
1.  Introduction
Landmine detection using unmanned aerial based radar is gaining attention because it provides high resolu-
tion images while avoiding the interaction with the object and the surrounding medium (Fernández et al., 2018; 
Francke & Dobrovolskiy, 2021). Those imaging systems use synthetic aperture radar (SAR) processing to achieve 
high resolution imaging of both metallic and dielectric targets. In SAR, high resolution is achieved because the 
data are treated coherently along the flight path of a single transmitter/receiver mounted on an aircraft. For land-
mine detection, SAR image processing is used and the data are coherently processed along the synthetic aperture 
formed by an unmanned aerial vehicle flying above the ground over the area of interest. Other related remote 
sensing applications include precision agriculture, forestry monitoring and glaciology.

Landmine detection is a very important problem with both civilian and military applications. It has been a subject 
of extreme interest and several imaging methodologies have been proposed in the literature. We refer to the 
review article (Daniels, 2006) for an overview on the subject and to González-Huici et al. (2014) for a compari-
son between different imaging techniques in the specific context of landmine detection. The method we employ 
here is a modification of the classical SAR processing technique. Specifically we apply to the classical imaging 
functional a Möbius transformation that depends on a user defined parameter, δ. Assuming a synthetic aperture 
of length a, and system bandwidth B, we have recently shown (Kim & Tsogka, 2023c) that the resolution of the 
imaging method in cross-range (the direction parallel to the synthetic aperture) is 𝐴𝐴

√

𝛿𝛿𝛿𝛿𝛿𝛿∕𝑎𝑎 and the range (direc-
tion orthogonal to cross-range) resolution is 𝐴𝐴

√

𝛿𝛿𝛿𝛿∕𝐵𝐵 with c the speed of the waves, λ the central wavelength and 
L the distance of propagation. We have also carried out a resolution analysis of this method for imaging in a lossy 
medium (Kim & Tsogka, 2023a) where we have shown that one should not use the absorption in the medium 
even if it is known. Although, absorption does not affect significantly the resolution of the imaging method, it 
does affect the target detectability. Specifically, if z denotes the depth of the target below the air-soil interface, 
the product βz corresponds to the absorption length scale of the problem with β denoting the loss tangent, that 
is the ratio of the imaginary part over the real part of the relative dielectric constant. For targets buried deep so 
that βz ≫ 1 measurements become too small to detect targets, especially if the data are corrupted by additive 
measurement noise as is often the case in practical applications.

For a sufficiently long flight path, the air-soil interface is most likely not uniformly flat. Moreover, height fluc-
tuations in this interface cannot be known with certainty. For this reason we model this interface using a random 
rough surface. It then becomes crucially important for a subsurface imaging method to be robust to those uncer-
tainties in the interface. Additionally, there may be multiple interactions between scattering by subsurface targets 
and the random rough surface (Long et al., 2010). Here, we assume only one interaction between the random 
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𝛿𝛿 allowing for target localization with sub wavelength accuracy. Numerical results 
in two dimensions illustrate the robustness of the approach for imaging multiple targets. However, the depth at 
which targets are detectable is limited due to the absorption in the lossy medium.
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rough surface and the subsurface target since that has been shown to be sufficiently accurate for targets buried in 
a lossy medium (El-Shenawee, 2002).

We model the height of the air-soil interface h(x) using a Gaussian-correlated random process that is characterized 
by the root mean square (RMS) height, hRMS and the correlation length, ℓ. We consider here that the RMS height 
is small with respect to the correlation length which is of the order of the central wavelength while the aperture is 
large compared to both. In this regime, multiple-scattering effects are important and enhanced backscatter ing  is 
observed. Enhanced backscattering is a multiple scattering phenomenon in which a well-defined peak in the 
retro-reflected direction is observed (Ishimaru,  1991; Maradudin et  al.,  1991; Maradudin & Méndez,  2007). 
Imaging in media with random rough surfaces is a new paradigm for imaging in random media and requires 
different methods than the ones developed for volumetric scattering (Borcea et al., 2011) or imaging in random 
waveguides (Borcea et al., 2015). The key difference here is that randomness is isolated only at the interface 
separating the two media. Even though waves multiply scatter on the rough surface, they also scatter away from 
the rough surface. Consequently, there is no dominant cumulative diffusion phenomenon due to this kind of 
randomness.

For the synthetic aperture setup the measurements are exactly in the retro-reflected direction so the data have 
uniform power at each spatial location along the flight path. To remove the strong reflection introduced by the 
ground-air interface we use Principal component analysis (PCA) or more precisely the singular value decomposi-
tion (SVD) of the data matrix. PCA has been proposed as a method for removing ground bounce signals in Tjora 
et al. (2004). For a flat surface the ground bounce can be removed from the data by taking out the contribution 
corresponding to the first singular value. Here we see that due to multiple scattering to remove the reflection 
from the random interface contributions corresponding to the first few singular values should be taken out from 
the data. This SVD based approach for ground bounce removal is advantageous because it does not require any a 
priori information about the media, including the exact location of the interface.

Our imaging method requires computing the Green's function for a medium composed of adjacent half spaces. 
This Green's function is represented as a Fourier integral of a highly oscillatory function. Accurately computing 
such integrals is quite challenging and several approaches have been proposed to this effect (Bruno et al., 2016; 
Cai, 2002; O'Neil et al., 2014). The approach we follow here is similar to the method presented by Barnett and 
Greengard (Barnett & Greengard, 2011), where we integrate on a deformed contour in the complex plane to avoid 
branch points.

The remainder of the paper is as follows. In Section 2 we present the SAR setup. In Section 3 our model for the 
rough surface is described as well as the integral equations formulation for computing the solution to the forward 
problem. The algorithm for computing the measurements is then explained in Section 4. The solution of the 
inverse scattering problem entails two steps. The first step that uses the SVD of the data matrix to remove the 
ground bounce is presented in Section 5. The second step consists in reconstructing an image using the modi-
fied synthetic aperture imaging algorithm and is explained in Section 6. We present numerical results in two 
dimensions that illustrate the effectiveness of the imaging method in Section 7. We finish with our conclusions 
in Section 8.

2.  SAR Imaging
Here we describe the SAR imaging system for the problem to be studied. We limit our computations to the 
two-dimensional xz-plane to simplify the simulations. The imaging method we describe easily extends to 
three-dimensional problems. The main challenge is the solution of the forward problem, that involves the 
compu tation of the scattered data from targets located below a rough surface.

Consider a platform moving along a prescribed flight path. At fixed locations along the flight path: xn = (xn, zn) 
for n = 1, …, N, the platform emits a multi-frequency signal that propagates down to an interface that separates 
the air where the platform is moving from a lossy medium below the interface. See Figure 1 for a sketch of this 
imaging system. Let ωm for m = 1, …, M denote the set of frequencies used for emitting and recording signals. We 
apply the start-stop approximation here in which we neglect the motion of the platform and targets in comparison 
to the emitting and recording of signals. The complete set of measurements corresponds to the suite of experi-
ments conducted at each location on the path.
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For this problem, the signal emitted from the platform propagates down to the interface. Part of the signal is 
reflected by the interface which is called the ground bounce signal. The portion of that ground bounce signal that 
reaches the platform is recorded. Another part of the signal is transmitted across the interface and is incident on 
the subsurface targets which then scatter that signal. Since the medium below the interface is lossy, the power 
in the signals incident on and scattered by the targets is attenuated. A portion of that attenuated scattered signal 
is  transmitted across the interface and propagates up to the platform where it is also recorded. Measurements are 
therefore comprised of ground bounce and scattered signals reaching the platform.

Using these measurements we seek to solve the inverse scattering problem that identifies and locates targets in 
the lossy medium below the interface. The medium above the interface is uniform and lossless and we assume 
that it is known. The medium below is also uniform, but lossy, so it has a complex relative dielectric permittivity. 
We assume we know the real part of the relative dielectric permittivity, but not its imaginary part corresponding 
to the absorption in the medium. Finally, the interface between the two media is unknown, but we assume that we 
know its mean, which is constant.

There are several key challenges to consider for this problem. Measurements include ground bounce and scattered 
signals. The ground bounce signals have more power than the scattered signals, but do not contain information 
about the targets. Thus, one needs an effective method to remove the ground bounce from measurements. Because 
the interface is uncertain, it is important to remove these ground bounce signals without requiring explicit knowl-
edge of the interface location. Once that issue can be adequately addressed, we then require high-resolution 
images of the targets in an unknown, lossy medium obtained through solution of the inverse scattering problem. 
The absorption in the medium will limit the depth at which one can reliably solve the inverse scattering prob-
lem. However, we are interested in identifying targets that are located superficially below the interface, so the 
penetration depths needed for this problem are not too prohibitive. In addition, measurements are corrupted by 
additive measurement noise. Another noteworthy issue is that removal of the ground bounce signal from meas-
urements will effectively increase the relative amount of noise in what remains which will limit the values of the 
signal-to-noise ratio (SNR) for which imaging will be effective.

3.  Rough Surface Scattering
We model uncertainty in the interface separating the two media using random rough surfaces. In particular, we 
consider Gaussian-correlated random surfaces that are characterized by the RMS height, hRMS and the correlation 
length, ℓ. In what follows, we give the integral equation formulation for computing reflection and transmission 
of signals across one realization of a random rough surface.

Figure 1.  A sketch of the subsurface synthetic aperture imaging system. A platform moves along a prescribed flight path 
producing a synthetic aperture above an interface separating air from a lossy medium. The platform emits a signal and records 
the echoes including ground bounce signals due to reflections by the interface and scattered signals by the targets. The 
objective for the imaging problem is to identify and locate the subsurface targets.
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Let z = h(x) for −∞ < x < ∞ denote one realization of the random rough surface separating two different media. 
The medium in z > h(x) is uniform and lossless. The medium in z < h(x) is also uniform, but lossy with relative 
dielectric constant ϵr(1 + iβ) with ϵr denoting the real part of the relative dielectric constant and β ≥ 0 denoting 
the loss tangent (ratio of the imaginary part over the real part of the relative dielectric constant). We consider two 
problems in which a point source is either above or below the interface. In what follows we assume that the  total 
field and its normal derivative are continuous on z = h(x) and that those fields satisfy appropriate out-going 
conditions as z → ±∞.

The formulation of integral equations for scattering by a one-dimensional rough surface has some subtle features 
that require careful attention, especially with regards to grazing incident waves (DeSanto & Martin, 1997). Here, 
we do not need to account for grazing waves, so we consider a simpler and more direct formulation given by 
Tsang et al. (2004). We describe this formulation below.

3.1.  Integral Equations Formulation

Suppose a point source is located at (x0, z0) with z0 > h(x0). Using Green's second identity, we write the field above 
the surface, denoted by u, as

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) = 𝐺𝐺0(𝑥𝑥𝑥 𝑥𝑥; 𝑥𝑥0,𝑧𝑧 0) +0[𝑈𝑈 ](𝑥𝑥𝑥 𝑥𝑥) − 0[𝑉𝑉 ](𝑥𝑥𝑥 𝑥𝑥),𝑧𝑧  𝑧 𝑧(𝑥𝑥),� (1)

with

0[𝑈𝑈 ](𝑥𝑥𝑥 𝑥𝑥) =
∫

∞

−∞

𝜕𝜕𝜕𝜕0(𝑥𝑥𝑥 𝑥𝑥; 𝜉𝜉𝜉 𝜉(𝜉𝜉))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝜉𝜉))2𝑈𝑈 (𝜉𝜉)d𝜉𝜉𝜉�

and

0[𝑉𝑉 ](𝑥𝑥𝑥 𝑥𝑥) =
∫

∞

−∞

𝐺𝐺0(𝑥𝑥𝑥 𝑥𝑥; 𝜉𝜉𝜉 𝜉(𝜉𝜉))𝑉𝑉 (𝜉𝜉)d𝜉𝜉𝜉�

Here,

𝐺𝐺0

(

𝑥𝑥𝑥 𝑥𝑥; 𝑥𝑥′
,𝑧𝑧

′
)

=
i

4
𝐻𝐻

(1)

0

(

𝑘𝑘0

√

(𝑥𝑥 − 𝑥𝑥′)2 + (𝑧𝑧 − 𝑧𝑧′)2
)

,�

with k0 = ω/c and

𝜕𝜕𝜕𝜕0(𝑥𝑥𝑥 𝑥𝑥; 𝜉𝜉𝜉 𝜉𝜉 )

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝜉𝜉))2 = ℎ
′(𝜉𝜉)

𝜕𝜕𝜕𝜕0(𝑥𝑥𝑥 𝑥𝑥; 𝜉𝜉𝜉 𝜉𝜉 )

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕0(𝑥𝑥𝑥 𝑥𝑥; 𝜉𝜉𝜉 𝜉𝜉 )

𝜕𝜕𝜕𝜕
.� (2)

The fields U and V are defined on the interace, z = h(x). Physically, U(ξ) = u(ξ, h(ξ)) is the evaluation of the 
field on the interface point, (ξ, h(ξ)). The field V(ξ) is defined in terms of the normal derivative of u according to

𝑉𝑉 (𝜉𝜉) =

√

1 + (ℎ′(𝜉𝜉))2
𝜕𝜕𝜕𝜕(𝜉𝜉𝜉 𝜉(𝜉𝜉))

𝜕𝜕𝜕𝜕
= ℎ

′(𝜉𝜉)
𝜕𝜕𝜕𝜕(𝜉𝜉𝜉 𝜉𝜉 )

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕(𝜉𝜉𝜉 𝜉𝜉 )

𝜕𝜕𝜕𝜕
.�

These formulations given above make use of the aforementioned assumption that both u and ∂nu are continuous 
on the interface z = h(x). Similarly, we write the field below the surface, denoted by v, as

𝑣𝑣(𝑥𝑥𝑥 𝑥𝑥) = −1[𝑈𝑈 ](𝑥𝑥𝑥 𝑥𝑥) + 1[𝑉𝑉 ](𝑥𝑥𝑥 𝑥𝑥),𝑧𝑧  𝑧 𝑧(𝑥𝑥),� (3)

with 𝐴𝐴 1 and 𝐴𝐴 1 defined the same way as 𝐴𝐴 0 and 𝐴𝐴 0 , but with G0 replaced by

𝐺𝐺1

(

𝑥𝑥𝑥 𝑥𝑥; 𝑥𝑥′
,𝑧𝑧

′
)

=
i

4
𝐻𝐻

(1)

0

(

𝑘𝑘1

√

(𝑥𝑥 − 𝑥𝑥′)2 + (𝑧𝑧 − 𝑧𝑧′)2
)

,�

and 𝐴𝐴 𝐴𝐴1 = 𝑘𝑘0

√

𝜖𝜖𝑟𝑟(1 + i𝛽𝛽) .

Now, suppose a point source is located at (x1, z1) with z1 < h(x1). For that case we write u and v as

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) = 0[𝑈𝑈 ](𝑥𝑥𝑥 𝑥𝑥) − 0[𝑉𝑉 ](𝑥𝑥𝑥 𝑥𝑥),𝑧𝑧  𝑧 𝑧(𝑥𝑥),� (4)
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and

𝑣𝑣(𝑥𝑥𝑥 𝑥𝑥) = 𝐺𝐺1(𝑥𝑥𝑥 𝑥𝑥; 𝑥𝑥1,𝑧𝑧 1) −1[𝑈𝑈 ](𝑥𝑥𝑥 𝑥𝑥) + 1[𝑉𝑉 ](𝑥𝑥𝑥 𝑥𝑥),𝑧𝑧  𝑧 𝑧(𝑥𝑥).� (5)

The fields u defined by either Equations 1 or 4, and v defined by either Equations 3 or 5 are given in terms of surface 
fields U(ξ) and V(ξ). The surface fields U and V are not yet determined. To determine them we evaluate u and v in 
the limit as (x, z) → (ξ, h(ξ)) from above and below, respectively. In that limit, the 𝐴𝐴 0 and 𝐴𝐴 1 operators produce a 
jump and the result is a system of boundary integral equations. For a detailed derivation of boundary integral equa-
tions we refer the reader to Ishimaru (2017)-§6.1 and for the jump relations of the potentials we refer to Guenther 
and Lee (1988, Theorem 6.3 p. 348). For the fields defined by Equations 1 and 3, the resulting system is

1

2
𝑈𝑈 (𝜉𝜉) −0[𝑈𝑈 ](𝜉𝜉) + 0[𝑉𝑉 ](𝜉𝜉) = 𝐺𝐺0(𝜉𝜉𝜉 𝜉(𝜉𝜉); 𝑥𝑥0, 𝑧𝑧0),� (6a)

1

2
𝑈𝑈 (𝜉𝜉) +1[𝑈𝑈 ](𝜉𝜉) − 1[𝑉𝑉 ](𝜉𝜉) = 0,� (6b)

and for the fields defined by Equations 4 and 5, the resulting system is

1

2
𝑈𝑈 (𝜉𝜉) −0[𝑈𝑈 ](𝜉𝜉) + 0[𝑉𝑉 ](𝜉𝜉) = 0,� (7a)

1

2
𝑈𝑈 (𝜉𝜉) +1[𝑈𝑈 ](𝜉𝜉) − 1[𝑉𝑉 ](𝜉𝜉) = 𝐺𝐺1(𝜉𝜉𝜉 𝜉(𝜉𝜉); 𝑥𝑥1, 𝑧𝑧1).� (7b)

The solution of each of these systems results in the determination of U and V for their respective problem. Once 
those are determined, the fields above and below the interface are computed through evaluation of Equations 1 
and 3 when the source is above the interface, or Equations 4 and 5 when the source is below the interface. We give 
the numerical method we use to solve these systems in Appendix A. Note that all of the fields above depend on 
the location of the source. Therefore, they must be recomputed for each and all sources considered.

3.2.  Enhanced Backscattering

The bistatic cross-section σ(θs, θi) is the fraction of power reflected in the far field by the rough surface in direction 
(sin θs, cos θs) with θs denoting the scattered angle made with respect to the z-axis due to a plane wave incident in 
direction (sin θi, −cos θi) with θi denoting the angle of incidence. Reflection by the random rough surface makes up 
an important component of measurements in this imaging problem. Here, we use the bistatic cross-section to charac-
terize reflection by the rough surface over the range of frequencies: 3.1–5.1 GHz. We use the method given in Tsang 
et al. (2004, Chapter 4) to generate these rough surfaces and compute the corresponding bistatic cross-sections. We 
then average over several realizations of the rough surface to determine canonical features of these rough surfaces.

In Figure 2 we show the bistatic cross-section due to a plane wave with θi = 30° averaged over 100 realizations 
of a Gaussian-correlated rough surface with RMS height hRMS = 0.2 cm and correlation length ℓ = 8 cm. These 
results show a sharp angular cone about θs = θi as a consequence of enhanced backscattering. Enhanced backs-
cattering is a canonical multiple scattering phenomenon in which counter-propagating scattered waves add coher-
ently in the retro-reflected direction, θs = θi.

Figure 2.  [Left] Average of the bistatic cross-section, 〈σ(θs, θi)〉, over 100 realizations of a Gaussian-correlated random 
rough surface with hRMS = 0.2 cm and ℓ = 8 cm due to a plane wave incident with θi = 30°. [Right] A close-up of this result 
about θs = θi.
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With these surface roughness parameters, we find that scattering by the random rough surface is significant and 
cannot be ignored. Because these rough surfaces exhibit enhanced backscattering, there is significant multiple 
scattering. Moreover, SAR measurements use a single emitter/receiver, so we measure the field exactly at the 
retro-reflected angle corresponding to the peak of the angular cone. However, we do not care to reconstruct this 
rough surface profile for this imaging problem. Rather, we seek a method that attempts to identify and locate 
targets without needing to consider this rough surface. Nonetheless, scattering by the rough surface will be an 
important factor in the measurements.

4.  Modeling Measurements
In this work we consider scattering by subsurface point targets. This assumption simplifies the modeling of 
measurements which, in turn, enables the determination of the effectiveness of a subsurface imaging method. 
We consider imaging point targets here as a necessary first problem for any effective imaging method to solve.

To model measurements we must consider both the ground bounce signal that is the reflection by the rough 
surface, and the scattered signal by the targets. Assuming that scattering by each target is independent from any 
others, we give the procedure we use to model measurements for a single point target located at (x1, z1) (below the 
rough surface) due to a point source located at (x0, z0) (above the rough surface).

1.	 �Compute one realization of the Gaussian-correlated rough surface, z = h(x), with RMS height hRMS and corre-
lation length ℓ.

2.	 �Solve the system (Equations 6a and 6b). Let U0 and V0 denote the solution.
3.	 �Compute the ground-bounce signal, R, through evaluation of

𝑅𝑅 = 0[𝑈𝑈0](𝑥𝑥0, 𝑧𝑧0) − 0[𝑉𝑉0](𝑥𝑥0, 𝑧𝑧0).�

�This expression is the field reflected by the rough surface evaluated at the same location as the source.

4.	 �Solve the system (Equations 7a and 7b). Let U1 and V1 denote the solution.
5.	 �Compute the field scattered by the point target, S, through evaluation of

𝑆𝑆 = (0[𝑈𝑈1](𝑥𝑥0, 𝑧𝑧0) − 0[𝑉𝑉1](𝑥𝑥0, 𝑧𝑧0))𝜌𝜌(−1[𝑈𝑈0](𝑥𝑥1, 𝑧𝑧1) + 1[𝑉𝑉0](𝑥𝑥1, 𝑧𝑧1)).�

�There are three factors in this expression written in right-to-left order just like matrix products. The third 
factor corresponds to the field emitted from the source that transmits across the interface and is incident on 
the target. The second factor is the reflectivity of the target ρ. The first factor is the propagation of the second 
and third terms from the target location to the receiver location.

Steps 2 through 5 of this procedure are repeated over each frequency ωm for m = 1, …, M and each spatial location 
of the platform xn for n = 1, …, N. The results are M × N matrices R and S. When there are multiple targets, we 
repeat Steps 4 and 5 for each of the targets and S is the sum of those results.

Using this procedure above, we model measurements according to

𝐷𝐷 = 𝑅𝑅 + 𝑆𝑆 + 𝜂𝜂𝜂� (8)

with η denoting additive measurement noise which we model as Gaussian white noise. The inverse scattering 
problem is to identify targets and determine their locations from the data matrix D.

5.  Ground Bounce Signal Removal
According to measurement model (Equation 8), the ground bounce signal R is added to the scattered signal S. The 
ground bounce signal does not contain any information about the targets. Since we do not seek to reconstruct the 
interface for this imaging problem, R impedes the solution of the inverse scattering problem. Hence, we seek to 
remove it from measurements.

The key assumption we make is that the relative amount of power in R is larger than that in S. This assumption 
opens the opportunity to use PCA to attempt to remove R from D. Let D = UΣV H denote the SVD of D where 
V H denotes the Hermitian or conjugate transpose of V. Because of uncertainty in the interface, we are not able to 
explicitly determine the structure of the singular values σj for j = 1, …, min(M, N) in the M × N diagonal matrix 
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Σ. Instead we seek to observe any changes in the spectrum of singular values that indicate a separation between 
contributions by R and S.

Consider M = 25 frequencies uniformly sampling the bandwidth ranging from 3.1 to 5.1 GHz and N = 21 spatial 
locations of the platform uniformly sampling the aperture a  =  1  m at 1  m above the mean interface height 
〈h(x)〉 = 0. We set ϵr = 9 and β = 0.1. Using one realization of a rough surface with hRMS = 0.2 cm and ℓ = 8 cm, 
we compute R. Then we compute the SVD of R and examine the singular values.

In Figure 3 we show results for one realization of the Gaussian-correlated rough surface with hRMS = 0.2 cm and 
ℓ = 8 cm shown in the left plot and the corresponding singular values (normalized by the first singular value, 
σ1) for the resulting ground bounce signals in the right plot. Note that this realization of the rough surface is 
one among those used to study the bistatic cross-section in Figure 2 which exhibited enhanced backscattering. 
Consequently, we know that the ground bounce signals include strong multiple scattering by the rough surface.

Looking at the singular values in Figure 3 we identify a change in behavior in their decay. From j = 1 to j = 5, we 
find that σj decays rapidly over two orders of magnitude. In contrast, from j = 6 to j ≈ 15, we find that the decay 
of σj is much slower and then decays thereafter. We have observed that this qualitative behavior of the singular 
values persists over different realizations.

Through these observations of the behavior of singular values for R, we now propose a method to approximately 
remove R from D given as the following procedure.

1.	 �Compute the SVD of the measurement matrix D = UΣV H.
2.	 �Identify the index j* where the rapid decay of the singular values stops and the behavior changes.
3.	 �Compute

𝐷̃𝐷 = 𝐷𝐷 −

𝑗𝑗
∗

∑

𝑖𝑖=1

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯
𝐻𝐻

𝑖𝑖
,� (9)

�where ui and vi denote the ith columns of U and V, respectively.

It is likely that this procedure does not remove R from D exactly. However, we apply this procedure to obtain 𝐴𝐴 𝐷̃𝐷 
and test below if this procedure works well enough for identifying and locating targets.

Note that measurement noise is applied to D = R + S. The corresponding SNR is defined according to SNR = 10 
log10(‖R + S‖F/‖η‖F) with ‖·‖F denoting the Frobenius norm. This SNR is dominated by R since ‖R‖F ≫ ‖S‖F. 
When we remove R from D, there will be an effective SNR (eSNR) (𝐴𝐴 eSNR = 10 log10

(

‖𝑆𝑆‖
2
𝐹𝐹
∕‖𝜂𝜂‖2

𝐹𝐹

)

 ) based on S 
which will be much lower. For this reason, we see that this subsurface imaging problem is more sensitive to noise 
than other imaging problems where ground bounce signals are not present.

6.  Kirchhoff Migration Imaging
Consider a sub-region of z < h(x) where we seek to form an image. We call this sub-region the imaging window 
(IW). Let (x, z) ∈ IW denote a search point in the IW. To form an image which identifies targets and gives esti-
mates for their locations, we evaluate the Kirchhoff migration (KM) imaging functional,

Figure 3.  [Left] One realization of the Gaussian-correlated random rough surface with hRMS = 0.2 cm and ℓ = 8 cm with 
k0 denoting the wavenumber at the central frequency. [Right] The singular values of the ground bounce signals by this rough 
surface normalized by the first singular value σ1.
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𝐼𝐼
KM(𝒚𝒚) =

|

|

|

|

|

|

𝑀𝑀
∑

𝑚𝑚=1

𝑁𝑁
∑

𝑛𝑛=1

𝑑𝑑𝑚𝑚𝑚𝑚𝑎𝑎
∗
𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥)

|

|

|

|

|

|

,� (10)

over a mesh of grid points sampling the IW. Here 𝐴𝐴 𝑑𝑑𝑚𝑚𝑚𝑚 is the (m, n) entry of the matrix 𝐴𝐴 𝐷̃𝐷 and amn(x, z) are called 
the illuminations. The superscript * denotes the complex conjugate. The illuminations effectively back-propagate 
the data so that the resulting image formed shows peaks on the target locations.

6.1.  Computing Illuminations

To compute the illuminations amn(x, z) we first note that we do not know the interface z = h(x) nor do we seek 
to reconstruct it. However, we assume that 〈h(x)〉 = 0 is known, so we consider the interface z = 0 instead. 
Additionally, we do not know the loss tangent β that dictates the absorption in the lower medium. In fact, we 
have shown previously that making use of any knowledge of the absorption is not useful for imaging to identify 
and locate targets (Kim & Tsogka, 2023a). However, we assume that ϵr is known. With these assumptions, we 
write

𝑎𝑎𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥) = 𝜙𝜙
(0)

𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥)𝜙𝜙
(1)

𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥).� (11)

Here, 𝐴𝐴 𝐴𝐴
(0)

𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥) corresponds to the field on (x, z) due to a point source with frequency ωm located at xn whose 
amplitude is normalized to unity. The quantity 𝐴𝐴 𝐴𝐴

(1)

𝑚𝑚𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥) is the field with frequency ωm evaluated on xn due to a 
point source at (x, z) whose amplitude is normalized to unity.

Using Fourier transform methods, we find that the field u (0) evaluated on (x, z) due to a point source with frequency 
ωm located at xn = (xn, zn) is

𝑢𝑢
(0) =

i

2𝜋𝜋 ∫

𝑒𝑒
i(𝑞𝑞0𝑧𝑧𝑛𝑛−𝑞𝑞1𝑧𝑧)

𝑞𝑞0 + 𝑞𝑞1
𝑒𝑒
i𝜉𝜉(𝑥𝑥−𝑥𝑥𝑛𝑛)d𝜉𝜉𝜉� (12)

with 𝐴𝐴 𝐴𝐴0 =
√

𝜔𝜔
2
𝑚𝑚∕𝑐𝑐

2 − 𝜉𝜉2 and 𝐴𝐴 𝐴𝐴1 =
√

𝜖𝜖𝑟𝑟𝜔𝜔
2
𝑚𝑚∕𝑐𝑐

2 − 𝜉𝜉2 . When 𝐴𝐴 𝐴𝐴
2
> 𝜔𝜔

2
𝑚𝑚∕𝑐𝑐

2 , we set 𝐴𝐴 𝐴𝐴0 = +i
√

𝜉𝜉2 − 𝜔𝜔
2
𝑚𝑚∕𝑐𝑐

2 and when 
𝐴𝐴 𝐴𝐴

2
> 𝜖𝜖𝑟𝑟𝜔𝜔

2
𝑚𝑚∕𝑐𝑐

2 , we set 𝐴𝐴 𝐴𝐴1 = +i
√

𝜉𝜉2 − 𝜖𝜖𝑟𝑟𝜔𝜔
2
𝑚𝑚∕𝑐𝑐

2 , so that the fields exponentially decay away from the interface 
z = 0. Similarly, we find that the field u (1) evaluated on (xn, zn) due to a point source with frequency ωm located 
at (x, z) is

𝑢𝑢
(1) =

i

2𝜋𝜋 ∫

𝑒𝑒
i(𝑞𝑞0𝑧𝑧𝑛𝑛−𝑞𝑞1𝑧𝑧)

𝑞𝑞0 + 𝑞𝑞1
𝑒𝑒
i𝜉𝜉(𝑥𝑥𝑛𝑛−𝑥𝑥)d𝜉𝜉𝜉� (13)

Upon computing u (0) and u (1), we evaluate 𝐴𝐴 𝐴𝐴
(0)
𝑚𝑚𝑚𝑚 = 𝑢𝑢

(0)∕|𝑢𝑢(0)| and 𝐴𝐴 𝐴𝐴
(1)
𝑚𝑚𝑚𝑚 = 𝑢𝑢

(1)∕|𝑢𝑢(1)| .

Both u (0) and u (1) are integrals of the form,

𝐼𝐼 =
∫

∞

−∞

𝑓𝑓 (𝜉𝜉)
√

𝑘𝑘
2
0
− 𝜉𝜉2 +

√

𝑘𝑘
2
1
− 𝜉𝜉2

𝑒𝑒
i𝛽𝛽1

√

𝑘𝑘
2
0
−𝜉𝜉2+i𝛽𝛽2

√

𝑘𝑘
2
1
−𝜉𝜉2

𝑒𝑒
i𝜉𝜉𝜉𝜉d𝜉𝜉𝜉� (14)

with 𝐴𝐴 𝐴𝐴1 = 𝑘𝑘0

√

𝜀𝜀𝑟𝑟 , and β1, β2, and γ denoting real parameters. The wavenumbers k0 and k1 are real, and we assume 
that |k0| <  |k1|. This Fourier integral, which is one example of a Sommerfeld integral, is notoriously difficult 
to compute due to the highly oscillatory behavior of the function inside the integral. There have been several 
approaches to compute this Fourier integral accurately (Bruno et al., 2016; Cai, 2002; O'Neil et al., 2014). To 
compute Equation 14, we follow (Barnett & Greengard, 2011) and integrate on a deformed contour in the complex 
plane to avoid branch points. Here, we use the deformed contour

𝜉𝜉(𝑠𝑠) = 𝑠𝑠 + i𝐴𝐴
[

𝑒𝑒
−𝑤𝑤(𝑠𝑠+𝑘𝑘0)

2

+ 𝑒𝑒
−𝑤𝑤(𝑠𝑠+𝑘𝑘1)

2

− 𝑒𝑒
−𝑤𝑤(𝑠𝑠−𝑘𝑘0)

2

− 𝑒𝑒
−𝑤𝑤(𝑠𝑠−𝑘𝑘1)

2
]

,�

with −∞ < s < ∞, and A and w denoting user-defined parameters. Integration is taken with respect to s over a 
truncated, finite interval chosen so that the truncation error is smaller than the finite precision arithmetic. In the 
simulations that follow, we have used 500 quadrature points with A = 0.4 and w = 6. We also use the suggestion 
in Barnett and Greengard (2011) of applying the mapping s = sinh(β) with −∞ < β < ∞ to cluster quadrature 
points in the interval (−k0, k0).
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6.2.  Modified KM

We have recently developed a modification to KM that allows for tunably 
high-resolution images of individual targets (Kim & Tsogka, 2023c). Suppose 
that we have evaluated Equation 10 and identified a target. In a region about 
that target, we normalize I KM so that its peak value is 1. Let 𝐴𝐴 𝐼𝐼

KM denote the 
normalization of I KM in this region. With this normalized image, we compute 
the following Möbius transformation,

𝐼𝐼
KM

𝛿𝛿
(𝒚𝒚) =

𝛿𝛿

1 − (1 − 𝛿𝛿)𝐼𝐼
KM

(𝒚𝒚)
,� (15)

with δ > 0 denoting a user-defined tuning parameter. We call the resulting 
image formed with Equation 15 the modified KM image. In the whole space, 
we have determined that this modified KM method scales the resolution of 
KM by 𝐴𝐴

√

𝛿𝛿 . Because δ is a user-defined quantity, it can be set to be arbitrarily 
small. It is in this way that 𝐴𝐴 𝐴𝐴

KM

𝛿𝛿
 produces tunably high-resolution images of 

targets.

7.  Numerical Results
We now present numerical results where we have (a) simulated measure-
ments using the procedure given in Section 4, (b) removed the ground bounce 
signal using the procedure given in Section  5, and then produced images 
through evaluation of the KM and modified KM imaging functions given in 
Section 6.

Just as we have done for the results shown in Section 5, we have used M = 25 frequencies uniformly sampling 
the bandwidth ranging from 3.1 to 5.1 GHz and N = 21 spatial locations of the platform uniformly sampling 
the aperture a = 1 m situated 1 m above the average interface height 〈h(x)〉 = 0. We set ϵr = 9 and β = 0.1 
as suggested by Daniels for modeling buried landmines (Daniels, 2006). We compute imaging results for one 
realization of a Gaussian-correlated rough surface that has hRMS = 0.2 cm and ℓ = 8 cm. We have chosen these 
rough surface parameter values because they yield enhanced backscattering over the system bandwidth as shown 
in Figure 2 which, in turn, indicates substantial multiple scattering due to the rough surface. Consequently, the 
ground bounce signals are strongly affected by scattering due to the rough surface.

7.1.  Single Target

Let the origin of a coordinate system correspond to the center of the flight path in the x-coordinate and the mean 
surface height 〈h(x)〉 = 0 in the z-coordinate as shown in Figure 1. We compute images for a target located at (2, −8) 
cm with reflectivity ρ = 3.4i. Measurement noise is added to the simulated measurements so that SNR = 24.2 dB.

Figure 4 shows the singular values for the data matrix D normalized by the first singular value. Similar to what 
we observed in Section 5 with the ground bounce signals, we find that the first 5 singular values decay rapidly. 
The singular values σj for j > 5 show a different behavior. Thus, we apply the ground bounce removal procedure 
given in Section 5 using j* = 5.

We show the real part of the data matrix D in the top left plot of Figure 5. In the top right plot of Figure 5 we 
show the real part of the ground bounce signals in R. Note that the plots for D and R are nearly indistinguishable 
consistent with our assumption that the ground bounce signals dominate the measurements. In the bottom left 
plot of Figure 5 we show the real part of the scattered fields in S. Note that those values in S are nearly 2 orders 
of magnitude smaller than those of R. The bottom right plot shows the real part of 𝐴𝐴 𝐷̃𝐷 resulting from removing the 
contributions from the first j* = 5 singular values. While the magnitudes of the values in S and 𝐴𝐴 𝐷̃𝐷 are compara-
ble, they appear qualitatively different from one another. Thus, it is unclear from these results whether or not 𝐴𝐴 𝐷̃𝐷 
contains information regarding the target.

In Figure 6 we apply KM (center plot) and the modified KM with δ = 10 −2 (right plot) to 𝐴𝐴 𝐷̃𝐷 . For reference, we 
have also included the result of applying KM to S in the left plot of Figure 6. This ideal case represents exact 
ground bounce removal. Despite the fact that the results for S and 𝐴𝐴 𝐷̃𝐷 in Figure 5 were not qualitatively similar, 

Figure 4.  Singular values of the matrix D. These measurements include the 
ground bounce signals by one realization of a Gaussian-correlated rough 
surface with hRMS = 0.2 cm and ℓ = 8 cm. Additionally, they include scattering 
by a point target located at (2, −8) cm with ρ = 3.4i. Measurement noise has 
been added so that SNR = 24.2 dB.
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the corresponding KM images in Figure 6 are quite similar in the vicinity of the target and show peaks about 
the target location, (2, −8)cm. The peak of the KM image (center) is accompanied by several imaging artifacts 
away from the target location. In contrast, by applying the modified KM method we eliminate those artifacts and 
obtain a high resolution image of the target. We note that the predicted location determined from where the KM 
and modified KM images attain their peak value on the meshed used to plot them is (1.5, −8.2) cm, which is 
slightly shifted from the true location. Nonetheless, this result is quite good given the uncertainty in the surface, 
the inexact method for ground bounce removal, unknown absorp tion, and substantial measurement noise in the 
system.

The unknown absorption puts a depth limitation on imaging targets. When the target depth is comparable to 
the absorption length, the imaging method is not able to distinguish between the true target and a weaker target 
less deep in the medium. We have observed this phenomenon with optical diffusion (González-Rodríguez 
et al., 2018). Here, uncertainty in the rough surface complicates this situation even further. In Figure 7 we show 
KM and modified KM (δ = 10 −2) images for a target located at (2, −12) cm (top row) and for a target located at 
(2, −16) cm. As the target is placed deeper into the medium, we observe an increase in the KM imaging artifacts. 

Figure 6.  [Left] The ideal image formed through evaluation of the Kirchhoff migration (KM) imaging function (Equation 10) 
applied to the scattered signals contained in S. [Center] The image formed through evaluation of Equation 10 applied to 𝐴𝐴 𝐷̃𝐷 . 
[Right] The image formed through evaluation of the modified KM imaging function (Equation 15) with δ = 10 −2 applied to 
the KM image in the center. In each of the plots, the exact target location is plotted as a red “⊙” symbol.

Figure 5.  Real part of the entries of (a) the data matrix D, (b) the ground bounce signals R, (c) the scattered signals S, and 
(d) the matrix 𝐴𝐴 𝐷̃𝐷 with the contributions from the first 5 singular values removed.
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For the target located 16 cm below the surface, we find that these imaging artifacts contain the peak value of the 
function and the target is no longer identifiable in the image. The modified KM images clearly show this behavior.

The inability of the imaging method to identify targets deep in the medium is either due to the absorption, the 
uncertainty of the rough surface, some combination of these, or possibly other factors. In Figure 8 we show the 
resulting image for a target located at (2, −16) cm with the reduced loss tangent, β = 0.05. All other parameters 
are the same as those used in the previous images. With this reduced loss tangent, we find that KM and the modi-
fied KM are clearly able to identify the target. From this result we conclude that the absorption is the main factor 
limiting the range of target depths for this imaging method.

As we explained above, when we remove ground bounce signals, we introduce an eSNR that is important for 
subsurface imaging. We expect that KM will be effective as long as eSNR > 0 dB. For the results shown in 
Figure 6, SNR = 24.2 dB and eSNR = 3.0 dB. The resulting image clearly identifies the target and accurately 
predicts its location. In contrast, we show results for SNR = 14.2 dB and eSNR = −7.0 dB in Figure 9. This image 
has several artifacts that dominate over any peak formation about the target location. It is important to note that 
the eSNR that we use here cannot be estimated a priori. This result demonstrates that SNR demands on imaging 

Figure 7.  [Left] The image formed through evaluation of the Kirchhoff migration (KM) imaging function (Equation 10). 
The exact target location is plotted as a red “⊙” symbol. [Right] The image formed through evaluation of the modified KM 
imaging function (Equation 15) with δ = 10 −2. The top row is for a target located at (2, −12) cm and the bottom row is for a 
target located at (2, −16) cm.

Figure 8.  The same as the bottom row of Figure 7 except that the absorption is reduced from the previous results with 
β = 0.05.
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systems are higher for subsurface imaging problems than other imaging problems that do not involve ground 
bounce signals.

7.2.  Multiple Targets

We now consider imaging regions with 3 targets. Target 1 is located at (−9.0, 10.1) cm with reflectivity ρ1 = 3.6i, 
target 2 is located at (1.0, −9.4) cm with reflectivity ρ2 = 3.4i and target 3 is located at (11.0, −9.8) cm with 
reflectivity ρ3 = 3.6i. The measurements were computed using the procedure given in Section 4. Measurement 
noise has been added so that SNR = 24.2 dB.

The result from evaluating the KM imaging function (Equation 10) for this problem is shown in the left figure 
of Figure 10. The corresponding result from evaluating the modified KM imaging function (Equation 15) with 
δ = 10 −2 is shown in the right plot of Figure 10. These images show that the method is capable of identifying the 
three targets and give good predictions for their locations.

The result from the modified KM method does not show the three targets equally clearly. In fact, the peak formed 
near target 2 is the strongest in the KM image, so the result for the modified KM image shows target 2 most 
clearly. This is because the normalization of the KM image required for evaluating the modified KM image 
is based on target 2. As an alternative, we consider 5 × 5 cm sub-regions about each of the peaks of the KM 
image. Within each of those sub-regions, we normalize the KM image and evaluate the modified KM image 
with δ = 10 −2. Those results are shown in Figure 11. Each of those sub-region images is centered about the 
corresponding exact target location and scaled by the central wavenumber k0. Even though the predicted target 
locations are shifted from the exact target location, these results show that these shifts are small fractions of the 
central wavelength.

These results show that this imaging method is capable of identifying multiple targets. However, there are limita-
tions. The targets cannot be too close to one another due to the finite resolution of KM imaging. Moreover, due to 
absorption in the medium, there are depth limitations to where targets can be identified. Additionally, when  there 
are multiple targets at different depths, it is likely that those targets that are deeper than others may be not be 
identifiable in images.

Figure 9.  [Left] Kirchhoff migration (KM) image and [Right] modified KM image with δ = 10 −2 for a target located at (2, 
−8) cm with SNR = 14.2 dB and eSNR = −7.0 dB.

Figure 10.  [Left] The image formed through evaluation of the Kirchhoff migration (KM) imaging function (Equation 10) for 
three targets. The exact target locations are plotted as a red “⊙” symbol. [Right] The image formed through evaluation of the 
modified KM imaging function (Equation 15) with δ = 10 −2. Measurement noise is added so that SNR = 24.2 dB.
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8.  Conclusions
We have discussed synthetic aperture subsurface imaging of point targets. Here, we have modeled uncertainty 
about the interface between the two media with Gaussian-correlated random rough surfaces characterized by 
a RMS height and correlation length. The medium above the interface is uniform and lossless. The medium 
below the interface is uniform and lossy. The loss tangent of the medium below the interface is not known when 
imaging.

The imaging method involves two steps. First, we attempt to remove ground bounce signals using PCA. This 
method does not require any explicit information about the interface other than the assumption that ground 
bounce signals are stronger than the scattered signals. There is no a priori method to choose the number of prin-
cipal components to include in the ground bounce removal procedure. Instead, we have proposed to determine 
where the decay of the singular values changes behavior and use that for the ground bounce removal procedure. 
Using the resulting matrix after removing the ground bounce signal, we apply KM and our modification to it 
that allows for tunably high resolution images of targets. In our implementation of KM imaging, we compute 
so-called illuminations for the problem with a flat interface at the mean interface height using only the real part 
of the relative dielectric permittivity for the medium below that interface, so we completely neglect the unknown 
absorption in the medium.

Our numerical results show that despite uncertainty in the interface, the inexactness of the ground bounce 
removal procedure, unknown absorption, and measurement noise, this imaging method is able to identify and 
locate targets robustly and accurately. However, there are limitations to the capabilities of this imaging method. 
The main limitation for this imaging method is that targets cannot be too deep below the interface. Absorption 
attenuates the scattered power and depends on the path length of signals. When targets are deep below the inter-
face, the path length of scattered signals are too large and attenuation renders those scattered signals undetectable 
within the dynamic range of measurements. Additionally, targets cannot be too closely situated to one another. 
The KM imaging method is limited in its resolution. If targets are situated closer than the resolution capabilities 
of KM, they cannot be distinguished.

Despite the limitations of this imaging method, we find these results to be a promising first step toward prac-
tical imaging problems. A key extension of this work will be to incorporate quantitative imaging methods that 
will open opportunities for target classification in addition to identification and location. We have recently 
developed methods for recovering the radar cross-section (RCS) for dispersive point targets when there is 
no ground bounce signal (Kim & Tsogka, 2023b). Recovering the RCS for individual targets can be used to 
classify targets by properties related to their size or material properties when their shape or other geometrical 
features are not available for recovery. The challenge with quantitative imaging methods for this problem 
will be addressing both the unknown absorption and uncertain rough interface. As mentioned previously, 
absorption will attenuate the power scattered by targets. Moreover, it will attenuate power non-uniformly over 
frequency which introduces new challenges. The uncertainty in the rough interface also affects our ability to 
recover quantitative information. Because our method for removing ground bounce signals from an unknown 
rough surface is approximate, it yields errors in the phase which impeded the recovery of quantitative infor-
mation. Developing extensions that allow for quantitative subsurface imaging is the subject of our future 
work.

Figure 11.  Evaluation of the modified Kirchhoff migration imaging function (Equation 15) with δ = 10 −2 in sub-regions 
centered about each target location.
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Appendix A:  Numerical Solution of the System of Boundary Integral Equations
The method that we use to compute realizations of the Gaussian-correlated rough surface (Tsang et al., 2004) 
uses discrete Fourier transforms, which assumes periodicity over the interval [−L/2, L/2]. The truncated domain 
width L is chosen large enough so that edges do not strongly affect the results. In the simulations used here we set 
L = 4 m compared to the 1 m aperture and 30 cm wide IW.

To compute the numerical solution of Equations 6a and 6b or 7a and 7b, we first truncate the integrals to the 
interval −L/2 ≤ ξ ≤ L/2 and then replace those integrals with numerical quadrature rules. The result of this 
approximation is a finite dimensional linear system of equations suitable for numerical computation. Because the 
rough surfaces are periodic, we use the periodic trapezoid rule (composite trapezoid rule for a periodic domain). 
However, because the integral operators in Equations 6 and 7 are weakly singular, we need to make modifications 
to the periodic trapezoid rule which we explain below.

We discuss the modification to the periodic trapezoid rule we use for the integrals,

𝐼𝐼𝐷𝐷(𝑠𝑠) =
∫

𝐿𝐿∕2

−𝐿𝐿∕2

𝜕𝜕𝜕𝜕(𝑠𝑠𝑠 𝑠(𝑠𝑠); 𝑡𝑡𝑡𝑡 (𝑡𝑡))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡))2𝑈𝑈 (𝑡𝑡)d𝑡𝑡𝑡� (A1)

and

𝐼𝐼𝑆𝑆 (𝑠𝑠) =
∫

𝐿𝐿∕2

−𝐿𝐿∕2

𝐺𝐺(𝑠𝑠𝑠 𝑠(𝑠𝑠); 𝑡𝑡𝑡𝑡 (𝑡𝑡))𝑉𝑉 (𝑡𝑡)d𝑡𝑡𝑡� (A2)

with

𝐺𝐺(𝑠𝑠𝑠 𝑠(𝑠𝑠); 𝑡𝑡𝑡𝑡 (𝑡𝑡)) =
i

4
𝐻𝐻

(1)

0

(

𝑘𝑘

√

(𝑠𝑠 − 𝑡𝑡)2 + (ℎ(𝑠𝑠) − ℎ(𝑡𝑡))2
)

.�

Let tj = −L/2 + (j − 1)Δt for j = 1, …, M denote the M quadrature points with Δt = L/M. By applying the periodic 
trapezoid rule to Equations A1 and A2 and evaluating that result on s = ti, we obtain

𝐼𝐼
𝑀𝑀

𝐷𝐷
(𝑡𝑡𝑖𝑖) = Δ𝑡𝑡

𝑀𝑀
∑

𝑗𝑗=1

𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑗𝑗 , ℎ(𝑡𝑡𝑗𝑗))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡𝑗𝑗))
2
𝑈𝑈 (𝑡𝑡𝑗𝑗),�

and

𝐼𝐼
𝑀𝑀

𝑆𝑆
(𝑡𝑡𝑖𝑖) = Δ𝑡𝑡

𝑀𝑀
∑

𝑗𝑗=1

𝐺𝐺(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑗𝑗 , ℎ(𝑡𝑡𝑗𝑗))𝑉𝑉 (𝑡𝑡𝑗𝑗).�

Let A be the M × M matrix whose entries are

𝑎𝑎𝑖𝑖𝑖𝑖 = Δ𝑡𝑡
𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑗𝑗 , ℎ(𝑡𝑡𝑗𝑗))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡𝑗𝑗))
2
,� (A3)

and let B be the M × M matrix whose entries are

𝑏𝑏𝑖𝑖𝑖𝑖 = Δ𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑗𝑗 , ℎ(𝑡𝑡𝑗𝑗)).� (A4)

With these matrices defined, the approximations for the integral operators given above are matrix-vector prod-
ucts. The problem with these results is that the kernels for 𝐴𝐴 𝐴𝐴

𝑀𝑀

𝐷𝐷
 and 𝐴𝐴 𝐴𝐴

𝑀𝑀

𝑆𝑆
 are singular on tj = ti, so the diagonal entries 

of A and B cannot be specified.

The modification to the periodic trapezoid rule we make is to replace the diagonal entries of A and B by

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑈𝑈 (𝑡𝑡𝑖𝑖)
∫

𝑡𝑡𝑖𝑖+Δ𝑡𝑡∕2

𝑡𝑡𝑖𝑖−Δ𝑡𝑡∕2

𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑡𝑡 (𝑡𝑡))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡))2d𝑡𝑡𝑡�

and
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𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑉𝑉 (𝑡𝑡𝑖𝑖)
∫

𝑡𝑡𝑖𝑖+Δ𝑡𝑡∕2

𝑡𝑡𝑖𝑖−Δ𝑡𝑡∕2

𝐺𝐺(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑡𝑡 (𝑡𝑡))d𝑡𝑡𝑡�

Note that we have assumed that U(t) and V(t) are approximately constant over this interval thereby allowing us to 
factor them out from the integral. Substituting t = ti + τ and dt = dτ, we obtain

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑈𝑈 (𝑡𝑡𝑖𝑖)
∫

Δ𝑡𝑡∕2

−Δ𝑡𝑡∕2

𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2d𝜏𝜏𝜏�

and

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑉𝑉 (𝑡𝑡𝑖𝑖)
∫

Δ𝑡𝑡∕2

−Δ𝑡𝑡∕2

𝐺𝐺(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏))d𝜏𝜏𝜏�

Next, we evaluate the expressions involving G and find that

𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2

= −
i𝑘𝑘

4

[

ℎ
′(𝑡𝑡𝑖𝑖)𝜏𝜏 − ℎ(𝑡𝑡𝑖𝑖) + ℎ(𝑡𝑡𝑖𝑖 + 𝜏𝜏)

]

𝐻𝐻
(1)

1

(

𝑘𝑘

√

𝜏𝜏2 + (ℎ(𝑡𝑡𝑖𝑖) − ℎ(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2
)

√

𝜏𝜏2 + (ℎ(𝑡𝑡𝑖𝑖) − ℎ(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2
,

�

and

𝐺𝐺(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏)) =
i

4
𝐻𝐻

(1)

0

(

𝑘𝑘

√

𝜏𝜏2 + (ℎ(𝑡𝑡𝑖𝑖) − ℎ(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2
)

�

Expanding about τ = 0, we find

𝜕𝜕𝜕𝜕(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏))

𝜕𝜕𝜕𝜕

√

1 + (ℎ′(𝑡𝑡𝑖𝑖 + 𝜏𝜏))2 =
ℎ
′′(𝑡𝑡𝑖𝑖)

4𝜋𝜋
(

1 + (ℎ′(𝑡𝑡𝑖𝑖))
2
)
+ 𝑂𝑂

(

𝜏𝜏
2
)

,�

and

𝐺𝐺(𝑡𝑡𝑖𝑖, ℎ(𝑡𝑡𝑖𝑖); 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝜏𝜏 (𝑡𝑡𝑖𝑖 + 𝜏𝜏)) =
1

4𝜋𝜋

[

−2𝛾𝛾 + i𝜋𝜋 − 2 log

(

1

2
𝑘𝑘|𝜏𝜏|

√

1 + (ℎ′(𝑡𝑡𝑖𝑖))
2

)]

+ 𝑂𝑂
(

𝜏𝜏
2
)

,�

with γ = 0.5772… denoting the Euler-Mascheroni constant. Integrating these expressions over −Δt/2 ≤ τ ≤ Δt/2, 
we set

𝑎𝑎𝑖𝑖𝑖𝑖 =
Δ𝑡𝑡

4𝜋𝜋

ℎ
′′(𝑡𝑡𝑖𝑖)

1 + (ℎ′(𝑡𝑡𝑖𝑖))
2
,� (A5)

and

𝑏𝑏𝑖𝑖𝑖𝑖 =
Δ𝑡𝑡

2𝜋𝜋

[

1 − 𝛾𝛾 + i
𝜋𝜋

2
− log

(

1

4
𝑘𝑘Δ𝑡𝑡

√

1 + (ℎ′(𝑡𝑡𝑖𝑖))
2

)]

.� (A6)

Thus, to form the matrix A, we evaluate Equation A3 for all i ≠ j and Equation A5 for i = j. Similarly, to form the 
matrix B, we evaluate Equation A4 for all i ≠ j and Equation A6 for i = j. With these matrices, we seek the vectors 
of unknowns, u = (U(t1), …, U(tM)) and v = (V(t1), …, V(tM)) through solution of the block system of equations,

⎡

⎢

⎢

⎣

1
2
� − �0 �0

1
2
� + �1 −�1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�

�

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�0

�1

⎤

⎥

⎥

⎦

.�

Here I is the identity matrix, A0 and B0 correspond to evaluation of the A and B matrices with wavenumber k0 and 
A1 and B1 correspond to evaluation of the A and B matrices with wavenumber 𝐴𝐴 𝐴𝐴1 = 𝑘𝑘0

√

𝜖𝜖𝑟𝑟(1 + i𝛽𝛽) . The right-hand 
side block vectors contain the evaluation of the source above the interface f0 and below the interface f1 on the set 
of interface points (tj, h(tj)) for j = 1, …, M.
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Data Availability Statement
The data and numerical methods used in this study are available in A. D. Kim (2023).
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