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Rodent middens provide a fine-scale spatiotemporal record of plant and animal
communities over the late Quaternary. In the Americas, middens have offered in-
sight into biotic responses to past environmental changes and historical factors
influencing the distribution and diversity of species. However, few studies have
used middens to investigate genetic or ecosystem level responses. Integrating
midden studies with neoecology and experimental evolution can help address
these gaps and test mechanisms underlying eco-evolutionary patterns across
biological and spatiotemporal scales. Fully realizing the potential of middens to
answer cross-cutting ecological and evolutionary questions and inform conser-
vation goals in the Anthropocenewill require a collaborative research community
to exploit existing midden archives and mount new campaigns to leverage
midden records globally.

A renewed vision for midden research
Anthropogenic shifts in climate, land use, and other factors threaten biodiversity and the overall
stability and functioning of Earth’s ecosystems. Consequently, considerable effort has gone
into assessing the vulnerability of species and ecosystems to rapid environmental change. Al-
though environmental change is nothing new and climate shifts during the late Quaternary
(see Glossary) dwarf changes predicted over the next century [1], the magnitude and pace of an-
thropogenic climate change are accelerating [2]. Studying the past can help contextualize our un-
derstanding of the natural world today and improve predictions of biological responses to
ongoing and future environmental change [3,4].

Predicting biological responses to environmental change across spatial, temporal, and
biological scales requires tighter integration of paleoecology, neoecology, and evolutionary
biology (Figure 1) [5–9]. Integrating these perspectives has been challenging because most
fossil records lack the resolution to compare ancient and modern communities. The patchy
distribution of some fossil records can also make it difficult to assess biological responses
across spatial scales that are relevant to population, community, and ecosystem processes.

Middens, debris piles constructed by mammals, provide a source of spatially and temporally
resolved data that can help overcome these challenges. In arid regions, middens can archive -
biological materials for tens of millennia (Figure 2), capturing environmental changes relevant to
the problems we face today [4]. Moreover, the distribution of middens on different continents en-
ables comparative studies across arid ecosystems. Although widespread, the preponderance of
midden studies conducted to date, especially those focused on ecological and evolutionary
processes, are from North and South America (Figure S1 in the supplemental information online).
As such, we focus this discussion on middens from the Americas.

Highlights
Environmental perturbations over the late
Quaternary were similar in magnitude
and scope to those predicted under sce-
narios of anthropogenic climate shifts.

Paleoecological records from this time
frame, such as the midden record
created by rodents in the Americas,
have contextualized our understanding
of biological responses to environmental
change.

Recent technological advances have ex-
panded the scope ofmidden research to
investigate eco-evolutionary hypotheses
and the adaptive potential of ecological
systems.

However, ongoing human disturbances
and climate change could jeopardize
the preservation of middens and their
surroundings for neoecological studies.

Integrating paleoecology with modern
experimental studies is essential for
understanding the impacts of envi-
ronmental change. Achieving this goal
will require a community of midden
researchers focused on collaborative,
cross-cutting questions.
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This review examines how midden records can advance our understanding of biological re-
sponses to environmental change by addressing questions at the frontier of ecology and evolu-
tionary biology. In ‘What are middens’ we summarize the natural history and distribution of
middens in the Americas and review seminal insights these records have yielded. In ‘Prospective
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Figure 1. Integrative approaches to understanding the impacts of environmental change. (A) Paleoecological
records that span spatiotemporal gradients in environmental conditions and neoecological and evolutionary experiments
that manipulate biotic and abiotic factors are complementary approaches to detect and predict biological responses to
environmental change. Responses to environmental conditions (e.g., change in body size, abundance, migration rate,
diversity, energy flow) may range from positive to negative for different organisms and across biological scales.
Paleoecological records that span a broader range of environmental conditions compared with modern systems
provide important baseline information about the historical range of variability and stability of patterns through space
and time. Neoecological studies can inform interpretation of midden data and provide insight into ecological and
evolutionary mechanisms that drive biotic responses. (B) Here we outline examples of how data from midden and
neoecological studies can be applied to advance our understanding of adaptive and plastic responses of desert
organisms to their environment, mechanisms driving range expansions or contractions within and across species,
dynamics of community assembly and species interactions, and the resilience of ecosystem processes to
environmental change. (C) Building the capacity for integrative midden and neoecological research requires
standardizing methodologies, as outlined in the companion protocols document [86]; increased accessibility of midden
materials and data through regional depositories; expanded collection and study of middens and modern ecological
communities globally; and a ‘community of practice’ focused on collaborative, interdisciplinary research that spans
paleoecology, neoecology, and evolutionary domains.

Trends in Ecology & Evolution

480 Trends in Ecology & Evolution, May 2024, Vol. 39, No. 5

Image%20of%20&INS%20id=
CellPress%20logo


questions in midden research’ we discuss opportunities to integrate modern theories and tools
with midden data. Finally, in ‘The future of midden research’ we discuss challenges associated
with this work and strategies for expanding midden research globally.

Glossary
Ancient DNA (aDNA): DNA isolated
from subfossils and characterized by
short and damaged genetic material.
Anthropocene: unofficial period of time
during which human activities have
significantly affected the global
environment.
Ecological baseline: reference state of
an ecological system (e.g., species’
distributions, abundances, biodiversity)
before a disturbance or directional
change.
Environmental DNA (eDNA): DNA
isolated from soils, water, and other
sources of genetic material; key
reference for comparison to aDNA from
plants, animals, and microbes.
Extinction: global death of all
individuals of a species.
Extirpation: local disappearance of a
species (i.e., death, migration).
Historical range of variability (HRV):
the full range of ecological conditions
occurring across multiple scales of
space and time and the processes that
drive these dynamics.
Macrofossil: preserved biological
remains large enough to be visible with
the naked eye or low-powered
magnification.
Microfossil: preserved biological
remains just at or below the size that are
visible with the naked eye and that
require microscopy to view.
Midden: pile of debris, mainly organic
(e.g., plant material, bones, insects),
accumulated in a cave or a rock shelter
by a midden builder.
Middenbuilder: organisms responsible
for constructing a particular midden.
Midden series: collection of middens
from a geographic area that often span
millennia of time.
Neoecology: field of study that uses
extensive sampling and controlled
experiments to mechanistically
understand ecological drivers,
interactions, functioning, and resilience
at relatively fine resolutions that are
difficult to extrapolate across broad
spatiotemporal scales.
Paleoecology: field of study that uses
historical proxies to reconstruct species
distributions, interactions, and dynamics
of biotic communities and/or ecosystems
in response to climate or land use
changes over broad spatiotemporal
scales.
Quaternary: the last 2.58 million years
of geologic time; epochs within the
Quaternary period are the Pleistocene
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Figure 2. Spatiotemporal distribution of 14C dated small mammal middens in the Americas. (A) In North America
(top row), middens spanning the past 50 000 years have been found in all four major deserts and piedmonts of the Rocky
Mountain, Sierra Nevada, Pacific Coast, and Sierra Madre Occidental ranges. In South America (bottom row), middens
have been sampled from the central and southern Andes, with the hyperarid Atacama Desert yielding abundant
Pleistocene deposits. Midden preservation is a function of climate and substrate, which together influence the density of
middens across space and time. Midden locations and ages were compiled from the US Geological Survey North
American Packrat Midden Database (https://geochange.er.usgs.gov/midden/) and catalogs of researchers working in
South America. Ages were calibrated following Reimer et al. [98] for North American middens and Hogg et al. [99] for
South American middens using methods available in the ‘Bchron’ R library, version 4.2.6 (https://cran.r-project.org/package=
Bchron). (B) Middens can span large spatial and temporal scales even at a single location. In the Eastern Grand Canyon,
middens (black circles) collected from different elevations were used to characterize transitions in the dominant vegetation
(displayed as different colors) over time (adapted from [100]). Midden photo courtesy of Sandra Swift and Jim Mead.
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What are middens?
Middens are constructed by multiple rodent species in rocky arid and semi-arid habitats in the
Americas and by other herbivores worldwide (Figure S2 in the supplemental information online).
Although typically associated with a den, middens vary in size and form and can serve multiple
purposes (e.g., nesting area, food cache, protection) [10,11]. Generations of small mammals
inhabiting the same geographic area can produce a midden series that potentially captures
>50 000 years of biotic change (Figure 2) [12]. Within a series, separate middens and strata in
the same midden represent distinct depositional episodes or ‘snapshots’ in time. The duration
of the depositional episode hinges on the researcher’s skill in the field and effort to avoid contam-
ination from older or younger materials. Consistency in the timing and sequence of species’ oc-
currences across different midden series (e.g., Box 1) indicates that, while temporal mixing and
contamination can occur, most material in a carefully sampled midden accumulated over a few
months to a few decades [13]. Because middens must remain dry for long-term preservation,
their distribution is restricted to rocky hillslopes with protective caves and crevices. Preservation of
organic materials within middens is typically high, enabling detailed morphological, biogeochemi-
cal, and genetic analysis of subfossils tens of millennia after they were deposited.

The abundance and diversity of preserved materials are strengths of the midden record. Plant
macrofossils, fecal pellets, bones, teeth, and other organic remains deposited by the midden
builder are common, as are pollen microfossils and the remains of commensals, including ar-
thropods, other small mammals, and lizards. While pollen can be blown in from many tens of ki-
lometers [14–16], plant macrofossils such as leaves and seeds tend to originate within the
foraging range (≥50 m) of the animal [17,18]. Although considered dietary generalists, rodent for-
aging preferences may influence the composition of preserved materials, causing some taxa to
be over- or under-represented relative to the surrounding community [13,19,20]. However, mul-
tiple studies comparing midden composition against modern biota indicate bias is minimal
[15,18,21–23].

Middens from North and South America have generated novel insights into ecological and evolu-
tionary dynamics across diverse taxa and through major periods of climate change over the past
50 000 years (Boxes 1–3). These insights were aided by technological advances that enablemore
precise and detailed analysis of preserved materials (Appendix A in the supplemental information
online).

Prospective questions in midden research
Organismal responses to climate change
In a changing environment, organisms can move, adapt, or go extinct. How they react is medi-
ated by their genetic capacity, life history, ecology, and physical environment. Although middens
have played a prominent role in characterizing climate tolerances and range dynamics for various
organisms (Boxes 1–3), they cannot directly assess mechanisms underlying organismal re-
sponses to climate. The challenge of drawing causal inferences could be addressed by integrat-
ing paleoecological and neoecological studies (e.g., common garden experiments, experimental
evolution, and phenotypic mapping) to produce a more complete picture of organismal re-
sponses to climate change.

Latitudinal and altitudinal range shifts, some of the most universal responses to climate change
[24], are apparent in the North and South American midden records (Boxes 1 and 2). In these re-
gions, middens provide direct evidence of range expansions, persistence of refugial populations,
lineage replacements, and population expansions or contractions. If combined with molecular,
morphological, or co-occurrence analyses, these records may reveal genetic (i.e., bottlenecks,

(2.58 million to 11 700 years ago) and
Holocene (11 700 years ago until today).
Resilience: the rate at which a system
variable returns to its reference condition
following a perturbation or disturbance.
Stasis: a period of relative stability
without activity or change in an ecological,
evolutionary, or climatic system.
Strata: layers within a midden that can
represent different depositional episodes.
Subfossil: ancient remains that are not
mineralized due to insufficient time or
poor conditions for mineralization;
contains organic material for analyses
such as radiocarbon dating or aDNA
sequencing.
Transition state: gradual or abrupt
changes that occur after a formerly
stable ecological system is disturbed, or
when a developing system gradually
achieves new functions.
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Box 1. Midden contributions to late Quaternary biogeography and vegetation dynamics in western North America
Middens from southern Canada to central Mexico indicate markedly different climate, hydrology, and vegetation during the late Pleistocene. Rocky environments now
clad in desert scrub were dominated by pinyon–juniper woodlands. Desert species were displaced southward, or if present, co-occurred with different species than
today [101,102]. By contrast, desert C4 grasslands covered the USA–Mexico borderlands with the same composition and at similar elevations as today [40]. At mid-
elevations, mixed-conifer woodlands replaced pinyon–juniper woodlands and boreal forests blanketed many mountaintops and plateaus where they are now missing
[12].

Middens enable detailed mapping of species distributions and postglacial migrations, providing a frame of reference for modern population and community ecology.
Migration of many desert shrubs was gradual and lagged, reaching northernmost limits only in the past 4000 years [40]. Different dispersal syndromes produced differ-
ent colonization rates [103], with the most heat-adapted species, according to modern temperature tolerances, exhibiting the slowest rates of spread [35]. Holocene
migration aligned diploid, tetraploid, and hexaploid populations of the now dominant creosote bush (Larrea tridentata) along a gradient of increasingly drier and hotter
summers [41] with tetraploids only recently spreading from the Sonoran to western Chihuahuan Desert [104].

Populations of three pinyon pine varieties (Pinus monophylla, Pinus edulis, and Pinus edulis var. fallax) expanded 300–500 km northward at rates of 20–60 m y–1,
reaching northernmost outposts only within the past millennium [42]. In the northeastern Great Basin, increased wildfires and fire-related sedimentation accompanied
P. monophylla infilling [105]. In the northern Colorado Plateau, local P. edulis spread was modulated by decadal precipitation variability [43]. Additionally, long-distance
colonization by P. edulis along the Front Range of the Rocky Mountains yielded little loss in genetic diversity [44].

Focused midden surveys tracked in-tandem migrational histories of Utah juniper (Juniperus osteosperma) and Rocky Mountain ponderosa pine (Pinus ponderosa var.
scopulorum) in the central RockyMountains (Figure I). Utah juniper migration proceeded via long-distance dispersal and subsequent infilling by a single haplotype, paced
by climate variability and structured by the distribution and connectivity of suitable habitat [45]. Ponderosa advanced as a ‘front’ with long delays in establishment
followed by rapid expansion, indicatingmigration was limited by the timing of suitable climate rather than dispersal. Ponderosa migration in the central Rockies conflated
the movements of two different haplotypes and established a novel zone of introgression between the main varieties (var. scopulorum and var. ponderosa) (Figure I [46]).
Detailed migrational histories such as these offer myriad opportunities to investigate how the arrival and expansion of dominant and widespread species affect commu-
nity assembly and disassembly and eventually modify the physical environment [106].

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Migrational histories for ponderosa pine and Utah juniper. Upper left: distribution (gray shading) of Sierra Nevada ponderosa pine (Pinus ponderosa var.
ponderosa; haplotypes H1, H2, and H8) and Rocky Mountain ponderosa pine (Pinus ponderosa var scopulorum: H3–7, H9–10) with ages [kiloyear before present (BP)]
of the earliest macrofossil occurrence of var. scopulorum in midden series. Location of ten modern haplotypes [107] indicated by colored circles. Upper right: inset map
of the central Rocky Mountains showing midden sites/series (letters) sampled to reconstruct regional migrational histories of low-elevation Utah juniper (Juniperus
osteosperma) [45] and P. ponderosa var. scopulorum [46]. Lower right: chronology of presence/absence of Utah juniper and ponderosa pine macrofossils at
midden sites indicated by shaded/open circles. These examples indicate that species migration can involve either simultaneous or staggered spread of different
haplotypes, with verification awaiting ancient DNA analysis. Early establishment of Utah juniper happened through long-distance dispersal to northernmost outputs
followed by pulsed infilling in intervening areas. Ponderosa pine migration was mostly frontal with colonization of northwesternmost populations occurring ~1500
years ago, establishing a hybrid zone between var. scopulorum (H6) and var. ponderosa (H8).
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Box 2. Linking past to current ecosystem dynamics in the Atacama Desert
The extreme hyperaridity of low elevation inland basins in the Atacama, the world’s driest desert with virtually no rain or vascular plants, contrasts with cold temperatures
in the high Andes. This generates opposing gradients of temperature and seasonal precipitation that vary consistently with latitude and elevation. Soil pH, solar radiation,
and nutrient availability also vary systematically across these gradients, with distinct physiognomic belts that include fog-supported ‘lomas’ vegetation in the coastal
ranges, absolute desert in the low-elevation longitudinal basin, sparse xeric shrubs and cacti communities on the Pacific slope, and extensive steppe grasslands that
give way to cushion plants at the cold limits of vegetation [71,108].

The preservation of organic matter in middens facilitated reconstructions of past ecological change in the Atacama. During the Pleistocene, grasses and shrubs from the
high Andean steppe descended >1000m in elevation into what is now absolute desert [109–111]. C4 grasses and summer annuals indicate that these ‘pluvials’ resulted
frommore frequent moist air mass incursions originating in the Gran Chaco or Amazon Basin that crossed the Bolivian and Chilean Altiplano and rained out farther down
the Pacific slope of the Andes [112,113].

Paleoecological and neoecological approaches have been used in tandem to assess the impacts of late Quaternary and recent climate changes on desert communities
in the Atacama. Arthropods sampled from modern and ancient middens helped reconstruct arthropod community dynamics over the Holocene, which led to key in-
sights into the high ecological fidelity of fossil assemblages [23]. Ancient DNA (aDNA), first sequenced from an Atacamamiddenmore than 20 years ago [114], identified
the midden builder as an ancestral leaf-eared mouse (Phyllotis limatus) that today occurs 100 km to the north, indicating a modest range shift derived from a peripheral
isolate. High-throughput sequencing of Atacama middens complemented morphological identification of pollen and macrofossil remains and revealed major vegetation
changes across millennia (Figure I) [115]. Comparing these paleorecords with modern soil environmental DNA (eDNA) [116] and vegetation surveys along environ-
mental gradients [115] showed that the distribution of high-elevation shrubs and grasses was particularly sensitive to millennial-scale climatic variability (Figure I) but in-
sensitive to interannual and decadal-scale variability. In contrast, annual plants were more sensitive to interannual climate variation. These and other paleogenomic
studies of plant pathogen [49] and rodent parasite assemblages [50] from the Atacama exemplify new approaches to examine community and ecosystem responses
to climate change across timescales.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Time series of vegetation change in the central Atacama Desert. (A) Midden ancient DNA (aDNA) from high-throughput sequencing, the first such
analysis of its kind for middens (published in [115]). *Indicates taxa not previously identified by macrofossil or pollen analyses. A stratigraphically constrained
incremental sum of squares analysis (CONISS) identifies distinct temporal zones of similar vegetation affinity based on aDNA reads and species presence/absence.
Comparing (B) modern and (C) late Pleistocene plant communities based on presence/absence data illustrates the dynamic nature of vegetation ‘belts’ over time on
the Pacific slope of the Andes.
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Box 3. Environmental drivers of body size in mammals: a tale of two continents
Mammal body size is highly heritable, easilymeasured, and strongly associatedwithmultiple life history and ecological traits [117,118]. The influence of environmental factors such
as temperature, precipitation, and primary productivity may vary across mammalian taxa and habitats [119], contributing to ongoing debate about environmental drivers of body
size variation. For woodrats (Neotoma), body size closely tracks ambient temperature (Figure I) [120,121], indicating that changing temperature regimes can drive shifts in body
size. Indeed, woodrats were the original empirical example of Bergmann’s rule, an ecogeographic principle relating animal body size to environmental temperature [122,123].

Fecal pellets produced by different rodent species and preserved in middens provide an opportunity to examine body size–climate relationships over space and time.
Pellet width is strongly correlated with body size in modernNeotoma populations (Figure I) [120,124]. Thus, the hundreds to thousands of fecal pellets contained within a
typical midden series can provide a record of body size changes in ancient Neotoma populations. The relationship between pellet and body size is assumed for other
midden-building species, although confirmation requires additional work in modern rodent populations.

North American midden studies have quantified morphological changes in multiple Neotoma species over the past 30 000 years, a time of substantial climate pertur-
bation [32,34,120,124]. Patterns are remarkably congruent among sites across the geographic range: warming consistently led to smaller-bodied populations, whereas
cooling led to larger-bodied populations (Figure I). Moreover, woodrats responded equally well to the challenges of both warming and cooling climates [32,124]. Only in
rare instances, at the edge of their distribution, did climate fluctuations lead to extirpation, indicating adaptation coupled with elevational shifts allowed animals to cope
with significant climate change during the late Quaternary [32].

Body size–climate relationships have yet to be as extensively explored elsewhere. However, recent work showing a positive correlation between precipitation and fecal
pellet size from modern ashy chinchilla rat (Abrocoma cinerea) indicates that precipitation and primary productivity are more important drivers of rodent body size than
temperature in the hyperarid Atacama Desert (Figure I) [33]. Based on this relationship, fecal pellet measurements from ancient Abrocomamiddens were used to recon-
struct precipitation anomalies that corresponded with known ‘pluvial events’ over the past 16 000 years (Figure I). Exploring body size–climate relationships in other
regions would likely yield further insights into the climate tolerances and adaptive potential of different midden-building species.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Ancient middens provide a record of body size changes in rodent populations with climate change. (A) Fecal pellet width correlates strongly with
rodent body size in modern woodrat (Neotoma) populations. Therefore, pellets preserved in middens provide a record of body size variation over space and time. (B)
Modern rodent body size or pellet size can be compared with local climate parameters to identify important environmental drivers and calibrate ancient body size or
paleoclimate reconstructions. Factors driving rodent body size variation can differ between rodent species and habitats, as shown in work using Neotoma (top row,
western North America) and Abrocoma (bottom row, Atacama Desert, South America) middens (adapted from [33,120,121]). Ancient Neotoma pellets were used to
reconstruct changes in body size with temperature changes in Death Valley, California. Ancient Abrocoma pellets were used to reconstruct pluvial events in the
Atacama Desert. Abbreviations: ky BP, kiloyear before present; MAP, mean annual precipitation; MAT, mean annual temperature.
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inbreeding, hybridization, introgression), phenotypic (i.e., body size), and ecological changes (i.e.,
species interactions) that accompanied past range shifts [25,26]. This historical perspective can
inform interpretations of similar patterns in modern populations and identify processes
constraining natural range shifts or assisted migration in the future.

Adaptive responses to climate changes over the late Quaternary have been inferred from mor-
phological analysis of midden specimens (e.g., Box 3). Ancient DNA (aDNA) analysis could en-
able characterization of allele frequencies, signatures of selection, and genotype–environment
associations that may constrain or drive adaptive responses [27–29]. The ability to link genotypes
to morphological or physiological traits measured from midden specimens could provide addi-
tional insight into evolutionary processes when aligned with modern studies that assess climate
responses across genetic and phenotypic variants [28]. Comparing trait distributions across en-
vironmental gradients in paleo and modern populations could also test the persistence of geno-
type–environment and genotype–phenotype associations through time. While most midden
studies have focused on vascular plants [30,31] or the midden builders [32,33], other taxa fre-
quently found in middens such as arthropods and microbes could provide additional insight
into the adaptive capacity of desert organisms.

When neither migration nor adaptation are possible, organisms face the possibility of extirpation
or extinction. Characterizing spatiotemporal patterns in the presence or absence of middens
from a region can indicate potential extirpations of midden builders [32,34]. Likewise, analysis
of aDNA could help detect cryptic plant, arthropod, and small vertebrate losses. However, few
studies have explored these questions to date. Continued work in this area holds potential for ad-
vancing our understanding of leading and trailing edge dynamics, including whether extinctions
are commonly preceded by range shifts or loss of phenotypic or genetic variation as predicted
for modern systems.

Community assembly and biogeography
Middens have been used extensively to assess ecological and environmental drivers of plant
community dynamics. Comparisons across periods of climate instability versus relative stasis
have generated insight into the resilience and historical range of variation within C4 grasslands,
desert scrub, and mixed-conifer woodlands in western North America (Box 1). Data sets
encompassing multiple midden series have further connected temporal inertia from colonization
and local extinction lags to community-climate disequilibrium and reassembly [35]. The augmented
ability to identify species using aDNA and to characterize the range of genotypic or phenotypic traits
for multiple species in a midden could inform theories about how local diversity accumulates [36–38]
and the degree to which species traits influence community assembly [39]. Migrational histories con-
structed for different plant species [40–47] could also be used to investigate how the arrival and per-
sistence of dominant species affected community composition, diversity, and stability over time.
Such information is relevant to neoecological theories concerning the invasibility of communities,
including how standing biodiversity alters invasibility [48] and the effects of long-distance colonization
events on community trajectories. Although most midden studies of community dynamics have
focused on plants, arthropod and microbial assemblages also have been examined in the Atacama
[23,49,50], offering new opportunities to integrate midden data with modern ecological studies.

Eco-evolutionary dynamics driving species interactions
Midden series often encompass time spans necessary for assessing eco-evolutionary responses
driven by shifts in species interactions due to climate change. However, modern experiments
that study the strength of species interactions across environmental conditions and identify traits
underlying potential fitness consequences [51,52] are needed to contextualizemidden investigations.
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Relationships between midden builders and local flora have been the most common form of spe-
cies interaction investigated. Studies have helped characterize rodent dietary choices in different
plant communities and indicate that small mammal populations are as sensitive to changes in
local biotic interactions as they are to large-scale climate change [19,53]. Sequencing plant
DNA retained in rodent fecal pellets may further resolve species-specific feeding behavior. This
work could be paired with experiments in modern systems to study the eco-evolutionary conse-
quences of variation in the dietary niche of midden builders and assess how climate conditions
and resource availability shape plant–herbivore interactions [54].

Host–microbe interactions are increasingly recognized as an important factor underlying popula-
tion dynamics and eco-evolutionary responses to climate change in modern systems [55,56]. Ro-
dent fecal pellets provide information about gut microbiomes [57], which can influence host
fitness and drive adaptation and co-diversification [52,58]. In modern systems, gut microbial di-
versity often shifts with changes in host diet and habitat [59,60], patterns that could be assessed
over space and time using middens. Paleogenomic studies can also provide insight into other
host–microbe interactions and their resilience to climate change. For example, plant pathogen
[49] and animal parasite assemblages [50] in the Atacama differed in their resilience to large-
scale climate fluctuations during the Pleistocene–Holocene, which may reflect variation in adap-
tive potential. Combining experimental manipulations of microbial evolution with long-term re-
cords of ancient microbial communities is a powerful approach for mapping eco-evolutionary
dynamics in host–microbe interactions.

Nutrient cycling and energy transfer within ecosystems
Assessing the resilience of ecosystem processes to environmental change inherently requires in-
tegrating data across biological scales and over periods of stasis and change. By characterizing
the historical range of variability (HRV), midden studies could establish boundaries for model-
ing ecosystem function. However, few ecosystem-level studies have used middens to test mod-
ern theories linking biogeochemical cycles and energy or nutrient pathways to ecosystem
stability. Challenges arise in both paleo and modern studies because some ecosystem compo-
nents are often overlooked (microorganisms) or coarsely described and aggregated (species-
rich macroinvertebrates). The potential for abiotic conditions to affect the chemical integrity of or-
ganic tissues over time presents an additional challenge [61]. Yet, modern theoretical and empir-
ical approaches can be used to reconstruct biogeochemical cycles and trophic dynamics in
paleoecological systems. Quantifying these processes in modern communities occurring near
middens will be crucial to interpreting midden data.

Stable isotope analysis is often used to describe energy flow and trophic niches within modern
food webs [62,63]. In combination with theories such as the metabolic theory of ecology, similar
approaches could inform midden studies assessing drivers of millennial-scale fluctuations in en-
ergy and nutrient flow. For example, integrating metabolic principles and analysis of bone assem-
blages in owl roost deposits showed that compensatory dynamics driven by rodent species
turnover stabilized energy flow in the Great Basin during the Pleistocene–Holocene transition de-
spite rapid climate-driven changes in vegetation [64]. Although this work was not conducted
using middens, it is an example of how neoecological theories can be applied to paleoecological
data to infer energy and nutrient dynamics.

Chemical analysis of midden remains also offers insights into long-term dynamics of biogeo-
chemical and hydrological cycles, which are strongly coupled in space and time in arid environ-
ments [65,66]. Nitrogen isotopes (δ15N), in particular, have been used to track changes in the
global nitrogen cycle since the last glacial period [67,68]. In many terrestrial ecosystems, δ15N
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is negatively correlated with precipitation [69,70]. Although the mechanistic link is somewhat
unclear, this relationship is thought to reflect the influence of water availability and nutrient
demand on the ‘openness’ of the nitrogen cycle. However, this relationship appears to break
down in hyperarid environments [71,72]. Comparing δ15N of midden specimens from different
arid regions over glacial–interglacial periods may help resolve uncertainties about environmental
drivers of the nitrogen cycle. Moving beyond the nitrogen cycle requires analytical approaches
that more broadly map the spatiotemporal distribution of all essential elements for life and their
stoichiometric niche [73]. For example, heavy metal concentrations in rodent pellets from mid-
dens have been used to study the effects of mining activity in the Atacama [74]. Chemical and
isotopic analysis of leaf cuticle waxes in plant macrofossils also serve as a robust hydroclimate
proxy and have been used to detect hydrological changes that affect resource pools and ecosys-
tem dynamics [75]. Reconstructing the chemical composition of paleo-organisms at various time-
scales can enhance our understanding of ecological and geological processes acting on past
ecosystems and establish baseline data for predicting future changes in key ecosystem
processes.

Applications of midden research for restoration
Knowledge of ecological baselines is more vital than ever as natural resource managers face
challenges wrought by intensified land-use change, pollution, invasive species, wildfires, and cli-
mate change [76]. Middens provide a record of how communities responded to past distur-
bances, which can contextualize restoration goals by revealing the historical range of variability
[77] and the pace and extent of major transition states [78]. Further, traits or species identified
from the midden record that conferred community resilience in the past can inform restoration
practices. For example, when reseeding after wildfires, community assembly dynamics gleaned
from middens can indicate the optimal order in which species would be added to facilitate recov-
ery and increase resistance to further disturbances. Migrational histories at the species or haplo-
type level could also address questions about extirpated populations and inform strategies for
translocating species into emerging bioclimatic spaces with global change. For example, the in-
tentional introduction of bighorn sheep (Ovis canadensis) to Tiburón Island in the Gulf of California
was long regarded as a case of transplanting an alien species into a previously unoccupied eco-
system. However, aDNA analysis of ~1550-year-old bighorn dung matched a haplotype from
southwest Arizona and southern California, indicating the extant population on Tiburón Island is
an example of unintentional rewilding [79]. Similarly, middens from the northern Atacama identi-
fied ‘pluvial relict’ populations of large candelabra cacti (Browningia candelaris), which are now
dwindling in response to climate change [80]. Identifying factors driving local extinctions and re-
covery from disturbance are major questions spanning basic and applied sciences, and even
the most fundamental information extracted from middens (patterns of species arrivals) can
take on new life in guiding natural resource management.

The future of midden research
To fully leverage the potential of middens, new studies are needed that explicitly align
paleorecords with neoecological and evolutionary perspectives. Such efforts should include a
comprehensive gap analysis of modern ecological data and existing midden data to identify op-
portunities for collaboration across disciplinary and geographic boundaries. Collaborative studies
mining existing midden data or proposing new field campaigns to expand collections could
target:

(i) Neoecological and evolutionary theories requiring spatially or temporally resolved data or in-
volving comparisons across diverse taxonomic groups (e.g., meta-community dynamics
[81], diversity–stability relationships [82], molecular phylogeography [83,84]).
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(ii) Geographic areas where a historical perspective could provide context for understanding
modern states. For example, coordinated midden studies and neoecological experiments
across transition zones or in different arid regions are needed to characterize disruptive ver-
sus stabilizing forces important to management in the Anthropocene. Spatial models that
predict the availability of different aged middens based on climate and landscape features
[85] can help design coordinated field studies based on the likely availability of relevant
middens.

(iii) Major components of biodiversity that have been well-studied in modern systems but
understudied in middens. Comparing species’ traits, especially at the genetic level, across
timescales can provide evidence of eco-evolutionary processes determining species’ resil-
ience and adaptive potential to ongoing environmental change. Although existing midden
data could be used for such studies, new collections will likely be needed to target taxa of
interest and to explicitly test hypotheses generated from molecular and experimental studies
in modern systems.

As new field campaigns take shape, there is a pressing need to ensure standardized research
methodologies. Past midden collections and processing were done primarily by individual
researchers for specific projects focused on a subset of midden materials. Standardizing
field and laboratory protocols is needed to preserve knowledge generated over decades of
midden research and improve the ability to design studies that compare across midden series,
regions, and taxa. To facilitate this process, we developed a midden processing guide that can
be refined and updated with new developments in the field [86]. Along with a basic suite of field
data, midden macrofossil measurements, and processing recommendations, preservation of
aDNA from middens and expansion of reference DNA libraries are of particular interest as
these data can help refine and streamline species identifications and facilitate genomic studies.
A more comprehensive calibration of plant and animal assemblages preserved in middens,
including detailed studies comparing modern midden assemblages with the diversity of living
organisms (e.g., [23]), as well as data standards and networks for analyzing diverse midden
materials are also needed to integrate studies across midden series and data types. Ultimately,
standardizing protocols can ensure that researchers are able to exploit the midden records’ full
potential.

Establishing regional depositories for midden materials will be crucial to the long-term curation
and accessibility of these irreplaceable resources. Most previously collected middens are housed
at individual institutions (Appendix B in the supplemental information online) where they are at risk
of being lost or discarded as researchers retire. Middens could be housed in existing natural his-
tory museums or contemporary biodiversity collections. However, specialized depositories are
preferable given the unique nature of these collections, which span contemporary and paleoeco-
logical domains, the need for climate- and pest-controlled environments, and the risk of contam-
ination with modern DNA if housed with contemporary specimens. We recognize that
establishing midden depositories requires coordination across regions and stable funding
sources and that different countries and institutions will likely have different data management,
preservation, access, and use policies.

A similar coordinated approach is needed to increase the accessibility of midden data and ensure
its compatibility and interoperability with other paleo and neoecological data. In North America,
the United States Geological Survey (USGS) North American Packrat Midden Database
(https://geochange.er.usgs.gov/midden/) will soon be phased out, with retirement of its principal
architects. Records from this database could be incorporated into the global, multiproxy
NEOTOMA Paleoecology Database (https://www.neotomadb.org/ [87]).
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Expanding midden research globally is a key goal moving forward. Herbivore middens have been
collected and studied in Africa since the 1950s [88], in the Middle East since the 1990s [89], and
in Australia since the 1980s [90]. The unique environmental histories and biological and cultural
settings in these regions could yield new insights into biological responses to environmental
change. For example, Australia boasts the world’s highest extinction rate for terrestrial mammals
in themodern era [91]. Prime examples are stick-nest rats (Leporillus; Figure S2), for which former
ranges can only be described from historical records, bone deposits, and middens. Approxi-
mately 125 middens have been dated and analyzed [90], with only one detailed series spanning
the Pleistocene–Holocene transition [92]. Expanded collection and analysis of Australianmiddens
could elucidate the impacts of past, recent, and future faunal extinctions on vegetation and ar-
thropod dynamics. Midden builders in Africa and the Middle East include hyraxes (Procavia
capensis) and dassie rats (Petromus typicus; Figure S2), the latter endemic to the Namib Desert.
The abundant plant and arthropod macrofossils in dassie rat middens [93] remain unexploited by
researchers, offering untapped potential for understanding late Quaternary ecological dynamics
in the Namib. Although plant macrofossils are rare, pollen assemblages in hyrax middens
[94,95] document early human impacts and local landscape degradation [89,96]. Additionally,
feces from these middens could expand comparative studies of climate impacts on body size,
diet, and microbiomes of midden builders. Collectively, the global distribution of midden records
presents a range of late Quaternary climatic and vegetation histories to test ecological and evo-
lutionary theory, from the dynamic arid and semi-arid ecosystems in western North America to
the stable Australian drylands. The vast arid lands in Central Asia, which harbor middens made
by mountain mole (Alticola [97]) and perhaps other animals, remain an unexplored midden
frontier.

Concluding remarks
Middens are responsible for much of what is known about biotic responses to late Quaternary en-
vironmental changes in arid ecosystems in the Americas (Boxes 1–3) and this work has provided
important historical context for neoecological and evolutionary studies. Yet, global change is al-
ready compromising comprehensive studies that rely on middens to understand the ecological
history of arid ecosystems. Both middens and their contemporary surroundings are important
end points for studying past and ongoing ecological change. However, these finite resources
are susceptible to accelerating losses from land-use conversion, mineral resource extraction, bi-
ological invasions, increased wildfire frequency, and climate change. Identifying and protecting
vulnerable middens and surrounding ecological sites is paramount.

Despite the importance of middens to research in global change biology, the publication rate for
midden-based studies has waned over time (Figure S1) as researchers have retired or left the
field. In the Americas, past midden research was loosely coordinated and carried out by a few re-
searchers working independently in different regions to reconstruct paleoclimate and local vege-
tation histories. This emphasis reflects previous funding priorities and more focused training of
midden researchers in geosciences and physical geography compared with ecology and evolu-
tionary biology. However, many of the driving questions in global change biology are inherently
interdisciplinary (see Outstanding questions). Multi-investigator teams that explicitly integrate pa-
leoecology withmodern experimental studies are ideal for addressing these questions. In addition
to revitalizing midden research, integrating diverse perspectives enhances understanding of
mechanisms underlying organismal to ecosystem-level responses to past, present, and future
environmental changes (Figure 1). An emerging ‘community of practice’ of paleoecologists,
neoecologists, and evolutionary biologists focused on collaboration, integrated science, and
macroscale approaches can tackle the fundamental questions articulated in this review and iden-
tify other research priorities for the future.

Outstanding questions
How do eco-evolutionary processes
shape genomic evolution and con-
vergence or conservatism in species’
responses to their environment across
space and time? While the midden
record is too recent to capture major
speciation events, molecular evolutionary
responses spurred by climate change
may be tracked in selected taxa and
lineages. Integrating modern and
historical (from aDNA) phylogenies with
evidence of functional diversity and niche
evolution in the midden record may
further identify long-term processes
related to niche convergence, diver-
gence, and conservatism.

In what contexts do genetic or
phenotypic changes facilitate ecological
stability in species distributions, com-
munity composition, and ecosystem
function? To address this question, we
recommend expanded field campaigns
that collect middens from different arid
regions, coupled with more in-depth
organismal studies that leverage
advanced technology to quantify genetic
and phenotypic changes, and modeling
approaches informed by neoecological
theory and experiments.

What are the timescales, drivers, and
consequences of synchronous and
asynchronous responses to environ-
mental change? How do these patterns
vary across taxonomic and functional
groups and what traits underlie these
differences? Understanding mecha-
nisms driving spatial synchrony of
species responses could inform models
of community assembly and ecosystem
stability, with further implications for the
conservation of contemporary bio-
diversity and management of invasive
species.

What are the stabilizing forces in arid
ecosystems and how might they
operate in anthropogenic landscapes
that are experiencing rapid climate
change coupled with altered
biogeochemical cycles and increased
land use? Identifying characteristics that
facilitate ecosystem stability despite
gradual or abrupt environmental change
could directly inform conservation and
restoration of human-impacted systems
in the future.
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