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Abstract

Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-
term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called “forgiving” drugs, which
maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare
between different drugs. In this paper, we construct and analyze a stochastic pharmacokinetic/pharmacodynamic (PK/PD)
model to quantify and understand drug forgiveness. The model parameterizes a medication merely by an effective rate of
onset of effect when the medication is taken (on-rate) and an effective rate of loss of effect when a dose is missed (off-rate).
Patient dosing is modeled by a stochastic process that allows for correlations in missed doses. We analyze this “on/off”
model and derive explicit formulas that show how treatment efficacy depends on drug parameters and patient adherence. As
a case study, we compare the effects of nonadherence on the efficacy of various antihypertensive medications. Our analysis
shows how different drugs can have identical efficacies under perfect adherence, but vastly different efficacies for adherence
patterns typical of actual patients. We further demonstrate that complex PK/PD models can indeed be parameterized in
terms of effective on-rates and off-rates. Finally, we have created an online app to allow pharmacometricians to explore the
implications of our model and analysis.

Keywords Drug forgiveness - Medication nonadherence - Medication adherence - Stochastic modeling - Probability -
Monte Carlo simulations

Introduction from initiation to discontinuation [1, 4]). In this paper, we
analyze the implementation phase, which is the extent to
which a patient’s actual dosing follows the prescribed dos-

ing regimen [1].

Medication adherence is the process by which patients take
their medications as prescribed [1]. One of the most signifi-

cant problems in healthcare today is the issue of medication
nonadherence. Indeed, some studies have suggested that
nonadherence accounts for over 100,000 avoidable deaths
in the United States every year as well as over $100 billion
in preventable excess healthcare costs [2, 3]. Medication
adherence is often described in terms of the three phases of
initiation, implementation, and discontinuation [1] (and the
term “persistence” is sometimes used to describe the time
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Patient adherence in long-term pharmacotherapy is dif-
ficult to measure and control, with data often coming from
limited clinical studies that may not accurately reflect the
patterns of nonadherence in actual clinical practice [5]. Fur-
thermore, quantifying the effects of nonadherence is chal-
lenging and often relies on numerical simulations of spe-
cific drugs in specific nonadherence scenarios [5, 6, 6-20]
since pharmacokinetic/pharmacodynamic (PK/PD) models
often consist of systems of nonlinear differential equations
involving many parameters [21, 22]. Hence, such bespoke
computer simulations hinder the discovery of general quan-
titative principles regarding nonadherence.

One common strategy to mitigate the effects of patient
nonadherence is to prescribe what are called “forgiving”
drugs [23]. While there is no universal definition for drug
forgiveness, in general, a drug is considered forgiving if
efficacy is maintained in spite of missed or delayed doses.
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While this is an intuitive definition, it is rather qualitative
and there is a need to determine what aspects of different
medications lead to higher forgiveness. For example, under
what conditions could it be more important to have a fast
acting medication rather than one with a long half-life?
Another question of great importance is how the nature of a
patient’s nonadherence may affect treatment efficacy. Some
studies have shown that when patients miss doses, they are
likely to miss either single doses or at least three sequential
doses, so called ‘drug holidays’ [2, 24]. Hence, a simple
model of patient dosing that assumes independence between
doses (i.e. missing one dose does not change the probability
the patient misses the next dose) may not accurately reflect
adherence patterns in actual patients.

In this paper, we formulate and analyze a stochastic
model of the effects of missed doses for patients undergoing
long-term treatment. We use the model to estimate how drug
characteristics and adherence statistics combine to yield the
drug effect experienced by the patient. The model describes
a medication in terms of an effective on-rate r,, (rate of onset
of drug effect on a biomarker) and an effective off-rate r
(rate of loss of drug effect on a biomarker). We assume the
patient is instructed to take the medication at regular inter-
vals of time 7, and we parameterize their adherence by the
proportion of prescribed doses the patient takes, p, and the
correlation between missed doses, g. That is, a patient takes
proportion p of their doses and patients who miss a dose may
be more likely (if g > 0), less likely (if g < 0), or equally
likely (if ¢ = 0) to miss the following dose.

We analyze this “on/off” model and derive explicit formu-
las for clinically relevant metrics such as the (i) average drug
effect, (ii) standard deviation of drug effect, and (iii) long-term
fraction of time above a given minimal threshold for effective
treatment. Indeed, (iii) has been called “the most flexible and
clinically most meaningful measure of noncompliance” [25].
We find that different drugs can have identical efficacies under
perfect adherence, but vastly different efficacies for adherence
patterns typical of actual patients. We illustrate this general
result by comparing the effects of nonadherence on the efficacy
of seven antihypertensive medications. We further demonstrate
that complex PK/PD models consisting of systems of nonlin-
ear differential equations and involving many parameters can
indeed be accurately described by our simple on/off model. We
have also created an online app to allow pharmacometricians
to explore the implications of our model and analysis [26].
The app is available at https://seanlawley.shinyapps.io/OnOft/.
The rest of the paper is organized as follows. In the "Methods"
section, we formulate and analyze our mathematical model
(details of the mathematical analysis are in the Appendix).
In the "Results" section, we present the pharmacological impli-
cations of our model and analysis. In particular, we present
the average drug effect (the "Average drug effect" section),
drug effect variability (the "Drug effect variability" section),
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application to antihypertensive medications (the "Application
to antihypertensive medications" section), and fraction of time
the drug effect is in a desired therapeutic window (the "Time
in therapeutic window" section). We then compare our simple
on/off model to more complex PK/PD models in the "On/off
model approximates complex PK/PD models" section, explore
the effects of correlations in missed doses in the "Correlations
in missed doses" section, and extend our analysis to a popula-
tion model in the "Population PK/PD" section. We conclude
by discussing some basic guidelines concerning the effects of
nonadherence in the "Discussion" section.

Methods

In this section we formulate the mathematical model and ana-
lyze it to derive formulas for various metrics of drug efficacy.

Biomarker dynamics

Assume that a fixed dose size of a drug is prescribed at regular
time intervals of length 7. The model describes the effect of
this drug on a biomarker whose response level is scaled to
be between 0 and 1, with 1 indicating full desired effect and
0 indicating no effect. The model tracks the average value of
this biomarker response over each dosing interval, denoted by
the sequence {X,,},. That is, the response levels {X, },, model
the proportion of the full drug effect the patient experiences
on average over each dosing interval. For instance, a value of
X, = 0.8 means that the average drug effect the patient experi-
ences between the n-th and (n + 1)-th scheduled doses is 80%
of the full drug effect under perfect adherence.

We assume that the average biomarker response over each
dosing interval changes according to the relationship

X = aX, dose (n + 1) not taken, 1
1= ) 1= p(1—X,) dose (n+1) taken, Sy
where

a=e " and f=e ",

In words, if the patient misses a dose, then over the next
dosing interval the average biomarker response decreases
exponentially at rate r . If the patient takes the dose, then
the average biomarker response increases exponentially to
its maximum value of 1 atrate r,.

Patient adherence

We model the patient’s dosing history by a sequence of iden-
tically distributed Bernoulli random variables {&, },,, where
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1 with probability p,
n={ P o o)

0 with probability 1 — p.

That is, £, = 1 means the patient took dose n, and &, =0
means that the patient missed dose n. The parameter
p € (0, 1) is probability the patient takes any given dose.
Combining (2) with (1), the biomarker response levels fol-
low the recursion relationship

Xn+l = aXn + (ﬁ - a)Xnén.}.] + (1 - ﬁ)§n+1’ neZz. (3)

Note that the dosing time index n varies over the positive
and negative integers, which models a patient who has been
prescribed the medication for a long time (i.e. long-term
pharmacotherapy).

We do not necessarily assume that {&, }, -, are independ-
ent. In particular, we assume that {£,},, is a two-state
Markov chain with the following transition probabilities
(271,

P =018, =0) =p,, P =11§,=0)=1-p, @

P(§)1+1=0|§n=1)=1_pl’ P(€n+l=1|€n=1)=pl‘ (5)

In words, (4)—(5) means that if the patient takes a dose, then
they have probability p, of taking the next dose, and if they
miss a dose, then they have probability p, of missing the
next dose.

The probability that the patient takes a given dose is then
(see the Appendix)
i € (0,1). (6)

p:
2=py—p

Further, the correlation coefficient between any two succes-
sive doses is then

E[£,&,1] — ELE,JE[E, 1]
Var(fo)

q= Corr(é‘n,an) =

PTP o
I-p

Note that, in general, correlation coefficients can range from
g =—1to g =1, but fixing the value of p € (0, 1) places
restrictions on the range of g. Specifically,

ifp<1/2, theng > —p/(1 - p),
ifp>1/2, theng> (@ —1)/p.

Mean and variance of biomarker response
The distribution of X, is independent of n € Z and thus

we omit the subscript when describing its distribution or
statistics (i.e. X, = X). In the Appendix, we show that the

mean biomarker response is given by the following explicit
formula,

plga — 1)(1 - p)
al=p+pg)+Bg+p—pg) —qap—1

ELX] = )

We further show that the second moment of the biomarker
response is given by
ELX*] = (1 - pp(c’q—1)[a+ap(g—1)

+pplg— 1) +afg— pg—1]

X [a+ap(g— 1)+ p(B — Bg)

-1
— afq+ fg — 1]
X [a*(plg—1) = Pq+1)
-1
—Fplg-D+pq-1] .

®)

With these two formulas, we immediately obtain formulas
for the variance of the biomarker response via the relation
Variance(X) = E[X?] — (E[X]?), as well as the standard devi-
ation, SD(X) = 4/ Variance(X).

While we have computed the first and second moments of
the biomarker response X, it is to our knowledge not possible
to obtain explicit formulas for the full probability distribu-
tion of X. Indeed, our model generalizes so-called infinite
Bernoulli convolutions [28-31], which are well-known to
have highly irregular probability distributions [32]. The
study of infinite Bernoulli convolutions dates back to at
least the 1930s [33-35], and in more recent years has been
applied to pharmacokinetic models [36-39].

Nevertheless, we find that the distribution of X can be
well-approximated by a simple, smooth probability dis-
tribution in many parameter regimes of pharmacological
interest. Specifically, we approximate the distribution of X
by the distribution of a Beta random variable B whose two
parameters, denoted a and b, are chosen so that the first and
second moments of B and X agree. The explicit formulas for
this Beta distribution fit are collected in the Appendix in the
"Beta distribution formulas" section.

Results

We now explore the pharmacological implications of our
mathematical model and analysis. Recall that X € [0, 1]
denotes the biomarker response relative to perfect adherence
(so that X = 1 corresponds to a perfectly adherent patient
and X = 0 corresponds to a patient who never takes any
medication). The medication is parameterized by its on-rate
r,, (effective rate of onset of effect when the medication
is taken) and its off-rate r g (effective rate of loss of effect
when a dose is missed). The prescribed dosing interval is =
and patient adherence is described by the fraction p € (0, 1)
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of doses taken and the correlation ¢ € (—1, 1) between suc-
cessive doses.

Average drug effect

We first consider the case where ¢ = 0 (i.e. no correlation
between missed doses). The average drug effect (relative to
perfect adherence) in (7) then reduces to

p(l —e"")
1 — e ot +p(e_ off T — e_ronT) ’

E[X] = ©
It is straightforward to check that this formula for E[X]
increases if we increase p, increase r,,, or decrease 7y,

which we express mathematically in terms of partial
derivatives,

OE[X] >0 JOE[X] >0 OE[X] <

0.
ap ory, Or g (10)

Since improving patient adherence can be difficult, equa-
tions (9)—(10) delineate how drug efficacy can be improved
by adjusting drug formulations to increase r,, or decrease
r.i- Bssentially, a high on-rate means that when the patient
takes the drug after missing a dose(s), they will quickly
recover the drug effect. A low off-rate means that when the
patient misses a dose(s), they will not lose much drug effect
before they start taking the medication again.

Figure 1 plots E[X] as a function of r, = for p = 80%. This
plot shows that E[X] can differ substantially from p. Indeed,
though p = 80% is often considered to be an adequate level
of adherence (the so-called 80% rule) [40, 41], Fig. 1 shows
that depending on drug formulation (i.e. depending on
ron and ryg), a patient taking p = 80% of their doses can
experience a drug effect as low as E[X] = 28% or as high
as E[X] = 98% of the drug effect they would receive with
perfect adherence (as r,,7 and r 47 range between 0.1 and

== E[X] =p=80%
—TOﬁT:O.l
—_—rofT = 1
—_—rogT = 10
2 : e : R
10! 10° 10!

TonT

0.4

Fig. 1 Average drug effect relative to perfect adherence as a function
of the on-rate. We set p = 0.8and g = 0
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10). This analysis thus exposes a very serious limitation to
the 80% rule and implies that thresholds for adequate adher-
ence levels must be drug-specific.

In general, (9) implies that

E[X]>p
E[X] < p

?f Ton > Fofs an
if ryy < Fogs

and E[X] =p if r,, = r.s. In words, (11) says that a drug
is forgiving of missed doses if its on-rate is faster than its
off-rate.

In Fig. 2a, we show a contour plot of E[X] as a function
of ry,7 and r g7 for p = 80%. In addition to illustrating that
fast on-rates and slow off-rates maximize E[X], this plot also
shows that E[X] is more sensitive to r,, than r g in much of
parameter space. For example, notice that if r g7 = 1 and
r,,T varies from r 7 = 0.1 to r,,7 = 10, then E[X] varies
from less than E[X] = 40% to more than E[X] = 85%. In con-
trast, if r,, 7 = 1and r 47 varies from r g7 = 0.1to r sz = 10,
then E[X] only varies between about E[X] = 95% to about
E[X] = 70%. Overall, Figs. 1 and 2a demonstrate that a mod-
erate level of nonadherence can be countered by prescribing
medications with high on-rates and low off-rates.

Drug effect variability

In addition to the average drug effect, the variability in drug
effect is also clinically important. In the case g = 0 (i.e. no
correlation between missed doses), using (7)—(8) yields that
the standard deviation of the drug effect (relative to perfect
adherence) is given explicitly by

SO = (1= 020 = P20 = pp
(@ = pa + pp — 1)2(1 — a2(1 = p) — p%p)’

12)

where @ = e™"" and f§ = e¢~"»". In Fig. 2b, we show a con-

tour plot of the standard deviation as a function of r.,z and
roiT for p = 80%. In this plot, the smallest standard devia-
tion (i.e. lowest variability in drug effect) occurs for fast
on-rates and slow off-rates.

Furthermore, Fig. 2b shows that SD(X) is more sensi-
tive to 7y than r, in much of parameter space (in contrast
to E[X] which tends to be more sensitive to r., than r.g).
For example, notice that if r,,7 = 1 and r g7 varies from
rogT = 0.1 to rogr = 10, then SD(X) varies from less than
SD(X) = 5% to E[X] = 38%. In contrast, if r g7 = land r, 7
varies from r,7 = 0.1to r_,v = 10, then SD(X) only varies
between SD(X) = 21% to SD(X) = 28%

Application to antihypertensive medications

We now use our model to study the effects of nonadher-
ence on medications for hypertension. In 2011, Lowy et al.
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E[X] with p = 80%
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Fig.2 Average drug effect (a) and standard deviation in drug effect (b) relative to perfect adherence for p = 0.8 and g = 0

Table 1 Antihypertensive medications dosed once per day and corre-
sponding off-rates [42—47]

Medication Effect remaining after  r4 (1/day)
missed dose
Amlodipine 5-10 mg [47] 95% 0.05
Irbesartan 300 mg [44] 73% 0.32
Ramipril 10 mg [44] 64% 0.45
Losartan 100 mg [45] 59% 0.53
Atenolol 100 mg [46] 21% 1.6
Enalapril 20 mg [43] 10% 2.3
Quinapril 20 mg [42] 0% >53

[5] reviewed several clinical studies [42—47] to analyze the
effects of nonadherence on seven different antihypertensive
medications. Table 1 lists these antihypertensive medica-
tions, their estimated percentage of full effect remaining
after a single missed dose (from [42-47]), and the corre-
sponding off-rates for our model. Specifically, these off-rates
were chosen so that e equals the percentage of full effect
remaining after a missed dose, where 7 = 1 day is the dosing
interval.

To estimate the on-rates for these antihypertensive medi-
cations, Lowy et al. [5] assumed that the medications yield
their full effect of 15 mmHg decrease in systolic blood pres-
sure after a dose is taken on 3 consecutive days. To approxi-
mate this assumption, we set the on-rate in our model to be
ron = 0.69/day so that e”’»* = (.5 and the medications yield
87.5% of their full effect after a dose is taken on 3 consecu-
tive days.

Figure 3 shows contour plots of the average drug effect
relative to perfect adherence (left panel) and the standard

deviation of the drug effect relative to perfect adherence
(right panel). These plots are functions of the adherence
percentage p and the off-rate r . The horizontal dashed
lines correspond to the estimated off-rates of the medica-
tions in Table 1. We set ¢ = 0 in this figure, though one
could readily perform similar analysis using nonzero cor-
relations using (7)—(8).

We emphasize three important features of Fig. 3a. First,
this plot shows how the different off-rates of these seven
medications (horizontal dashed lines) yield vastly different
drug effects if the patient has imperfect adherence (i.e. if
p < 100%). For example, our model predicts that a patient
taking p = 80% of their doses would receive 98% of the full
drug effect if they are taking Amlodipine, whereas they
would receive less than 72% of the full drug effect if they
are taking Atenlol, Enalapril, or Quinapril. If we assume
full drug effect is a 15 mmHg decrease in systolic blood
pressure, then this translates to a 14.7 mmHg decrease
for Amlodipine and less than a 10.8 mmHg decrease for
Atenlol, Enalapril, or Quinapril. This plot also shows
that a patient on Quinapril would have to take more than
p = 98% of their doses to match the average drug effect
of a patient on Amlodipine taking only p = 70% of their
doses. In addition to higher average drug effects, Fig. 3b
shows how the medications with slow off-rates also yield
markedly less variable drug effects for patients with imper-
fect adherence.

Second, we emphasize that the drastic differences in drug
effect between these different antihypertensive medications
is only evident when the patient adherence dips below
p = 100%. Hence, since adherence is generally thought to
be higher in clinical trials than in clinical practice [5, 48],
it may be the case that two drugs show similar efficacy in
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Fig.3 Average drug effect (a) and standard deviation in drug effect (b) relative to perfect adherence for r 7 = 0.69 and g = 0

clinical trials but yield quite different effects in clinical prac-
tice when the adherence percentage drops.

Third, Fig. 3a is very similar to Fig. 3 in [5] which was
obtained therein by many computer simulations of a dif-
ferent model. A key difference between the computational
model in [5] and our model is that the model in [5] assumed
that following a missed dose, the drug effect decreases lin-
early, whereas we assumed that the drug effect decreases
exponentially. The close agreement between Fig. 3a in the
present work and Fig. 3 in [5] shows that the precise nature
of the decline in drug effect following a missed dose (i.e.
linear or exponential) is not critical when quantifying the
effects of nonadherence. A benefit of our model is that we
were able to obtain an exact analytical formula for the aver-
age drug effect (see (7)). Furthermore, our analysis reveals
the variability in drug effect that stems from nonadherence
(i.e. through the exact formula for the standard deviation
plotted in Fig. 3b), and such variability was not reported for
the model in [5].

Time in therapeutic window

One metric of clinical interest is the expected proportion
of time the medication effect will be above some minimal
threshold for effective treatment. This metric has been called
“the most flexible and clinically most meaningful meas-
ure of noncompliance” [25]. To express this metric in our
model, suppose that the relative biomarker response level X
needs to be above some threshold 6 for the treatment to be
effective. The percentage of time that X > @ is then given
by the probability P(X > 0). While the exact distribution
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function of X does not have a closed form expression, it
can be approximated by the Beta distribution derived in the
"Beta distribution formulas" section. Specifically, in terms
of the parameters a and b of the Beta distribution given in
(27) (which are explicit functions of p, r.,7, r 47, and g via
(7)—(8)), the percentage of time that the drug effect is above
some threshold € can be approximated by
———x* (1 -0 dx

PX ~
x>0 /g F@T(b)
_ Tare)

" T(a+b)

"T@+b)

(13)
— By(a,b),

where I'(z) denotes the Gamma function and B, (x, y) denotes
the incomplete Beta function (both of which have imple-
mentations in most computational software programs). This
approximation is very accurate for slow on/off rates (i.e. if
1., T and/or r 7 are small). The accuracy decreases for fast
on/off rates (i.e. if ., and/or r g7 are large) since the dis-
tribution of X becomes highly irregular in such a parameter
regime.

In Fig. 4a, we plot the approximation in (13) as solid
curves and the distribution of X computed numerically
as dashed curves (details of the numerical calculation
are in the Appendix) for three of the antihypertensive
medications considered in the "Application to antihy-
pertensive medications" section above (we set p = 80%
and g = 0). This plot illustrates that the approximation
(13) is very accurate for Amlodipine, as the red solid and
dashed curves are nearly indistinguishable. This reflects
the slow off-rate and on-rate of Amlodipine (r g7 = 0.05
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Fig.4 Fraction of time the 1
relative drug effect is above a
threshold 6. The solid curves
are the approximation in (13)
and the dashed curves are the
numerically computed values of
P(X > 0). a Different drugs for
adherence p = 80%. b Irbesar-
tan with different values of the
adherence p

fraction of time above 6

fraction of time above 6

and r,,7 = 0.69). The approximation is less accurate for
Enalapril since Enalapril has a faster off-rate (r g7 = 2.3),
but even in this case the approximation still captures the
general behavior for Enalapril.

In Fig. 4b, we plot the approximation in (13) (solid
curves) and the distribution of X computed numerically
(dashed curves) for Irbesartan for different values of the
adherence percentage p (we set ¢ = 0). This plot shows
that the approximation (13) is quite accurate, which
reflects the relatively slow off-rate and on-rate of Irbesar-
tan (roz7 = 0.32 and r,,,7 = 0.69).

On/off model approximates complex PK/PD models

We were able to readily apply our model to seven anti-
hypertensive medications in the "Application to antihy-
pertensive medications" and "Time in therapeutic window"
sections above since the effective on-rates and off-rates for
these drugs have been previously estimated [5, 42—47].
However, effective on-rates and/or off-rates are not neces-
sarily known for many drugs. Indeed, drugs are typically
modeled with much more complex PK/PD models consist-
ing of systems of differential equations involving many
parameters. In this section, we show that some complex
PK/PD models can be closely approximated by our simple
on/off model.

Suppose the PD effect of some drug can be mod-
eled as a function R(#) with baseline value R;. Define
E(t) = =(R, — R(?)), where the sign is chosen so that E(¢)
increases as drug effect increases and E(f) = 0 for no drug
effect. For instance, in an inhibition of production model
R(t) decreases as drug effect increases, so E(f) = Ry — R(t)
ensures E(f) = 0 at no drug effect and E(¢) increases as
drug effect increases. For a patient with perfect adher-
ence (p = 100%), let Eny denote the average drug effect
at steady state over a single dosing interval z. Consider
the following metric,

0.2

0.8 1 0

E(t)dt, (14)

nt
> r/(}"L—])T

which is the average drug effect over a single dosing interval
relative to perfect adherence (note that E,, € [0, 1]due to the
scaling by EE:’:). Hence, E, is the equivalent in a full PK/
PD model to the variable X,, in our on/off model. Ideally,
if the PK and PD of some medication can be described in
terms of an effective on-rate and off-rate, then the effects of
nonadherence can be more easily analyzed with our on/off
model, rather than relying on computer simulations of the
full PK/PD model.

We now demonstrate in two case studies that complex
PK/PD models can indeed be closely approximated with
our simple on/off model. Each of these two PK/PD models
consists of systems of nonlinear differential equations, and
these two models involve respectively 9 and 6 nontrivial
parameters.

1
B = <TEperf

avg

Case Study 1: Warfarin

Warfarin is an anticoagulant commonly prescribed to treat
blood clots and prevent strokes [49]. Warfarin is often used
as a case study in PK/PD modeling, with industry-standard
software such as Monolix [50] having multiple tutorials
involving Warfarin data [51, 52]. Furthermore, determin-
ing the effects of nonadherence on the efficacy of Warfarin
treatment is a matter of great importance [53-56], as missing
doses leads to a greater risk of strokes.

Based on output from Monolix, the PK of Warfarin can
be satisfactorily modeled by a one compartment model with
first-order absorption (at rate k,) and linear elimination (at
rate k.). The drug concentration is given by the value C(¢)/V,
where V is the apparent volume of distribution and the drug
amount C(¢) is computed from the following differential
equations,
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da =—kAQ@) + 1)

dr

ac (15)
i kA(f) — k. C(1).

The function I(¢) represents the drug input, which is

Ity=D Y &(t—nt = T, )&,

nez

where T}, is a lag time, 7 is the dosing interval, {§,},c7 is
a sequence of Bernoulli random variables describing dos-
ing history, and 6(-) is the Dirac delta distribution. The PD
of Warfarin can be modeled by an indirect turnover model
with inhibition of production, described by the nonlinear
differential equation

dR _ Lax(CO/ V)
s

ICL, + (CW/Vy ) ou®s (16)
where k;, and &, are the in- and out-rates, R is the baseline
value, and y is the Hill coefficient. For simplicity, we assume
ki, = k. The response value R is the percent reduction in
prothrombin complex activity; that is, R, = 100 and a value
of R(t) = 80 means the prothrombin complex activity is 80%
of full activity. The parameter estimates from Monolix are
in Table 2.

In Fig. 5, we plot the average drug effect and drug affect
standard deviation (both relative to perfect adherence as in
(14)) as a function of the adherence percentage p. The square
markers are computed from the full PK/PD model and the
solid curves are our analytical formulas in (9) and (12) for
our on/oftf model with

Ton = 0.016 /hour,  ryy = 0.009 /hour, (17)

with dosing interval = = 24 hours so that
ronT =038, ryzt =0.22.

For the full PK/PD model, each square marker in Fig. 5 was
computed from 1000 independent stochastic simulations of

Table 2 Warfarin and Metformin model parameters

Warfarin [50] Metformin [58]

Tipe 093 h 0

k, 1.6 /hour 2.15 /hour
k, 0.0165 /hour 0.1219 /hour
Vv 7.89L 6480 L

I ax 0.9 1

ICy, 1.15 mg/L 4.23 mg/L
kout 0.06 /hour 0.8 /hour

R, 100 2410 mg/L

Y 1.74 1

7 mg dosed every T = 24 hours, where each simulation was
for 250 days. The values of r,, and r4 in (17) were chosen
to fit the simulation data from the full PK/PD model.

The close agreement between the square markers and the
solid curves in Fig. 5 demonstrate that the on/off model can
accurately approximate a full PK/PD model of Warfarin.
Since (i) the full PK/PD model is a system of nonlinear dif-
ferential equations with 9 parameters and must be studied
computationally and (ii) the on/off model has only 2 param-
eters and allows analytical investigation, this is a major
simplification.

This analysis predicts that Warfarin is a relatively forgiv-
ing drug in the sense that its on-rate is about three times
greater than its off-rate (see (17)). Indeed, Fig. 5a predicts
that a patient taking only p = 75% of their doses would still
reap nearly 90% of the full drug effect for perfect adherence.

Case Study 2: Metformin

Metformin is a medication used to treat Type 2 diabetes
[57] whose PK and PD (with regards to reduction of fasting
plasma glucose) can be described by the same differential
equation systems as Warfarin given in (15) and (16) [58, 59].
The parameter estimates from [58] are in Table 2. As with
Warfarin, medication nonadherence to Metformin is an area

Fig.5 Comparison of full PK/ 1 i
PD models of Warfarin (blue) 0.5 F o &:afiar}na PK/ EFD Hl(f‘}el
. = Warfarin, on/off mode
2‘1'11(1 Metformin (red) to the 0.9 O Metformin, PK/PD model
simple on/off model 04 b G +»= Metformin, on/off model
0.8 SACITTCwN
TR
g =< 0.3 o @
= 0.7
. & 0 Warfarin, PK/PD model
0600 @’© == Warfarin, on/off model
& O Metformin, PK/PD model
0.5¢ ==+ Metformin, on/off model
0.5 0.6 0.7 0.9 1

P

(a)
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of great interest [60—62], with one meta-analysis conclud-
ing that patients taking Metformin have among the lowest
adherence rates within Type 2 diabetes patients [63], likely
due to the side effects.

Similar to Warfarin, in Fig. 5 we plot the average drug
effect and drug affect standard deviation as a function of p.
The circle markers are computed from the full PK/PD model
and the dashed curves are our analytical formulas in (9) and
(12) for our on/off model with

ron = 0.110/hour,  r,; = 0.098 /hour, (18)

with dosing interval r = 12 hours so that

rotT =132, rgr=1.18.

For the full PK/PD model, each circle marker in Fig. 5 was
computed from 1000 independent stochastic simulations of
500 mg dosed every 7 = 12 hours, where each simulation
was for 250 days. The values of r,, and r.; in (18) were
chosen to fit the simulation data from the full PK/PD model.
The same values of r,, and r, in (18) were also found to fit
simulations of the full PK/PD model with 250 mg dosed
every T = 6 hours.

As in the case of Warfarin, the close agreement between
the circle markers and the dashed curves in Fig. 5 demon-
strate that the on/off model can accurately approximate a
full PK/PD model of Metformin, which is again a major
simplification. This analysis shows that Metformin is not
especially forgiving or unforgiving of nonadherence in the
sense that r,,, = rg in (18), and thus the average drug effect
E[X]is approximately the adherence percentage p.

Correlations in missed doses

The analysis above assumed g = 0, which means that there
are no correlations in missed doses (i.e. after a missing a
dose, the patient is no more or less likely to take the next
scheduled dose). However, our formulas in (7)—(8) allow
us to readily investigate how such correlations affect both
the average drug effect and the drug effect variability. In
particular, analyzing these formulas show that the general
qualitative results above still hold in the case of correla-
tions between missed doses. Indeed, (10) still holds if ¢ # 0O,
which means that the average drug effect for an imperfectly
adherent patient increases when either the patient’s adher-
ence level p increases, the drug on-rate r,, increases, or the
drug off-rate r 4 decreases.

Interestingly, including correlations can either increase
or decrease the average drug effect compared to the the
average drug effect formula in (9) for ¢ = 0 depending on
the values of r,, and r 4 and whether the correlations are

positive (g > 0) or negative (g < 0). Specifically, the aver-
age drug effect with correlations will be higher than the
average drug effect without correlations if and only if

qrofe > 9" on-

That is, a model that does not consider correlations between
missed doses will understate the true average drug effect if
either (i) the correlation between missed doses is positive
(a patient who misses a dose is more likely to miss the next
dose as well) and r > r,,, or (ii) the correlation between
missed doses is negative and r,,, > r.. In the special case
Fon = Tof» We have E[X] = p regardless of the value of g.

Furthermore, we find that for most parameter values,
positive correlations tend to increase the drug effect varia-
bility, whereas negative correlations tend to decrease drug
effect variability. To understand this intuitively, notice that
increasing the correlation g means that a patient is more
likely to both (i) miss consecutive doses which allows the
drug effect to drop lower than if these missed doses were
interspersed between taken doses and (ii) take consecutive
doses which allows the drug effect to rise higher than if
these taken doses were punctuated by missed doses.

It is worth pointing out that the importance of correla-
tions in patient adherence data is uncertain. For example,
Vrijens et al. [48] noted a high prevalence of so-called
drug “holidays” (three or more consecutive days of missed
doses), which implies positive correlations. On the other
hand, Sun et al. [64] carried out a careful statistical analy-
sis of the adherence data in [65] and concluded that only
one third of the patients studied showed sufficient evidence
to reject the hypothesis of no correlations in missed doses.

Population PK/PD

In the analysis above, we considered fixed parameters so
that the results can be considered as describing treatment
efficacy for a single, ‘average’ patient. Due to the ana-
lytical formulas we obtained in (7)—(8) (9), and (12), it
is straightforward to extend our on/off model to a patient
population whose parameters vary per some given prob-
ability distribution. This allows one to quickly investi-
gate how nonadherence affects treatment efficacy across
a group of patients. We now briefly demonstrate how to
make this extension and investigate how between subject
variability modifies our results.

Consider a population of N patients, indexed by
i=1,2,...,N. Suppose that in this population, the
patients’ on- and off-rates are log-normally distributed
(though this analysis can be performed in a similar fashion
for any other choice of distribution). The on- and off-rates
for the i-th patient thus are given by
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@) Ton Q)
= et 2 P (o)
; Torr (19)
1= —2— exp (0w ).
exp(c Pf/z)
where 7, and 7z are the population typical values for

the on- and off-rates, o, and o are positive parameters
describing population variability, and Zf,’g and Z:()lf)r are stand-
ard normal random variables. For this population, deter-
mining the effects of nonadherence on treatment efficacy
becomes merely a matter of computing the derived metrics
using the parameters r) and r(’)

Figure 6 plots the probablhty density functions of the
mean drug effect E[X] and the drug effect standard deviation
SD(X) for a medication with population typical values of
TonT = 0.69 and 747 = 0.53. The three curves correspond to
coefﬁ01ents of variation for r(’) and r(’) equal to 10%, 20%,
and 30%. We take fo; and Z(’) to be independent in this
figure, though extending to dependent values is straight-
forward. Since for each patient in the population the mean
and standard deviation of the drug effect with nonadherence
can be nearly instantaneously computed from our derived
formulas, determining the proportion of the population that
is expected to have drug efficacy below or above a certain
threshold when nonadherence is present can be done easily
and without the need for computationally expensive numeri-
cal simulations.

Discussion

It is difficult to improve patient adherence. One way to com-
pensate for nonadherence is to specifically formulate drugs
to mitigate its effects. Our model identifies and quantifies
two ways to improve average drug efficacy for patients with
imperfect adherence (outside of directly improving patient
adherence). First, increasing the on-rate ensures that drug
effect loss from missed doses can be quickly recovered.

Second, decreasing the off-rate ensures that when the patient
misses doses, the drug effect persists.

Naturally, our mathematical model made a number of
simplifying assumptions. For example, we assumed that the
patient takes their medication at only the scheduled dosing
times. In reality, patients do not always take their medica-
tions at exactly the same time intervals (e.g. if a patient is
supposed to take medication daily, they may not necessarily
take the medication at exactly the same time every day).
As another limitation, while we allowed for correlations in
missed doses via the correlation coefficient g, patient behav-
ior is surely a very complex process that cannot be encapsu-
lated merely in a few statistical parameters. Additionally, we
assumed that the drug efficacy does not change over time;
that is, that r, and r are constant, regardless of the current
biomarker response level, drug concentration, or length of
treatment. Tachyphylaxis, which occurs when a drug rapidly
loses efficacy after repeated administration, is not considered
in this model and could be an issue for patients with rela-
tively high adherence. Furthermore, the biomarker response
level X as defined in our model is bounded between O (no
effect) and 1 (desired full effect), and the possibility of the
biomarker response rising to unsafe levels is not consid-
ered in this model since extra dosing and overdosing are
not considered. Indeed, we assumed that the dose size is
constant over time. However, patients are sometimes recom-
mended to take a double dose after missing a dose [14, 38,
66, 67]. Higher (or lower) dosing levels may affect a drug’s
on-rate and length of time before the biomarker response
level begins to decrease, which in turn may affect the guide-
lines presented.

Despite these limitations, our simple on/off model pro-
vides an analytical framework for understanding, quantify-
ing, and mitigating the deleterious effects of medication
nonadherence. Our analytical formulas for the (i) average
drug effect, (ii) standard deviation of drug effect, and (iii)
fraction of time the drug effect is above a threshold allow
one to study how treatment efficacy depends on drug param-
eters (effective on-rate r,, and off-rate r ;) and adherence

Fig.6 Distributions of means 30 35¢
and standard deviation of drug CV(ron) = CV(rog) = 10% CV(ron) = CV(rop) = IOZA)
effect across a population of 25| == CV(ron) = CV(rog) = 20;@ 30 - gngoni = 82//2%11; = ;8(?
patients for a medication with = = CV(ron) = CV(ron) = 30% o5l Ton) = L Voff) = 5070
7y 7—069andr0ﬁr—053and £ 20¢ g
= 80% N N
£ 13 5
2 2
< <
s 1o E
o o
5 -
O 02 04 06 08 1 04 06 08 1
E[X] SD(X)
(a) (b)
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statistics (fraction of doses taken p and correlation g).
Furthermore, we have shown that complex PK/PD models
can indeed be well-described by our simple on/off model.
Finally, we have created an online app to allow pharma-
cometricians to explore the implications of our model and
analysis [26].

Appendix

In this Appendix, we collect details of the mathematical
analysis.

Moments of drug effect

We now compute the first and second moments in (7)—(8).
First, for the transition probabilities in (4)—(5), the transition
matrix is

po 1-pg
P= , 20
(1 —P1 D ) (20)

and the stationary distribution is

7z-=< 1 -p, 1 —py >
2-py—p1 2-po—-p1)°

Hence, the proportion of doses taken is

1 —py

p=rnl)= ——8 —.
2—-po—p;

Note that the first moment of X is given by the sum
E[Xo] = E[Xp1, ol +E[XpL: ],

where 1, € {0, 1} denotes the indicator function, which
takes on a value of 1 if the event E occurs and 0 otherwise.
At steady state (i.e. the patient has been taking the medica-
tion for sufficiently long at adherence rate p), we have

d
X=aX + (B — 0)X& + (1 — B¢, @h
where yy denotes equality in distribution. Therefore,

d
Xo=X| = aXy+ (f — )Xo + (A = p)éy,
which means that

d

Xolg =X, 1, = (aXo + (B — @)Xp&) + (1 = P& ) L ;.

Taking the expected value, we have

ElXpLe -] = E[X 1, ]
_ { ElaXy1, _ol, j=0,
EL(AX+ (1= B) L] j =1, 22)

- { aEXoLs ol j=0,
(1= px(1) + PE[XpL, ], j=1."

where (1) = p. Note that

1
E[XoLe1 = D ElXo Ly oj1e, ]
i=0
1

= Y E[EXLe e i | {E, e ]I,
i=0

(23)

where the second equality comes from the tower property
of conditional expectation. The term within the sum can be
simplified. For a function f(X, ),

EMEL (Ko /) Le o Lgyi | 1€} a1
= IE[f(XO7j)]1§0:iIE[]l§I=j [{&} e ]]
= Elf (X, ) Le,=iPy]
= Pij[E[f(Xo7j)]1§(]=i],

(24)

where P;; is the jj-th entry of the transition matrix (20). This
means that

1
ELf (Xoof)Lg ] = ). PYEL (X)L 1]
i=0

= PoElf(Xo. /) Lg 0]
+ Plj[E[f(XO,j)]lgozl].

Combining this result with (22) we have
E[Xo]lgozo] = [E[Xlllglzo] = alE[X()]lglzo]

= a(PyE[Xy 1, o] + PioE[Xp1: 1),
UE[XO]1§0=1] = [E[X1151=1] =1-p=1)+ ﬂE[Xo]lgFl]

={1-pPz(1)+ ﬁ(P()][E[XolgU:o]

+P E[X, 1, 1)

These lead to the system of equations

1—
ElXoLg—l = —al(_ ap;)[E[Xoﬂéoﬂ]’
1- 1 1 -

The solution to this system is
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z(Da(1l = p)(1 - p,)

E[X,1;_o] = '
[XoLg 0] (1= Bp))(1 = apy) — af(l — py)(1 = p;)
fxL o a(D)(1 = p)(1 — ap,)
0% = T B0 — ap) — @B — p)(L—p))’
Thus,

E[Xo] = E[Xy1, o] + E[X, 1, ]
_ 2 = p)(al =p) + (1 - apy))
~ (1= Bp)(1 = apy) — ap(l — py)(1 —p))’

The second moment can be computed in a similar fashion.
Note that

X2EX2 = (aXy + (B — )Xoly + (1 — p)E),
and thus

E[X31s] = EIX7 1, ]

| Ele’X31, o), i=0, (25)
T\ EL(X+ (1= p) L, 1= L,

The results in (23) and (24) can be applied to [E[X(z) ]lél=j]’
which gives
E[X31, ] = PyEIXgL, o] + PEIX3 L, )]
Thus,
E[Xg1s o) = EIX{1, o] = @’ E[X3 1, ]
= o (PoE[X; 1, -] + PioE[XG 1, 1)
= o’ (poEXg1s o] + (1 — pEIX 1, 1),
E[XgLe 1] = EIX{ 1]
= (1= px(1) + 2B(1 — HE[X, 1, ]
+ FPEIX 1, ]
= (1-p)x(1) +28(1 — HE[X, 1, ;]
+ B2 ((1 = p)E[Xg 1z, o] + py E[Xg 1, 1)

From this system of equations we have

E[XpLe o]

_ (1 =py)
- ((1 — a?po)(1 = f°py) — a® (1 — py)(1 —p1)>
X ((1=pra(1) +28(1 = HEXo L, 1),
ELX5 1,2

_ < (1- C‘ZPo) >
(1 = a?py)(1 = Pp,) — a?F2(1 = py)(1 = py)
X ((1=pyx(1) +2p(1 - PEXo1 _11),

which means that the second moment is
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2(1—pp) + (1 — a?py)
E[X2] = o 1 0 )
[ 0] ((1 - azpo)(l - ﬂzpl) - a2ﬂ2(1 _Po)(l _Pl)
X ((1=pa(1) +28(1 — HE[Xy1, _y]).

Numerical computation of P(X > 0)

Assuming independence of {&, },,c, the distribution function
of the biomarker response level can be numerically computed
using the recursion relationship (3). By (21), we have that
PX, <x) =P(aX, + (f — o)X, + (1 = p)E,y1 <)

= (1 - pP(X, < x/a) + pP(X, < (x = 1)/ + 1).

Denoting the distribution function of X by F(x) = P(X < x),
we thus have

F(x)=(1—p)F<§>+pF<x;1 +1>. 26)

By starting with an initial guess for the distribution func-
tion of X and iteratively applying (26), the true distribution
function of X can be numerically determined. Specifically,
we obtain a sequence of approximating distribution func-
tions {F),(x)},,50 Where Fiy(x) = x and F, | (x) is defined by
F,(x) via

Fon@ == p)F, (%) +me<" 1, 1).

a i
The dashed curves in Fig. 4 are obtained via this recursion
once successive iterations F, (x) and F,,, (x) differ by less
than 10~1° for all x € [0, 1].

Beta distribution formulas

In the "Mean and variance of biomarker response” section, we
described how we can approximate the full probability distri-
bution of X by a Beta random variable B chosen so that the
first and second moments of X and B agree. We now give the
explicit formulas for this Beta distribution fit.

The probability density function of a Beta random variable
B is given by

I'(a + b)

a—1 b—1
rare” 797

Sfp) = ifx e (0,1),

and fz(x) =0 for x & (0,1), where I'(z) = [, w*~le™" du
denotes the Gamma function. The first and second moments
of B are

a
+0b’

E[B] = aa+1)

ElBl =2 T @+ba+b+ 1)
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Therefore, choosing a and b so that E[B] = E[X] and
E[B?] = E[X?]implies

E[X1(E[X] - E[X?])
E[X?] — (E[X])?

_ (- EIXD(EX] - E[X°])
E[X?] — (E[X])?
27
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