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Abstract— challenges is the lack of high-quality annotated data required

Training a deep learning model with a large annotated fOr training these models Wlth a h]gh degl‘ee Of predlCtablllty.
dataset is still a dominant paradigm in automatic whole slide The manual annotation of medical data is a labor-intensive

images (WSIs) processing for digital pathology. However, and error-prone task and relies on medical knowledge from
obtaining manual annotations is a labor-intensive task, and experts.
an error-prone to inter and intra-observer variability. In this The data annotation bottleneck is well apparent in

study, we offer an online deep learning-based clustering  histopathology images, one type of a widely used medical
workflow for annotating and analysis of different types of imaging modality and is considered the gold standard for
tissues from histopathology images. Inspired by learning and cancer diagnosis [3]. With the advance in imaging tech-
optimal transport theory, our proposed model consists of two ~ niques, digital scans generate Whole Slide Images (WSIs)
stages. In the first stage, our model learns tissue-specific ~ from histopathology slides. WSIs are multi-giga-pixel and
discriminative representations by contrasting the features in ~ high-resolution images that capture the whole tissue in the
the latent space at two levels, the instance- and the cluster- slide. The common approach to utilize such huge images in a
level. This is done by maximizing the similarities of the deep learining based solution is to subdivide them into small
projections of positive pairs (views of the same image) while ~ patches, where each WSI outputs thousands of patches of
minimizing those of negative ones (views of the rest of the different tissues where each patch is processed independently
images). In the second stage, our framework extends the in the neural network [4]. However, the large number of these
standard cross-entropy minimization to an optimal transport ~ Patches makes the task of annotating the WSI at the patch
problem and solves it using the Sinkhorn-Knopp algorithm level (i.e., local annotations) infeasible.

to produce the cluster assignments. Moreover, our proposed To solve the annotation scarcity problem, many efforts have
method enforces consistency between the produced assign- been made by researchers to develop annotation efficient deep
ments obtained from views of the same image. Our framework neural networks based training methods for WSI analysis.
was evaluated on three common histopathological datasets: ~ Current popular methods can be divided into two categories:

NCT-CRC, LC2500, and Kather_STAD. Experiments show semi-supervised, and self-supervised methods. For the semi-
that our proposed framework can identify different tissues in ~ supervised methods [5], [6], learning is done using small
annotation-free conditions with competitive results. It achieved ~ amounts of labeled data, but a larger amount of unlabeled data
an accuracy of 0.9364 in human lung patched WSIs and 0.8464  is used to boost the ultimate performance. In self-supervised
in images of human colorectal tissues outperforming state of ~ learning (SSL) [7], [8], pre-trained models are created without

the arts contrastive-based methods. the need for large and annotated datasets by means of a proxy
Index Terms—Clustering, Optimal Transport, Contrastive objective, for which labels are self generated. A common
Learning, Tissue Recognition, Digital Pathology, WSIs. drawback in the two categories, is that all requires a small

certain amount of manual labels.
In this paper, we extend a model that we proposed in [9],
In the last decade, deep learning has achieved considerable  which combines contrastive learning with optimal transport
progress in the field of medical image analysis and its ap- (CLOT) for on-line clustering. This method was designed
plications [1], [2]. However, the deployment of deep learning-  and evaluated on natural scene images, but here, we test its
based methods in clinical applications is slow. One of the main performance on a real-life and Challenging problem, name]y

This research is partially supported by NSF Grant IIS 1741490 and DMs  [OF Self-generating tissue labels for hisopathology images at
1840265. the patch level. The extended version is a deep learning-
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Fig. 1. Example of patches of three different datasets: (a) NCT-CRC (nine classes), (b) LC25000 (three classes), and (c) Kather_STAD (two classes). Each
image belongs to a different class.

based clustering method works simultaneously and in a dual
fashion. The proposed model consists of two stages. In the first
stage, instance- and cluster-level representations are learned
by maximizing the similarities of the projections of positive
pairs while minimizing those of negative ones, thus pushing
away features from different images while pulling together
those from the augmented views of the same image. In
the second stage, our framework extends the standard cross-
entropy minimization to an optimal transport problem and
solves it using a fast variant of the Sinkhorn-Knopp algorithm
to produce the cluster assignments. Moreover, our framework
utilizes a multi-loss objective for robust training, that compares
the class assignments obtained from solving the self-labeling
in an online fashion as an optimal transport, and enforce
consistency between the produced assignments obtained from
views of the same image.

We evaluated our framework on three common histopathol-
ogy images: (1) NCT-CRC, a colorectal cancer tissue dataset;
(2) LC25000, a lung histopathological dataset; and (3)
Kather_STAD, which includes images of microsatellite insta-
ble (MSI) versus microsatellite stable (MSS) image patches
of gastric (stomach) cancer (see Fig. 1). We describe these
datasets in more detail in Sec. IV-A. Our proposed framework
achieves an up-to-93% performance in terms of AUC on
the LC25000 dataset, 89% on Kather_STAD, and 83% on

TUM
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(b) LC25000 (c) Kather_STAD
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clustering 9 tissues of the NCT-CRC dataset.

II. RELATED WORK
A. Self-supervised learning

Self-supervised learning (SSL) is a subclass of unsupervised
learning has recently gained significant attention in many
medical image analysis tasks. In SSL, the objective relies
only on the data itself by obtaining feature-rich latent space
representations without the need for manual annotations. One
category of SSL is a class of discriminative methods that is
proposed based on contrastive learning which learns to maxi-
mizes similarities between the latent space feature vectors of
two augmented views encoded from the same image [8]. The
most common contrastive based method is called SimCLR pro-
posed by [7]. The first extension of SImCLR to histopathology
was done by [10] where authors combined multiple instance
with contrastive learning for weakly supervised histopathology
classification. Multiple extension have been proposed after-
while, however, very few were evaluated on histopathology
datasets. A recent one is called Contrastive Clustering (CC)
proposed by [11] and evaluated on histopathlogy images by
[12].

B. Optimal transport

In our method we extend contrastive learning clustering
proposed in [11] and conjunct it with optimal transport theory
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Fig. 2. CLOTpath clustering framework. In the first module, image patches are passing an augmentation module where pairs of patches X, X" are constructed
using two augmentations of data X. Then the features are extracted from the pairs using a shared encoder fy. In the second module, a multilayer perceptron

(MLP) model is used as projection head that projects the features into latent space and outputs the feature vectors z* and z”.

The MLP is then followed

by a softmax function, which outputs the probability vectors p* and p®. Finally, the cluster assignment probabilities are used by the Sinkhorn-Knopp (SK)
algorithm to generate ground-truth-like cluster assignment in a contrastive and consistent approach.

and evaluate it to self-generate labels for annotation-free
tissues from histopathology images. Optimal transport [13]
is a mathematical framework that defines the problem of
finding the most efficient way (i.e., lowest cost) of moving an
object such as probability distribution from one configuration
onto another (e.g., matching two distributions or finding
the similarity between two distributions). Optimal transport
has been gaining in recent years increasing attention as a
promising and useful tool in the machine-learning community.
This success is due to its capacity to exploit the geometric
property of the samples at hand. Optimal transport methods
have been successfully employed in a wide variety of machine
learning applications [14]-[18], computer vision [19], [20],
generative adversarial networks, domain adaptation [21].
Recently, applications of optimal transport to biology have
also been proposed [22]-[25].

III. METHOD

Fig. 2 shows an overview of the proposed method. It
consists of three modules: a pair construction backbone, a
projection head, and a cluster assignment module. For a given
WSI tile, we first compute two different augmentations for
each view (a positive pair), and then pass them through a
backbone, followed by two parallel projection heads. One head
is used to compute the feature vector z, and the second is
similar to the first except it projects into a subspace with a
dimensionality corresponding to the number of clusters, which
could be interpreted as the cluster assignment probabilities p
(i.e., instance soft labels). The probabilities are then used as

303

an input to the Sinkhorn-Knopp algorithm to find the cluster
assignments by solving the problem as an optimal transport. In
this section, we explain the core units of the models. We start
by explaining the cluster assignment module, and how labels
are self-generated using optimal transport. The, the second
unit is illustrated, in which contrastive learning at the two
mentioned levels are merged into the model to strengthen it.

A. Online Computing of Cluster Assignments

Building upon [26], we encode the cluster labels as posterior
distributions ¢(y = k|x;), and we formulate the problem of
finding optimal assignments as an optimal transport optimiza-
tion problem.

Consider a given mini-batch X of N images {z1,...,zn},
we compute their predicted cluster assignment probabilities or
the cluster-level representations p € RV*X using an encoder
network fy, and a projection head g1 (+) (two stacked nonlinear
multilayer perceptron (MLP) layers followed by a softmax),
where K is the number of clusters. We compare the class
label predictions p with the label assignments obtained when
solving the optimization problem.

To formulate the problem of finding the labels mathemat-
ically, we encode the labels as posterior distributions in the
average cross-entropy objective [27], [28]. In this case, our
loss will be

1 N K
¥ 2 >4y = Klzi)logp(y = klwi) (1)

7':1 k=1

cOpt (p7

where the values in the vector p(y|z;) € {p¢,p%}, and

q(ylx;) € {q%, q’}. Optimizing ¢ is the same as reassigning
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the labels, which leads to a degenerate solution, i.e., (1) can be
trivially minimized by assigning all data points to a single and
arbitrary class label. A common way to avoid this is by adding
a constraint that enforces an equally-sized partition [28]. The
learning objective objective is thus

minimize ~ Lopt(p, q) 2)
q

N
N
subject to Zq(y = klx;) = T q(y = k|z;) € {0,1}.
i=1

At this step, we only optimize the labels, keeping the pre-
dictions p fixed, given a batch of images. The constraints
means that each data point z; is assigned to exactly one class
label and the N data points are split equally among the K
classes. By reforming it as an optimal transport using the
notations in [26], let P,; = p(y|z;) be the K x N matrix
of joint probabilities which is estimated by the model, and
Qy: = q(ylz;)/N be the K x N matrix of assigned joint
probabilities. Using the notation of [26], we restrict the matrix
Q to the transportation polytope Q = {Q € REXN | Q1 =
+1k,Q"1x = £ 1y}, where 1y denotes the vector of ones
in dimension N. The constraints enforce that the matrix @
splits the data uniformly. We then can rewrite the optimization
problem (2) as

minimize(Q, — log P) 3)

QeQ
where ( - ,- ) is the Frobenius dot-product of two matrices.
This optimization problem is linear optimization, and we
would solve it using the last version of Sinkhorn-Knopp
algorithm [26], which amounts by introducing a regularization
term 1
-5

minimize (Q, —log P) 3

QeQ

(@) “

where 5(Q) = -~ Zle gijlog q;; is the entropy. This
problem can be solved using the Lagrange multiplier for
the entropy constraint of Sinkhorn distances [26], and its

minimizer can be written as

Q = Diag(u) P* Diag(v), )

where v and v are normalization vectors chosen such that
the resulting matrix () is also a probability matrix (see [26]
for a derivation). Once () is found, we optimize the overall
objective defined next section to find the optimal P (i.e., the
model parameters).

B. Enforcing Consistancy

In order to build an image-transformation invariant model,
we use augmentations to generate two stochastic-based views
X" and f(b of the given mini-batch X. Passing it through
the model (fy, and ¢1(-)), we obtain the predicted cluster
assignment probabilities or the cluster-level representations p“,
p’ € RVXK,

Because these two cluster assignment probabilities come
form the same image, it capture the same information. There-
fore, to enforce consistancy, we compare the class label
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predictions obtained from the first augmented view p® with
the label assignments Q° obtained when solving the optimiza-
tion problem, and the predictions obtained from the second
augmented view p® with the label assignments Q7.

C. Contrastive Learning

Contrastive learning maximizes the similarities of positive
pairs (i.e. the transformed views of the same image) while
minimizing those of negative ones by pushing away features
from different images while pulling together those from the
augmented views of the same image.

The idea of contrastive learning is to compute the latent
space feature matrices z%,z" € RV*P| where the rows in
these matrixes are the feature vectors of the two augmented
views obtained using an encoder network fy, and a projection
head g5(-) (two stacked nonlinear MLP layers but without the
softmax layer). For a specific sample ¢, there are 2N —1 pairs
in total, among which we choose its corresponding augmented
sample 2% to construct the positive pair {x¢, 2%}, and leave
the rest 2N — 2 to be negative. The features z%,z’ in this
case are the instance representations. Because these two latent
space feature vectors come form the same image, it should
capture the same information. Therefore, we apply instance-
level contrastive loss used in [11] to contrast them and assure
they are the same which is of the form

o
2 v (S22}

s(z, 27)

TI

£f,=—log — ©)

> {exp(

where s(-,) is the pair-wise cosine distance, and z¢ and 2?
are two corresponding rows from the feature matrices z* and
b, respectively. Here, 7; is the instance-level temperature

S(Zi7 j)

z
TI

z,
parameter [29] that is used to control the “softness” of this
loss function.

To fully utilize contrastive learning, we further contrast not
only the feature vectors but also the columns of the predicted
probability vectors (i.e., cluster-level representations) in the
matrices p®, p’ € obtained using the first projection head
g1(+). Similarly, the cluster-level representation loss is utilized
to distinguish cluster-level representations of positive pairs
from the rest as follows

s(p,p?)
Te

) o )}

where p? and p? are two corresponding columns from the
probability matrices p® and p®, respectively, that come from
the first projection head. Here 7. is the cluster-level tempera-
ture parameter. To include every possible positive pair across

exp (

L£e;=~log ryrreulie
$\Pi,Pi

Te

s(pg, pf)

c
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the dataset, the instance-level contrastive loss and the cluster-
level contrastive loss are as follows:

N
Ly ﬁZ( 7.t [’l;,i)v

1

Lc 2K

i=1
K
Z( acz"‘ ‘Clé‘,i) - S(p),
i=1

where S(p) = — 5 [p®log p¢ + p? log pt] is the entropy of
cluster assignment probabilities added to prevent assigning all
instances within the mini-batch to the same cluster [39]. The
functions £} ; and L, ; are defined similarly as in (6) and (7),

respectively.

D. Objective Function

In our method, the optimization is done in an end-to-end
process. The parameters € of the backbone and the two heads
are simultaneously optimized. Thus, the overall objective
function consists of (1) the instance-level contrastive loss, (2)
the cluster-level contrastive loss, and (3) the two cross-entropy
loss functions that enforce the consistency:

L(z,p) = L1+ Lo+ LGy + ‘CbOpt ®)

Our objective enables a robust training at both the latent

feature and the code assignment levels. In general, we solve

two optimization problems: the first is to find the labels

and the second is to find the predictions of the model (i.e.

the model parameters). We do so, by first initializing the

mode parameters randomly and then by alternating between

following two steps:

1) Given the current model’s parameters 6, we first compute
the log probabilities P, then, we find () using (5).

2) Given the current label assignments (), we optimize the
model parameters ¢ by minimizing (8). This step is the
same as training the model but with a multi-loss function.

IV. EXPERIMENTS AND RESULTS

The proposed method was evaluated on three publicly avail-
able WSI datasets: 1) the NCT-CRC [30], a colorectal cancer
tissue dataset, 2) Kather_STAD [31], which has histological
images of gastric (stomach)) cancer patients whom their tumor
shows microsatellite stablity (MSS) versus patients whom their
tumor shows microsatellite instablity (MSI) 3) LC25000 [32],
a lung histopathological dataset. The three datasets were pre-
processed into WSI patches.

A. Datasets

1) NCT-CRC: NCT-CRC consists 100000 non-overlapping
224 x 224 pixels image patches extracted at 0.5 microns per
pixel from hematoxylin and eosin (H&E) stained histological
images of human colorectal cancer and normal colon tissue.
Each patch is assigned a single label and classified into one
of 9 classes of tissues by pathologists including: Adipose
(ADI), Cancer associated Stroma (STR), Debris (DEB), Mu-
cus (MUC), smooth Muscle (MUS), Normal Colon Mucosa
(NORM), Lymphocytes (LYM), Colorectal Adenocarcinoma
Epithelium (TUM), Background (BACK).
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2) LC25000: LC25000 contains 15000 patches of size 768
x 768 pixels. All patches are assigned a single label out of 3
possible classes: lung adenocarcinomas (LA) lung squamous
cell carcinomas (LSCC) and benign lung tissues (BLT).

3) Kather_STAD: Kather_STAD contains 100570 patches
belongs to 315 WSIs extracted from TCGA [33]. Each patch is
assgined to one of the two classes: microsatellite stable tumor
(MSS), and microsatellite instable tumor (MSI). Microsatellite
instability determines whether patients with gastric cancer
respond exceptionally well to immunotherapy. Therefore, its
important for a patient to be tested for microsatellite instability,
which is not always available in clinical practice because it
requires additional genetic tests.

B. Implementation Details

We implement ResNet34 as an encoder backbone architec-
ture [8] and use the Adam optimizer [34] to simultaneously
optimize the two projection heads and the backbone network,
with cosine learning rate scheduler [35]. The weight decay is
set to 0.0001. ResNet is designed for images of size 224 x 224,
so we resize all input images to this size. Both projection heads
consists two-layer nonlinear MLP. ReLLU activation was used
in between the two layers. Softmax activation was used in the
in the cluster-level contrastive projection head to produce soft
labels as in [11]. Following [7] we set the dimension of the
latent vector to 128 and the temperatures parameters to 0.5.
The batch size is set to 256 due to the memory limitation.
All the models are trained from scratch for 1000 epochs. The
training is carried out on UC Merced Pinnacles Cluster using
one 2x NVIDIA Tesla A100 PCIe v4 40GB HBM2 Single
GPU.

C. Data Augmentations

Following [7], [11] we use random cropping, color jittering,
grayscale transformation, horizontal flipping, and Gaussian
blurring for augmentation. Each transformation is applied with
a certain probability.

D. Evaluation Metrics

We utilize three common clustering evaluation metrics
including Accuracy (ACC), Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI) to evaluate our model
and compare it with baselines. Higher values indicate better
performance. We also used one-vs-rest multiclass receiver
operating characteristic (ROC) curve and we report the area
under curve (AUC) as an image-level diagnosis evaluation
metric. These metrics were calculated between clustering
predicted labels and ground-truth labels.

E. Comparison Study

Figure 3 shows the comparisons between our method with
five state-of-the-art clustering methods, including K-means
[36], Spectral Clustering (SC) [37], Contrastive Clustering
(CO) [11], SimCLR [7], and DeepCluster [38].

Results shown in Figure 3 demonstrate the clustering ability
of CLOTpath, which outperforms the baselines by a large
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Fig. 3. The clustering performance on our three histopathology tissue image benchmarks: (a) NCT-CRC, (b) LC25000, and (c) Kather_STAD.

margin on all of the three datasets. Specifically, CLOTpath
outperforms the closest competitor (CC) on the three datasets
in terms of the three evaluation measures. The results demon-
strate that this robustness is a result of combining both con-
trastive learning and contrasting cluster assignments obtained
by solving the labeling problem as an optimal transport.

To more specifically investigate the well clustered tissues,
we present the confusion matrix (Figure 4) of the model’s pre-
dictions. In NTC-CRC, five out of nine tissues were clustered
with an accuracy of 85% and more and a sixth tissue was
clustered with a moderate accuracy of 76%. In contrast, the
MUS, DEB, and STR were more mislabeled with each other
due to their image structural similarities (see Fig. 1 for details).
Likewise, in the LSC25000 dataset, LA was mislabeled more
with LSCC because of their common structural and coloration
features.

FE. Ablation Study

We carried out an ablation study to further understand
the contribution of each module in our model. To prove
the effectiveness of the projection head module (PHM) and
the cluster assignment module (CAM), we conduct ablation

TABLE I
EFFECTS OF MODEL COMPONENTS

Dataset Model Component ~ ACC NMI ARI
PHM + CAM 0.8357  0.7883  0.7189
NCT-CRC PHM only 0.7666  0.7643  0.6746
CAM only 0.7411  0.7303  0.6071
PHM + CAM 0.9314  0.8401  0.8131
LC25000 PHM only 0.8792  0.7622  0.7881
CAM only 0.8323  0.7270  0.6987
PHM + CAM 0.8862  0.8094  0.7824
Kather_STAD  PHM only 0.8787  0.7926  0.7802
CAM only 0.8367  0.7191  0.7047

PHM: Projection Head Module, CAM: Cluster Assignment
Module
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studies by removing one of the two modules. Thus, the model
parameters are not updated based on the losses £; and L.
The results obtained using NCT-CRC and LC25000 datasets
are particularly strong, which we present in Table I. It shows
that PHM modules contribute more to the performance of both
datasets. The results show performance improvement when
both modules are combined.

V. CONCLUSION

We present an online deep learning based clustering frame-
work for analyzing and annotating tissues at the patch level in
whole slide pathology images. Our proposed model is based
on contrastive feature representation learning and contrasting
cluster assignments. It also handles the assignment problem
as an optimal transport and solves it using Sinkhorn-Knopp
algorithm to self-generate the labels. In contrast to other meth-
ods, ours optimizes three objectives during feature learning
and during clustering, thus providing a robust training setting.
Moreover, the tissue discriminative features are learned in two
levels, at an instance and cluster level, and more importantly,
the objective enforces consistency on the generated labels.
Compared to existing state-of-the-art methods, the proposed
CLOTpath shows promising performance in clustering on
three challenging datasets, and thus, it could be considered
as a powerful tool to self generate artificial labels for non-
annotated data.
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