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ABSTRACT

This paper investigates the application of the £, quasi-
norm, where 0 < p < 1, in contexts characterized by
photon-limited signals such as medical imaging and night
vision. In these environments, low-photon count images
have typically been modeled using Poisson statistics. In
related algorithms, the /1 norm is commonly employed as
a regularization method to promotes sparsity in the recon-
struction. However, recent research suggests that using the
£, quasi-norm may yield lower error results. In this paper,
we investigate the use of negative binomial statistics, which
are more general models than Poisson models, in conjunc-
tion with the £, quasi-norm for recovering sparse signals in
low-photon count imaging settings.

Index Terms— Negative binomial distribution, low-
count imaging, nonconvex optimization, £,, quasi-norm.

1. INTRODUCTION

Photon-limited signal processing is integral to many fields, in-
cluding medical imaging [1], night vision [2], epidemiology
[3, 4], and network traffic analysis [5, 6]. The Poisson model
is well-established for reconstructing discrete low-photon sig-
nals, while the negative binomial model has primarily been
used in applications such as matrix factorization [7] and data
regression [8]. Recently, researchers have begun extending
the negative binomial model to reconstruct low-photon sig-
nals [9].

The negative binomial probability mass function is given
by

Pulrs) = ("1 - ays

which can be interpreted as a distribution that models y suc-
cessful events occurring in a sequence of independent and
identically distributed Bernoulli trials before the r-th failure
event, with each trial having a probability of failure 3. Here,
r is commonly referred to as the dispersion parameter. The
mean g is given by u = r(1 — 8)/8. As the negative bino-
mial distribution is a more general model, while the Poisson
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distribution is a special case [10, 11], it is anticipated that the
negative binomial model will yield lower error results than
the Poisson model in general scenarios.

The ¢ norm is widely used in both Poisson and negative
binomial models, along with the application of the total vari-
ation norm [12]. Recent research has explored the use of the
£, quasi-norm, where 0 < p < 1[13, 14, 15], and in partic-
ular in the Poisson model for the 1-D signal case [16], with
results indicating potential improvements over existing sta-
tistical models in signal processing. Consequently, this paper
aims to investigate the application of the ¢, quasi-norm within
the context of the negative binomial model.

2. PROBLEM FORMULATION

In the scenario where the observational data y are indepen-
dently and identically drawn from the negative binomial dis-
tribution, the observation model can be expressed as follows

y ~ NB(r, B).

Under the negative binomial assumption, the observation
model can be reformulated as

r
yZNNB (T’T+(Af*)i>7

where f* € R’} represents the signal or image of interest,
and A € R"*" denotes a mapping that linearly projects the
scene f* onto a set of measurements Af*. The expectation
on the detector, denoted as p, is equivalent to A f*, while the
actual observation is y € R’ (see Fig. 1). Consequently, the
probability of observing the data y is

Plls ):ﬁ(sz/i_1>(r+<f4f>i>r(ri@>i>yf @

i=1

It is clear that a higher probability corresponds to a
smaller discrepancy between the estimation f and the true
signal f*. Therefore, the maximum likelihood principle can
be used to optimize the probability of observing the vector y
in Eq.(1) by minimizing the corresponding negative binomial
log-likelihood function:

F(f)=>_(r+y)log(r+(Af)) —vilog((Af)). @)

=1
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Fig. 1. Example of observation model. (a) The true image f*. (b) The best observation we expect from detector. (c) Observed
measurement y,—3 drawn from a negative binomial (NB) distribution with dispersion parameter = 3. (d) Observed measure-
ment y,—g drawn from a NB distribution with » = 9. (e) Observed measurement 41909 drawn from a NB distribution with

r = 1000.

Detailed application of this method to the negative binomial
distribution can be found in [9].

We also exploit the structure of the signal to improve the
accuracy of recovery. In particular, our image is spase in some
space. Consequently, a regularization term, pen(f), is incor-
porated. This paper examines the application of the £,, quasi-
norm, where 0 < p < 1, leading to the following formulation
for the bounded negative binomial model used for sparse im-
age recovery:

fro=argmin  O(f) = F(f) + 7l fI]}
fern
subjectto 0 < f, 3)

where 7 > 0 is a regularization parameter that balances the
data-fidelity term F'(f) with the regularization term || f||5.

In a more general scenario, f may not be sparse but is
compressible in some orthonormal basis matrix W, such that
f = W0, where 0 is a sparse vector. The sparsity of f itself
can be viewed as a special case, where the orthonormal basis
matrix W is an identity matrix. Thus, a more generalized
version of our problem can be formulated as

0" = argmin  ®(0) = F(W0) + 705
0eR™
subjectto 0 < W6 @)

3. ALGORITHM

The optimization problem (3) can be solved by a sequence of
quadratic subproblems using the second-order Taylor series
around the current iterate f/. The derivatives of F(f) are
given by the following formulas:

Oty |
VE( =2 < A, <Af>z-> Ale

i <<r . &%) - (Ay}ﬁ) ciet

=1

VAF(f) = AT A,
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where ¢; is the ™ column of the m x m identity matrix.

We utilize the Barzilai-Borwein approach [17] to approxi-
mate the second derivative of F'(f) by a scalar multiple of the
identity matrix, denoted as V2F(f) ~ a1, where a; > 0is
a scalar to obtain the quadratic approximation

FI(f) = F(f) + (f = £)TVEF) + 2N - F13.

With f/ = W7, the sequence of quadratic subproblems is
thus given by

¢'t" = argmin  F/(W6) + 70"
OcR™
subjectto 0 < W4 (®)]
fj+1 = Weit!

Letting ¢ = f7 — O%VF( f7),the equivalent quadratic sub-
problems and corresponding iterations are given by

) 1 ) T
ZAREES i ~IWo —¢|3 + —1|0]1%
arg min 5| ¢’ llz + v 10117
subjectto 0 < W' t! (6)
fj+1 = Weit!

To solve (6), we employ the following technique. First, since
W is orthonormal, the objective function in (6) can be written
equivalently as

1 . T
=0 —-WTg|3+ —| 0|~ 7
5 q H2+ajH 15> )

which is separable in 6, meaning it can be minimized sepa-
rately into the scalar-valued problem

= arg min
0;€R

. 1 . T

+1 _ ARV _
0] 5(91 - (Wq¢)i)s+ Ojj\@lﬁ»
which can be accomplished using the Generalized Soft
Thresholding (GST) technique [18]. After obtaining all com-

ponents of 71, we compute W 6771 and threshold to ensure
that f7*1 is feasible.
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4. EXPERIMENTS

We conducted three separate experiments, each employing
different noise level and realizations. Our investigations were
directed towards the exploratino of different p values, the per-
formance comparison of £, quasi-norm and ¢; norm, and the
comparative evaluation of the Poisson and negative binomial
models when using the £, quasi-norm. The specific details of
the three experiments are as follows:

e Experiment 1: Exploration of optimal solutions in 2D
data, drawn from images corrupted by noise at various
levels following a negative binomial distribution.

* Experiment 2: Comparative analysis of the Poisson and
negative binomial models on 2D data extracted from im-
ages affected by noise at different levels following a nega-
tive binomial distribution.

» Experiment 3: Investigation of the performance of the ¢,
quasi-norm and ¢; norm on 2D data originating from im-
ages corrupted by noise at diverse levels following a nega-
tive binomial distribution.

All three experiments involved reconstructing a blurry, noisy

image (from the MATLAB Medical Imaging Toolbox) with

dimensions of 512 by 512 pixels. Three noise levels are pre-

sented for each experiment: » = 3, » = 9, and r = 1000,

where r corresponds to the dispersion parameter. Each ex-

periment was conducted 10 times, where the average of
these trials are presented.

In these experiments, our proposed method is compared
to three reference models: the Poisson model with an ¢; norm
[19], the Poisson model with an £, quasi-norm [20], and the
negative binomial model with an /; norm [9]. To measure the
disparity between the computed solution f and the true so-
lution f*, we employ the percentage root-mean-square error
(RMSE(%) = 100 % ||f — f*[|a/[1f*]2)

For the negative binomial models, the parameter r can be
estimated using several methodologies, such as the method-
of-moment [21] or the maximum quasi-likelihood methods
[22]. Furthermore, cross-validation techniques can be used
to estimate the dispersion parameter [23]. However, in our
experiments, we deliberately used the exact value of the pa-
rameter r to circumvent potential biases and errors that might
stem from the estimation of .

4.1. Experiment I: p-value exploration

In our first experiment, we examined 19 different p values,
ranging from 0.05 to 0.95 in increments of 0.05, using the
negative binomial model with the £, quasi-norm. These val-
ues were applied to three separate images. As anticipated,
a smaller dispersion parameter r resulted in noisier observa-
tions, leading to the highest RMSE values for the reconstruc-
tions with » = 3. Conversely, the lowest RMSEs correspond
to the case where r is highest, namely » = 1,000. We note
that the results are not monotonic as a function of p. This
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Fig. 2. Experiment I: RMSE of 2D data reconstruction us-
ing the negative binomial model with varying noisy level, i.e.,
r = 3,9, and 1, 000 for different p values. Note that the low-
est RMSE values generally occur around p = 0.5.

might be due to the nonconvexity of the problem and that the
global minima are not achieved. Note however that our re-
sults are consistent with the observations in [13], which sug-
gest that care must be employed when smaller of values of p
is used.

4.2. Experiment II: Comparison between Poisson and
negative binomial models with /,, quasi-norm

In our second experiment, we juxtaposed the results obtained
using the negative binomial and Poisson models at » = 3,9
and 1,000. Our findings indicate that for » = 3 and 9, the
negative binomial model consistently achieved lower RMSE
values than the Poisson model (see Figs. 3(a) and (b)). Inter-
estingly, we observed that as the value of r increased, the dis-
crepancy between the two models progressively diminished.
This observation is consistent with the theoretical understand-
ing that the Poisson distribution is a special case of the neg-
ative binomial distribution when the dispersion parameter r
tends towards infinity (see Fig. 3(c)).

4.3. Experiment III: Comparison between /,, quasi-norm
and /; norm

In our third experiment, we undertook a comparative study
between the £, quasi-norm and the ¢; norm across three dis-
tinct images. Our findings suggest that, at the p values that
yield the smallest RMSEs, the ¢, quasi-norm yields lower
RMSE values compared to the ¢; norm. However, it is note-
worthy that the RMSE values pertaining to the £, quasi-norm
consistently are lower than those of the ¢; norm. We also
observe that employing the £, quasi-norm narrows the gap
between the error between the negative binomial and Poisson
models (see Table 1 and Fig. 4).
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Fig. 3. Experiment II: RMSE of 2D data reconstructions
using the negative binomial (NB) and Poisson models under
various noise levels (e.g., for dispersion parameters r» = 3,9,
and 1,000). Note that for » = 3 and r = 9, the negative bino-
mial models produce lower RMSEs. For the large dispersion
parameter » = 1, 000, the observed data is similar to Poisson
measurements; consequently, the reconstruction RMSEs are
similar for both negative binomial and Poisson models.

5. CONCLUSION

We investigated the use of the £,, quasi-norm for signal recon-
struction where the measurements are drawn from a negative
binomial distribution. In this work, we contrasted the efficacy
of the £, quasi-norm with the conventional £; norm. In ad-
dition, we compared the reconstructions from using the neg-
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Fig. 4. Experiment III: 2D data drawn from a negative bi-
nomial distribution with » = 9. Note that the RMSE from
using the negative binomial model is lower than that from the
Poisson model when using an ¢; norm. Similarly, when ap-
plying the ¢, quasi-norm, the RMSE of the negative binomial
model is lower than the Poisson model. In both cases, the £,
quasi-norm delivers superior results to the ¢; norm.

Root-Mean-Square Error Table

r || NB(¢,) | Poisson(¢,) | NB(¢;)
3 || 20.84% 22.77% 25.07%
9 || 16.62% 17.55% 20.95%
1,000 || 12.53% 12.62% 17.28%

Table 1. Experiment III: Root-mean-square error (RMSE)
for three different dispersion parameters (r = 3,9, and
1,000) and three different approaches: negative binomial
model with an ¢, regularization (NB(¢,)), Poisson model
with an ¢, quasni-norm (Poisson(¢,,)), and negative binomial
model with an ¢; norm (NB(¢1)). The parameter p is chosen
for each approrach that results in the smallest RMSE value.

ative binomial and Poisson models. Our results show that the
negative binomial model consistently outperforms the Pois-
son model in terms of reconstruction accuracy. Interestingly,
in some instances, using a Poisson model with an ¢, quasi-
norm regularization term yields lower RMSE values than a
negative binomial model with an ¢; norm regularization term,
which suggests that the £, quasi-norm can help overcome
deficiencies in statistical models and improve reconstruction
outcomes.
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