
Optimal Transport and Contrastive-Based Clustering
for Annotation-Free Tissue Analysis in

Histopathology Images

Mohammed Aburidi
Department of Applied Mathematics

University of California Merced
Merced, USA

maburidi@ucmerced.edu

Roummel Marcia
Department of Applied Mathematics

University of California Merced
Merced, USA

rmarcia@ucmerced.edu

Abstract—
Training a deep learning model with a large annotated

dataset is still a dominant paradigm in automatic whole slide

images (WSIs) processing for digital pathology. However,

obtaining manual annotations is a labor-intensive task, and

an error-prone to inter and intra-observer variability. In this

study, we offer an online deep learning-based clustering

workflow for annotating and analysis of different types of

tissues from histopathology images. Inspired by learning and

optimal transport theory, our proposed model consists of two

stages. In the first stage, our model learns tissue-specific

discriminative representations by contrasting the features in

the latent space at two levels, the instance- and the cluster-

level. This is done by maximizing the similarities of the

projections of positive pairs (views of the same image) while

minimizing those of negative ones (views of the rest of the

images). In the second stage, our framework extends the

standard cross-entropy minimization to an optimal transport

problem and solves it using the Sinkhorn-Knopp algorithm

to produce the cluster assignments. Moreover, our proposed

method enforces consistency between the produced assign-

ments obtained from views of the same image. Our framework

was evaluated on three common histopathological datasets:

NCT-CRC, LC2500, and Kather STAD. Experiments show

that our proposed framework can identify different tissues in

annotation-free conditions with competitive results. It achieved

an accuracy of 0.9364 in human lung patched WSIs and 0.8464

in images of human colorectal tissues outperforming state of

the arts contrastive-based methods.
Index Terms—Clustering, Optimal Transport, Contrastive

Learning, Tissue Recognition, Digital Pathology, WSIs.

I. INTRODUCTION

In the last decade, deep learning has achieved considerable

progress in the field of medical image analysis and its ap-

plications [1], [2]. However, the deployment of deep learning-

based methods in clinical applications is slow. One of the main

This research is partially supported by NSF Grant IIS 1741490 and DMS
1840265.

challenges is the lack of high-quality annotated data required

for training these models with a high degree of predictability.

The manual annotation of medical data is a labor-intensive

and error-prone task and relies on medical knowledge from

experts.

The data annotation bottleneck is well apparent in

histopathology images, one type of a widely used medical

imaging modality and is considered the gold standard for

cancer diagnosis [3]. With the advance in imaging tech-

niques, digital scans generate Whole Slide Images (WSIs)

from histopathology slides. WSIs are multi-giga-pixel and

high-resolution images that capture the whole tissue in the

slide. The common approach to utilize such huge images in a

deep learining based solution is to subdivide them into small

patches, where each WSI outputs thousands of patches of

different tissues where each patch is processed independently

in the neural network [4]. However, the large number of these

patches makes the task of annotating the WSI at the patch

level (i.e., local annotations) infeasible.

To solve the annotation scarcity problem, many efforts have

been made by researchers to develop annotation efficient deep

neural networks based training methods for WSI analysis.

Current popular methods can be divided into two categories:

semi-supervised, and self-supervised methods. For the semi-

supervised methods [5], [6], learning is done using small

amounts of labeled data, but a larger amount of unlabeled data

is used to boost the ultimate performance. In self-supervised

learning (SSL) [7], [8], pre-trained models are created without

the need for large and annotated datasets by means of a proxy

objective, for which labels are self generated. A common

drawback in the two categories, is that all requires a small

certain amount of manual labels.

In this paper, we extend a model that we proposed in [9],

which combines contrastive learning with optimal transport

(CLOT) for on-line clustering. This method was designed

and evaluated on natural scene images, but here, we test its

performance on a real-life and challenging problem, namely

for self-generating tissue labels for hisopathology images at

the patch level. The extended version is a deep learning-
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(a) NCT-CRC (b) LC25000 (c) Kather STAD

DEB LYM STR LA MSI

MUS NORM MUC LSCC MSS

ADI BACK TUM BLT

Fig. 1. Example of patches of three different datasets: (a) NCT-CRC (nine classes), (b) LC25000 (three classes), and (c) Kather STAD (two classes). Each
image belongs to a different class.

based clustering method works simultaneously and in a dual

fashion. The proposed model consists of two stages. In the first

stage, instance- and cluster-level representations are learned

by maximizing the similarities of the projections of positive

pairs while minimizing those of negative ones, thus pushing

away features from different images while pulling together

those from the augmented views of the same image. In

the second stage, our framework extends the standard cross-

entropy minimization to an optimal transport problem and

solves it using a fast variant of the Sinkhorn-Knopp algorithm

to produce the cluster assignments. Moreover, our framework

utilizes a multi-loss objective for robust training, that compares

the class assignments obtained from solving the self-labeling

in an online fashion as an optimal transport, and enforce

consistency between the produced assignments obtained from

views of the same image.

We evaluated our framework on three common histopathol-

ogy images: (1) NCT-CRC, a colorectal cancer tissue dataset;

(2) LC25000, a lung histopathological dataset; and (3)

Kather STAD, which includes images of microsatellite insta-

ble (MSI) versus microsatellite stable (MSS) image patches

of gastric (stomach) cancer (see Fig. 1). We describe these

datasets in more detail in Sec. IV-A. Our proposed framework

achieves an up-to-93% performance in terms of AUC on

the LC25000 dataset, 89% on Kather STAD, and 83% on

clustering 9 tissues of the NCT-CRC dataset.

II. RELATED WORK

A. Self-supervised learning

Self-supervised learning (SSL) is a subclass of unsupervised

learning has recently gained significant attention in many

medical image analysis tasks. In SSL, the objective relies

only on the data itself by obtaining feature-rich latent space

representations without the need for manual annotations. One

category of SSL is a class of discriminative methods that is

proposed based on contrastive learning which learns to maxi-

mizes similarities between the latent space feature vectors of

two augmented views encoded from the same image [8]. The

most common contrastive based method is called SimCLR pro-

posed by [7]. The first extension of SimCLR to histopathology

was done by [10] where authors combined multiple instance

with contrastive learning for weakly supervised histopathology

classification. Multiple extension have been proposed after-

while, however, very few were evaluated on histopathology

datasets. A recent one is called Contrastive Clustering (CC)

proposed by [11] and evaluated on histopathlogy images by

[12].

B. Optimal transport

In our method we extend contrastive learning clustering

proposed in [11] and conjunct it with optimal transport theory
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Fig. 2. CLOTpath clustering framework. In the first module, image patches are passing an augmentation module where pairs of patches X̃a
, X̃b

are constructed
using two augmentations of data X. Then the features are extracted from the pairs using a shared encoder fθ . In the second module, a multilayer perceptron
(MLP) model is used as projection head that projects the features into latent space and outputs the feature vectors za and zb. The MLP is then followed
by a softmax function, which outputs the probability vectors pa and pb. Finally, the cluster assignment probabilities are used by the Sinkhorn-Knopp (SK)
algorithm to generate ground-truth-like cluster assignment in a contrastive and consistent approach.

and evaluate it to self-generate labels for annotation-free

tissues from histopathology images. Optimal transport [13]

is a mathematical framework that defines the problem of

finding the most efficient way (i.e., lowest cost) of moving an

object such as probability distribution from one configuration

onto another (e.g., matching two distributions or finding

the similarity between two distributions). Optimal transport

has been gaining in recent years increasing attention as a

promising and useful tool in the machine-learning community.

This success is due to its capacity to exploit the geometric

property of the samples at hand. Optimal transport methods

have been successfully employed in a wide variety of machine

learning applications [14]–[18], computer vision [19], [20],

generative adversarial networks, domain adaptation [21].

Recently, applications of optimal transport to biology have

also been proposed [22]–[25].

III. METHOD

Fig. 2 shows an overview of the proposed method. It

consists of three modules: a pair construction backbone, a

projection head, and a cluster assignment module. For a given

WSI tile, we first compute two different augmentations for

each view (a positive pair), and then pass them through a

backbone, followed by two parallel projection heads. One head

is used to compute the feature vector z, and the second is

similar to the first except it projects into a subspace with a

dimensionality corresponding to the number of clusters, which

could be interpreted as the cluster assignment probabilities p
(i.e., instance soft labels). The probabilities are then used as

an input to the Sinkhorn-Knopp algorithm to find the cluster

assignments by solving the problem as an optimal transport. In

this section, we explain the core units of the models. We start

by explaining the cluster assignment module, and how labels

are self-generated using optimal transport. The, the second

unit is illustrated, in which contrastive learning at the two

mentioned levels are merged into the model to strengthen it.

A. Online Computing of Cluster Assignments
Building upon [26], we encode the cluster labels as posterior

distributions q(y = k|xi), and we formulate the problem of

finding optimal assignments as an optimal transport optimiza-

tion problem.
Consider a given mini-batch X of N images {x1, ..., xN},

we compute their predicted cluster assignment probabilities or

the cluster-level representations p ∈ R
N×K using an encoder

network fθ, and a projection head g1(·) (two stacked nonlinear

multilayer perceptron (MLP) layers followed by a softmax),

where K is the number of clusters. We compare the class

label predictions p with the label assignments obtained when

solving the optimization problem.
To formulate the problem of finding the labels mathemat-

ically, we encode the labels as posterior distributions in the

average cross-entropy objective [27], [28]. In this case, our

loss will be

LOpt(p, q) = − 1

N

N∑

i=1

K∑

k=1

q(y = k|xi) log p(y = k|xi) (1)

where the values in the vector p(y|xi) ∈ {pai , pbi}, and

q(y|xi) ∈ {qai , qbi }. Optimizing q is the same as reassigning
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the labels, which leads to a degenerate solution, i.e., (1) can be

trivially minimized by assigning all data points to a single and

arbitrary class label. A common way to avoid this is by adding

a constraint that enforces an equally-sized partition [28]. The

learning objective objective is thus

minimize
q

LOpt(p, q) (2)

subject to

N∑

i=1

q(y = k|xi) =
N

K
, q(y = k|xi) ∈ {0, 1}.

At this step, we only optimize the labels, keeping the pre-

dictions p fixed, given a batch of images. The constraints

means that each data point xi is assigned to exactly one class

label and the N data points are split equally among the K
classes. By reforming it as an optimal transport using the

notations in [26], let Py,i = p(y|xi) be the K × N matrix

of joint probabilities which is estimated by the model, and

Qy,i = q(y|xi)/N be the K × N matrix of assigned joint

probabilities. Using the notation of [26], we restrict the matrix

Q to the transportation polytope Q = {Q ∈ R
K×N | Q1N =

1
K1K , QT1K = 1

N 1N}, where 1N denotes the vector of ones

in dimension N . The constraints enforce that the matrix Q
splits the data uniformly. We then can rewrite the optimization

problem (2) as

minimize
Q∈Q

〈Q,− logP 〉 (3)

where 〈 · , · 〉 is the Frobenius dot-product of two matrices.

This optimization problem is linear optimization, and we

would solve it using the last version of Sinkhorn-Knopp

algorithm [26], which amounts by introducing a regularization

term

minimize
Q∈Q

〈Q,− logP 〉 − 1

λ
S(Q) (4)

where S(Q) = −∑N
i=1

∑K
j=1 qij log qij is the entropy. This

problem can be solved using the Lagrange multiplier for

the entropy constraint of Sinkhorn distances [26], and its

minimizer can be written as

Q = Diag(u)Pλ Diag(v), (5)

where u and v are normalization vectors chosen such that

the resulting matrix Q is also a probability matrix (see [26]

for a derivation). Once Q is found, we optimize the overall

objective defined next section to find the optimal P (i.e., the

model parameters).

B. Enforcing Consistancy

In order to build an image-transformation invariant model,

we use augmentations to generate two stochastic-based views

X̃
a

and X̃
b

of the given mini-batch X. Passing it through

the model (fθ, and g1(·)), we obtain the predicted cluster

assignment probabilities or the cluster-level representations pa,

pb ∈ R
N×K .

Because these two cluster assignment probabilities come

form the same image, it capture the same information. There-

fore, to enforce consistancy, we compare the class label

predictions obtained from the first augmented view pa with

the label assignments Qb obtained when solving the optimiza-

tion problem, and the predictions obtained from the second

augmented view pb with the label assignments Qa.

C. Contrastive Learning

Contrastive learning maximizes the similarities of positive

pairs (i.e. the transformed views of the same image) while

minimizing those of negative ones by pushing away features

from different images while pulling together those from the

augmented views of the same image.

The idea of contrastive learning is to compute the latent

space feature matrices za, zb ∈ R
N×D, where the rows in

these matrixes are the feature vectors of the two augmented

views obtained using an encoder network fθ, and a projection

head g2(·) (two stacked nonlinear MLP layers but without the

softmax layer). For a specific sample xa
i , there are 2N−1 pairs

in total, among which we choose its corresponding augmented

sample xb
i to construct the positive pair {xa

i , x
b
i}, and leave

the rest 2N − 2 to be negative. The features za, zb in this

case are the instance representations. Because these two latent

space feature vectors come form the same image, it should

capture the same information. Therefore, we apply instance-

level contrastive loss used in [11] to contrast them and assure

they are the same which is of the form

La
I,i=−log

exp

(
s(zai , z

b
i )

τI

)

N∑
j=1

{
exp

(
s(zai , z

a
j )

τI

)
+exp

(
s(zai , z

b
i )

τI

)} , (6)

where s(·, ·) is the pair-wise cosine distance, and zai and zbi
are two corresponding rows from the feature matrices za and

zb, respectively. Here, τI is the instance-level temperature

parameter [29] that is used to control the “softness” of this

loss function.

To fully utilize contrastive learning, we further contrast not

only the feature vectors but also the columns of the predicted

probability vectors (i.e., cluster-level representations) in the

matrices pa, pb ∈ obtained using the first projection head

g1(·). Similarly, the cluster-level representation loss is utilized

to distinguish cluster-level representations of positive pairs

from the rest as follows

La
C,i=−log

exp
(

s(pai ,p
b
i )

τc

)
K∑

j=1

{
exp

(
s(pai , p

a
i )

τc

)
+ exp

(
s(pai , p

b
i )

τc

)} , (7)

where pai and pbi are two corresponding columns from the

probability matrices pa and pb, respectively, that come from

the first projection head. Here τc is the cluster-level tempera-

ture parameter. To include every possible positive pair across
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the dataset, the instance-level contrastive loss and the cluster-

level contrastive loss are as follows:

LI = 1
2N

N∑

i=1

(La
I,i+ Lb

I,i),

LC = 1
2K

K∑

i=1

(La
C,i+ Lb

C,i)− S(p),

where S(p) = −∑K
i=1[p

a
i log p

a
i + pbi log p

b
i ] is the entropy of

cluster assignment probabilities added to prevent assigning all

instances within the mini-batch to the same cluster [39]. The

functions Lb
I,i and Lb

C,i are defined similarly as in (6) and (7),

respectively.

D. Objective Function
In our method, the optimization is done in an end-to-end

process. The parameters θ of the backbone and the two heads

are simultaneously optimized. Thus, the overall objective

function consists of (1) the instance-level contrastive loss, (2)

the cluster-level contrastive loss, and (3) the two cross-entropy

loss functions that enforce the consistency:

L(z, p) = LI + LC + La
Opt + Lb

Opt (8)

Our objective enables a robust training at both the latent

feature and the code assignment levels. In general, we solve

two optimization problems: the first is to find the labels

and the second is to find the predictions of the model (i.e.

the model parameters). We do so, by first initializing the

mode parameters randomly and then by alternating between

following two steps:
1) Given the current model’s parameters θ, we first compute

the log probabilities P , then, we find Q using (5).

2) Given the current label assignments Q, we optimize the

model parameters θ by minimizing (8). This step is the

same as training the model but with a multi-loss function.

IV. EXPERIMENTS AND RESULTS

The proposed method was evaluated on three publicly avail-

able WSI datasets: 1) the NCT-CRC [30], a colorectal cancer

tissue dataset, 2) Kather STAD [31], which has histological

images of gastric (stomach)) cancer patients whom their tumor

shows microsatellite stablity (MSS) versus patients whom their

tumor shows microsatellite instablity (MSI) 3) LC25000 [32],

a lung histopathological dataset. The three datasets were pre-

processed into WSI patches.

A. Datasets
1) NCT-CRC: NCT-CRC consists 100000 non-overlapping

224 × 224 pixels image patches extracted at 0.5 microns per

pixel from hematoxylin and eosin (H&E) stained histological

images of human colorectal cancer and normal colon tissue.

Each patch is assigned a single label and classified into one

of 9 classes of tissues by pathologists including: Adipose

(ADI), Cancer associated Stroma (STR), Debris (DEB), Mu-

cus (MUC), smooth Muscle (MUS), Normal Colon Mucosa

(NORM), Lymphocytes (LYM), Colorectal Adenocarcinoma

Epithelium (TUM), Background (BACK).

2) LC25000: LC25000 contains 15000 patches of size 768

× 768 pixels. All patches are assigned a single label out of 3

possible classes: lung adenocarcinomas (LA) lung squamous

cell carcinomas (LSCC) and benign lung tissues (BLT).

3) Kather STAD: Kather STAD contains 100570 patches

belongs to 315 WSIs extracted from TCGA [33]. Each patch is

assgined to one of the two classes: microsatellite stable tumor

(MSS), and microsatellite instable tumor (MSI). Microsatellite

instability determines whether patients with gastric cancer

respond exceptionally well to immunotherapy. Therefore, its

important for a patient to be tested for microsatellite instability,

which is not always available in clinical practice because it

requires additional genetic tests.

B. Implementation Details

We implement ResNet34 as an encoder backbone architec-

ture [8] and use the Adam optimizer [34] to simultaneously

optimize the two projection heads and the backbone network,

with cosine learning rate scheduler [35]. The weight decay is

set to 0.0001. ResNet is designed for images of size 224×224,

so we resize all input images to this size. Both projection heads

consists two-layer nonlinear MLP. ReLU activation was used

in between the two layers. Softmax activation was used in the

in the cluster-level contrastive projection head to produce soft

labels as in [11]. Following [7] we set the dimension of the

latent vector to 128 and the temperatures parameters to 0.5.

The batch size is set to 256 due to the memory limitation.

All the models are trained from scratch for 1000 epochs. The

training is carried out on UC Merced Pinnacles Cluster using

one 2x NVIDIA Tesla A100 PCIe v4 40GB HBM2 Single

GPU.

C. Data Augmentations

Following [7], [11] we use random cropping, color jittering,

grayscale transformation, horizontal flipping, and Gaussian

blurring for augmentation. Each transformation is applied with

a certain probability.

D. Evaluation Metrics

We utilize three common clustering evaluation metrics

including Accuracy (ACC), Normalized Mutual Information

(NMI), and Adjusted Rand Index (ARI) to evaluate our model

and compare it with baselines. Higher values indicate better

performance. We also used one-vs-rest multiclass receiver

operating characteristic (ROC) curve and we report the area

under curve (AUC) as an image-level diagnosis evaluation

metric. These metrics were calculated between clustering

predicted labels and ground-truth labels.

E. Comparison Study

Figure 3 shows the comparisons between our method with

five state-of-the-art clustering methods, including K-means

[36], Spectral Clustering (SC) [37], Contrastive Clustering

(CC) [11], SimCLR [7], and DeepCluster [38].

Results shown in Figure 3 demonstrate the clustering ability

of CLOTpath, which outperforms the baselines by a large
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(a) NCT-CRC (b) LC25000 (c) Kather STAD

Fig. 3. The clustering performance on our three histopathology tissue image benchmarks: (a) NCT-CRC, (b) LC25000, and (c) Kather STAD.

margin on all of the three datasets. Specifically, CLOTpath

outperforms the closest competitor (CC) on the three datasets

in terms of the three evaluation measures. The results demon-

strate that this robustness is a result of combining both con-

trastive learning and contrasting cluster assignments obtained

by solving the labeling problem as an optimal transport.

To more specifically investigate the well clustered tissues,

we present the confusion matrix (Figure 4) of the model’s pre-

dictions. In NTC-CRC, five out of nine tissues were clustered

with an accuracy of 85% and more and a sixth tissue was

clustered with a moderate accuracy of 76%. In contrast, the

MUS, DEB, and STR were more mislabeled with each other

due to their image structural similarities (see Fig. 1 for details).

Likewise, in the LSC25000 dataset, LA was mislabeled more

with LSCC because of their common structural and coloration

features.

F. Ablation Study

We carried out an ablation study to further understand

the contribution of each module in our model. To prove

the effectiveness of the projection head module (PHM) and

the cluster assignment module (CAM), we conduct ablation

TABLE I
EFFECTS OF MODEL COMPONENTS

Dataset Model Component ACC NMI ARI

PHM + CAM 0.8357 0.7883 0.7189
NCT-CRC PHM only 0.7666 0.7643 0.6746

CAM only 0.7411 0.7303 0.6071
PHM + CAM 0.9314 0.8401 0.8131

LC25000 PHM only 0.8792 0.7622 0.7881
CAM only 0.8323 0.7270 0.6987
PHM + CAM 0.8862 0.8094 0.7824

Kather STAD PHM only 0.8787 0.7926 0.7802
CAM only 0.8367 0.7191 0.7047

PHM: Projection Head Module, CAM: Cluster Assignment
Module

studies by removing one of the two modules. Thus, the model

parameters are not updated based on the losses LI and LC .

The results obtained using NCT-CRC and LC25000 datasets

are particularly strong, which we present in Table I. It shows

that PHM modules contribute more to the performance of both

datasets. The results show performance improvement when

both modules are combined.

V. CONCLUSION

We present an online deep learning based clustering frame-

work for analyzing and annotating tissues at the patch level in

whole slide pathology images. Our proposed model is based

on contrastive feature representation learning and contrasting

cluster assignments. It also handles the assignment problem

as an optimal transport and solves it using Sinkhorn-Knopp

algorithm to self-generate the labels. In contrast to other meth-

ods, ours optimizes three objectives during feature learning

and during clustering, thus providing a robust training setting.

Moreover, the tissue discriminative features are learned in two

levels, at an instance and cluster level, and more importantly,

the objective enforces consistency on the generated labels.

Compared to existing state-of-the-art methods, the proposed

CLOTpath shows promising performance in clustering on

three challenging datasets, and thus, it could be considered

as a powerful tool to self generate artificial labels for non-

annotated data.
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