 0.94 0.95 0.94
8 0.93 0.95 0.95 0.94 0.95 0.94
1 0.93 0.96 0.96 0.94 0.95 0.94

(b) Setting II: uj the 90% quantile, («, f3) = (1,0.2).
Metric K o ] B B2 B2 B3

BIAS x 103 16 275 8588 —541 —672 557 181
10 218 10313 —518 —7.87 720  1.03
8 106 12041 —583 —858 881 047
1 —181 7349 —556 —665 814 —142
ASEx 102 16 140 11793 336 336 660 306
10 235 12388 324 328 663 3.1
8 223 12257 310 313 657 3.1
1 315 12556 293 294 673 330
P 16 093 094 095 095 093 093
10 091 095 095 094 093 094
8 092 095 095 094 093 093
1 0.94 094 095 095 094 094
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5. Simulations

We investigate the finite sample performance of the pro-
AT .
posed meta-estimator (oz,,,,(;bm,ﬂm)T derived from (6) and

@vim> d:Vm,'ﬁ—‘Em,E;—Vm)T derived from (8). Throughout, D
consists of a square grid of evenly spaced locations. The
Brown-Resnick processes {X'}!_, are independently simulated
using the SpatialExtremes (Ribatet 2015) R package
with unit Fréchet margins and values of o and ¢ specified
below. Then {};}}!, are computed following the relationship
in (1) with values of u;(s), oi(s) and &;(s) specified below. All
simulations are run on a standard Linux cluster with CCL
analyses performed in parallel across K CPUs with 1GB of RAM.
Standard errors and confidence intervals are calculated using the
asymptotic normality results in Theorems 2 and 3. An additional
simulation for the inverted MSP is given in the supplementary
materials.

In the first set of simulations, we consider a d =
dimensional square spatial domain D = [1,20]*> = {s; =1
si € R?, with n = 1000 and consider a simple model from
Section 2.2: wi(s; 1) = s' By, 0i(s; B5) = exp(Ba), &i(s; B3) =
B3, with ¢ = 10, B; = (B11,B12) " = (0.5,0.5)T, B = 1.5. We
evaluate the performance of 0m in (6) and its covariance with
J71(@.), with D evenly partitioned based on nearest locations
into K = 16, 10, 8, 1 square regions of size dy = 25, 40, 50, 400,
k = 1,...,K, respectively. In Setting I, threshold u; is the 80%
quantile of {y;(s;))}\_, and (o, B3) = (0.8,0.2); in Setting II, u;
is the 90% quantile and (@, 83) = (1,0.2). Table 1 reports the
Asymptotic Standard Error (ASE), bias (BIAS) and 95% confi-
dence interval coverage (CP) averaged across 500 simulations.

Since outcomes are simulated directly from the MSP, the
model is appropriate for both thresholds. The effect of increasing
the threshold is therefore to reduce the effective sample size. This
is evident in the increased standard errors for larger threshold.
The BIAS is well controlled for all parameter estimates. For
example, in Setting I the BIAS (Monte Carlo standard error)
for @y, and ¢, is 0.41 x 1072 (0.95 x 1072) and 9.4 x 1072
(1.1), respectively, for K = 16. Confidence interval coverage is
appropriate for all settings. Across all settings, the ASE tends
to increase as K decreases for all parameter estimates except
ﬂl This reflects the fact that estimation of location parameters
B, is easiest. Mean elapsed times are reported in Table 2 and
highlight the significant computational gain of our partitioning
approach and its weak scalability. A third setting with ; the 90%
quantile and («, 83) = (1, —0.2) in the supplementary materials
agrees with the findings from Settings I and II. We investigate
the role of the threshold in balancing bias and variance when
too small a threshold is used with an additional simulation in
the supplementary materials.

To emphasize the importance of accounting for spatial
dependence using the weight matrix Wy, we compare our

400-
400

Table 2. Mean elapsed time in minutes for the first set of simulations.

K=16 K=10 K=38 K=1
Setting | 11.2 16.1 22.4 873.6
Setting Il 13.7 18.6 23.6 845.7
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approach in Setting I to the estimator 6. that averages the block
MCCLEs. BIAS, averaged across 500 simulations and reported
in the supplementary material, is larger for 6. than for our
distributed estimator, suggesting our estimator has better point
estimation properties. In the supplementary material, we also
compare graphically the empirical standard errors, that is, an
estimate of the true standard deviation of the estimators, and
show that our estimator is generally more efficient: averaging
across parameters for K = 16, the empirical standard error of
the averaged MCCLE is 12% larger than that of our distributed
estimator. The primary challenge in using 6. for inference,
however, lies in the estimation of its variability. We consider two
approaches for estimating the variance of @.: (i) as the average
of the MCCLE variances divided by K and (ii) via the bootstrap.
We report ASE and CP, averaged across 500 simulations, of
0. for approaches (i) and (ii) in the supplementary material.
Using approach (i) vastly underestimates the ASE resulting in
CP below the nominal 0.95 level. Thus, accounting for spatial
dependence between blocks using the weight matrix Wy is not
only important for improved statistical efficiency but crucial for
correct inference. Moreover, mean elapsed times for approach
(i) are 10.7, 15.6, and 21.8 min for K = 16, 10, 8, respectively.
This approach provides very little computation gain over our
approach, since our meta-estimator only incurs an additional
inversion at a computational cost of O(K?). Using approach
(ii), we estimate the variance of @, using the sample variance
of 100 nonparametric bootstrap samples (of the n independent
replicates, with replacement) of the averaged block MCCLE.
Due to the computational burden, we only consider K = 16.
Parallelizing across K CPUs, mean elapsed time is 184 min, or
16 times slower than our distributed approach. CP of 6 reaches
nominal levels for all parameters except the shape parameter 3
(CP 0f 0.88). It is possible that resampling is unstable in the tails,
leading to this undercoverage. We thus deem our distributed
approach far superior to simply averaging the MCCLEs: it
achieves correct statistical inference with very little additional
computational cost over the calculation of the block MCCLEs,
and a substantial computational advantage over the bootstrap.

We also compare our approach in Setting I to the tapered
pairwise CL estimator that uses 5%, 10%, 20%, and 30% of
nearest locations. We report BIAS, ASE and CP of the tapered
CL estimator averaged across 500 simulations in the supple-
mentary materials. BIAS, ASE, and CP between our distributed
approach and the tapered pairwise CL are mostly similar with
minor differences attributable to Monte Carlo error, with two
exceptions: BIAS of the shape parameter 83 and ASE of the
smoothness parameter « are 7 and 1.7 times larger, respectively,
for the tapered CL estimator that uses the nearest 20 locations
than for our distributed approach that uses dy = 25. Mean
elapsed times of the tapered CL estimator are 85.7, 153.9, 377.4,
and 462 min using 5%, 10%, 20%, and 30% of nearest locations,
respectively. Notably, the tapered CL estimator that uses the
nearest 20 locations is approximately eight times slower than our
distributed approach that uses dy = 25. Thus, our distributed
approach has a substantial advantage over the tapered pairwise
CL estimator since it delivers equivalent or superior inference in
substantially faster computing time.

In the supplementary materials, a second set of simulations
with d = 900 investigates the strong scalability of our proposed
distributed approach. Computation time of the first and second

set of simulations is also displayed graphically in the supplemen-
tary materials with a comparison to the theoretical computing
time.

In the third set of simulations, we consider a d = 400-
dimensional square spatial domain D = [1,20]* = {sj}]‘.ﬁ({, sj=
(s1,j»52,) € R?, withn = 2000 and a spatially-varying coefficient
model from Section 4.1 with z;1(s) = zip(s) = 1 (i.e., t = 1 and
subscript ¢ is omitted): ui(s) = bi(s), oi(s) = exp(ba(s)), and
&i(s; B3) = B3. We consider two settings for b; (s) and b, (s), s =
(51,52). In Setting I, b (s) = (s‘ll—l—s‘zl—i—slsz)/d2 and by(s) = (s%—i—
s%)l/ 2/10. In Setting II, we let by (s) and b, (s) be random draws
from a Gaussian random field with Matérn covariance structure:
two observations bj(s1) and bj(s2), j € {1,2}, separated by a
Euclidean distance of t have covariance t°Ks(t) /{2*T"(5)}, where
I' is the Gamma function and Kj is the modified Bessel function
of the second kind. In both settings, we partition D evenly
based on nearest locations into K = 16 square regions of size
dr = 25,k = 1,...,K and approximate b; (s) and b,(s) using
the same basis function expansion as follows. In each subset
k € {1,...,K}, we specify knot locations {lcjk}}il at 10 loca-
tions chosen by minimizing a geometric space-filling criterion
(Royle and Nychka 1998); an illustration of the geometric space-
filling criterion is provided in the supplementary materials. We
approximate b; (s) and b, (s) by linear combinations of Gaussian
radial spline basis functions {C(||s — xjk||) jlil, s € Dy, where
C(0) = 1, C(b) = exp(—0.05b%) for b > 0. Formally, we
let ¢jx(s) = @j(s) and for s = (s1,52) € D, we define
d1(s) = 1, ¢2(s) = s1, P3(s) = 52, @j(s) = C(l|s — kcj—3kl1), j =
4,...,13,and 7 j(s) = Zi,j(s) = ¢j(s). Finally, we approximate
bi(s) ~ Z}il Zinj(O)N1jk ba(s) ~ Z}il Zij(9)n2jk> s € Dy
for some unknown parameters {1y, 72 ,j,k}l 3 1- Weestimate § =
(@,¢,m7, B3) T with /0\Vm in (8) and its covariance with J~! (/0\(;)
in Theorem 3, with 11,4, € {0,0.05,0.1}. The partition of D
with K = 16 gives @ € R*!%, where 419 = 2 + 13 x K + q3. We
set u; to the 85% quantile of {y;(s;)}/_,. True parameter values
of o, ¢, B3 are set to 1,10, 0.2, respectively. Define the absolute
error deviation, its average and its maximum as

AED;() = [b(9) — by(s)| / [max {5;(D)} — min {B;D)}],

Table 3. Varying coefficient model simulation results for n = 2000, d = 400,
K =16.

(@) Setting I: b1 (s) = (s -+ 53 + 5152)/d2, by (s) = (s + s3)1/2 0.

Parameter BIAS x 107 ASEx10 aAED mAED cp

o —0.40 0.08 - - 0.93
¢ 2.40 7.0 - - 0.96
b1 (s) - - 0.23 1.2 0.94
by(s) - - 0.016 0.044 0.92
B3 —0.86 0.18 - - 0.86

(b) Setting II: by (s), by (s) drawn from Gaussian random fields.

Parameter BIAS x 102 ASEx 10 aAED mAED CcpP

o —0.75 0.08 - - 0.81
) 2.30 7.10 - - 0.96
b1(s) - - 0.036 0.43 0.90
by (s) - - 0.011 0.038 0.91
B3 —0.53 0.18 - - 0.91

NOTE: Simulation metrics for by (s) and by (s) are averaged over observation loca-
tions.



aAED; = Z AEDj(s)/d, mAED; = max AED;(s), j = 1,2,
D seD

respectively. We report the BIAS, ASE, and CP for estimates of
o, ¢, B3 and the aAED;, mAED; and CP; of bj(s), j = 1,2, with
optimal A, A, selected using the generalized cross-validation
statistic, averaged across 100 simulations for Settings I and II in
Table 3. Selected values of A1, 1, are reported in the supplemen-
tary material.

In Setting I, BIAS, aAED, and mAED are appropriately
small to suggest good point estimation, and CP of estimates
of a,¢,b1(s) and by(s) is appropriate. In Setting I, B3 is
disappointingly undercovered (CP of 86%). In Setting II, BIAS,
aAED and mAED again suggest good point estimation, with
slight undercoverage of parameters. The undercoverage in
Settings I and II is potentially due to several factors. The
performance of the GMM is known to deteriorate as the
dimension of \Tlau (@) increases relative to n. In both settings,
W, (0) € R¥4, where 464 = YK | (2 + py 4 ¢3) ~ n/4. Thus,
6(55) may yield a poor estimate of the covariance of \3311(0),
affecting the estimation of the covariance of 0 v;,. Estimation of
the shape parameter can be difficult because the bounds of the
parameter space depend on observed values of ), potentially
explaining the undercoverage of f3. Undercoverage of « in
Setting II may be due to the roughness of the location and
scale parameters when simulated from the Gaussian process,
which may confound the smoothness of the spatial dependence.
Given the difficulty of Setting II, the CP for b;(s) and by(s)
is surprisingly good. Mean elapsed time, including cross-
validation over the grid of (A;,A;) values, is 6 and 7.1 hr in
Settings I and II, respectively. In the supplementary materials,
plots of the estimated p(s),o(s) show a slight discontinuity
between blocks, as discussed in Section 4.2.

6. Analysis of Extreme Streamflow Across the United
States

To illustrate the proposed method, we analyze monthly mea-
surements of streamflow from 1950 to 2020 at 702 locations
across the United States as shown in Figure 1; locations are
indexed by longitude and latitude, with longitude range —124.39
to —67.94 and latitude range 27.05 to 48.82. These locations
are part of the USGS Hydro-Climatic Data Network 2009 (Lins
2012) and are selected because of their long record and because

e 17
USGS level 2 areas
® 10L,11,13 ® 910U ® 14,16

® 1518 ® 80812 @ 1 ® 4707 ® 3,03

® 505 ® 202 ® 6,06

Figure 1. Partitioning of 702 spatial locations into K = 12 blocks based on USGS
watershed boundary regions level 2 hydrologic unit codes (HUC02).
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they are relatively unaffected by human activities. The locations
are partitioned into K = 12 blocks based on the USGS water-
shed boundary regions (Figure 1). The response for month i at
location s, y;(s), is the monthly maximum of the daily streamflow
measurements. Streamflow has strong seasonality (see supple-
mentary materials), so covariates for the GEV location (z;1 (s))
and log scale (zi»(s)) include an intercept and four Fourier basis
functions (two sine and two cosine) of the observation month
to capture seasonality. The effects of these covariates are allowed
to vary spatially following Section 4. The shape parameter & is
assumed constant across space and time.

While the data are block maxima, the block size of a month
may be insufficient to assume the data follow a max-stable pro-
cess. Therefore, we analyze threshold exceedances using the cen-
sored MSP likelihood and compare this with a censored inverted
MSP fit at the end of this section. To account for local hetero-
geneity we standardize the data at each site by subtracting the
site’s sample median and dividing by the difference of the site’s
95% and 5% quantiles; all plots are made on the original data
scale. We use roughly one spatial basis function per 20 locations
in each block, giving between 2 and 5 basis functions per block.
The basis functions are the same Gaussian kernel functions as
in Section 5. We take the threshold u(s) at a location s to be the
level g sample quantile of the observations at the location. We fit
the spatial model for several g and compare the results. Because
many sites have a large number of zeros, we consider only g €
{85%, 90%, 95%}. As shown in the supplementary materials, the
fitted values and goodness of fit diagnostics are similar for all
three thresholds so here we present results for ¢ = 85%. For g =
85%, tuning parameters A; = 0.001,1, = 0.090 are selected
from the ranges A; € [0,0.003], A, € [0,0.15] via the general-
ized cross-validation statistic. The range of values for A; and A,
was selected by first choosing a coarse grid, and then refining the
grid to observe an initial decrease followed by an increase in the
generalized cross-validation statistic. In general, practitioners
should use a fine enough grid to find a small value of the
generalized cross-validation statistic. In practice, the number of
values over which to tune is constrained by computing time.

We use a probability integral transform plot to evaluate the fit
of the model with g = 85%. For each observation we compute
Ui(s) = ﬁi{yi(s);s}, where l:“,'(y; s) is the fitted marginal GEV
distribution function at site s and time i. Assuming the model
fits well, the distribution of the Uj;(s) should be approximately
Uniform(0,1). Figure 2 shows that this is the case for the fitted

1.000 4
[0}
Q@
T 0.975-
©
>
O
T 0.950-
O
=
(0]
S
O 0.925-
(0]
C
|_

0.900 4

0.900 0.925 0.950 0.975 1.000
PIT statistics

Figure 2. Probability integral transform plot with threshold set to the ¢ = 85%
quantile.
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Figure 3. Streamflow (cfs) observations (dots) versus fitted quantiles (lines) for one randomly selected station in each of the K = 12 blocks with threshold set to the

g = 85% quantile.

model. Probability integral transform plots in the supplemen-
tary materials for one randomly selected station in each of the
K = 12 blocks with threshold set to the g = 85% quantile show
that the model fits well at individual sites as well.

Figures in the supplementary materials map the estimated
values of 1(s) and o;(s). The location parameter varies consid-
erably over space, with highest values in the Pacific Northwest
and Missouri. The scale varies more by season, most notably in
the Northern Plains. The GEV shape parameter (standard error)

is estimated to be &y = 0.31(0.0049) giving a heavy right-tailed
distribution. The estimated spatial dependence parameters are
Qv = 0.73 (0.0051) and ¢y, = 56.3 kilometers (1.98).
Seasonal variation in these figures is largely obscured by spatial
variation, so Figure 3 plots the data (pooled across years) versus
fitted GEV quantiles for one randomly-selected station in each
of the K blocks. The sites have prominent and varied seasonal
patterns, illustrating the difficulty in modeling extremes over a
large and heterogeneous region. For example, streamflow peaks
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Figure 4. Estimated 50-year return levels (left) and standard errors (right) (cfs) with optimal smoothing parameters and threshold set to the g = 85% quantile.

in the spring for USGS level 2 regions 10L, 11, and 13, fall
for USGS level 2 regions 14 and 16 and winter for USGS level
2 regions 2 and 02; the fitted model generally captures these
disparate trends.

While the fitted model includes seasonality, the results can
also be used to estimate the distribution and return level of the
annual maximum. Let ﬁ'i(y; s) be the fitted GEV distribution
function for month i at location s, then the distribution function
of the annual maximum is estimated as F (y;8) = ]_[llil l:“,- ()
(noting that the fitted GEV distribution does not change by
year). Inverting F(y;s) gives the estimated quantile function
and thus the r-year return level, that is, the 1 — 1/r quantile
of the annual maximum. Figure 4 plots the estimated 50-year
return level and its standard error. The return level is maximized
for stations at the mouth of the Mississippi River, in Southern
Missouri and the Pacific Northwest. These stations also have
high sample quantiles (see supplementary materials) but the
fitted return levels are more stable and smooth across space.

The MSP model assumes nearby sites are asymptotically
dependent, which may be questionable given the small block
size. Therefore, we also fit the asymptotically-independent cen-
sored inverted MSP (iMSP) model described in the supplemen-
tary material. At quantile g = 85%, tuning parameters A; =
0, A, = 0.07 are selected from the same ranges as the MSP
model. The spatially varying coefficient marginal distribution
model and spatial partitioning are the same as the MSP model.
Followmg Hansen (1982) and Andrews (1999), the quadratic
form Zk 1 lI/T(Gym)Wk(0Vm)‘-Ilk(OV,,,) can be used to assess
model fit, 51m11ar to alog-likelihood. The quadratic form is 1006
units higher for the iMSP model (9008.254) than the MSP model
(8002.017) over the entire spatial domain using g = 85%, indi-
cating the MSP model provides a better overall fit than the iMSP
model; note that these models have the same number of param-
eters. The estimated iMSP spatial dependence parameters are
®vin = 0.87 (0.0066), ¢Vm = 217 kilometers (5.39). Conditional
exceedance probability plots in the supplementary materials give
similar results for lower thresholds and, as expected, the MSP
model shows stronger dependence for high thresholds. Despite
these differences, the GEV parameter estimates are similar for
the two models. The estimated GEV shape parameter is £y, =
0.25 (0.0043) for the iMSP fit, which is slighly lower than the
estimate (/E\Vm = 0.31) under the MSP model. Estimated values
of wi(s) and o;(s), estimated returns, streamflow versus fitted
quantiles and probability integral transform plots for the iMSP

model with g = 85%, g = 90% and = 95% are very similar
for the two models and are provided in the supplementary
materials.

7. Discussion

The GMM suffers from well-known variance under-estimation
when the sample size n is small; see Hansen, Heaton, and Yaron
(1996) and others in the same issue. The difficulty primarily
stems from evaluating C(@) at a consistent estimator whose vari-
ability is not accounted for in J (). This issue is mitigated by the
use of CCL, but the rarity of extreme events may prohibit the use
of the asymptotic covariance formula in Theorems 2 and 3. As
mentioned throughout this article, the choice K should be large
enough that block MCCLEs are computationally fast to obtain
and finite-sample bias is minimal, but small enough that a range
of distances are available in each block for estimation of the
dependence parameters, and in particular the range parameter.
In practice, we have found that dy = 25 locations per block
performs well. See Section 3.1 for a discussion on the choice
of K.

Supplementary Materials

Derivations, theorem conditions and proofs, extension to sub-asymptotic
models including the inverted MSP, a computational complexity analysis,
additional simulation and data analysis results and an R package are avail-
able in the supplementary material.

Acknowledgments

The authors thank Dr. Sankarasubramanian Arumugam of North Carolina
State University for providing the streamflow data, and the reviewers and
associate editor for their valuable feedback that led to a great improvement
in the manuscript.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

This work was supported by grants from the National Science Founda-
tion (DMS2152887, CBET2151651) and the National Institutes of Health
(ROIES031651-01).



12 e EMILY C. HECTOR AND BRIAN J. REICH

References

Andrews, D. W. (1999), “Consistent Moment Selection Procedures
for Generalized Method of Moments Estimation,” Econometrica, 67,
543-564. [11]

Bortot, P, Coles, S. G., and Tawn, J. A. (2000), “The Multivariate Gaussian
Tail Model: An Application to Oceanographic Data,” The Annals of
Applied Statistics, 49, 31-49. [1]

Brown, B. M., and Resnick, S. I. (1977), “Extreme Values of Independent
Stochastic Processes,” Journal of Applied Probability, 14, 732-739. 3]
Buishand, T. A., de Haan, L., and Zhou, C. (2008), “On Spatial Extremes:
With Application to a Rainfall Problem,” The Annals of Applied Statistics,

2, 624-642. [1]

Castro-Camilo, D., and Huser, R. (2020), “Local Likelihood Estimation
of Complex Tail Dependence Structures, Applied to u.s. Precipita-
tion Extremes,” Journal of the American Statistical Association, 115,
1037-1054. [4]

Castruccio, S., Huser, R., and Genton, M. G. (2016), “High-Order Com-
posite Likelihood Inference for Max-Stable Distributions and Processes,”
Journal of Computational and Graphical Statistics, 25, 1212-1229. [2,3,5]

Coles, S. G. (2001), An Introduction to Statistical Modeling of Extreme Values,
London: Springer. [1]

Davison, A. C., and Gholamrezaee, M. M. (2012), “Geostatistics of
Extremes,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 468, 581-608. [2]

Davison, A. C., Huser, R, and Thibaud, E. (2019), Spatial Extremes, Boca
Raton, FL: CRC Press. [2]

Davison, A. C., Padoan, S., and Ribatet, M. (2012), “Statistical Modeling of
Spatial Extremes,” (with Discussion), Statistical Science, 27, 161-186. [3]

Davison, A. C., and Ramesh, N. I. (2002). “Local Likelihood Smoothing of
Sample Extremes,” Journal of the Royal Statistical Society, Series B, 62,
191-208. [6]

de Haan, L. (1984), “A Spectral Representation for Max-Stable Processes,”
The Annals of Probability, 12, 1194-1204. [1]

Genton, M. G., Ma, Y., and Sang, H. (2011), “On the Likelihood Function
of Gaussian Max-Stable Processes,” Biometrika, 98, 481-488. [2]

Hansen, L. P. (1982), “Large Sample Properties of Generalized Method of
Moments Estimators,” Econometrica, 50, 1029-1054. [2,4,5,11]

Hansen, L. P, Heaton, J., and Yaron, A. (1996), “Finite-Sample Properties of
Some Alternative GMM Estimators,” Journal of Business and Economic
Statistics, 14, 262-280. [11]

Hastie, T., and Tibshirani, R. (1993), “Varying-Coefficient Models,” Journal
of the Royal Statistical Society, Series B, 55, 757-796. [6]

Heaton, M. ], Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi,
R., Gerber, F, Gramacy, R. B., Hammerling, D., Katzfuss, M., Lind-
gren, E, Nychka, D. W,, Sun, E, and Zammit-Mangion, A. (2019), ‘A
Case Study Competition Among Methods for Analyzing Large Spatial
Data,” Journal of Agricultural, Biological and Environmental Statistics, 24,
398-425. [4,7]

Hector, E. C,, and Song, P. X.-K. (2021), “A Distributed and Integrated
Method of Moments for High-Dimensional Correlated Data Analysis,”
Journal of the American Statistical Association, 116, 805-818. [4,5]

Huang, W. K,, Stein, M. L., McInerney, D. ]., Sun, S., and Moyer, E. J. (2016),
“Estimating Changes in Temperature Extremes from Millennial-Scale
Climate Simulations using Generalized Extreme Value (GEV) Distri-
butions,” Advances in Statistical Climatology, Meteorology and Oceano-
graphy, 2,79-103. [1]

Huser, R., and Davison, A. C. (2013), “Composite Likelihood Estimation for
the Brown-Resnick Process,” Biometrika, 100, 511-518. [2,3,4]

(2014), “Space-Time Modelling of Extreme Events,” Journal of the
Royal Statistical Society, Series B, 76, 439-461. [1,4]

Huser, R., Davison, A. C., and Genton, M. G. (2016). Likelihood estimators
for multivariate extremes. Extremes, 19(1):79-103. [2,3]

Huser, R., Dombry, C., Ribatet, M., and Genton, M. G. (2019), “Full Likeli-
hood Inference for Max-Stable Data,” Stat, 8, €218. [3]

Huser, R., and Genton, M. G. (2016), “Non-stationary Dependence Struc-
tures for Spatial Extremes,” Journal of Agricultural, Biological and Envi-
ronmental Statistics, 21, 470-491. [2]

Huser, R, Stein, M. L., and Zhong, P. (2022), “Vecchia Likelihood Approx-
imation for Accurate and Fast Inference in Intractable Spatial Extremes
Models,” arXiv, arXiv:2203.05626. [6]

Huser, R., and Wadsworth, J. L. (2022), “Advaces in Statistical Modeling of
Spatial Extremes,” WIREs Computational Statistics, 14, e1537. [1]

Kabluchko, Z., Schlather, M., and de Haan, L. (2009), “Stationary Max-
Stable Fields Associated to Negative Definite Functions,” The Annals of
Probability, 37, 2042-2065. [1,3]

Ledford, A. W., and Tawn, J. A. (1996), “Statistics for Near Independence in
Multivariate Extreme Values,” Biometrika, 83, 169-187. [1]

Lenzi, A., Bessac, J., Rudi, J., and Stein, M. L. (2021), “Neural Networks for
Parameter Estimation in Intractable Models,” arXiv, arXiv:2107.14346.
(3]

Lindsay, B. G. (1988), “Composite Likelihood Methods,” Contemporary
Mathematics, 80, 221-239. [1,3,4]

Lins, H. E (2012), “USGS Hydro-Climatic Data Network 2009 (HCDN-
2009),” US Geological Survey Fact Sheet, 3047, 4. [9]

Manschot, C., and Hector, E. C. (2022), “Functional Regression with Inten-
sively Measured Longitudinal Outcomes: A New Lens through Data
Partitioning,” arXiv, arXiv:2207.13014. [7]

Opitz, T. (2013), “Extremal t Processes: Elliptical Domain of Attraction
and a Spectral Representation,” Journal of Multivariate Analysis, 122,
409-413. [1]

Padoan, S., Ribatet, M., and Sisson, S. (2010), “Likelihood-based Inference
for Max-Stable Processes,” Journal of the American Statistical Association,
105, 263-277. [2,4]

Ribatet, M. (2015), SpatialExtremes: Modelling Spatial Extremes. R package
version 2.0-2. [2,7]

(2017), Nonlinear and Stochastic Climate Dynamics, Cambridge:
Cambridge University Press. [2,3]

Royle, J. A., and Nychka, D. (1998), “An Algorithm for the Construction of
Spatial Coverage Designs with Implementation in SPLUS,” Computers &
Geosciences, 24, 479-488. [8]

Sang, H., and Genton, M. G. (2014), “Tapered Composite Likelihood for
Spatial Max-Stable Models,” Spatial Statistics, 8, 86-103. [2,5]

Sass, D, Li, B., and Reich, B.]. (2021), “Flexible and Fast Spatial Return Level
Estimation via a Spatially Fused Penalty,” Journal of Computational and
Graphical Statistics, 30, 1124-1142. [2]

Schlather, M. (2002), “Models for Stationary Max-Stable Random Fields,”
Extremes, 5, 33-44. [1]

Smith, R. L. (1990), “Max-Stable Processes and Spatial Extremes,” Unpub-
lished manuscript. [1]

Smith, R. L., Tawn, J. A., and Coles, S. G. (1997), “Markov Chain Models for
Threshold Exceedances,” Biometrika, 84, 249-268. [1]

Stephenson, A. G., Shaby, B. A., Reich, B. ]., and Sullivan, A. L. (2015), “Esti-
mating Spatially Varying Severity Thresholds of a Forest Fire Danger
Rating System Using Max-Stable Extreme-Event Modeling,” Journal of
Applied Meteorology and Climatology, 54, 395-407. 3]

Tawn, J. A. (1990), “Modelling Multivariate Extreme Value Distributions,”
Biometrika, 77, 245-253. [1]

Thibaud, E., Mutzner, R., and Davison, A. C. (2013), “Threshold Modeling
of Extreme Spatial Rainfall,” Water Resources Research, 49, 4633-4644.
(1]

Thibaud, E., and Opitz, T. (2015), “Efficient Inference and Simulation for
Elliptical Pareto Processes,” Biometrika, 102, 855-870. [1]

Wadsworth, J. L., and Tawn, J. A. (2014), “Efficient Inference for Spatial
Extreme Value Processes Associated to Log-Gaussian Random Func-
tions,” Biometrika, 101, 1-15. [1]

Wang, Z., Jiang, Y., Wan, H., Yan, J., and Zhang, X. (2021), “Toward Optimal
Fingerprinting in Detection and Attribution of Changes in Climate
Extremes,” Journal of the American Statistical Association, 116, 1-13.

(3]




	Abstract
	1.  Introduction
	2.  Problem Set-Up
	2.1.  The Max-Stable Process
	2.2.  Model and Existing Approaches

	3.  A Spatial Partitioning Approach
	3.1.  Partitioning the Spatial Domain
	3.2.  Local Likelihood Specification
	3.3.  Censored Composite Likelihood Integration
	3.4.  Implementation: A Meta-Estimator

	4.  Extension to Spatially Varying Coefficients
	4.1.  Local Model and Likelihood Specification
	4.2.  Integration Procedure

	5.  Simulations
	6.  Analysis of Extreme Streamflow Across the United States
	7.  Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	References


