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ABSTRACT

This study addresses the challenge of reconstructing sparse
signals, a frequent occurrence in the context of overdispersed
photon-limited imaging. While the noise behavior in such
imaging settings is typically modeled using a Poisson dis-
tribution, the negative binomial distribution is more suitable
in overdispersed scenarios where the noise variance exceeds
the signal mean. Knowledge of the maximum and minimum
signal intensity can be effectively utilized within the compu-
tational framework to enhance the accuracy of signal recon-
struction. In this paper, we use a gradient-based method for
sparse signal recovery that leverages a negative binomial dis-
tribution for noise modeling, enforces bound constraints to
adhere to upper and lower signal intensity thresholds, and em-
ploys a sparsity-promoting regularization term. The numeri-
cal experiments we present demonstrate that the incorporation
of these features significantly improves the reconstruction of
sparse signals from overdispersed measurements.

Index Terms— Negative binomial distribution, low-
count imaging, bounded sparse reconstruction, gradient-
based optimization.

1. INTRODUCTION

Applications involving low-count measurements are com-
monplace in a variety of fields ranging from medical imaging
[1, 2, 3] and astronomy [4, 5], to network traffic analysis
[6, 7] and epidemiology [8, 9]. Specifically in imaging, the
reconstruction of discrete, low-photon signals typically em-
ploys the Poisson process model [10]. Numerous methods
have been developed to address the ensuing reconstruction
problem [11, 12, 13, 14]. Nonetheless, the negative binomial
distribution serves as a more comprehensive model, encom-
passing the Poisson distribution as a special case [15, 16, 17].

The negative binomial probability mass function is ex-
pressed as

P(y|r,p) = (y " ; - 1> (1-p)"p",
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which can be interpreted as the probability of observing y suc-
cessful events within a sequence of independent and identi-
cally distributed Bernoulli trials, before the occurrence of the
" failure event, where each trial carries a failure probability
of p.

In this context, r is commonly recognized as the disper-
sion parameter. The mean, y, is defined as o = r(1 — p)/p
(see [18] for a detailed explanation), which in turn yields the
formula p = 7/(r + u). Note that

lim P(y|r,p) = - N,/”Ly7
rT—00 y

which corresponds to the probability mass function of a
Poisson-distributed random variable with mean .

2. PROBLEM FORMULATION

Within a low photon context, we model the observation y of
photons at the detector using the negative binomial assump-
tion: y ~ NB(r, p). Accordingly, for a vector of observations
1y, our model can be redefined as

ri
; ~ NB {7y, )
Y (T 7'1-+(Af*)¢>

where f* is the scene of interest and A is a mapping that
linearly projects the scene f* onto a set of expected measure-
ments A f*. Thus, the probability of observing the data y is

Pllf= ﬁ (Ti +?j/; ) 1) <7‘i+zj4f)i>m<7“i T(Q})z)y M

=1

Applying the maximum likelihood principle, we aim to max-
imize the probability of observing the vector y in (1), accom-
plished by minimizing the corresponding negative binomial
log-likelihood function:

m

F(f)=)_(ri+y)log(ri+(Af)) —yilog((Af)i)- ()

i=1

When additional structural information is available (e.g., spar-
sity), a regularization term pen(f) can be incorporated that
promotes sparsity in the reconstruction, such as the ¢; norm.
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(a) f* (b) YPoisson

(©) Y=o

e ————

(d) Yr=3

(e) Mask

Fig. 1. Example of observation model. (a) The true image f*. (b) Observed measurement ypeisson drawn from a Poisson
distribution. (c) Observed measurement 1,.—g drawn from a NB distribution with » = 9. (d) Another observed measurement
Yr=3 drawn from a negative binomial (NB) distribution with dispersion parameter r = 3. (e) Mask containing a priori structural

intensity bounds.

Furthermore, when the maximum and minimum values of the
signal intensity are known in regions of the signal, these struc-
tural priors can be integrated as bounds on the reconstructed
signal. This information leads to the following bounded neg-
ative binomial model [17] for sparse image recovery:

fr=argmin  O(f) = F(f) + 7 fllx
fER™
subjectto by, < f < by, (3)

where 7 > 0 is a regularization parameter that balances
the data-fidelity term F'(f) with the sparsity-promoting term
|If]]1. Note that this formulation is more specific than the
typical non-negativity bound f > 0. As such, the opti-
mization problem (3) is more difficult than one with only
non-negativity constraints. In this work, we describe a
gradient-based optimization approach for solving (3) that in-
cludes upper and lower bounds that model signal intensity
limits.

3. ALGORITHM

We address (3) by solving a sequence of quadratic subprob-
lems using the second-order Taylor series at the current iterate
f7. This is expressed as follows:

FI(f)= F(f))+(f = f)) ' VF(f)
+(f = )TVEE()(f ~ ).
To streamline this process, we make certain simplifying
assumptions. Firstly, we assume that the dispersion parame-
ters r; are constant, i.e., r; = r for a given scalar r, applicable

to all i. Second, the derivatives of F'(f) are given by the fol-
lowing formulas:

e Tty o Y .
VF“)‘§:<T+«Aﬁi <Af»>AT“

i@#@&w‘&%%ﬁ

=1

A,

V2F(f) = AT
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where e; represents the i column of the m x m identity ma-
trix. We utilize the Barzilai-Borwein criteria [19] to approxi-
mate the second derivative of F'(f) as a scalar multiple of the
identity matrix, i.e., V2F(f) =~ a;I, with a; > 0 as a par-
ticular scalar. Thirdly, we presume that f exhibits sparsity or
compressibility in some orthonormal basis W, meaning that
f = W0 for a certain sparse vector 6.

Letting ¢ = f7 — O%VF (f7), the quadratic subproblems
and corresonding iterates are then given by

. . 1 . T
67! = arg min §||W9—q]|\§+fH9||1
fcR™ a;

subjectto by < WO < by @)

fj+1 = Weitl

Following [20], this optimization problem can be solved us-
ing the corresponding Lagrangian dual problem, which we
describe next.

To apply gradient-based techinques for solving (4), we in-
troduce vectors u, v € R™ such that 8 = v — v with u,v > 0
so that the non-differentiable /; norm is now differentiable,
ie., |0]l; = 17 (u+ v). Therefore, (4) becomes

) . 1 .
(@0 = argmin S fu—v—¢ |3+ 17 (u+ )
u,veER™ 2 a5
subjectto 0 < u,v (®)]

0<W(u—v)—10g
0<by —W(u-—w).
The Lagrangian function corresponding to (5) is given by
1 ‘
C(U,’U, >\17 )‘27 AS) >\4) = 5”“’ —v—= q]”%
+ l]l—r(u +0) =M u— A\
Qj
=g (W(u—w) —br) = Aj (by = W(u—w)), (6

where A1, A2, A3, Ay € R} are the Lagrange multipliers. Dif-
ferentiating (6) with respect to u and v and setting both deriva-
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tives to zero yields the Lagrangian dual function

1, . T
G(A1, A3, M) = — §qu + A1 — 1+ W (A3 — )3
J

1 .
Az b = Abo + S le I, ™

which is independent of the variables u,v, and A5. Letting
Y=A — aij, we obtain the Lagrange dual problem

1 .
inimize =||¢’ WT s = A)||2 =N b+ A b
minimize Sl 7+ W (s = Al = Az br + As b
subjectto — 1<~y < 1, 0< g\, (8)
Qj aj

which can be solved by minimizing over 7, A3, A4 alternat-
ingly (see [20] for details).

4. EXPERIMENTS

We carried out three separate experiments featuring different
noise level realizations. The performance of both the Poisson
and negative binomial models was analyzed in light of simple
non-negativity constraints as well as general lower and upper
bound constraints. The specifics of the experiments are as
follows:

* Experiment I: 2D data drawn from a Poisson distribution.

* Experiment II: 2D data drawn from a negative binomial
distribution with dispersion parameter r = 9.

* Experiment III: 2D data drawn from a negative binomial
distribution with dispersion parameter r = 3.

In all three experiments, we reconstructed a blurry and
noisy image (from the Matlab Medical Imaging Toolbox) of
dimensions 512 x 512. Each experiment deal with distinct
noise levels: the noise in the first experiment is drawn from
a Poisson distribution, the second from a negative binomial
distribution with » = 3, and the third from a negative bino-
mial distribution with » = 9. For each experiment, we set
by = 0and by = max; ;{f;;}. Every experiment was con-
ducted ten times with ten different noise realizations, and
the average results are presented.

We compared our proposed method to the Poisson model
with non-negativity constraints [14], the Poisson model with
general lower and upper bounds [20], and the negative bino-
mial model with non-negativity constraints [21]. The per-
centage root-mean-square error (RMSE(%) = 100 - ||f —
F*l2/11f*1l2) served as a measure of the distance between
the computed solution f and the true solution f*. Each ex-
periment was limited to a maximum of 100 iterations, as no
significant improvements were observed beyond this point.
For the negative binomial models (both with non-negativity
constraints and general lower and upper bounds), the exact
value of r was used. However, this parameter can be es-
timated using method-of-moment methods [22], maximum
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Poisson
Reconstruction

Negative Binomial
Reconstruction

Non-negativity bounds

Lower and upper bounds

(c) RMSE = 7.40% (d) RMSE = 7.44%

Fig. 2. Results for Experiment I: 2D data drawn from a
Poisson distribution. (a) The Poisson reconstruction with
non-negativity bounds (RMSE = 14.6%). (b) The nega-
tive binomial (NB) reconstruction with non-negativity bounds
(RMSE = 15.2%). (¢) The Poisson reconstruction with lower
and upper bounds (RMSE = 7.40%). (d) The NB reconstruc-
tion with lower and upper bounds (RMSE = 7.44%).

quasi-likelihood methods [23], or cross-validation [24]. In
our experiments, to avoid error bias from estimating r, we
used the exact value of the parameter.

4.1. Experiment I (Poisson): 2D data drawn from a Pois-
son distribution

Notably, a Poisson distribution can also be interpreted as a
negative binomial distribution when r is significantly large
(r > 1). In these experiments, we assigned a dispersion pa-
rameter value of 7 = 103. Due to the fact that the r in our
experiment is not infinite, the Poisson model slightly outper-
forms the negative binomial model. However, this difference
diminishes as r increases. Interestingly, when bounds are in-
corporated within the maximum likelihood approach, the out-
comes between the Poisson and negative binomial models be-
come fairly comparable.

A key observation in this experiment was that the largest
gaps in reconstruction results emerged between methods us-
ing non-negativity constraints and those employing lower and
upper bounds. In other words, the advantage gained from
integrating lower and upper bounds into the reconstructions
lessened as the measurements grew noisier.
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Poisson
Reconstruction

Negative Binomial
Reconstruction

Non-negativity bounds

(b) RMSE = 20.9%

Lower and upper bounds

(¢) RMSE = 15.7%

(d) RMSE = 13.5%

Fig. 3. Results for Experiment II: 2D data drawn from
a negative binomial distribution with » = 9. Here, we
present the log error plot of the difference between ground
truth f* and the reconstruction f (given component-wise by
log(]f — f*|+1)). (a) The Poisson reconstruction error using
non-negativity constraints (RMSE = 23.3%). (b) The nega-
tive binomial (NB) reconstruction error using non-negativity
constraints (RMSE = 20.9%). (c) The Poisson reconstruction
error using lower and upper bounds (RMSE = 15.7%). (d)
The NB reconstruction error using lower and upper bounds
(RMSE = 13.5%.)

4.2. Experiment II: 2D data drawn from a negative bino-
mial distribution with dispersion parameter » = 9

This experiment mirrors Experiment I, with the key dif-
ference being that the observations here are drawn from a
negative binomial distribution with a marginally smaller dis-
persion parameter, 7 = 9. Due to the noisier measurement
data compared to Experiment I, we anticipate higher RMSEs
for all four models. We underscore the significant disparity
and improvement gained from implementing lower and upper
bounds over just non-negativity constraints, by presenting the
log of the error in the reconstruction.

4.3. Experiment III: 2D data drawn from a negative bi-
nomial distribution with dispersion parameter » = 3

In this third experiment, we employ the observation that are
drawn from a negative binomial distribution with a disper-
sion parameter 7 = 3. The measurements for this experiment
are the noisiest of all. We note that the negative binomial re-
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Poisson
Reconstruction

Negative Binomial
Reconstruction

Non-negativity bounds

(b) RMSE = 24.9%

Lower and upper bounds

(c) RMSE =23.8%

(d) RMSE = 20.6%

Fig. 4. Results of Experiment III: 2D data drawn from
a negative binomial distribution with » = 3. (a) The
Poisson reconstruction with non-negativity bounds (RMSE
= 27.4%). (b) The negative binomial (NB) reconstruction
with non-negativity bounds (RMSE = 24.9%). (c) The Pois-
son reconstruction with lower and upper bounds (RMSE =
23.8%). (d) The NB reconstruction with lower and upper
bounds (RMSE = 20.6%).

constructions yield smaller RMSE’s than Poisson reconstruc-
tions. Significant improvements are observed when we use a
negative binomial model and, even more prominently, when
we incorporate bounds on the reconstructions (see Fig. 4).

5. CONCLUSION

Low-count signal reconstruction is prevalent in many real-
world applications. In this work, we integrate general lower
and upper bounds into our maximum likelihood methodol-
ogy to reconstruct low-photon count signals. Specifically, we
focus on the negative binomial model with an orthonormal
basis penalty and propose a sequential quadratic optimization
method to solve the sparse negative binomial log-likelihood
problem. Through a series of three numerical experiments,
we tested four models, with the measurements drawn from
negative binomial and Poisson distributions. Our results show
that the negative binomial model and the incorporation of
lower and upper bounds on the reconstructions can signifi-
cantly improve the accuracy of the reconstructions. This im-
provement becomes more pronounced as the level of noise in
the measurements increases.
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