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ABSTRACT

Structural variants (SVs) are rearrangements of regions in an
individual’s genome signal. SVs are an important source of
genetic diversity and disease in humans and other mammalian
species. The SV detection process is susceptible to sequenc-
ing and mapping errors, especially when the average num-
ber of reads supporting each variant is low (i.e. low-coverage
settings), which leads to high false-positive rates. Besides
their rarity in the human genome, they are shared between
related individuals. Thus, it’s advantageous to devise algo-
rithms that focus on close relatives. In this paper, we de-
velop a constrained-optimization method to detect germline
SVs in genetic signals by considering multiple related peo-
ple. First, we exploit familial relationships by considering a
biologically realistic scenario of three generations of related
individuals (a grandparent, a parent, and a child). Second,
we pose the problem as a constrained optimization problem
regularized by a sparsity-promoting penalty. Our framework
demonstrates improvements in predicting SVs in related indi-
viduals and uncovering true SVs from false positives on both
simulated and real genetic signals from the 1000 Genomes
Project with low coverage. Further, our block-coordinate de-
scent approach produces results with equal accuracy to the 3D
projections of the solution, demonstrating feasibility for more
complex and higher-dimensional pedigrees.

Index Terms— Structural variants, nonconvex optimiza-
tion, next- generation sequencing data, genetic signals.

1. INTRODUCTION

Structural variants (SVs) are a common type of genomics
variation and it appears in a form of rearrangements of some
of the DNA regions. SVs include inversions, translocations,
insertions, and/or deletions [1]. Although SVs are rare, they
have increasing importance; SV has a substantial impact on
gene expression and it resulting in altered phenotypes and
disease. In humans, they have been associated with the de-
velopment of some hereditary diseases such as cancer [2].

This work is partly supported by National Science Foundation grants
DMS 1840265 and IIS 1741490.

Therefore, detecting SVs is beneficial for diagnostics and un-
derstanding cancer etiology.

The advent of next-generation sequencing (NGS) makes
detecting variation amenable because of its high-throughput,
low cost, and base-pair resolution [3], [4]. However, even
with those modern DNA sequencing technologies, the SV de-
tection process is still complicated, due to alignment errors
- a step where DNA fragments from a candidate genome are
mapped to high-quality reference genome. Due to this, most
detection methods and algorithms have suffered from higher
false-positive rates, especially when the sequencing coverage
– the average number of reads supporting each variant – is low
[5]. Therefore, more robust algorithms need to be developed.
An important fact about SVs, besides their rarity, they are
shared between related individuals as with other DNA mark-
ers of interest. Thus, it’s advantageous to devise algorithms
that focus on the close relatives [6]. For example, most of
the SVs in a child’s genome will be present in one of their
parents.

In this study, we present an optimization framework for
SV detection in the context of one grandparent, one parent,
and one child. For simplicity, we consider simultaneous SV
prediction in haploid genomes. We use a novel projection
algorithm to enforce biological feasibility (allowable herita-
ble patterns of SVs) while minimizing our objective over a 3-
dimensional solution space. We promote rarity of SVs by en-
forcing sparsity in each signal using the l1 norm. We validate
our method using simulated and real data from 1000 Genomes
Project. Our method improves the SV prediction problem for
low-coverage individuals. Further, our block-coordinate de-
scent approach produces results with equal accuracy to the
3D projections of the solution, demonstrating feasibility for
more complex and high-dimensional pedigrees.
Related work: One of the earliest methods that used NGS
data to detect SVs was [7], where they used statistical test-
ing methodologies. Followed by the well-known readDepth
algorithm that employed LOESS regression to predict SVs
[8]. Whereas the CNVer algorithm used maximum-likelihood
and graphic flow to detect variants in pair-end sequences [9].
Other methods based on Hidden Markov Models (HMMs)
were developed for the same purpose [10], [11]. However,
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non of these approaches have considered familial relation-
ships. Our group has developed optimization methods to im-
prove SV prediction by considering pedigrees of related indi-
vidual [12], [13]. However, all of the prior work was done on
one generation, predicting the SVs on genome parent-child
trois. In this work, we improve upon our previous methods
by considering two generations of individuals.

2. METHOD

Here, we describe mathematically our computational frame-
work for detecting SVs given sequencing data from one
grandparent (gp), one parent (p), and one child (c). For sim-
plicity, we assume the haploid case (one-copy per chromo-
some). As such, the true SV signal f⃗∗

I ∈ {0, 1}m is a binary
vector indicating the presence of a genetic variant for each in-
dividual I ∈ {gp, p, c}. Thus, the corresponding grandparent
y⃗gp ∈ Rm, parent y⃗p ∈ Rm and child y⃗c ∈ Rm observations.
Each element in the observation vector represents the number
of DNA fragments (i.e. sequencing coverage in real obser-
vations) supporting each potential SV. As in previous work
[13], To consider the most realistic case in which the number
of fragments covering any position (sequencing coverage) in
the genome signal is low, this number should follow a Pois-
son distribution, thus, the general observation model can be
expressed as follows: y⃗c)j

(y⃗p)j
(y⃗gp)j

 ∼ Poisson


 (λc − ϵ)(f⃗∗

c )j + ϵ

(λp − ϵ)(f⃗∗
p )j + ϵ

(λgp − ϵ)(f⃗∗
gp)j + ϵ


 (1)

where j ∈ {1, 2, ...,m}. The constants λgp, λp and λc repre-
sent the sequencing coverage of the grandparent, parent and
child genome, respectively, and ϵ > 0 is the error term in
the measurement of the true signals corresponding to the se-
quencing processing, which is assumed to be the same for
each observation. In matrix notation, we can express the gen-
eral observation model as y⃗ ∼ Poisson(Af⃗∗ + ϵ1), where
y⃗ =

[
y⃗c; y⃗

T
p ; y⃗gp

]
, f⃗∗ = [f⃗∗

c ; f⃗
∗
p ; f⃗

∗
gp], 1 ∈ R3m is the vec-

tor of ones, and A ∈ R3m×3m is the coverage matrix given
by

A =

(λc − ϵ)Im 0 0
0 (λp − ϵ)Im 0
0 0 (λgp − ϵ)Im


where Im ∈ Rm×m is the identity matrix.

2.1. Problem formulation

Under the Poisson process model [13], the probability of ob-
serving the observation vector y⃗ given the true signal f⃗ , is
given by

p(y⃗|Af⃗∗) =
3m∏
j=1

((Af⃗∗)j + ϵ)y⃗j

y⃗j !
exp

(
−(Af⃗∗)j + ϵ

)
. (2)

To determine the unknown Poisson parameter Af⃗∗, we use
the maximum likelihood principle such that the probability of

observing the vector of Poisson data y⃗ in (2) is maximized.
This is equivalent to minimizing the corresponding negative
Poisson log-likelihood function

F (f⃗) = 1TAf⃗ −
3m∑
j=1

yi log((Af⃗)j + ϵ).

In our approach for minimizing F (f), we apply gradient-
based optimization approaches and apply a continuous relax-
ation by allowing f⃗ to lie between 0 and 1, i.e., 0 ≤ f⃗ ≤ 1.

2.2. Familial constraints

To improve the accuracy of our SV predictions, we impose
additional constraints that exploit information about the SV
signal f⃗ . This constraint corresponds to the biological as-
sumptions we make, which is as follows:

0 ≤ f⃗c ≤ f⃗p ≤ f⃗gp ≤ 1

This constraint exploits the biological assumption that vari-
ants in the child can be present only when the parent also has
that SV and an SV in a parent can be present only when the
grandparent also has that SV. Thus, an SV cannot be present
in the child if neither grandparent nor parent has the SV.

2.3. Sparsity

Due to the rareness of the SVs in an individual’s genome, pre-
dictions result in false positives that mistake fragments that
are incorrectly mapped to locations in the genome as SVs. To
avoid that, we incorporate how uncommon these SVs are in a
genome sequence. To promote sparsity in our predictions we
use a common technique found in literature [14], by which we
incorporate an l1-norm penalty term in our problem formula-
tion. We use three penalty terms, one for the child SV (f⃗c),
one for the parent SV (f⃗p) and one for the grandparent SV
(f⃗gp). What is particularly novel in our formulation is that
while SVs are rare in grandparents, they should be rarer in
parents and even more rare in children. Mathematically, we
express this penalty as

pen(f⃗) = ∥f⃗gp∥1 + β(∥f⃗p∥1 + β∥f⃗c∥1)

where β ≥ 1 is a penalty weight that places greater emphasis
on f⃗c being much sparser than both f⃗p and f⃗gp.

2.4. Optimization Setup

With these components defined, our objective function takes
the following constrained optimization form:

minimize
f⃗∈R3m

F (f⃗) + τpen(f⃗)

subject to 0 ≤ f⃗c ≤ f⃗p ≤ f⃗gp ≤ 1

(3)
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where τ > 0 is a regularization parameter that balances the
negative Poisson log-likelihood data fidelity term with the
sparsity-promoting penalty term. We use the Sparse Poisson
Intensity Reconstruction ALgorithm (SPIRAL) framework
[12],[14], which is an iterative method that uses a second-
order Taylor series approximation of F (f⃗) around the current
iterate, to formulate a sequence of quadratic subproblems. In
this approach, the Hessian matrix is approximated by a scalar
multiple of the identity matrix, αkI , where αk > 0, which
yields the following quadratic function:

F k(f⃗) = F (f⃗k) +∇F (f⃗k)T (f⃗ − f⃗k) +
αk

2
||f⃗ − f⃗k||22.

This approximation leads to a sequence of quadratic subprob-
lems of the following form:

f⃗k+1 = arg min
f⃗∈R3m

Q(f⃗) =
1

2
∥f⃗ − s⃗k∥22 +

τ

αk
pen(f⃗)

subject to 0 ≤ f⃗c ≤ f⃗p ≤ f⃗gp ≤ 1
(4)

where s⃗k = [s⃗kc ; s⃗
k
p; s⃗

k
gp] = f⃗k − 1

αk
∇F (f⃗k).

Now, our objective function Q(f⃗) in (4) is separable and de-
couples into the function

Q(f⃗)

= 1
2

m∑
j=1

{(
(f⃗c−s⃗k

c )j
)2
+
(
(f⃗p−s⃗k

p )j
)2
+
(
(f⃗gp−s⃗k

gp)j
)2}

+ τ
αk

{
β2|(f⃗c)j |+ β|(f⃗p)j |+ |(f⃗gp)j |

}
.

See [12] for more details. Since the bounds that define the
feasible region are component wise, then (4) separates into
subproblems of the form

minimize
fc,fp,fgp∈R

1
2 (fc − sc)

2 + 1
2 (fp − sp)

2 + 1
2 (fgp − sgp)

2

+ β2τ
αk

|fc| + βτ
αk

|fp| + τ
αk

|fgp|

subject to 0 ≤ fc ≤ fp ≤ fgp ≤ 1
(5)

where {fc, fp, fgp} and {sc, sp, sgp} are scalar components
of the vectors {f⃗c, f⃗p, f⃗gp} and {s⃗c, s⃗p, s⃗gp}, respectively, at
the same location. Since the variables are non-negative, we
ignore the absolute values. By completing the squares and ig-
noring the constant terms, the optimization problem (5) yields
to

minimize
fi,fp,fgp∈R

1
2 (fc − a)2 + 1

2 (fp − b)2 + 1
2 (fgp − c)2

subject to 0 ≤ fc ≤ fp ≤ fgp ≤ 1
(6)

where a = sc − β2τ
αk

, b = sp − βτ
αk

and c = sgp − τ
αk

. The
unconstrained minimizer of (6) is (a, b, c). If (a, b, c) satisfies
the the constraints, then it is also the constrained minimizer. If
not, we obtain the feasible solution to (6) by orthogonally pro-
jecting (a, b, c) onto the three-dimensional feasible set, which
is shown in Fig. 1.

Fig. 1. Left: The three-dimensional feasible region of the
minimization problem (6) on the fc-fp-fgp axis. Subproblem
minimizers not satisfying the constraints are projected onto
the region ∆. Right: Plot of the a-b plane, where regions are
defined in Table 1. R(a,b) represents the feasible region when
fixing c.

Table 1. Table representing the optimization problem as a
function of a and b. Here, r = s = (c+ p)/2

Region Condition on a Condition on b (f∗
c , f

∗
b )

R(a, b) 0 < a < b 0 < a < 1 (a, b)
R(0, b) a < 0 0 < b < 1 (0, b)
R(a, 1) 0 ≤ a ≤ 1 b > 1 (b, 1)
R(0, 1) a < 0 b > 1 (0, 1)
R(0, 0) a ≤ −b b < 0 (0, 0)
R(1, 1) a > 1 b ≥ −a+ 2 (1, 1)
R(r, s) a > |b| b < −a+ 2 (r, s)

2.5. Computational Projection Approach

The feasible solution to (6) is obtained by orthogonally pro-
jecting the solution (a, b, c) to a three-dimensional feasible
region ∆ (see Fig. 1). In particular, the three-dimensional
space partitions into 15 different regions that projects onto
a vertex, edge, or surface of the feasible set for infeasible
points. Alternatively, we propose posing the constraints using
our projection algorithm that is inspired by methods used in
previous work (see [13]). Here, we describe our algorithm
of solving the optimization problem. At each iteration k, we
alternate between fixing one individual (i.e. one dimension)
and projecting onto the remaining two individuals. In partic-
ular, the process consists of the following three steps:
For each 3D point in SPIRAL solution (a, b, c):

Step 1: Fix c, and orthogonally project the solution to the
two-dimensional feasible region formed by (a and b). This
two-dimensional space partitions into 6 different regions that
projects onto a point or an edge.
Step 2: Repeat the process by fixing the second individ-
ual b and projecting the solution orthogonally to the two-
dimensional feasible region formed by a and c.
Step 3: Fix the third individual a and project the solution
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(a) Child signal (b) Parent signal (c) Grandparent signal

Fig. 2. ROC curves of individuals’ reconstructed signals using simulated data with coverage λc = λp = λgp = 3.

(a) Child signal (b) Parent signal (c) Grandparent signal

Fig. 3. ROC curves of individuals’ reconstructed signals using 1000 Genomes Project data.

orthogonally to the two-dimensional feasible region formed
by b and c. Repeat the process until it converges, i.e., the
point is inside the 3D feasible region.

3. RESULTS

Experiment I: Simulated Data. We first tested the perfor-
mance on simulated data to match our assumptions. We gen-
erated binary signals for each individual with the sequenc-
ing depth (or coverage). We simulated the true signal for a
grandparent, a parent, and a child by creating a vector of 105

potential SVs. We then selected uniformly at random 5000
locations to be true variants for the grandparent. The parent
signal was then generated by randomly selecting 50% of the
grandparent variants to be inherited, that is ∼2500 SVs in the
parent. Finally, 50% of the parent variants were randomly se-
lected to be inherited in the child signal, ∼ 1750 SVs in the
child signal. Doing it that way confirms that these SVs follow
the Mendelian rules.
Given an optimal or near-optimal τ and β values (τ ≈ 1 and

β ≈ 1) and high noise ϵ = 0.3, our method is able to recon-
struct the signals for each individual well. In Fig. 2 we show
ROc curves generated for a simulated data set. Moreover, our
block-coordinate descent approach was able to give results as
good as the actual 3D projections, blue lines match the red
line in ROCs.

Experiment II: 1000 Genomes Project Data. To validate
our method, we consider a three-generation, 17- member fam-
ily pedigree of European ancestry (CEU) from a recent study
to test our mathematical model with relatedness and rarity of
SVs [15]. We obtain our candidate set of SVs from the GASV
pipeline. We run two experiments on two groups of individ-
uals of three generations: (Child ID, Parent ID, Grandpar-
ent ID) = (NA12883, NA12878, NA12881) and (NA12886,
NA12877, NA12889). Our method is able to well reconstruct
the signals for each individual with relatively high AUC as
shown in the left column of Fig. 3. For both experiments, the
AUC ranged from ∼ 85% to ∼ 90%, which are high com-
pared to previous studies in literature [13, 7]. Huge part of
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these errors are false positives (an SV detected to be there,
but it should not).

4. CONCLUSIONS

We present a generalized approach to predict germline SVs in
related individuals over two generations. Our proposed model
leverages both sparsity and relatedness, by such it reduces the
number of false positives predicted in simulated and real ge-
nomic data of multiple generations. Moreover, our proposed
block-coordinate approach is able to produce results as accu-
rate as the 3D projections of the solution, demonstrating feasi-
bility for more complex and high dimensional pedigrees when
the direct high dimensional projection is not possible. In fu-
ture work, we intend to apply this work on the diploid case of
a multi-generational framework with multiple offspring.
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