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Abstract—Coded aperture imaging has emerged as a solution
to enhance light sensitivity and enable imaging in challenging
conditions. However, the computational expense of image recon-
struction poses limitations in processing efficiency. To address
this, we propose a direct classification method using convolutional
neural networks. By leveraging raw coded measurements, our
approach eliminates the need for explicit image reconstruction,
reducing computational overhead. We evaluate the effectiveness
of this approach compared to traditional methods on the MNIST
and CIFAR10 datasets. Our results demonstrate that direct
image classification using raw coded measurements achieves
comparable performance to traditional methods while reducing
computational overhead and enabling real-time processing. These
findings highlight the potential of machine learning in enhancing
the decoding process and improving the overall performance of
coded aperture imaging systems.

Index Terms—coded aperture, signal processing, classification,
deep learning

I. INTRODUCTION

Digital image acquisition has become increasingly more com-
mon and prevalent in our everyday lives. As the technology
used to record these images becomes more complex and
sophisticated, the need to develop algorithms to process this
information becomes equally important. Although the preci-
sion of recording devices increases, computational expense
remains a significant drawback in imaging applications. These
algorithms often demand extensive processing time and in-
creased resource requirements like memory and storage. Real-
time processing, crucial for immediate feedback or decision-
making, may not be achievable with computationally expen-
sive algorithms.

Coded aperture (CA) imaging originated from the need to
enhance the amount of light reaching a detector in an imaging
system while maintaining resolution. In particular, CA was
developed to meet the needs of high-energy imaging where
traditional mirror and lens-based systems were not feasible.
This technology has found widespread applications in diverse
fields such as astronomy, remote sensing, surveillance sys-
tems, and biomedical imaging [1]–[4]. Typically, the radiation
from the source casts a shadow of an object on the binary
aperture mask. This mask is composed of a pattern of openings
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which allows a large fraction of photons to pass through
to a position-sensitive detector, thereby encoding the spatial
information contained in the source. Given a source signal
image S ∈ Rn×n and an aperture mask A ∈ {0, 1}n×n, a CA
imaging system encodes the source image, yielding D. The
observed image D would be reconstructed to form the original
source image S for further classification (see Figure 1). This
is common practice in medical imaging [4]–[6].

To overcome the limitations of multi-stage processing and
computational overhead in CA image classification, we pro-
pose classifying the raw encoded image D using a convo-
lutional neural network (CNN). This eliminates the need for
explicit image reconstruction. We evaluate the effectiveness of
our proposed approach by comparing it to conventional meth-
ods that require image reconstruction before classification.

The paper is organized as follows: In Section II, we describe
the problem statement and existing work. In Section III, we
present our approaches for the data acquisition and deep learn-
ing architectures used. In section Section IV, we present the
proposed approaches and describe our results and conclusion
in Section V and Section VI respectively.

II. PROBLEM FORMULATION

Seminal work in CA imaging encompasses the development
of Modified Uniformly Redundant Arrays (MURAs) [8].
MURAs offer improved decoding capabilities and enhanced
image reconstruction. They are mathematically designed to in-
crease the redundancy of the coded aperture pattern, allowing
for better noise suppression, increased imaging resolution, and
more accurate scene reconstruction from the measurements
obtained by the detector array. In our investigation, we will
specifically concentrate on the study of images encoded with
MURA.

The CA imaging system can be expressed as:

D = (S ∗A) +B,

where A is the coded aperture, S is the source signal,
B is background noise, D is the observed image, and ∗
denotes the convolution operator (see [8]). Note, we utilize the
convolutional theorem to perform convolution computations
in this work [9]. An example of the CA encoding process is
shown in Figure 2.
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Fig. 1. Basic steps involved in coded aperture imaging. Figure is adapted from [7].

The coded aperture A is a binary, square pattern with prime
integer side lengths which are designed so that if one observed
D, then S could be reconstructed as

S̃ = D ∗G,

for some complementary mask pattern G or using an appro-
priate decoding algorithm. The MURA mask patterns and their
complementary decoder are designed such that A ∗G ≈ δ,
where δ is the Kronecker-delta function, providing successful
reconstructions.

However, in the context of inference tasks like classi-
fication, segmentation, or detection, the conventional two-
step process involving image reconstruction followed by task-
solving is computationally inefficient [10].

Related Work. In conventional coded aperture imaging, the
decoding process for reconstructing the scene content from
captured images has relied on sophisticated mathematical
algorithms and computational techniques such as Maximum
Entropy Method (MEM) [11], [12], wavelet-based algorithms
[13], [14], and convolutional neural networks [15].

Traditional methods for classifying coded aperture images
typically involve a two-step process - 1. Image reconstruction
followed by 2. Subsequent image classification [7]. This pro-
cess requires computationally expensive image reconstructions
before applying classification algorithms. Such a sequential
approach can be time-consuming and may introduce potential
errors or artifacts during the reconstruction process.

Fig. 2. Example of coded observation. The source signal (S), the aperture
(A) and the resulting coded aperture image (D).

The decoding mask pattern plays a crucial role in image
reconstruction in CA imaging systems. In particular, the
decoder array G must be chosen in a way such that A ∗G ≈ δ
[7].

With the emergence of adversarial attacks, it is possible
for an attacker to attempt to manipulate the decoding mask
pattern by introducing subtle modifications [16], [17]. These
modifications to the decoding mask could be carefully de-
signed to deceive a reconstruction algorithm and generate a
reconstructed image that misrepresents the original scene and
thus affects classification. Therefore, it is crucial to explore
direct classification methods in order to comprehend how
vulnerabilities in CA can be addressed and overcome.

To the best of our knowledge, the specific topic of direct
image classification from CA measurements has not been
extensively investigated in the existing literature. Similar work
has been done in the area of compressed sensing [3], [18]–
[20]. However, the focus of this paper is on CA imaging.
While some papers have explored deep learning and optimiza-
tion techniques to optimize the sensing matrix of a single pixel
camera [21] and classify spectral imaging from optimal coded
apertures [3], the direct classification of coded images remains
an under-explored area of research.

III. PROPOSED METHOD

In this section, we introduce two methods for classifying
coded images. In addition, we also describe the architecture
used in the next section. The two proposed methods begin
with the CA image D. However, Method II reconstructs the
coded images before classification.

Method I: We directly classify raw coded measurements D.

Method II: We reconstruct the images before classification.
In practice, the decoder may be unknown so we decode our
coded observations using correlation analysis [7], [8]. For
the purpose of this study, we have access to the true decoder,
thus we use the exact decoder for correlation analysis. Note,
there are alternative methods for image reconstruction such
as [11] that were not considered due to high computational
cost.
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Fig. 3. Convolutional Neural Network (CNN) for classifying coded aperture
images. The input to the the network is either a single channel grayscale
reconstructed image or single channel coded image.

Architecture. We employ a convolutional neural network
(CNN) that takes three-dimensional arrays as inputs. In this
context, the arrays represent two-dimensional images, with
the first dimension denoting the number of channels in each
image. The neural network, illustrated in Figure 3, comprises
two convolutional layers, each followed by a maxpool layer,
and concludes with four fully connected layers. The Rectified
Linear Unit (ReLu) activation function [22] is applied after
each layer.

IV. NUMERICAL EXPERIMENTS

We evaluate our method on two classification benchmark
datasets - 1. MNIST and 2. CIFAR10.

Datasets. The datasets used in our experiments include 1.
MNIST, which is comprised of 70, 000 images of handwritten
digits from 0 to 9 [23] and (2) grayscale CIFAR10 dataset,
which contains 60, 000 images, is comprised of 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck [24]. The datasets were partitioned 80% as training,
10% for validation, and 10% for testing. The encoded data D
is generated by resizing the grayscale images to 23× 23 and
applying the encoding process outlined in Section II. Zero-
mean additive Gaussian noise was added to the encoded data
to have signal-to-noise ratios (SNR) in decibels (dB) of 1dB,
5dB, 10dB, and noiseless.

As a baseline, the classification network was initially trained
on the original MNIST images as well as the original CI-
FAR10 grayscale images resized to a dimension of 23 × 23.
The accuracy of the original MNIST model was measured
at 99.87%, while the original grayscale CIFAR10 model
achieved an accuracy of 88.18%. In order to compare with
Method II, the “Original” model will be employed to classify
the reconstructed data.

For all experiments, the training inputs were divided into
batches, each consisting of 100 images and label pairs. During
training, the predicted label was compared to the target label
using the cross-entropy loss function [25]. To update the
weights at each iteration, we employed the Adam optimizer

[26] with a learning rate of 0.001. The network was trained
for a total of 50 epochs.

V. RESULTS

We present results from our numerical experiments to compare
the accuracy between Methods I and II where the inputs for
Method I are coded images and the input for Method II are
reconstructed images. All cases consider data with varying
noise levels: noiseless, 10dB, 5dB, and 1dB. To ensure a fair
comparison between the two methods, we use grayscale data.

Experiment 1: MNIST Dataset. As a preliminary step, we
applied the dimensionality reduction technique t-SNE [27]
to explore the relationships and clusters within the encoded
MNIST data. Similar to the original MNIST data (see [27]–
[29]), the visualization of the encoded data in low-dimensional
space are relatively well-separated, suggesting that distinct
features in the coded data can facilitate classification.

Table I presents the accuracies achieved by a single model
trained on a specific noise level and subsequently tested on
all levels of noise. From the classification accuracies, we see
that training on noisy data tends to do best when testing on
all noise levels whereas the classification accuracy of a model
trained on noiseless encoded data decreases as noise increases.

Overall, the classification accuracy of models trained with
encoded data do quite well, with the lowest accuracy being
82.73%. This shows that there is potential benefit to perform
a direct classification especially when the reconstruction is
unknown and computationally expensive to perform.

Experiment 2: CIFAR10 Dataset. The t-SNE visualization of
both the original and encoded grayscale CIFAR10 data did not
exhibit distinct separability, and as a result, it has been omitted
from the paper. The absence of distinct separability implies
that the classification problem may pose a greater challenge.

Table II presents the classification accuracy for Methods I
and II, considering training on various noise levels and testing
across all noise levels. It is important to note that the accuracy

Fig. 4. t-Distributed Stochastic Neighbor Embedding Visualization of en-
coded MNIST Dataset. Each cluster has been labeled with the corresponding
digit.
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TABLE I
MNIST DATASET CLASSIFICATION ACCURACY USING ENCODED DATA (METHOD I) AND RECONSTRUCTED DATA

(METHOD II). ROWS INDICATE THE TRAINING NOISE LEVEL, AND COLUMNS INDICATE THE TESTING NOISE LEVEL.

Testing Data

Noiseless 10dB 5dB 1dB

Training data I II I II I II I II

Noiseless 97.53 99.29 96.53 98.90 93.81 97.14 82.73 88.80

10dB 97.94 99.09 97.61 99.03 95.93 98.60 88.17 95.77

5dB 97.77 99.09 97.44 99.14 96.44 98.93 91.91 97.17

1dB 96.70 98.80 96.54 98.84 95.91 98.63 93.86 97.94

Original - 96.36 - 86.86 - 64.04 - 36.90

TABLE II
GRAYSCALE CIFAR10 DATASET CLASSIFICATION ACCURACY USING ENCODED DATA (METHOD I) AND RECONSTRUCTED
DATA (METHOD II). ROWS INDICATE THE TRAINING NOISE LEVEL, AND COLUMNS INDICATE THE TESTING NOISE LEVEL.

Testing Data

Noiseless 10dB 5dB 1dB

Training data I II I II I II I II

Noiseless 40.30 55.78 27.72 36.18 15.38 17.48 11.93 11.65

10dB 37.97 50.25 36.55 48.78 33.33 38.85 26.37 21.77

5dB 36.33 44.00 35.97 43.25 34.22 40.98 30.65 35.52

1dB 33.25 40.38 33.07 40.17 33.05 38.67 31.75 34.87

Original - 54.43 - 34.75 - 17.75 - 11.90

for the CIFAR10 dataset is inherently lower due to training
with grayscale images instead of color images. Similar to
Experiment 1, training on noisy data tends to yield the best
results when testing across all noise levels.

Notably, there is a larger performance accuracy gap between
Methods I and II. However, it is worth mentioning that
no reconstruction was performed for Method I. In instances
where the model was tested on higher noise levels, there
were occasions where Method I outperformed Method II.
This finding suggests that as image quality decreases, direct
classification offers greater benefits.

VI. CONCLUSIONS

In this paper, we implemented two techniques for classifying
images within a coded aperture model. The first method,
referred to as Method I, is a direct CNN-based classification
approach that maps the raw noisy encoded image directly to its

corresponding label. The second method, Method II, is used
as comparison with Method I and follows conventional coded
aperture techniques by first reconstructing the observed image
before performing classification.

Numerical experiments reveal that while Method II often
yields better classification results compared to using encoded
images (Method I), it is not directly applicable when the
decoder G is unavailable.

Method I, on the other hand, provides reasonable clas-
sification results without the explicit need for recon-
structing the encoded image or knowledge of the en-
coding and decoding arrays. These findings suggest that
employing direct classification for coded aperture images
has the potential to achieve higher classification accu-
racy, particularly when combined with a more advanced
deep learning architecture. The source code is available at
github.com/jornelasmunoz/coded-aperture.

2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

364
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 07,2024 at 19:59:11 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] J. Chen, Y. Wang, and H. Wu, “A coded aperture compressive imaging
array and its visual detection and tracking algorithms for surveillance
systems,” Sensors (Basel, Switzerland), vol. 12, pp. 14 397 – 14 415,
2012.

[2] E. Caroli, J. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino,
“Coded aperture imaging in x-and γ-ray astronomy,” Space Science
Reviews, vol. 45, pp. 349–403, 1987.

[3] A. Ramirez, H. Arguello, G. R. Arce, and B. M. Sadler, “Spectral image
classification from optimal coded-aperture compressive measurements,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 6,
pp. 3299–3309, 2013.

[4] R. Accorsi, F. Gasparini, and R. C. Lanza, “Optimal coded
aperture patterns for improved snr in nuclear medicine imaging,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 474, no. 3, pp. 273–284, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168900201013262

[5] S. Meikle, R. Fulton, S. Eberl, M. Dahlbom, K.-P. Wong, and M. Ful-
ham, “An investigation of coded aperture imaging for small animal
spect,” IEEE Transactions on Nuclear Science, vol. 48, no. 3, pp. 816–
821, 2001.

[6] R. Accorsi, F. Gasparini, and R. Lanza, “A coded aperture for high-
resolution nuclear medicine planar imaging with a conventional anger
camera: experimental results,” IEEE Transactions on Nuclear Science,
vol. 48, no. 6, pp. 2411–2417, 2001.

[7] E. E. Fenimore and T. M. Cannon, “Coded aperture
imaging with uniformly redundant arrays,” Appl. Opt.,
vol. 17, no. 3, pp. 337–347, Feb 1978. [Online]. Available:
https://opg.optica.org/ao/abstract.cfm?URI=ao-17-3-337

[8] S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for
coded aperture imaging,” Applied optics, vol. 28, no. 20, pp. 4344–4352,
1989.

[9] J. M. Blackledge, “Chapter 2 - 2d fourier theory,” in Digital Image
Processing, ser. Woodhead Publishing Series in Electronic and Optical
Materials, J. M. Blackledge, Ed. Woodhead Publishing, 2005, pp.
30–49.

[10] Z. W. Wang, V. Vineet, F. Pittaluga, S. N. Sinha, O. Cossairt, and
S. Bing Kang, “Privacy-preserving action recognition using coded aper-
ture videos,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[11] T. Ponman, “Maximum entropy methods,” Nuclear Instruments
and Methods in Physics Research, vol. 221, no. 1, pp.
72–76, 1984, proceedings of the International Workshop
on X- and γ-Ray Imaging Techniques. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0167508784901820

[12] R. Willingale, M. Sims, and M. Turner, “Advanced deconvolution tech-
niques for coded aperture imaging,” Nuclear Instruments and Methods
in Physics Research, vol. 221, no. 1, pp. 60–66, 1984.

[13] R. F. Marcia and R. M. Willett, “Compressive coded aperture superres-
olution image reconstruction,” in 2008 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2008, pp. 833–836.

[14] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE Journal of selected topics in signal processing,
vol. 1, no. 4, pp. 586–597, 2007.

[15] R. Zhang, P. Gong, X. Tang, P. Wang, C. Zhou, X. Zhu, L. Gao,
D. Liang, and Z. Wang, “Reconstruction method for gamma-ray coded-
aperture imaging based on convolutional neural network,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 934, pp. 41–
51, 2019.

[16] S. Schrodi, T. Saikia, and T. Brox, “Towards understanding adversarial
robustness of optical flow networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2022, pp. 8916–8924.

[17] A. Boloor, T. Wu, P. Naughton, A. Chakrabarti, X. Zhang, and
Y. Vorobeychik, “Can optical trojans assist adversarial perturbations?”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops, October 2021, pp. 122–131.

[18] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk,
“Signal processing with compressive measurements,” IEEE Journal of
Selected Topics in Signal Processing, vol. 4, no. 2, pp. 445–460, 2010.

[19] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis et al.,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[20] R. Calderbank and S. Jafarpour, “Finding needles in compressed
haystacks,” in 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2012, pp. 3441–3444.

[21] J. Bacca, L. Galvis, and H. Arguello, “Coupled deep learning coded
aperture design for compressive image classification,” Opt. Express,
vol. 28, no. 6, pp. 8528–8540, Mar 2020. [Online]. Available:
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-6-8528

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[23] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[24] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[25] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[28] Y. Pei and L. Ye, “Cluster analysis of mnist data set,” in Journal of
Physics: Conference Series, vol. 2181, no. 1. IOP Publishing, 2022,
p. 012035.

[29] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 478–487.
[Online]. Available: https://proceedings.mlr.press/v48/xieb16.html

2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

365
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 07,2024 at 19:59:11 UTC from IEEE Xplore.  Restrictions apply. 


