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We determine the full distribution and moments of the first passage time for a wide class of stochastic
search processes in the limit of frequent stochastic resetting. Our results apply to any system whose short-time
behavior of the search process without resetting can be estimated. In addition to the typical case of exponentially
distributed resetting times, we prove our results for a variety of resetting time distributions. We illustrate our
results in several examples and show that the errors of our approximations vanish exponentially fast in typical

scenarios of diffusive search.
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I. INTRODUCTION

For many decades there has been sustained interest in un-
derstanding first passage times (FPTs), which characterize the
time it takes a searcher to find a target [1-6]. Search processes
of interest include pure diffusion [7,8], anomalous diffusion
[9,10], random walks on discrete networks [11,12], run-and-
tumble particles [13,14], inactivating searchers [15,16], and
SO on.

More recently, there has been a strong interest in FPTs
of searchers under stochastic resetting, which means that the
searcher is reset to elsewhere in the state space at random
times [17-21]. Biological approximations of such behavior
vary widely in spatial and temporal scale, for example, RNA
cleavage during transcription [22] and predator dynamics dur-
ing foraging [23]. In theoretical treatments of these systems,
stochastic resetting can reduce the expected search time [24].
For instance, consider a diffusing searcher on the half line
with an absorbing boundary condition at the origin. It is well
known that the mean FPT to the origin is infinite. However,
if the searcher stochastically resets its position, then the mean
FPT is finite [18]. This result can be heuristically explained by
the fact that the searcher resets before wandering too far from
the origin [see Fig. 1(a)].

Here we study the full distribution and moments of FPTs
for a wide class of stochastic search processes in the limit of
frequent stochastic resetting. To briefly summarize our results,
let T denote the FPT of a stochastic searcher that resets to its
initial position (or distribution of initial positions) at random
times. We are most interested in the case that the resetting
occurs at exponentially distributed times with rate r > 0 (i.e.,
Poissonian resetting), but we prove our results for much more
general resetting time distributions. If p = p(r) € (0, 1) de-
notes the probability that the searcher finds a target before
resetting, then under very mild assumptions on the search
process we prove that rpoT converges in distribution to an
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exponential random variable with unit rate, which we denote
by

rpoT — 4iss Exponential(1) as r — oo, (D)

where pyo = po(r) is any function of r satisfying po ~ p
as r — o0o. Throughout this work, f ~ g denotes f/g — 1.
Roughly speaking, (1) says that T is approximately exponen-

tially distributed with rate rpy,
P(T >t)~e ™, ift >0and py < I.

In addition to the full distribution in (1), we determine the
behavior of all the moments of 7,

"~ —
E[T™] o) as r — 00, )
for integers m > 1. To make these results readily applicable,
we determine appropriate choices of py based on the short-
time distribution of the search process without resetting.

The results in (1) and (2) show that many stochastic search
processes with resetting behave similarly once we scale the
search time by the resetting rate and the probability of a suc-
cessful search. This is illustrated in Fig. 1(b), which displays
results from numerical solutions of quite disparate search
processes that are nevertheless all approximately exponen-
tially distributed with rate rpg (the details of these and other
examples are given in Sec. III). Further, in typical scenarios
of interest for diffusive search, we find that the asymptotic
estimates converge exponentially fast. Establishing these re-
sults requires knowledge only of the short-time behavior of
the search process without resetting. With this information,
we determine the asymptotic behavior of p (i.e., we determine
Po) and thus the limiting distribution of the FPT.

The rest of the paper is organized as follows. In Sec. II we
prove (1) and (2), and we determine the asymptotic behavior
of p under various assumptions on the short-time behav-
ior of the search process without resetting. In Sec. III we
apply these results to several scenarios including diffusive
and subdiffusive search in one or three spatial dimensions,
a random walk on a discrete network, and a run-and-tumble
particle. We consider these examples in Secs. III A-IITE for
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FIG. 1. (a) Diffusive search under stochastic resetting to
x =L > 0 in one spatial dimension. Red dots indicate resetting times,
and the green square indicates the FPT to x = 0. The time axis labels
correspond to the decomposition of the FPT in (12). (b) FPTs of dis-
parate search processes behave similarly under frequent exponential
stochastic resetting. The numerical details of the examples plotted
here are described in Sec. IIIF.

the case of exponential resetting, and we consider diffusive
search with sharp, uniform, and gamma resetting distributions
in Sec. III G. We conclude with a brief discussion. The Ap-
pendix contains proofs and technical points.

II. PROBABILISTIC SETUP AND MAIN RESULTS

In this section we present results on the FPT of a searcher
under frequent stochastic resetting. While these results make
no explicit reference to the underlying search process (e.g.,
diffusion or otherwise), we later apply them to a diffusive
search process and other stochastic processes.

A. FPTs under frequent stochastic resetting

A stochastic resetting search process can be built from only
two ingredients: (1) the search time 7 in the absence of reset-
ting and (2) the resetting time o. We now make assumptions
ontando.

Assume t is any random variable whose cumulative distri-
bution function, F;(¢) := P(t < t), satisfies

F.(0) =0, 3)
F.(t) >0 forsomet € (0, 00). “4)

In words, (3) says that 7 is strictly positive and (4) merely
excludes the trivial case that t is always infinite.

Assume o has mean E[o] = 1/r, where we refer to r > 0
as the resetting rate. To construct o precisely, let Y > 0 be any
strictly positive random variable that does not depend on r and
has unit mean

E[Y] =1, )

and a finite moment-generating function in a neighborhood of
the origin. That is, assume that there exists a § > 0 so that

E[e¥] < 0o forall z € [-6, §]. (6)
We then define o as
o:=Y/r @)

The probability of the search process ending prior to a reset-
ting event is (i.e., a “successful” search)

p=pr) =P <0)=/O So (1) dF (1), ®)

where S, (t) = P(o > t) is the survival probability of o. To
exclude trivial cases, we assume

p>0 forallr> 0. )

Most prior studies of stochastic resetting consider expo-
nential (i.e., Poissonian) resetting, which in this framework
means that Y is exponential with unit mean, and thus has
survival probability

Sy(y):=P¥ >y)=e fory>0. (10)

For such exponential resetting, S, (1) = ¢, p in (8) is the
Laplace-Stieltjes transform of F;(¢), and (4) ensures (9) is
satisfied. Note that if F; (¢) is differentiable, then the Laplace-
Stieltjes transform of F; (¢) is the Laplace transform of j—[F, )
[25]. However, the framework in (5)—(7) includes much more
general resetting distributions. For example, “sharp reset” [26]
in which resetting occurs at a deterministic time o = 1/r fits
into this framework by setting

1 ify <,

Sr() = {0 ify > 1.

Many other choices of the resetting time (such as uniform
reset and gamma-distributed reset considered in [26]) also fit
into this framework (see Sec. III G for examples).

Let R € {0, 1, ...} denote the number of resets before the
searcher finds the target, or the number of “unsuccessful”
searches. From (8), we infer that R is a geometric random
variable with probability of success p € (0, 1); that is,

PR=n)=(1—p)'p, forne{0,1,...}. (11)
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The random variable that describes the total search time with
resetting, 7 > 0, is thus given by

R
T = Za,;+f, (12)

n=1

where {0, },>1 is an independent and identically distributed
(iid) sequence of random variables with common survival
probability,

Se-(t) =P(c™ >t)=P(o > tlo < 1). (13)

Further, t~ is a random variable defined by survival probabil-
ity,

S;-@) =P(t” >t)=P(rt >t|]t < o).

In words, the distribution of o~ is the distribution of o
conditioned on o < t. Similarly, the distribution of 77 is
the distribution of t conditioned on T < o. Hence, the def-
inition of 7 in (12) is the sum of the unsuccessful search
times (o, + - - - + oy ) plus the single successful search time
(7). See Fig. 1(a) for an illustration. We emphasize that R,
{o, }u>1, and 7~ are independent.

Now that we have defined all pertinent terms, we present
the main result and sketch its proof.

Theorem 1. Under the assumptions of Sec. I[ A, let py =
po(r) be any function of r satisfying

pPo~p asr — oo. (14)

Then rpoT converges in distribution to an exponential random
variable with unit rate,

rpoT — gist Exponential(1) asr — oo. (15)
Further, for integers m > 1,
!
E[T"] ~ —~_  asr — oo, (16)
(rpo)™

We now sketch the proof of Theorem 1. The full proof
of Theorem 1 and the proofs of the other results in this
section are in the Appendix. A short formal calculation that
yields (15) in the case of exponential resetting is also given in
the Appendix.

Sketch of proof of Theorem 1. In the frequent resetting
limit (r — 00), the searcher resets many times before finally
reaching the target. That is, the probability that any given
iteration of the search process is “successful” is small,

p=P(t <o)k 1 forlarger, (17)

and therefore we expect many resets (i.e., R >> 1). In addition,
the iteration of the search process that finally reaches the target
before resetting, denoted by v~ in (12), must be fast since it is
conditioned to be less than a fast resetting time. Hence, v~ is
negligible compared to the sum of R > 1 realizations of o~
in (12).

Further, since we have ¢ < t with high probability for
large r [see (17)], the condition imposed on the survival prob-
ability in (13) becomes inconsequential for frequent resetting,

and thus 0~ & o. Therefore, (12) reduces to

R R
1
T ~ E o, = - g Y, forlarge r, (18)
n=1

n=1

where {Y, },>1 are iid realizations of Y in (5)—(7).

To turn (18) into a statement about moment-generating
functions, we multiply (18) by zrpo, exponentiate, take ex-
pectation, and sum over the possible values of R in (11) to
obtain that for large r,

E[eZVPUT] ~ E[EZPO ZS:] yn]

o0
=pY (1—p) E"])
n=0
_ p
1= (1= pE[en’]
In light of (14) and (17), we Taylor expand the exponential
function in (19) about the origin and use the assumption in (5)
that ¥ has unit mean to finally obtain

19)

) 1
E[e?7T] ~ —2 for large r.

The convergence in distribution in (15) follows from noting
that 1/(1 — z) is the moment-generating function of a unit rate
exponential random variable. The moment formula in (16) is
then natural since the mth moment of an exponential random
variable with rate 8 is m!/8™.

B. Asymptotics of the probability p of a successful
search under exponential resetting

Applying Theorem 1 to a given system requires knowledge
of p. In this section we assume exponential resetting [i.e.,
S, (t) = ¢7""] and consider various assumptions on the cumu-
lative distribution function F;. We then determine the resulting
asymptotics of the probability p of a successful search, which
then yields the distribution and moments of the FPT T via
Theorem 1.

1. Diffusion

We first consider the typical short-time behavior of F; for
a diffusive search when the searcher cannot start arbitrarily
close to the target. In this case, F;(¢) decays exponentially as
t — 07 (see Sec. III A for some specific examples or Ref. [27]
for a general proof). We begin with a result when we merely
know the short-time behavior of F; on a logarithmic scale.

Theorem 2. For exponential resetting as in (10), if

Iim tInF;(t) = —C < 0, (20)
t—0F
then p in (8) and T in (12) satisfy
Inp ~—+~/4Cr asr — oo,
In(7"E[T™]) ~ mvV4Cr asr — oo.

In applications of interest, the constant C in (20) is a char-
acteristic timescale of diffusive search. Typically, C is given
by

L2

=—>0 21
C4D>, 2D
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where L > 0 is the shortest distance (in an appropriate dis-
tance metric) the searcher must travel to reach the target, and
D > 0 is a characteristic diffusion coefficient [27].

The next result yields stronger conclusions about the
asymptotics of p and T by assuming more detailed informa-
tion about the short-time behavior of F;.

Theorem 3. For exponential resetting as in (10), if

F,(t) ~ At’e " ast — 0OF, (22)

for A>0,C >0, and b € R, then p in (8) and T in (12)
satisfy

p~ po:i=A~Ay nCH exp(—+4Cr) asr — 00,

m
1 .
E[T™] ~ m! |:—2h+1r2b45 exp(«/4Cr):| as r — 00.

AVrC 2
(23)

In addition to the timescale C in (21), the constants A and b
in (22) encode more details about the diffusive search process
[28]. Examples of these constants in specific scenarios are
given in Sec. Il A.

2. Subdiffusion

We now consider the case of subdiffusive search, where
subdiffusion is modeled by a fractional Fokker-Planck equa-
tion [29]. The results are analogous to the case of diffusion
above, except the formulas are more complicated because
the short-time behavior of F; depends on the subdiffusive
exponent. We apply the following two theorems to specific
examples in Sec. III E.

Theorem 4. For exponential resetting as in (10), if

11%1 t‘InF,(t)= —C < 0, (24)
—0t+
for d > 0, then p in (8) and T in (12) satisfy
Inp~ —yr@tD a5y — oo, (25)
In(F"E[T™]) ~ myrd/@tD  asr — oo, (26)

where y = %Cﬁ > 0.

For a subdiffusive exponent o € (0, 1), meaning that the
mean-squared displacement of the search process without re-
setting grows sublinearly in time ¢ according to the power law
t“, we typically have that [30]

2\ 1/2—a)

d=-—" C=(2—ot)oz°‘/(2_°‘)(L—> eY)
2—«a 4K,

where the length scale L >0 is as in (21) and K, is

the characteristic subdiffusion coefficient [with dimensions

(length)?(time)~*]. Hence, the quantity yr%/“*D appearing

in (25) and (26) is typically given by

yré/ @D = frep2 /K,

Theorem 5. For exponential resetting as in (10), if
F.(t) ~ At’e™C/"  ast — 0T, (28)
forA>0,C>0,d>0,and b € R, then p in (8) and T in
(12) satisty

d/(d+1))

p~ po:= urf exp(—yr asr — oo, (29)

1 m
E[T™] ~ m![—r_ﬁ_1 exp(yrd/(d+l))] as r — 00, (30)
m

where y = %C#l > 0 and
d—2b

2TAX(Cd) T
R=V"a+1  PTa+2

If d =1 in (24) and (28) (and thus @ = 1 in (27)), The-
orem 4 reduces to Theorem 2 and Theorem 5 reduces to
Theorem 3.

3. Other search processes

We now consider the case that F;(¢) decays according to a
power law as t — 0T. This can describe the case of (1) dif-
fusive search in which the searcher can start arbitrarily close
to the target (see Sec. III B), (2) search by a continuous-time
Markov chain on a discrete state space (see Sec. I[II C), and (3)
superdiffusive search (see Ref. [31]).

Proposition 6. For exponential resetting as in (10), if

F.(t) ~At® ast— 0%, (31)
forA > 0and b > 0, then pin (8) and T in (12) satisfy
p~po:=T0b+ I)Ar’[7 as r — 09, (32)

E[T™] ~ m! asr — 00, (33)

|
AT(b+ 1)
where ['(8) := fooo z#~'e~% dz denotes the gamma function.
The asymptotics of p in (32) follow from noticing that
p is the Laplace-Stieltjes transform of F;(t) and applying a
Tauberian theorem (see, for example, Theorem 3 in Sec. 5 of
chapter 8 of [25]). The asymptotics of the moments of T in
(33) then follow from Theorem 1.

III. EXAMPLES AND NUMERICAL SOLUTIONS

The results in Sec. II give the asymptotics of the FPT T as
the resetting rate r increases. In this section we apply these
results to several examples and compare them to numerical
solutions and simulations. The details of the calculations for
these examples are given in the Appendix. We assume expo-
nential resetting as in (10) in Secs. II A-IITE and consider
nonexponential resetting in Sec. III G.

A. Diffusive search

Consider a searcher that diffuses with diffusivity D > 0 in
d > 1 spatial dimensions. Assume that the searcher starts at
(and is reset to) a position that is distance L > O from the
target. Consider the following three scenarios: (1) d = 1 and
the target is a single point, (2) d = 3 and the target is a sphere
of radius a > 0, and (3) d = 3 and the target is the exterior
of a sphere centered at the starting and resetting position (i.e.,
the FPT is the first time the searcher escapes a sphere of radius
L > 0).

In each of these three scenarios, the Laplace transform
of the distribution of 7 and all the moments of 7' can be
calculated analytically. Further, the probability p in (8) of a
successful search and the corresponding asymptotic form pg

024114-4



FIRST-PASSAGE TIMES UNDER FREQUENT ...

PHYSICAL REVIEW E 108, 024114 (2023)

(a) 10°
107!

=== half-line
=== spherical target
== escape a sphere

1072

Kolmogorov-Smirnov distance

w

—_
o

relative error

= half-line, m =1
=== half-line, m = 2
1077 | | — spherical target,
== spherical target, r
= escape a sphere,
== escape a sphere,
| | |

2 4 6

\/rL%/D

FIG. 2. Diffusive search for a target that is distance L > 0 from
the initial and resetting position. See Sec. III A for details.

given by Theorem 3 can be computed analytically. In partic-
ular, the values of pg in (23) in Theorem 3 for these three
scenarios are

e~ V12D in scenario (1),
po=1(1+L/a) e VP inscenario (2), (34)
VArL?/D e~ /D

These calculations are given in the Appendix.

In Fig. 2(a) we plot the convergence in distribution of
rpoT to a unit rate exponential random variable as the di-
mensionless resetting rate /rL?/D increases for each of these
scenarios. Specifically, we plot the Kolmogorov-Smirnov
distance between the distribution of rpyT and a unit rate
exponential distribution, defined as

in scenario (3).

sup |P(rpoT > x) —e™|. (35)

x=0

In agreement with Theorem 1, rpyT rapidly converges in
distribution to a unit rate exponential random variable. In
Fig. 2(b) we plot the relative error between the exact mth
moment E[7™] and the frequent resetting estimate E[7™] ~
m!/(rpo)™ from Theorems 1 and 3 for m = 1 (solid curves)
and m = 2 (dashed curves). This figure shows that the relative

error vanishes exponentially fast as \/rL?/D increases.

These three scenarios share the general features that if the
resetting rate r is much faster than the diffusion rate (i.e.,
r > D/L?), then T is approximately exponentially distributed
with rate rpy, where p, vanishes exponentially according to

po ~ e V"™/D (possibly with a prefactor that depends on
the details of the geometry). While these features can be
seen explicitly in the three analytically tractable scenarios
described above, they characterize diffusive search with fre-
quent resetting much more generally. Indeed, as long as the
searcher cannot start (or reset) arbitrarily close to the target
(see Sec. III B for a case that this condition excludes), then
the FPT distribution without resetting generally satisfies [27]

lim rInF,(1) = —L*/D < 0,
t—0t

where D > 0 is a characteristic diffusivity and L > 0 is the
shortest distance from the set of initial positions to the target
(in an appropriate distance metric). Hence, Theorem 2 yields

Inp~ —/rL?/D <0 asr— oo,

and thus the moments of T diverge exponentially according to

In(F"E[T™]) ~ my/rL?/D asr — oo.

B. Diffusive search with uniform initial condition

We now consider diffusive search in which the starting
and resetting positions are not bounded away from the target.
Suppose that the searcher diffuses with diffusivity D > 0 in
one spatial dimension with targets at x =0 and x = L > 0,
and suppose that the searcher starts and resets to a uniformly
distributed position in the interval [0, L]. In this case we
show in the Appendix A 4 b that the FPT distribution without
resetting decays according to the following power law at short

time,
16Dt
F(t)~,/—5 ast — 0% (36)
wL?

Hence, for frequent resetting, Theorem 1 implies that 7 is
approximately exponentially distributed with rate rpy, where
Proposition 6 yields

p~ po=+4D/(rL*) asr — oo. (37)

In Fig. 3(a) we plot the Kolmogorov-Smirnov distance as in
(35) for this example (solid red curve) as the dimensionless
resetting rate \/rL?/D increases. In Fig. 3(a) we also plot the
Kolmogorov-Smirnov distance for scenario (3) in Sec. III A
(dashed blue curve) except where the searcher starts and resets
to uniformly distributed positions in the sphere.

C. Search on a discrete network

Suppose the searcher moves by discrete jumps to adja-
cent nodes on a discrete network [32]. Specifically, let X =
{X(#)};>0 be a continuous-time Markov chain on a finite or
countably infinite state space I. Suppose X starts at (and resets
at rate r to) a given state iy € I. Consider the FPT to some
target set of states liurger C 1 With iy & larger.

Proposition 1 in [33] implies that the cumulative dis-
tribution function of the FPT 7 :=inf{t > 0: X (¥) € Largei}
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FIG. 3. (a) Diffusive search with uniformly distributed initial and
resetting positions. (b) Search on a discrete network with || > 1
states and b > 1 jumps required to reach the target from the starting
and resetting position. See Secs. III B and III C for details.

without resetting decays according to the following power law
at short time:

F,(t) ~ At® ast — 0T, (38)

where b > 1 is the minimum number of jumps X must take to
reach e from ip and A = A /b!, where A is the product of
the jump rates of X along this shortest path from iy to Jirger.
(If there are multiple shortest paths, then A is the sum of the
products of the jump rates along these paths.) As a technical
aside, (38) assumes that the jump rates of X are bounded and
P(r = 00) # 1 (i.e., there exists a path from i t0 Jirger)-
Hence, Proposition 6 implies that

p~po=AT(b+1)r’ asr— oo,

and Theorem 1 yields the distribution and moments of 7" for
frequent resetting. In Fig. 3 we plot the Kolmogorov-Smirnov
distance as in (35) for this example as the resetting rate r
increases for a few randomly generated networks with the
number of states ranging from |I| = 10? to |/| = 103. The
details of this calculation and these networks are given in the
Appendix. The convergence in distribution illustrated in Fig. 3
shows that despite the complexity of these underlying jump
processes, the FPT with frequent resetting depends only on
the network properties along the shortest path(s) to the target.
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FIG. 4. (a) Run-and-tumble search. (b) Subdiffusive search. See
Secs. III D and 111 E for details.

D. Run and tumble

Consider a one-dimensional run-and-tumble particle that
switches between velocity V > 0 and —V < 0 at Poissonian
rate A > 0[13,14]. Analogous to the first scenario in Sec. IIT A
on diffusion, suppose the target is at x = 0 and the searcher
starts at and resets to x = L > 0. The probability of a success-
ful search satisfies

p~ po= eV (%efu‘/v + ,B/r) as r — 00, (39)

where 8 = Ae’%(AL +V)/(4V). In Fig. 4(a) we plot the
Kolmogorov-Smirnov distance as in (35) for this example
as the dimensionless resetting rate rL/V increases for a few
different choices of the dimensionless tumbling rate AL/V.
The details of this calculation are given in the Appendix.

E. Subdiffusive search

Suppose that the searcher moves by subdiffusion ind > 1
spatial dimensions between stochastic resets, meaning that
its mean-squared displacement grows in time ¢ according
to a sublinear power law * for o € (0, 1). Concretely, sup-
pose that in between stochastic resets, the probability density
Po(x,t) for its position evolves according to the following

024114-6
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fractional Fokker-Planck equation [29]:

t>0,xeRNU,
(40)

3 _
Pl 1) = oDl YKy Apy(x, 1),

with absorbing conditions on the target U C R¢,

P.=0, xeU.

In (40), t >0 is the time elapsed since the last re-
set, K, > 0 is the generalized diffusivity (with dimensions
(length)z(time)‘“), and 0DtI ~% is the Riemann-Liouville frac-
tional derivative [34],

1 d

D f () = —— L / IOy
0

(l — S)lfot

o) dt ’

where I'(«) is the gamma function.

For a given initial distribution of the searcher and a given

target, let , denote the FPT without stochastic resetting with
corresponding survival probability,

Se(t) :=P(ty > 1) = / Pa(x,1)dx. 41
RI\U

Now, the Laplace transform of the solution p, to the fractional
equation (40) with o € (0, 1) is related to the solution p; to
the integer order version of (40) [i.e., (40) with o« = 1] via the
relation [35]

Palx,8) =s""'pi(x,5s%), a€(0,1], (42)
where f~ (s) := fooo e~ f(t)dr denotes the Laplace transform
of f(¢). Hence, integrating (42) over space and using (41)
yields

S,(s) = s*7'Si(s*), «e(0,1]. 43)

In words, (43) yields the survival probability in Laplace space
for subdiffusion, Sy, from the survival probability in Laplace
space for normal diffusion, S;.

Using (43), we now consider the three scenarios analyzed
in Sec. III A, but for subdiffusion. Specifically, we consider
(1) d =1 and the target is a single point, (2) d = 3 and the
target is a sphere of radius a > 0, and (3) d = 3 and the target
is the exterior of a sphere centered at the starting and resetting
position. Using Theorem 5, we obtain that the asymptotic
forms pg of the probability of a successful search for these
three scenarios are given respectively by

e VLK, in scenario (1),
po=1(1+LJ/a) e VLK inscenario (2),
VAreL2JK, e NP K

In Fig. 4(b) we plot the Kolmogorov-Smirnov distance as in
(35) for these examples as the dimensionless resetting rate
V(L2 /K )V increases for a few different choices of the
subdiffusive exponent o € (0, 1). Scenarios (1), (2), and (3)
correspond, respectively, to the red (middle), blue (bottom),
and green (top) curves. The values o = 0.5, o = 0.7, and
o = 0.9 correspond, respectively, to the solid, dashed, and
dot-dashed curves.

in scenario (3).

F. Examples in Fig. 1(b)

In Fig. 1(b) we plot the FPT distribution for frequent reset-
ting for a variety of different search processes obtained from
numerical solutions using the Laplace transform methods de-
scribed above. We now detail these examples.

The diffusion example in Fig. 1(b) (green circle markers)
is scenario (1) in Sec. Il A with rL?/D = 50. The discrete
network example in Fig. 1(b) (orange square markers) is the
example in Sec. IIC with |I| = 102, b= 3, and r = 200.
The run-and-tumble example in Fig. 1(b) (purple diamond
markers) is the example in Sec. IIID with AL/V =1 and
r = 50. The subdiffusion example in Fig. 1(b) (pink triangle
markers) is scenario (1) in Sec. IIT E with r(Lz/Ka)l/“ =50
and o = 0.8.

G. Nonexponential resetting

In the previous examples, the resetting times were expo-
nentially distributed with rate . We now illustrate our results
for other choices of the resetting time distribution. In particu-
lar, we define the resetting time via o = Y/r for the following
three choices of the survival probability of Y:

1 ify <,
Sy(y) = {0 ity > 1. (sharp reset), 44)
Sy(y)=1-y/2, ye[0,2] (uniform reset), 45)

Sy() =(1+2y)e™®, y>0 (gammareset). (46)

The choice in (44) yields resetting times which are 0 = 1/r
with probability one (so-called sharp reset or sharp restart
[26]). The choice in (45) yields resetting times o which are
uniformly distributed on the interval [0, 2/r]. The choice in
(46) yields resetting times o which have a gamma distribution
with shape parameter 2 and scale parameter 1/(2r).

We consider these three choices of the resetting time dis-
tribution for the case of diffusive search on the half-line
[scenario (1) in Sec. III A above]. In Fig. 5(a) we plot the
Kolmogorov-Smirnov distance as in (35) (with pg = p) as the
dimensionless resetting rate +/rL?/D increases for each of the
three resetting time distributions in (44)—(46) as well as an
exponential resetting distribution. The distributions of T for
each marker in Fig. 5(a) are computed from 107 simulated
stochastic realizations of 7'. Similarly, in Fig. 5(b) we plot the
mean FPT E[T] computed from 107 simulated stochastic re-
alizations of T (markers) as well as the theoretical prediction
1/(rp) of (16) (curves) for varying choices of the resetting
time distribution. The computation of p for each of these
examples is given in the Appendix.

IV. DISCUSSION

In this work we studied FPTs for stochastic search pro-
cesses in the limit of frequent stochastic resetting. We
determined approximations for the full probability distribu-
tion and moments of the FPT, which are exact in the frequent
resetting limit. While we generally focused on the case that
resetting occurs at exponentially distributed times with rate
r > 0, we proved our results for much more general resetting
time distributions. These results depend only on the short-time
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FIG. 5. General resetting time distributions. (a) Kolmogorov-
Smirnov distance in (35) between the theoretical limit and stochastic
simulations. (b) The mean FPT E[T] for stochastic simulations
(markers) and theory (curves). Section III G for details.

behavior of the search process without resetting and are thus
immediately tractable in many settings. In particular, much of
the details about the particular search process and geometry
are irrelevant for frequent resetting, as illustrated in Sec. III.
The relevant information about the search process is encoded
into the quantity p, which is the probability of a successful
search prior to resetting. We computed approximations py ~
p for a variety of search processes for frequent exponential
(Poissonian) resetting.

By considering several specific examples with numerical
solutions, we found that the error in these approximations
often decays rapidly with the resetting rate r. Indeed for
diffusive search in which the searchers cannot start arbitrarily
close to the target, we found that these errors vanish exponen-
tially fast as \/rL2/D grows, where D is the diffusivity and
L is the shortest distance the searchers must travel to reach
the target. Importantly, this exponentially fast convergence
held regardless of the spatial dimension. We found similar
exponentially fast convergence for subdiffusive processes. For
the other search processes we considered, such as run and
tumble, we found that the error decayed algebraically. These
results show that some resetting search processes for which
computing the exact distribution and statistics of the FPT is
intractable may be well approximated by simple asymptotic

formulas. That is, our results for frequent resetting can be
rather good approximations across a broad range of resetting
rates.
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APPENDIX
1. Proofs of results in Sec. IIA

We begin by proving the main results on distribution and
moment convergence of the FPT with stochastic resetting.
These proofs make use of subsidiary results, which we for-
malize as lemmas and whose proofs follow.

Proof of Theorem 1. By Lemma 7, it is enough to prove the
theorem for py = p. Fix z € (=4, §) with § as in (6). Since o~
and 7~ are independent, the moment-generating function of
prT can be expanded to

E[eZPrT] =K |: Z err imior 1R=k:| E[ezprff]’ (AD)

k=0

where 1,4 denotes the indicator function on an event A, so
E(14) = P(A). Moreover, since R is geometrically distributed
with probability of success p and {0, },> are independent and
identically distributed,

o0 (o]
E [ > e ﬂRzk} =Y (E[” D = p)p.
k=0 k=0
(A2)
Substituting (A2) into (Al), which is now in the form of a
geometric series,
pE[e?" ]
1— (1 —pE[ero ]

Using Lemma 10 and Lemma 11 when taking the limit as r —
oo of (A3) yields

E[e”T] = (A3)

1

lim E[¢?”T] = )
1—z

r—00

(A4)

The right-hand side of (A4) is the moment-generating func-
tion of an exponential random variable with unit rate.
By Lévy’s continuity theorem, convergence of moment-
generating functions implies convergence in distribution, and
so the proof of (15) in Theorem 1 is complete.

To prove the convergence of moments in (16), we show
that {E[(prT)*"]},~0 is bounded for sufficiently large r. By
the binomial theorem and the definition of 7" in (12), we have

that
2m om R k
1= S () e

k=0
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To bound the moments of 7=, we apply the Cauchy-Schwarz
inequality,

k k
Bl < Bl Lol _ Elo*lio]
p
2k 2 2k
< VElo ME[@M)]:JIE[Y L as)
P rJp

To bound the moments of fo:l o, , we sum over the possible
values of R and use the multinomial theorem to obtain

(%) ]l ()]

x [ Ele; )1,

i=1

N
ki,.... k; _kll---kj!'

To bound the moments of ¢ ~, we first use that (A18) implies
that we may take r sufficiently large so that El(c7)*] <
2E[0*] and then use (7) and (A23) to obtain

where

E[o"] =/ kt*'P(Y > rt)dt
0

o0
<K / kt* e dr = KE[(T)],
0

where o is exponentially distributed with rate r§ > 0 where
8 > 0 is as in (6). Therefore, for sufficiently large r we have

that
{g)oef(E)]

where {0,},>1 1s an iid sequence of realizations of . Since
o is exponentially distributed with rate r§ > 0 and R is a
geometric random variable with parameter p, it follows that
Zf: | 0 18 exponentially distributed with rate pr§. Therefore,
for sufficiently large r we have that

R k
_ k!
IE|:(21:0> } < 2K(pr8)k. (A7)

n=

Hence, (A5) and (A7) imply that for sufficiently large r,
E[(prT)™"]

. 2m m R - k o
= (pr)’ ;(k)E ’;on E[(z7)"" ]
2m
= (pr)"EL( ™"+ (pr)"E [( hA ) }

n=1

mszl m R ) k o
+ (pr)® ;(k)IE ga E[(z7)* "]
VE[Y?*"] Lok (2m)!

ﬁ 32m

2m—1

+2K57F Z p2m7k71/2 <2]’:1)k! E[y2@m—h)],

k=1

< p2m

Since 2m > 2, taking » — oo and using that lim,_, ., p =0
by Lemma 9 yields

2m)!

lim SUPE[(prT)zm] S 2K §2m

r—00
This implies {(prT)"},~o is uniformly integrable for suffi-
ciently large r [see, for example, equation (3.18) in [36]].
Combining uniform integrability with the convergence in dis-
tribution in (15) in Theorem 1 proves the convergence of
moments in (16) [see, for example, Theorem 3.5 in [36]]. W

The next lemma allows us to prove Theorem 1 with py = p.

Lemma 7. Let {X,},>1 be any sequence of nonnegative
random variables and let {a,},>1 be any sequence of real
numbers. If

a,X, — qist Exponential(1) asn — oo, (A8)
and lim,,_, o a,/b, = 1, then
b, X, — qist Exponential(1) asn — oo.

Proof of Lemma 7. Fix x >0 and let & > 0. Since
F(x):=1—¢e" is continuous, there exists n > 0 so that
|F(x) — F(y)| < eforall y € R such that |[x — y| < nx. Since
lim, o a,/b, = 1, there exists N; > 1 such that 1 —n <
a,/b, < 1+nforalln > Ny.Let F,,(z) :=P(X, < z)forz e
R. By (A8), there exists N, > 1 so that |F,[(1 £ n)x/a,] —
F[(1 £n)x]| < eforalln > N,.

Since F;, is nondecreasing, we have that for n >
max{N;, N>},

PbnXy < x) — F(x) = Fyl(an/bn)x/ay] — F(x)
< Ful(1 4 mx/ay] — F(x)
<e+F[(1+nx] —F(x) < 2e.

Again using that F, is nondecreasing, we similarly have that
for n > max{N;, N,},

IEI)(bn}(n < x) - F(x) = Fn[(an/bn)x/an] - F(X)
2 F,[(1 —nx/a,] — F(x)
22—+ F[(1 —nx] - F(x) > —2e.

Since ¢ > 0 is arbitrary, the proof is complete. |
The following lemma gives the intuitive result that o~ and
o have equivalent moments for large r.
Lemma 8. Under the assumptions of Sec. IT A, we have

El(c™)"] ~E[c™] asr — oo.

Proof of Lemma 8. By definition of conditional probability,
Pt<o<1)

So-(1) = Po <7 (A9)
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Since o and t are independent, the denominator of (A9) is
o0
P(o < 1) =E[S:(0)] =/ Sz (s)dF5(s), (A10)
0
where S; (¢) := P(t > t). Similarly, the numerator of (A9) is

Pt <o <t)=E[S;:(0)ls=] = /OOSr(s)dFa(s) (A1)

Substituting the expressions in (A10) and (A11) into (A9),

f,oo S:(s)dFy(s)

S )= g o dF )

(A12)

By (A12),

IS [ mm=1S (s)dF, (s)dt '

” IS () dt = =
/0 " ® T S.(s)dF, (s)

(A13)

Given the nonnegativity of the integrand in the numerator of
(A13), Tonelli’s theorem implies

/ / mt" 'S, (s)dF, (s)dt = / S ($)re”"* dF, (s).
0 t 0

(A14)
Substituting (A14) into (A13) yields
0 mS (t)dF, (¢
/ mt" ' So- (1) dt = fooo (D) dFo 1)
0 Jo S:()dF, (1)
mS (t)dF, (¢
= Jo @) dFs ) ) (A15)
l—p
Changing variables t = x!/" yields
oo
E[(c7)"] =f P(o~ > x'/™)dx
0
[o¢]
=/ mt™ S, (¢)dt, (A16)
0
and thus (A15) implies
®mS (t)dF, (t
El(c™)"] = J 1’( JaFt) (A17)
-p

Let ¢ > 0. Since lim,_, o, p = 0 by Lemma 9, we can take
r sufficiently large so that 1/(1 — p) < 1 + ¢. Hence, (A17)
implies that for sufficiently large r,

El(c )" < (1 +e>/°or"’sf<t)dFa(t>
0

< +8)/Oot'" dF, (1) = (1 + &)E[o"],
0

since S; () < 1 for all ¢. Therefore,

Ele)"] _

lim sup <l+e. (A18)

00 E[am]
Now we consider the limit infimum. The denominator of
(A17) is clearly bounded above by unity. By right continuity
of S;(¢) and the assumption in (3) that F; (0) = 0, there exists

n > 0 such that forr € (0, n), S;(¢) > 1 — €. Thus,

/ t"S (1) dF,(t) > /nt"’Sf(t)dFo(t)
0

0
n
> —e)/ " dF,(t)
0

> (1 - S)E[Um]-0<n]
= (1 - S)r_mE[Ym]IY<r7]]a

where 14 denotes the indicator function on an event A. Hence,
using E[c™] = r~™E[Y"] and the monotone convergence
theorem we obtain
—\m
lim inf E[(G—)] >1-—
r—00 Elo™]
Since ¢ € (0, 1) is arbitrary, the proof is complete.

We ultimately use convergence of moment-generating
functions to conclude Theorem 1. Hence, we use Lemma 9
below to obtain the desired large r behavior of the moment-
generating functions for 0~ and 7.

Lemma 9. Under the assumptions of Sec. I A, we have

lim p=0.

r—>00

Proof of Lemma 9. We have

p=P( <0)Z/OOSa(t)dFr(t)Z/OOFr(t)dFa(t),
0 0

where the second equality follows from integration by parts.
Let ¢ € (0,1). Since F;(¢) is right continuous and since
F;(0) = 0 by assumption (3), there exists 7 > 0 such that
F.(t) < efort € (0, n). Hence,

n 00
0<p<e/ dFa<r>+/ dF, (1)
0 n

<e+Plo=2n)
=e+PX =rp).

Since lim, o, P(Y > rn) = 0 by (5) and since ¢ € (0, 1) is
arbitrary, the proof is complete. |

The remaining lemmas characterize the large r behavior
of individual terms in the moment-generating function of
prT. Altogether, these results make possible the proof of
Theorem 1.

Lemma 10. Under the assumptions of Sec. I A, we have
that for all z € (-6, §) with § > 0 as in (6),

E[e”° 1=14zp+o(p) asr— oo.

Proof of Lemma 10. 1t follows immediately from (A17) that

Elo™]

E[(c7)"] < 1
-p

’

and since lim,_, , p = 0 by Lemma 9, we have that

E[(c™)"] < 2E[c™] for sufficiently large r.
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Now, expanding the exponential function and assuming z €
(=3, 8) for § as in (6) yields

E[ezpra‘] Z (Zpi’)

!
k=0 k!

E[(c™)"]

Z (zp)" El(c)"]

k
£y B

(A19)

where we have used that o =Y/r. To see the validity of
exchanging the expectation with the sum in the first equality
in (A19), first note the bound

(z V) - (Izlr)*
“FEl07)| < < 2El0"]
|Z|k k .
T —2E[Y"] for sufficiently large r.

(A20)

Next, Tonelli’s theorem implies that

gy — g | 5Ky
D GrEWI=E| ) S

} =E[e"] < 00, (A21)
k=0 k=0

by the assumption in (6) that ¥ has a finite moment-generating
function in a neighborhood of the origin. Hence, the bound in
(A20) and the finiteness of the sum in (A21) allow us to use
the dominated convergence theorem to verify the first equality
in (A19).
It follows from (A19) and the assumption in (5) that
1 _
S(+2p—E[e”7 )

E[Y] = 1 that
1 1+Zp—i GPY BTk
p — k! E[o¥]

B E[o~] NP E(0R .
_z<1— o] ) —2; X WE[Y 1. (A22)

Since E[oc~] ~ E[o] as r — oo by Lemma 8, it remains to
show that the sum in (A22) vanishes as r — o0. Note first that
the terms in this sum vanish as » — oo since lim, . p =0
by Lemma 9. It thus remains to justify exchanging the large r
limit with the sum. First, observe that for sufficiently large r
we have the bound

k 1 kIE[(O’ )k]
k! Elof]

Izlk
k!

=L 2E[YH,

and thus again using (A21) and the dominated convergence
theorem allows us to conclude

k 1 kE[(O )k]

k
E[ot] E[Y*]

lim
r—00 . k!

2
R k‘kE[(cr)k] o

which completes the proof.

Lemma 11. Under the assumptions of Sec. Il A, we have
that for all z € (-4, §) with § > 0 as in (6),

lim E[e™ ] = 1.

r—00

Proofof Lemma 1. Since Y has a finite moment-generating

function as in (6), its survival probability, Sy (y) = P(Y > y),
vanishes no slower than exponentially,
Sy(y) < Ke™® forally € R, (A23)

where K = E[¢’Y] < 0o. To see this, let § > 0 be as in (6)
and observe that Chebyshev’s inequality (see, for example,
Theorem 1.6.4 in [37]) implies that for any y € R,

Sy(y) =

Hence, by definition of conditional probability,

PY >y) =P > ”) <e™PE[] < 00.

Pt <t<o) . P <o)
S;-(t)= ——— < miny |, —
P(rt <o) P(t <o)
1 Eerdt ift > C,
:min{l, —Sy(rt)} <{r¢ Uz
p 1 ift <C,
where

= (r8)"' In(K/p).

Now, if E is exponentially distributed with unit mean, then

(A24)

P(C+ (&) 'E >1) = K e ifr>C
r > =
1 ifr <C,
and therefore,
S;-(t) <P[C+ (r8§)'E >t] forallt € R.

Hence, for z € [0, §), the nondecreasing nature of f(x) =
e” yields

&2 zprC

1< E[ezprr‘] < ]E[ezpr(C+(r8)‘1E)] — )
1 —zp/s

(A25)

For z € (=8, 0), the nonincreasing nature of f(x)= e ¥
yields

zprC

1 —zp/s

Taking » — oo in (A25) and (A26) and using the definition
of C in (A24) and the fact that lim,_, o, p = 0 by Lemma 9
completes the proof. ]

1> E[e Pt ] > Ele RIPrCHe)E) = (A26)

2. Derivation of (15) for exponential resetting

We now give a short, formal calculation to derive (15) in
the special case of exponential resetting. Let Q,(¢) := P(T >
t) denote the survival probability of T with exponential reset-
ting atrate r > O and let f,(¢) := —%Q, denote its probability
density function. It is straightforward to check that [see, for
example, (3.5) in [18]]

Qo(r+s)
1— r@o(r +5)

(r+9)00(r + 5)
s+ r]%(r + 5) ’

0,(s) = (A27)
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where 2(s) := fooo e *"g(t)dt denotes Laplace transform and

we have used that fN,(s) =1- sé,(s). The initial value theo-
rem implies

lim (7 +5)00(r +5) = Q) =1, (A28)
and therefore
- 1 1
(5) ~ - ~ - . (A29
0,(s) Tty sEo asr — 00. (A29)

Taking the inverse Laplace transform of (A29) yields
0,(t) ~ ¢RI — gt gy s 00,

since ]"E(r) = pif T has a density [see (8)].

3. Proofs of results in Sec. II B

The proofs of Proposition 12 and Theorems 4 and 5 be-
low capture the utility of the results in Theorem 1 given
increasingly strong assumptions on the cumulative distribu-
tion function of the search process without resetting.

Proposition 12. Assume C,d >0 and b e R. If n > 0,
then as r — oo

1
/ e tbe=CI" gt ~ urf=Vexp(—yrd/@t)y, (A30)
0

L
where y = %CW and

_|2m(Ca) _d—2b
F=N"ar1 > P aa+2

Proof of Proposition 12. One can verify that the exponential
factor in the integrand of (A30) is maximized at

cd 1/(d+1)
= — .
()

Let r > 0 be sufficiently large such that t* € (0, ). The
change of variables s = ¢ /t* transforms the integral in (A30)
into

bl M
U Cd\ a1 [/t
/ e the I dr = (—) f()e®® ds, (A31)
0 r 0
where x = r4/@+D and

fs)=5", ¢(s) = —s(Cd)#1 — Cs~(Cd)7.

Noting that s = 1 corresponds to the maximum of the expo-
nential in (A31), we apply Laplace’s method to obtain

n/t* / (1)
/ Fls)e® g ~ Y2 DT (A32)
0 V=x¢"(1)
x = r/@+D 5 oo, Simplifying the right-hand side of (A32)
completes the proof. |
Proof of Theorem 2. The proof of Theorem 2 follows from
the proof of Theorem 4 below withd = 1. ]

Proof of Theorem 4. Let ¢ > 0. By the assumption in (24),
there exists a n > 0 such that

e CHNT < F ) < e €O forallt € (0,1). (A33)

For any u, v € R U {oo}, define I, == [ e™"" dF;(t) so that
p =1y, + I, . Using integration by parts and the upper
bound in (A33) yields

1
10’,7 = e_r"F,(n) + / Ve_rlFf(l)dl
0
" d
< e "F.(n) + / re e~ €= gy (A34)
0
Similarly, the lower bound in (A33) yields
n B
/ re e g L I,y
0
Now, Proposition 12 implies that as r — oo,

n
d
/ re e CEN At 1P exp(—yaer D),
0

where

_[2r[(C £ e)d] d
Mte = 4 n 1

d—+1 e
Vie = W(C 4+ g)d+1 .
It is straightforward to check that I, oo = O(re™"") as r — oo,
and thus
e "MF.(n) . Iy

lim = lim =
r—00 ./‘0” re—"te—(Cxe)/t! 4y r—00 /‘0” re—te—(Cxe)/t! g

Therefore,

lim sup /@D 1n p = lim sup r~/“*Dn(ly , + 1, )
r—00 r—>o0

< limsup =4/ In[e"F, (1)

r—00
n d

+f re e (€O dt + 1 o]
0

=~ V-e-

The analogous calculation on using the lower bound in (A33)
finally yields

—¥ie < liminf r~ @+ p p
r—00

< limsup r~ /@ Dnp
r—00

N

—V—e-

Since ¢ > 0 is arbitrary, we have proven (25), and (26) follows
from (16). |
Proof of Theorem 3. The proof of Theorem 3 follows from
the proof of Theorem 5 below with d = 1. ]
Proof of Theorem 5. Let ¢ € (0, 1). By the assumption in
(28), there exists n > 0 such that for all ¢ € (0, n),
(1 — )Atte " < F,(t) < (1 + )AtPe™ /. (A35)

For any u, v € R U {oo}, define I, := [ ™" dF;(t) so that
pin (8)is p =1y = Iy, + I, . Using integration by parts
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and the assumption in (3), we bound Iy , from above,

n
I, =e""F.(n) +f re ""F.(t)dt
0

n
< e F,(n) + (1 + &)Ar / e he™CM qr. (A36)
0

By Proposition 12 and the fact that /,, o, and the boundary term
in (A36) are O(re~ ") as r — 00, we conclude

IO 00
llfrl)sogp 7P expl(—y ra/@Ty <1+e. (A37)
The analogous argument for the lower bound yields
IO [}
l1—¢e< hrrgggf 7 exp(—y Py (A38)
Since ¢ € (0, 1) is arbitrary, the proof is complete. |

4. Calculations from examples

We now give the details of the calculations for the exam-
ples in Sec. III.

a. Diffusive search

In Sec. III A we considered a searcher that diffuses with
diffusivity D > 0 in d > 1 spatial dimensions and starts at
(and is reset to) a position that is distance L > 0 from the tar-
get. In particular, we considered the following three scenarios:
(1) d =1 and the target is a single point, (2) d = 3 and the
target is a sphere of radius a > 0, and (3) d = 3 and the target
is the exterior of a sphere centered at the starting and resetting
position (i.e., the FPT is the first time the searcher escapes
a sphere of radius L > 0). The FPT distributions without
resetting for these three scenarios are given, respectively, by

[38]
erfc(, / %)
Fe(0) = | (zp)erfe(y/ 457)

4L%
7Dt Z] 0 &X p

where erfc(z) = (2/4/7) fz * ¢ du denotes the complemen-
tary error function. Expanding these expressions as t — 0
[and using that erfc(z) ~ e //77% as 7 — oo] and applying
Theorem 3 then yields the formulas for pg in (34).

To obtain the exact distribution and moments used, we find
the Laplace transform S(s) of the survival probability,

in scenario (1),
in scenario (2),

2 . .
JH/Z) ZUH/2PLY G scenario (3),

Sty =P >t)=1—-F @),

for these three scenarios. Using that the Laplace transform of

erfc(y/c/t) is foo e erfc(/c/t)dt = e’z‘/a/s for ¢ > 0, we
obtain that the Laplace transforms of the survival probability
for the first two scenarios are

3;( ) esLZ/D §( ) a esLZ/D
= s 9= a—+ L s

(A39)

For the third scenario of escape from a sphere, we first recall
that the survival probability conditioned on the starting radius

X (0) = x € [0, L] satisfies the backward Fokker-Planck equa-
tion,

S = (DS + (2/x)3:5), xe€(0,L), (A40)

with boundary condition S =0 at x =L and unit initial
condition. Laplace transforming (A40) yields a linear ordi-
nary differential equation which can be solved to obtain the
Laplace transform of the survival probability conditioned on
starting at the center of the sphere,

S(s) = %[1 — (v/sL?/D)csch(y/sL?/D)],

where csch(z) = 2/(e* — e7%).

Having obtained the Laplace transform of the survival
probability of the FPT with no resetting, the distribution of
the FPT with resetting at rate r > O [i.e., T in (12)] can be
computed by numerical Laplace inversion with the general
relation [18],

(A41)

- o S
Sin(s) :=/ P > 1ydi = 0T s
0 1—rS(r—+s)
(A42)

Further, the moments of 7' can be obtained using (A42) and
the general relation

m—1

E[T™] = m(— 1)'"1 —Si(s)

s=0

b. Diffusive search with uniform initial conditions

For the example considered in Sec. III B of diffusive search
in the interval [0, L] with uniform initial and resetting con-
ditions, recall that the survival probability conditioned on
starting at x € [0, L] satisfies the backward Fokker-Planck
equation,

3S = Dd,S, xe(0,L), (A43)

with absorbing boundary conditions S = 0 at x € {0, L} and
unit initial condition. Laplace transforming (A43), dividing
by L, and integrating from x = 0 to x = L yields the Laplace
transform of the survival probability conditioned on a uni-
formly distributed initial position,

S(s) = 1{1 3 tanh[/sL?/(4D)] }
s Jsi2/@py |

Taking s — oo and using Tauberian theorems (see, for ex-
ample, Theorem 3 in Sec. 5 of chapter 8 of [25]) yields the
short-time behavior of F;(¢) in (36), which then yields the
asymptotic probability pg in (37) via Proposition 6. Further,
the FPT distribution under stochastic resetting is then obtained
via numerical Laplace inversion of (A44) using (A42).

For the example of diffusive exit from a sphere with
uniform initial and resetting conditions, we Laplace trans-
form (A40), solve the resulting linear ordinary differential
equation analytically, multiply the solution by (3/L*)x?, and
integrate from x = 0 to x = L to obtain the Laplace trans-
form of the survival probability conditioned on a uniformly
distributed initial position,

—3+/sL2D coth(y/sL?/D) + 3D + sL2
(sL)?

(A44)

S(s) =
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As above, taking s — 0o and using Tauberian theorems yields
the short-time behavior of F; (1),

36Dt n
Ff(t) ~ T ast —> 0 s
T

which then yields the following asymptotic probability via
Proposition 6,

p~ po=23yD/(rL*) asr — oo.

Further, the FPT distribution under stochastic resetting is
then obtained via numerical Laplace inversion of (A44) using
(A42).

c. Search on a discrete network

For the example considered in Sec. III C of search on a dis-
crete network, recall that the dynamics of the continuous-time
Markov chain X are described by the infinitesimal generator
matrix Q € Rl [The entry Q(i, j) in the ith column and
jth row of Q is the jump rate from state i to state j if i # j
and the diagonal entries Q(i, i) are chosen so that Q has zero
row sums [39].]

To compute the survival probability of the FPT without
resetting, S(7) := P (7 > 1), let the target be a single node,
Larget = Ttarger € 1, and let Q denote the matrix obtained by
deleting the row and column in Q corresponding to iarger-
Similarly, for an initial distribution p, let p denote the vector
obtained by deleting the entry in p corresponding to iarget-
Then S(7) is given by the sum of the entries in the vector
™%, where W is the transpose of Q and e™' is the matrix
exponential [40]. In particular,

St)=1-7p, (A45)

where - denotes the dot product and 1 € RI~! is the vector of
all ones. Taking the Laplace transform of (A45) then yields

S(s)=1-(sid — Wy)~'D, (A46)

where id denotes the identity matrix. The FPT distribution un-
der stochastic resetting is then obtained via numerical Laplace
inversion of (A46) using (A42).

The particular continuous-time Markov chains (i.e.,
choices of Q) used in Fig. 3(b) are created following a
method used in [33]. Specifically, we first construct a graph
by randomly connecting || >> 1 vertices by approximately
5|1| edges. We then assign jump rates to each directed edge
independently according to a uniform distribution. That is,
Q(i, i) < 0 are chosen so that Q has zero row sums and the
off-diagonal entries are

o U;; if there is a directed edge from i to j,
03, Jj)= .
0 otherwise,
where {U; ;}; je; are independent uniform random variables on
[0,1].

d. Run and tumble

For the example considered in Sec. IIID of a run-and-
tumble search, the asymptotic probability py in (39) is
computed by using (8), integrating by parts, and changing

variables to obtain
o0 o0
p= / e " dF,(t) =re ™ / e ""F(ty +1)dt,
0 0

where to = L/V > 0 is the smallest possible value of t (since
the searcher starts distance L > 0 from the target and moves
at a finite speed V). Next, observe that

Fty+1)=P(r <ito+1)
=P =t)+Ply<1t<ty+1),

since P(t <ty)) =P(t =t +1t)=0 forr >0 and P(r =
o) = %e‘“" is the probability that the searcher starts in the
—V < 0 velocity state and does not switch states before time
to. Hence,

1 o0
p= Ee_(’“)"’ +re " / e "P(ty < T <to+1)dt.
0
(A47)

Next, it was shown in Sec. 4.1 of [41] that

Pty <7 <ty+1)= Bt +0@*) ast — 0T,

where § = Ae™V (AL + V)/(4V). Therefore applying Propo-
sition 6 to the integral in (A47) yields (39).

To compute the exact FPT distribution, recall that the sur-
vival probability S4(¢;x) conditioned on starting at x > 0 in
the state moving to the right or left (denoted by + or —)
satisfies the backward Fokker-Planck equation,

0S4 =VouSy +A(S- = S),

(A48)
0S_ ==V S_ +A(S+—S5-),

with boundary condition S_ = 0 at x = 0, far-field condition
S+ =1 as x — oo, and unit initial conditions. Laplace trans-
forming (A48) yields a pair of linear ordinary differential
equations which can be solved to obtain the Laplace transform
of the survival probability conditioned on starting at x = L
with probability 1/2 of being in either the + or — state,

§(s) _ ﬁe_ LA [2)» (e LT 1) " /—5(2)L ) — S].
(A49)

The FPT distribution under stochastic resetting is then ob-
tained via numerical Laplace inversion of (A49) using (A42).

e. Subdiffusive search

For the examples considered in Sec. IITE of subdiffusive
search, the exact FPT distribution with resetting is obtained
via numerical Laplace inversion of (A39) and (A41) using
(A42) and (43).

|- Nonexponential resetting
For the examples considered in Sec. III G, we have F; (t) =

erfc( %). For sharp reset [see (44)], the probability of a
successful search is p = F;(1/r). For uniform reset [see (45)],
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the probability of a successful search is

p= /ooSa(t)dFr(t) = foon(t)dFo(t)
0 0

2/r L2\ r
= / erfc| / — | = dt
0 4Dt ) 2

2
= [1 + rL2/(4D)Jerfe[\/rL2/(8D)] — +/ Zrn’LDe_rLZ/(SD)’

where the second equality follows from integration by parts.
Similarly, for gamma reset [see (46)], the probability of a
successful search is

* OO LZ 2 2rt
= F.(t)dF,(t) = T — )drite " dt
P /0 (#)dF; (1) /0 er0<\/4Dt> rte

— VP 4 /r 12/ 2D)).
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