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Abstract
Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-
term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called “forgiving” drugs, which 
maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare 
between different drugs. In this paper, we construct and analyze a stochastic pharmacokinetic/pharmacodynamic (PK/PD) 
model to quantify and understand drug forgiveness. The model parameterizes a medication merely by an effective rate of 
onset of effect when the medication is taken (on-rate) and an effective rate of loss of effect when a dose is missed (off-rate). 
Patient dosing is modeled by a stochastic process that allows for correlations in missed doses. We analyze this “on/off” 
model and derive explicit formulas that show how treatment efficacy depends on drug parameters and patient adherence. As 
a case study, we compare the effects of nonadherence on the efficacy of various antihypertensive medications. Our analysis 
shows how different drugs can have identical efficacies under perfect adherence, but vastly different efficacies for adherence 
patterns typical of actual patients. We further demonstrate that complex PK/PD models can indeed be parameterized in 
terms of effective on-rates and off-rates. Finally, we have created an online app to allow pharmacometricians to explore the 
implications of our model and analysis.

Keywords  Drug forgiveness · Medication nonadherence · Medication adherence · Stochastic modeling · Probability · 
Monte Carlo simulations

Introduction

Medication adherence is the process by which patients take 
their medications as prescribed [1]. One of the most signifi-
cant problems in healthcare today is the issue of medication 
nonadherence. Indeed, some studies have suggested that 
nonadherence accounts for over 100,000 avoidable deaths 
in the United States every year as well as over $100 billion 
in preventable excess healthcare costs [2, 3]. Medication 
adherence is often described in terms of the three phases of 
initiation, implementation, and discontinuation [1] (and the 
term “persistence” is sometimes used to describe the time 

from initiation to discontinuation [1, 4]). In this paper, we 
analyze the implementation phase, which is the extent to 
which a patient’s actual dosing follows the prescribed dos-
ing regimen [1].

Patient adherence in long-term pharmacotherapy is dif-
ficult to measure and control, with data often coming from 
limited clinical studies that may not accurately reflect the 
patterns of nonadherence in actual clinical practice [5]. Fur-
thermore, quantifying the effects of nonadherence is chal-
lenging and often relies on numerical simulations of spe-
cific drugs in specific nonadherence scenarios [5, 6, 6–20] 
since pharmacokinetic/pharmacodynamic (PK/PD) models 
often consist of systems of nonlinear differential equations 
involving many parameters [21, 22]. Hence, such bespoke 
computer simulations hinder the discovery of general quan-
titative principles regarding nonadherence.

One common strategy to mitigate the effects of patient 
nonadherence is to prescribe what are called “forgiving” 
drugs [23]. While there is no universal definition for drug 
forgiveness, in general, a drug is considered forgiving if 
efficacy is maintained in spite of missed or delayed doses. 
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While this is an intuitive definition, it is rather qualitative 
and there is a need to determine what aspects of different 
medications lead to higher forgiveness. For example, under 
what conditions could it be more important to have a fast 
acting medication rather than one with a long half-life? 
Another question of great importance is how the nature of a 
patient’s nonadherence may affect treatment efficacy. Some 
studies have shown that when patients miss doses, they are 
likely to miss either single doses or at least three sequential 
doses, so called ‘drug holidays’ [2, 24]. Hence, a simple 
model of patient dosing that assumes independence between 
doses (i.e. missing one dose does not change the probability 
the patient misses the next dose) may not accurately reflect 
adherence patterns in actual patients.

In this paper, we formulate and analyze a stochastic 
model of the effects of missed doses for patients undergoing 
long-term treatment. We use the model to estimate how drug 
characteristics and adherence statistics combine to yield the 
drug effect experienced by the patient. The model describes 
a medication in terms of an effective on-rate ron (rate of onset 
of drug effect on a biomarker) and an effective off-rate roff 
(rate of loss of drug effect on a biomarker). We assume the 
patient is instructed to take the medication at regular inter-
vals of time � , and we parameterize their adherence by the 
proportion of prescribed doses the patient takes, p, and the 
correlation between missed doses, q. That is, a patient takes 
proportion p of their doses and patients who miss a dose may 
be more likely (if q > 0 ), less likely (if q < 0 ), or equally 
likely (if q = 0 ) to miss the following dose.

We analyze this “on/off” model and derive explicit formu-
las for clinically relevant metrics such as the (i) average drug 
effect, (ii) standard deviation of drug effect, and (iii) long-term 
fraction of time above a given minimal threshold for effective 
treatment. Indeed, (iii) has been called “the most flexible and 
clinically most meaningful measure of noncompliance” [25]. 
We find that different drugs can have identical efficacies under 
perfect adherence, but vastly different efficacies for adherence 
patterns typical of actual patients. We illustrate this general 
result by comparing the effects of nonadherence on the efficacy 
of seven antihypertensive medications. We further demonstrate 
that complex PK/PD models consisting of systems of nonlin-
ear differential equations and involving many parameters can 
indeed be accurately described by our simple on/off model. We 
have also created an online app to allow pharmacometricians 
to explore the implications of our model and analysis [26]. 
The app is available at https://​seanl​awley.​shiny​apps.​io/​OnOff/. 
The rest of the paper is organized as follows. In the "Methods" 
section, we formulate and analyze our mathematical model 
(details of the mathematical analysis are in the Appendix). 
In the "Results" section, we present the pharmacological impli-
cations of our model and analysis. In particular, we present 
the average drug effect (the "Average drug effect" section), 
drug effect variability (the "Drug effect variability" section), 

application to antihypertensive medications (the "Application 
to antihypertensive medications" section), and fraction of time 
the drug effect is in a desired therapeutic window (the "Time 
in therapeutic window" section). We then compare our simple 
on/off model to more complex PK/PD models in the "On/off 
model approximates complex PK/PD models" section, explore 
the effects of correlations in missed doses in the "Correlations 
in missed doses" section, and extend our analysis to a popula-
tion model in the "Population PK/PD" section. We conclude 
by discussing some basic guidelines concerning the effects of 
nonadherence in the  "Discussion" section.

Methods

In this section we formulate the mathematical model and ana-
lyze it to derive formulas for various metrics of drug efficacy.

Biomarker dynamics

Assume that a fixed dose size of a drug is prescribed at regular 
time intervals of length � . The model describes the effect of 
this drug on a biomarker whose response level is scaled to 
be between 0 and 1, with 1 indicating full desired effect and 
0 indicating no effect. The model tracks the average value of 
this biomarker response over each dosing interval, denoted by 
the sequence {Xn}n . That is, the response levels {Xn}n model 
the proportion of the full drug effect the patient experiences 
on average over each dosing interval. For instance, a value of 
Xn = 0.8 means that the average drug effect the patient experi-
ences between the n-th and (n + 1)-th scheduled doses is 80% 
of the full drug effect under perfect adherence.

We assume that the average biomarker response over each 
dosing interval changes according to the relationship

where

In words, if the patient misses a dose, then over the next 
dosing interval the average biomarker response decreases 
exponentially at rate roff . If the patient takes the dose, then 
the average biomarker response increases exponentially to 
its maximum value of 1 at rate ron.

Patient adherence

We model the patient’s dosing history by a sequence of iden-
tically distributed Bernoulli random variables {�n}n , where

(1)Xn+1 =

{
�Xn dose (n + 1) not taken,

1 − �(1 − Xn) dose (n + 1) taken,

� = e−roff� and � = e−ron� .

https://seanlawley.shinyapps.io/OnOff/
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That is, �n = 1 means the patient took dose n, and �n = 0 
means that the patient missed dose n. The parameter 
p ∈ (0, 1) is probability the patient takes any given dose. 
Combining (2) with (1), the biomarker response levels fol-
low the recursion relationship

Note that the dosing time index n varies over the positive 
and negative integers, which models a patient who has been 
prescribed the medication for a long time (i.e. long-term 
pharmacotherapy).

We do not necessarily assume that {�n}n∈ℤ are independ-
ent. In particular, we assume that {�n}n∈ℤ is a two-state 
Markov chain with the following transition probabilities 
[27],

In words, (4)–(5) means that if the patient takes a dose, then 
they have probability p1 of taking the next dose, and if they 
miss a dose, then they have probability p0 of missing the 
next dose.

The probability that the patient takes a given dose is then 
(see the Appendix)

Further, the correlation coefficient between any two succes-
sive doses is then

Note that, in general, correlation coefficients can range from 
q = −1 to q = 1 , but fixing the value of p ∈ (0, 1) places 
restrictions on the range of q. Specifically,

Mean and variance of biomarker response

The distribution of Xn is independent of n ∈ ℤ and thus 
we omit the subscript when describing its distribution or 
statistics (i.e. Xn = X ). In the Appendix, we show that the 

(2)�n =

{
1 with probability p,

0 with probability 1 − p.

(3)Xn+1 = �Xn + (� − �)Xn�n+1 + (1 − �)�n+1, n ∈ ℤ.

(4)ℙ(�
n+1 = 0 | �

n
= 0) = p0, ℙ(�

n+1 = 1 | �
n
= 0) = 1 − p0

(5)ℙ(�
n+1 = 0 | �

n
= 1) = 1 − p1, ℙ(�

n+1 = 1 | �
n
= 1) = p1.

(6)p =
1 − p0

2 − p0 − p1
∈ (0, 1).

q = Corr
(
�
n
, �

n+1

)
=

�[�
n
�
n+1] − �[�

n
]�[�

n+1]

Var
(
�0
)

=
p1 − p

1 − p
∈ [−1, 1].

if p < 1∕2, then q > −p∕(1 − p),

if p ≥ 1∕2, then q > (p − 1)∕p.

mean biomarker response is given by the following explicit 
formula,

We further show that the second moment of the biomarker 
response is given by

With these two formulas, we immediately obtain formulas 
for the variance of the biomarker response via the relation 
Variance(X) = �[X2] − (�[X]2) , as well as the standard devi-
ation, SD(X) =

√
Variance(X).

While we have computed the first and second moments of 
the biomarker response X, it is to our knowledge not possible 
to obtain explicit formulas for the full probability distribu-
tion of X. Indeed, our model generalizes so-called infinite 
Bernoulli convolutions [28–31], which are well-known to 
have highly irregular probability distributions [32]. The 
study of infinite Bernoulli convolutions dates back to at 
least the 1930s [33–35], and in more recent years has been 
applied to pharmacokinetic models [36–39].

Nevertheless, we find that the distribution of X can be 
well-approximated by a simple, smooth probability dis-
tribution in many parameter regimes of pharmacological 
interest. Specifically, we approximate the distribution of X 
by the distribution of a Beta random variable B whose two 
parameters, denoted a and b, are chosen so that the first and 
second moments of B and X agree. The explicit formulas for 
this Beta distribution fit are collected in the Appendix in the 
"Beta distribution formulas" section.

Results

We now explore the pharmacological implications of our 
mathematical model and analysis. Recall that X ∈ [0, 1] 
denotes the biomarker response relative to perfect adherence 
(so that X = 1 corresponds to a perfectly adherent patient 
and X = 0 corresponds to a patient who never takes any 
medication). The medication is parameterized by its on-rate 
ron (effective rate of onset of effect when the medication 
is taken) and its off-rate roff (effective rate of loss of effect 
when a dose is missed). The prescribed dosing interval is � 
and patient adherence is described by the fraction p ∈ (0, 1) 

(7)�[X] =
p(q� − 1)(1 − �)

�(1 − p + pq) + �(q + p − pq) − q�� − 1
.

(8)

�[X2] = (1 − �)2p
(
�2q − 1

)[
� + �p(q − 1)

+ �p(q − 1) + ��q − �q − 1
]

×
[
� + �p(q − 1) + p(� − �q)

− ��q + �q − 1
]−1

×
[
�2
(
p(q − 1) − �2q + 1

)

− �2p(q − 1) + �2q − 1
]−1

.
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of doses taken and the correlation q ∈ (−1, 1) between suc-
cessive doses.

Average drug effect

We first consider the case where q = 0 (i.e. no correlation 
between missed doses). The average drug effect (relative to 
perfect adherence) in (7) then reduces to

It is straightforward to check that this formula for �[X] 
increases if we increase p, increase ron , or decrease roff , 
which we express mathematically in terms of partial 
derivatives,

Since improving patient adherence can be difficult, equa-
tions (9)–(10) delineate how drug efficacy can be improved 
by adjusting drug formulations to increase ron or decrease 
roff . Essentially, a high on-rate means that when the patient 
takes the drug after missing a dose(s), they will quickly 
recover the drug effect. A low off-rate means that when the 
patient misses a dose(s), they will not lose much drug effect 
before they start taking the medication again.

Figure 1 plots �[X] as a function of ron� for p = 80% . This 
plot shows that �[X] can differ substantially from p. Indeed, 
though p = 80% is often considered to be an adequate level 
of adherence (the so-called 80% rule) [40, 41], Fig. 1 shows 
that depending on drug formulation (i.e. depending on 
ron and roff) , a patient taking p = 80% of their doses can 
experience a drug effect as low as �[X] = 28% or as high 
as �[X] = 98% of the drug effect they would receive with 
perfect adherence (as ron� and roff� range between 0.1 and 

(9)�[X] =
p(1 − e−ron�)

1 − e−roff� + p(e−roff� − e−ron�)
.

(10)
𝜕�[X]

𝜕p
> 0,

𝜕�[X]

𝜕ron
> 0,

𝜕�[X]

𝜕roff
< 0.

10). This analysis thus exposes a very serious limitation to 
the 80% rule and implies that thresholds for adequate adher-
ence levels must be drug-specific.

In general, (9) implies that

and �[X] = p if ron = roff . In words, (11) says that a drug 
is forgiving of missed doses if its on-rate is faster than its 
off-rate.

In Fig. 2a, we show a contour plot of �[X] as a function 
of ron� and roff� for p = 80% . In addition to illustrating that 
fast on-rates and slow off-rates maximize �[X] , this plot also 
shows that �[X] is more sensitive to ron than roff in much of 
parameter space. For example, notice that if roff� = 1 and 
ron� varies from ron� = 0.1 to ron� = 10 , then �[X] varies 
from less than �[X] = 40% to more than �[X] = 85% . In con-
trast, if ron� = 1 and roff� varies from roff� = 0.1 to roff� = 10 , 
then �[X] only varies between about �[X] = 95% to about 
�[X] = 70% . Overall, Figs. 1 and 2a demonstrate that a mod-
erate level of nonadherence can be countered by prescribing 
medications with high on-rates and low off-rates.

Drug effect variability

In addition to the average drug effect, the variability in drug 
effect is also clinically important. In the case q = 0 (i.e. no 
correlation between missed doses), using (7)–(8) yields that 
the standard deviation of the drug effect (relative to perfect 
adherence) is given explicitly by

where � = e−roff� and � = e−ron� . In Fig. 2b, we show a con-
tour plot of the standard deviation as a function of ron� and 
roff� for p = 80% . In this plot, the smallest standard devia-
tion (i.e. lowest variability in drug effect) occurs for fast 
on-rates and slow off-rates.

Furthermore, Fig. 2b shows that SD(X) is more sensi-
tive to roff than ron in much of parameter space (in contrast 
to �[X] which tends to be more sensitive to ron than roff ). 
For example, notice that if ron� = 1 and roff� varies from 
roff� = 0.1 to roff� = 10 , then SD(X) varies from less than 
SD(X) = 5% to �[X] = 38% . In contrast, if roff� = 1 and ron� 
varies from ron� = 0.1 to ron� = 10 , then SD(X) only varies 
between SD(X) = 21% to SD(X) = 28%

Application to antihypertensive medications

We now use our model to study the effects of nonadher-
ence on medications for hypertension. In 2011, Lowy et al. 

(11)
�[X] > p if ron > roff,

�[X] < p if ron < roff,

(12)SD(X) =

√
(1 − �)2(1 − �)2(1 − p)p

(� − p� + �p − 1)2(1 − �2(1 − p) − �2p)
,

10−1 100 101
0.2

0.4

0.6

0.8

1

ronτ

E[
X
]

E[X] = p = 80%
roffτ = 0.1
roffτ = 1
roffτ = 10

Fig. 1   Average drug effect relative to perfect adherence as a function 
of the on-rate. We set p = 0.8 and q = 0
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[5] reviewed several clinical studies [42–47] to analyze the 
effects of nonadherence on seven different antihypertensive 
medications. Table 1 lists these antihypertensive medica-
tions, their estimated percentage of full effect remaining 
after a single missed dose (from [42–47]), and the corre-
sponding off-rates for our model. Specifically, these off-rates 
were chosen so that e−roff� equals the percentage of full effect 
remaining after a missed dose, where � = 1 day is the dosing 
interval.

To estimate the on-rates for these antihypertensive medi-
cations, Lowy et al. [5] assumed that the medications yield 
their full effect of 15 mmHg decrease in systolic blood pres-
sure after a dose is taken on 3 consecutive days. To approxi-
mate this assumption, we set the on-rate in our model to be 
ron = 0.69∕day so that e−ron� = 0.5 and the medications yield 
87.5% of their full effect after a dose is taken on 3 consecu-
tive days.

Figure 3 shows contour plots of the average drug effect 
relative to perfect adherence (left panel) and the standard 

deviation of the drug effect relative to perfect adherence 
(right panel). These plots are functions of the adherence 
percentage p and the off-rate roff . The horizontal dashed 
lines correspond to the estimated off-rates of the medica-
tions in Table 1. We set q = 0 in this figure, though one 
could readily perform similar analysis using nonzero cor-
relations using (7)–(8).

We emphasize three important features of Fig. 3a. First, 
this plot shows how the different off-rates of these seven 
medications (horizontal dashed lines) yield vastly different 
drug effects if the patient has imperfect adherence (i.e. if 
p < 100% ). For example, our model predicts that a patient 
taking p = 80% of their doses would receive 98% of the full 
drug effect if they are taking Amlodipine, whereas they 
would receive less than 72% of the full drug effect if they 
are taking Atenlol, Enalapril, or Quinapril. If we assume 
full drug effect is a 15 mmHg decrease in systolic blood 
pressure, then this translates to a 14.7 mmHg decrease 
for Amlodipine and less than a 10.8 mmHg decrease for 
Atenlol, Enalapril, or Quinapril. This plot also shows 
that a patient on Quinapril would have to take more than 
p = 98% of their doses to match the average drug effect 
of a patient on Amlodipine taking only p = 70% of their 
doses. In addition to higher average drug effects, Fig. 3b 
shows how the medications with slow off-rates also yield 
markedly less variable drug effects for patients with imper-
fect adherence.

Second, we emphasize that the drastic differences in drug 
effect between these different antihypertensive medications 
is only evident when the patient adherence dips below 
p = 100% . Hence, since adherence is generally thought to 
be higher in clinical trials than in clinical practice [5, 48], 
it may be the case that two drugs show similar efficacy in 
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Table 1   Antihypertensive medications dosed once per day and corre-
sponding off-rates [42–47]

Medication Effect remaining after 
missed dose

roff ( 1∕day)

Amlodipine 5-10 mg [47] 95% 0.05
Irbesartan 300 mg [44] 73% 0.32
Ramipril 10 mg [44] 64% 0.45
Losartan 100 mg [45] 59% 0.53
Atenolol 100 mg [46] 21% 1.6
Enalapril 20 mg [43] 10% 2.3
Quinapril 20 mg [42] 0% > 5.3
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clinical trials but yield quite different effects in clinical prac-
tice when the adherence percentage drops.

Third, Fig. 3a is very similar to Fig. 3 in [5] which was 
obtained therein by many computer simulations of a dif-
ferent model. A key difference between the computational 
model in [5] and our model is that the model in [5] assumed 
that following a missed dose, the drug effect decreases lin-
early, whereas we assumed that the drug effect decreases 
exponentially. The close agreement between Fig. 3a in the 
present work and Fig. 3 in [5] shows that the precise nature 
of the decline in drug effect following a missed dose (i.e. 
linear or exponential) is not critical when quantifying the 
effects of nonadherence. A benefit of our model is that we 
were able to obtain an exact analytical formula for the aver-
age drug effect (see (7)). Furthermore, our analysis reveals 
the variability in drug effect that stems from nonadherence 
(i.e. through the exact formula for the standard deviation 
plotted in Fig. 3b), and such variability was not reported for 
the model in [5].

Time in therapeutic window

One metric of clinical interest is the expected proportion 
of time the medication effect will be above some minimal 
threshold for effective treatment. This metric has been called 
“the most flexible and clinically most meaningful meas-
ure of noncompliance” [25]. To express this metric in our 
model, suppose that the relative biomarker response level X 
needs to be above some threshold � for the treatment to be 
effective. The percentage of time that X > 𝜃 is then given 
by the probability ℙ(X > 𝜃) . While the exact distribution 

function of X does not have a closed form expression, it 
can be approximated by the Beta distribution derived in the 
"Beta distribution formulas" section. Specifically, in terms 
of the parameters a and b of the Beta distribution given in 
(27) (which are explicit functions of p, ron� , roff� , and q via 
(7)–(8)), the percentage of time that the drug effect is above 
some threshold � can be approximated by

where Γ(z) denotes the Gamma function and Bz(x, y) denotes 
the incomplete Beta function (both of which have imple-
mentations in most computational software programs). This 
approximation is very accurate for slow on/off rates (i.e. if 
ron� and/or roff� are small). The accuracy decreases for fast 
on/off rates (i.e. if ron� and/or roff� are large) since the dis-
tribution of X becomes highly irregular in such a parameter 
regime.

In Fig. 4a, we plot the approximation in (13) as solid 
curves and the distribution of X computed numerically 
as dashed curves (details of the numerical calculation 
are in the Appendix) for three of the antihypertensive 
medications considered in  the "Application to antihy-
pertensive medications" section above (we set p = 80% 
and q = 0 ). This plot illustrates that the approximation 
(13) is very accurate for Amlodipine, as the red solid and 
dashed curves are nearly indistinguishable. This reflects 
the slow off-rate and on-rate of Amlodipine ( roff� = 0.05 

(13)
ℙ(X > 𝜃) ≈ ∫

1

𝜃

Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 dx

=
Γ(a)Γ(b)

Γ(a + b)
− B𝜃(a, b),
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Fig. 3   Average drug effect (a) and standard deviation in drug effect (b) relative to perfect adherence for roff� = 0.69 and q = 0
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and ron� = 0.69 ). The approximation is less accurate for 
Enalapril since Enalapril has a faster off-rate ( roff� = 2.3 ), 
but even in this case the approximation still captures the 
general behavior for Enalapril.

In Fig. 4b, we plot the approximation in (13) (solid 
curves) and the distribution of X computed numerically 
(dashed curves) for Irbesartan for different values of the 
adherence percentage p (we set q = 0 ). This plot shows 
that the approximation (13) is quite accurate, which 
reflects the relatively slow off-rate and on-rate of Irbesar-
tan ( roff� = 0.32 and ron� = 0.69).

On/off model approximates complex PK/PD models

We were able to readily apply our model to seven anti-
hypertensive medications in the "Application to antihy-
pertensive medications" and "Time in therapeutic window" 
sections above since the effective on-rates and off-rates for 
these drugs have been previously estimated [5, 42–47]. 
However, effective on-rates and/or off-rates are not neces-
sarily known for many drugs. Indeed, drugs are typically 
modeled with much more complex PK/PD models consist-
ing of systems of differential equations involving many 
parameters. In this section, we show that some complex 
PK/PD models can be closely approximated by our simple 
on/off model.

Suppose the PD effect of some drug can be mod-
eled as a function R(t) with baseline value R0 . Define 
E(t) = ±(R0 − R(t)) , where the sign is chosen so that E(t) 
increases as drug effect increases and E(t) = 0 for no drug 
effect. For instance, in an inhibition of production model 
R(t) decreases as drug effect increases, so E(t) = R0 − R(t) 
ensures E(t) = 0 at no drug effect and E(t) increases as 
drug effect increases. For a patient with perfect adher-
ence ( p = 100% ), let Eperf

avg  denote the average drug effect 
at steady state over a single dosing interval � . Consider 
the following metric,

which is the average drug effect over a single dosing interval 
relative to perfect adherence (note that En ∈ [0, 1] due to the 
scaling by Eperf

avg  ). Hence, En is the equivalent in a full PK/
PD model to the variable Xn in our on/off model. Ideally, 
if the PK and PD of some medication can be described in 
terms of an effective on-rate and off-rate, then the effects of 
nonadherence can be more easily analyzed with our on/off 
model, rather than relying on computer simulations of the 
full PK/PD model.

We now demonstrate in two case studies that complex 
PK/PD models can indeed be closely approximated with 
our simple on/off model. Each of these two PK/PD models 
consists of systems of nonlinear differential equations, and 
these two models involve respectively 9 and 6 nontrivial 
parameters.

Case Study 1: Warfarin

Warfarin is an anticoagulant commonly prescribed to treat 
blood clots and prevent strokes [49]. Warfarin is often used 
as a case study in PK/PD modeling, with industry-standard 
software such as Monolix [50] having multiple tutorials 
involving Warfarin data [51, 52]. Furthermore, determin-
ing the effects of nonadherence on the efficacy of Warfarin 
treatment is a matter of great importance [53–56], as missing 
doses leads to a greater risk of strokes.

Based on output from Monolix, the PK of Warfarin can 
be satisfactorily modeled by a one compartment model with 
first-order absorption (at rate ka ) and linear elimination (at 
rate ke ). The drug concentration is given by the value C(t)/V, 
where V is the apparent volume of distribution and the drug 
amount C(t) is computed from the following differential 
equations,

(14)En =

(
1

�E
perf
avg

)

∫
n�

(n−1)�

E(t) dt,

Fig. 4   Fraction of time the 
relative drug effect is above a 
threshold � . The solid curves 
are the approximation in (13) 
and the dashed curves are the 
numerically computed values of 
ℙ(X > 𝜃) . a Different drugs for 
adherence p = 80% . b Irbesar-
tan with different values of the 
adherence p 
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The function I(t) represents the drug input, which is

where Tlag is a lag time, � is the dosing interval, {�n}n∈ℤ is 
a sequence of Bernoulli random variables describing dos-
ing history, and �(⋅) is the Dirac delta distribution. The PD 
of Warfarin can be modeled by an indirect turnover model 
with inhibition of production, described by the nonlinear 
differential equation

where kin and kout are the in- and out-rates, R0 is the baseline 
value, and � is the Hill coefficient. For simplicity, we assume 
kin = kout . The response value R is the percent reduction in 
prothrombin complex activity; that is, R0 = 100 and a value 
of R(t) = 80 means the prothrombin complex activity is 80% 
of full activity. The parameter estimates from Monolix are 
in Table 2.

In Fig. 5, we plot the average drug effect and drug affect 
standard deviation (both relative to perfect adherence as in 
(14)) as a function of the adherence percentage p. The square 
markers are computed from the full PK/PD model and the 
solid curves are our analytical formulas in (9) and (12) for 
our on/off model with

with dosing interval � = 24 hours so that

For the full PK/PD model, each square marker in Fig. 5 was 
computed from 1000 independent stochastic simulations of 

(15)

dA

dt
= −kaA(t) + I(t)

dC

dt
= kaA(t) − keC(t).

I(t) = D
∑

n∈ℤ

�(t − n� − Tlag)�n,

(16)
dR

dt
= kinR0

(
1 −

Imax(C(t)∕V)
�

IC
�

50
+ (C(t)∕V)�

)
− koutR,

(17)ron = 0.016 /hour, roff = 0.009 /hour,

ron� = 0.38, roff� = 0.22.

7 mg dosed every � = 24 hours, where each simulation was 
for 250 days. The values of ron and roff in (17) were chosen 
to fit the simulation data from the full PK/PD model.

The close agreement between the square markers and the 
solid curves in Fig. 5 demonstrate that the on/off model can 
accurately approximate a full PK/PD model of Warfarin. 
Since (i) the full PK/PD model is a system of nonlinear dif-
ferential equations with 9 parameters and must be studied 
computationally and (ii) the on/off model has only 2 param-
eters and allows analytical investigation, this is a major 
simplification.

This analysis predicts that Warfarin is a relatively forgiv-
ing drug in the sense that its on-rate is about three times 
greater than its off-rate (see (17)). Indeed, Fig. 5a predicts 
that a patient taking only p = 75% of their doses would still 
reap nearly 90% of the full drug effect for perfect adherence.

Case Study 2: Metformin

Metformin is a medication used to treat Type 2 diabetes 
[57] whose PK and PD (with regards to reduction of fasting 
plasma glucose) can be described by the same differential 
equation systems as Warfarin given in (15) and (16) [58, 59]. 
The parameter estimates from [58] are in Table 2. As with 
Warfarin, medication nonadherence to Metformin is an area 

Fig. 5   Comparison of full PK/
PD models of Warfarin (blue) 
and Metformin (red) to the 
simple on/off model
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Table 2   Warfarin and Metformin model parameters

Warfarin [50] Metformin [58]

Tlag 0.93 h 0
ka 1.6 ∕hour 2.15 ∕hour
ke 0.0165 ∕hour 0.1219 ∕hour
V 7.89 L 6480 L
Imax 0.9 1
IC50 1.15 mg/L 4.23 mg/L
kout 0.06 ∕hour 0.8 ∕hour
R0 100 2410 mg/L
� 1.74 1
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of great interest [60–62], with one meta-analysis conclud-
ing that patients taking Metformin have among the lowest 
adherence rates within Type 2 diabetes patients [63], likely 
due to the side effects.

Similar to Warfarin, in Fig. 5 we plot the average drug 
effect and drug affect standard deviation as a function of p. 
The circle markers are computed from the full PK/PD model 
and the dashed curves are our analytical formulas in (9) and 
(12) for our on/off model with

with dosing interval � = 12 hours so that

For the full PK/PD model, each circle marker in Fig. 5 was 
computed from 1000 independent stochastic simulations of 
500 mg dosed every � = 12 hours, where each simulation 
was for 250 days. The values of ron and roff in (18) were 
chosen to fit the simulation data from the full PK/PD model. 
The same values of ron and roff in (18) were also found to fit 
simulations of the full PK/PD model with 250 mg dosed 
every � = 6 hours.

As in the case of Warfarin, the close agreement between 
the circle markers and the dashed curves in Fig. 5 demon-
strate that the on/off model can accurately approximate a 
full PK/PD model of Metformin, which is again a major 
simplification. This analysis shows that Metformin is not 
especially forgiving or unforgiving of nonadherence in the 
sense that ron ≈ roff in (18), and thus the average drug effect 
�[X] is approximately the adherence percentage p.

Correlations in missed doses

The analysis above assumed q = 0 , which means that there 
are no correlations in missed doses (i.e. after a missing a 
dose, the patient is no more or less likely to take the next 
scheduled dose). However, our formulas in (7)–(8) allow 
us to readily investigate how such correlations affect both 
the average drug effect and the drug effect variability. In 
particular, analyzing these formulas show that the general 
qualitative results above still hold in the case of correla-
tions between missed doses. Indeed, (10) still holds if q ≠ 0 , 
which means that the average drug effect for an imperfectly 
adherent patient increases when either the patient’s adher-
ence level p increases, the drug on-rate ron increases, or the 
drug off-rate roff decreases.

Interestingly, including correlations can either increase 
or decrease the average drug effect compared to the the 
average drug effect formula in (9) for q = 0 depending on 
the values of ron and roff and whether the correlations are 

(18)ron = 0.110 /hour, roff = 0.098 /hour,

ron� = 1.32, roff� = 1.18.

positive ( q > 0 ) or negative ( q < 0 ). Specifically, the aver-
age drug effect with correlations will be higher than the 
average drug effect without correlations if and only if

That is, a model that does not consider correlations between 
missed doses will understate the true average drug effect if 
either (i) the correlation between missed doses is positive 
(a patient who misses a dose is more likely to miss the next 
dose as well) and roff > ron , or (ii) the correlation between 
missed doses is negative and ron > roff . In the special case 
ron = roff , we have �[X] = p regardless of the value of q.

Furthermore, we find that for most parameter values, 
positive correlations tend to increase the drug effect varia-
bility, whereas negative correlations tend to decrease drug 
effect variability. To understand this intuitively, notice that 
increasing the correlation q means that a patient is more 
likely to both (i) miss consecutive doses which allows the 
drug effect to drop lower than if these missed doses were 
interspersed between taken doses and (ii) take consecutive 
doses which allows the drug effect to rise higher than if 
these taken doses were punctuated by missed doses.

It is worth pointing out that the importance of correla-
tions in patient adherence data is uncertain. For example, 
Vrijens et al. [48] noted a high prevalence of so-called 
drug “holidays” (three or more consecutive days of missed 
doses), which implies positive correlations. On the other 
hand, Sun et al. [64] carried out a careful statistical analy-
sis of the adherence data in [65] and concluded that only 
one third of the patients studied showed sufficient evidence 
to reject the hypothesis of no correlations in missed doses.

Population PK/PD

In the analysis above, we considered fixed parameters so 
that the results can be considered as describing treatment 
efficacy for a single, ‘average’ patient. Due to the ana-
lytical formulas we obtained in (7)–(8) (9), and (12), it 
is straightforward to extend our on/off model to a patient 
population whose parameters vary per some given prob-
ability distribution. This allows one to quickly investi-
gate how nonadherence affects treatment efficacy across 
a group of patients. We now briefly demonstrate how to 
make this extension and investigate how between subject 
variability modifies our results.

Consider a population of N patients, indexed by 
i = 1, 2,… ,N  . Suppose that in this population, the 
patients’ on- and off-rates are log-normally distributed 
(though this analysis can be performed in a similar fashion 
for any other choice of distribution). The on- and off-rates 
for the i-th patient thus are given by

qroff > qron.
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where ron  and roff  are the population typical values for 
the on- and off-rates, �on and �off are positive parameters 
describing population variability, and Z(i)

on and Z(i)

off
 are stand-

ard normal random variables. For this population, deter-
mining the effects of nonadherence on treatment efficacy 
becomes merely a matter of computing the derived metrics 
using the parameters r(i)on and r(i)

off
.

Figure 6 plots the probability density functions of the 
mean drug effect �[X] and the drug effect standard deviation 
SD(X) for a medication with population typical values of 
ron� = 0.69 and roff� = 0.53 . The three curves correspond to 
coefficients of variation for r(i)on and r(i)

off
 equal to 10%, 20%, 

and 30%. We take Z(i)
on and Z(i)

off
 to be independent in this 

figure, though extending to dependent values is straight-
forward. Since for each patient in the population the mean 
and standard deviation of the drug effect with nonadherence 
can be nearly instantaneously computed from our derived 
formulas, determining the proportion of the population that 
is expected to have drug efficacy below or above a certain 
threshold when nonadherence is present can be done easily 
and without the need for computationally expensive numeri-
cal simulations.

Discussion

It is difficult to improve patient adherence. One way to com-
pensate for nonadherence is to specifically formulate drugs 
to mitigate its effects. Our model identifies and quantifies 
two ways to improve average drug efficacy for patients with 
imperfect adherence (outside of directly improving patient 
adherence). First, increasing the on-rate ensures that drug 
effect loss from missed doses can be quickly recovered. 

(19)

r(i)
on

=
ron

exp(�2
on
∕2)

exp
(
�onZ

(i)
on

)
,

r
(i)

off
=

roff

exp(�2
off
∕2)

exp
(
�offZ

(i)

off

)
,

Second, decreasing the off-rate ensures that when the patient 
misses doses, the drug effect persists.

Naturally, our mathematical model made a number of 
simplifying assumptions. For example, we assumed that the 
patient takes their medication at only the scheduled dosing 
times. In reality, patients do not always take their medica-
tions at exactly the same time intervals (e.g. if a patient is 
supposed to take medication daily, they may not necessarily 
take the medication at exactly the same time every day). 
As another limitation, while we allowed for correlations in 
missed doses via the correlation coefficient q, patient behav-
ior is surely a very complex process that cannot be encapsu-
lated merely in a few statistical parameters. Additionally, we 
assumed that the drug efficacy does not change over time; 
that is, that ron and roff are constant, regardless of the current 
biomarker response level, drug concentration, or length of 
treatment. Tachyphylaxis, which occurs when a drug rapidly 
loses efficacy after repeated administration, is not considered 
in this model and could be an issue for patients with rela-
tively high adherence. Furthermore, the biomarker response 
level X as defined in our model is bounded between 0 (no 
effect) and 1 (desired full effect), and the possibility of the 
biomarker response rising to unsafe levels is not consid-
ered in this model since extra dosing and overdosing are 
not considered. Indeed, we assumed that the dose size is 
constant over time. However, patients are sometimes recom-
mended to take a double dose after missing a dose [14, 38, 
66, 67]. Higher (or lower) dosing levels may affect a drug’s 
on-rate and length of time before the biomarker response 
level begins to decrease, which in turn may affect the guide-
lines presented.

Despite these limitations, our simple on/off model pro-
vides an analytical framework for understanding, quantify-
ing, and mitigating the deleterious effects of medication 
nonadherence. Our analytical formulas for the (i) average 
drug effect, (ii) standard deviation of drug effect, and (iii) 
fraction of time the drug effect is above a threshold allow 
one to study how treatment efficacy depends on drug param-
eters (effective on-rate ron and off-rate roff ) and adherence 

Fig. 6   Distributions of means 
and standard deviation of drug 
effect across a population of 
patients for a medication with 
ron� = 0.69 and roff� = 0.53 and 
p = 80%
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statistics (fraction of doses taken p and correlation q). 
Furthermore, we have shown that complex PK/PD models 
can indeed be well-described by our simple on/off model. 
Finally, we have created an online app to allow pharma-
cometricians to explore the implications of our model and 
analysis [26].

Appendix

In this Appendix, we collect details of the mathematical 
analysis.

Moments of drug effect

We now compute the first and second moments in (7)–(8). 
First, for the transition probabilities in (4)–(5), the transition 
matrix is

and the stationary distribution is

Hence, the proportion of doses taken is

Note that the first moment of X is given by the sum

where 1E ∈ {0, 1} denotes the indicator function, which 
takes on a value of 1 if the event E occurs and 0 otherwise. 
At steady state (i.e. the patient has been taking the medica-
tion for sufficiently long at adherence rate p), we have

where X
d
=Y  denotes equality in distribution. Therefore,

which means that

Taking the expected value, we have

(20)P =

(
p0 1 − p0

1 − p1 p1

)
,

� =

(
1 − p1

2 − p0 − p1

1 − p0

2 − p0 − p1

)
.

p = �(1) =
1 − p0

2 − p0 − p1
.

�[X0] = �[X01�−1=0
] + �[X01�−1=1

],

(21)X
d
=�X + (� − �)X� + (1 − �)�,

X0

d
=X1 = �X0 + (� − �)X0�1 + (1 − �)�1,

X01�0=j

d
=X11�1=j

=
(
�X0 + (� − �)X0�1 + (1 − �)�1

)
1�1=j

.

where �(1) = p . Note that

where the second equality comes from the tower property 
of conditional expectation. The term within the sum can be 
simplified. For a function f (X0, j),

where Pij is the ij-th entry of the transition matrix (20). This 
means that

Combining this result with (22) we have

These lead to the system of equations

The solution to this system is

(22)

�[X01�0=j
] = �[X11�1=j

]

=

{
�[�X01�1=0

], j = 0,

�[
(
�X0 + (1 − �)

)
1�1=1

], j = 1,

=

{
��[X01�1=0

], j = 0,

(1 − �)�(1) + ��[X01�1=1
], j = 1.

,

(23)

�[X01�1=j
] =

1∑

i=0

�[X01�1=j
1�0=i

]

=

1∑

i=0

�[�[X01�1=j
1�0=i

| {�n}n≤−1]],

(24)

�[�[f (X0, j)1�1=j
1�0=i

| {�n}n≤−1]]
= �[f (X0, j)1�0=i

�[1�1=j
| {�n}n≤−1]]

= �[f (X0, j)1�0=i
Pij]

= Pij�[f (X0, j)1�0=i
],

�[f (X0, j)1�1=j
] =

1∑

i=0

Pij�[f (X0, j)1�0=i
]

= P0j�[f (X0, j)1�0=0
]

+ P1j�[f (X0, j)1�0=1
].

�[X01�0=0
] = �[X11�1=0

] = ��[X01�1=0
]

= �
(
P00�[X01�0=0

] + P10�[X01�0=1
]
)
,

�[X01�0=1
] = �[X11�1=1

] = (1 − �)�(1) + ��[X01�1=1
]

= (1 − �)�(1) + �
(
P01�[X01�0=0

]

+P11�[X01�0=1
]
)
.

�[X01�0=0
] =

�(1 − p1)

1 − �p0
�[X01�0=1

],

�[X01�0=1
] =

(1 − �)�(1)

1 − �p1
+

�(1 − p0)

1 − �p1
�[X01�0=0

].
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Thus,

The second moment can be computed in a similar fashion. 
Note that

and thus

The results in (23) and (24) can be applied to �[X2
0
1�1=j

] , 
which gives

Thus,

From this system of equations we have

which means that the second moment is

�[X01�0=0
] =

�(1)�(1 − �)(1 − p1)

(1 − �p1)(1 − �p0) − ��(1 − p0)(1 − p1)
,

�[X01�0=1
] =

�(1)(1 − �)(1 − �p0)

(1 − �p1)(1 − �p0) − ��(1 − p0)(1 − p1)
.

�[X0] = �[X01�0=0
] + �[X01�0=1

]

=
�(1)(1 − �)

(
�(1 − p1) + (1 − �p0)

)

(1 − �p1)(1 − �p0) − ��(1 − p0)(1 − p1)
.

X2
0

d
=X2

1
=
(
�X0 + (� − �)X0�1 + (1 − �)�1

)2
,

(25)

�[X2
0
1�0=j

] = �[X2
1
1�1=j

]

=

{
�[�2X2

0
1�1=0

], j = 0,

�[
(
�X0 + (1 − �)

)2
1�1=1

], j = 1,

�[X2
0
1�1=j

] = P0j�[X
2
0
1�0=0

] + P1j�[X
2
0
1�0=1

]

�[X2
0
1�1=0

] = �[X2
1
1�2=0

] = �2
�[X2

0
1�2=0

]

= �2
(
P00�[X

2
0
1�1=0

] + P10�[X
2
0
1�1=1

]
)

= �2
(
p0�[X

2
0
1�1=0

] + (1 − p1)�[X
2
0
1�1=1

]
)
,

�[X2
0
1�1=1

] = �[X2
1
1�2=1

]

= (1 − �)2�(1) + 2�(1 − �)�[X01�1=1
]

+ �2�[X2
0
1�2=1

]

= (1 − �)2�(1) + 2�(1 − �)�[X01�1=1
]

+ �2
(
(1 − p0)�[X

2
0
1�1=0

] + p1�[X
2
0
1�1=1

]
)
.

�[X2
0
1�1=0

]

=

(
�2(1 − p1)

(1 − �2p0)(1 − �2p1) − �2�2(1 − p0)(1 − p1)

)

×
(
(1 − �)2�(1) + 2�(1 − �)�[X01�1=1

]
)
,

�[X2
0
1�1=0

]

=

(
(1 − �2p0)

(1 − �2p0)(1 − �2p1) − �2�2(1 − p0)(1 − p1)

)

×
(
(1 − �)2�(1) + 2�(1 − �)�[X01�1=1

]
)
,

Numerical computation of ℙ(X > �)

Assuming independence of {�n}n∈ℤ , the distribution function 
of the biomarker response level can be numerically computed 
using the recursion relationship (3). By (21), we have that

Denoting the distribution function of X by F(x) = ℙ(X ≤ x) , 
we thus have

By starting with an initial guess for the distribution func-
tion of X and iteratively applying (26), the true distribution 
function of X can be numerically determined. Specifically, 
we obtain a sequence of approximating distribution func-
tions {Fm(x)}m≥0 where F0(x) = x and Fm+1(x) is defined by 
Fm(x) via

The dashed curves in Fig. 4 are obtained via this recursion 
once successive iterations Fm(x) and Fm+1(x) differ by less 
than 10−10 for all x ∈ [0, 1].

Beta distribution formulas

In the "Mean and variance of biomarker response" section, we 
described how we can approximate the full probability distri-
bution of X by a Beta random variable B chosen so that the 
first and second moments of X and B agree. We now give the 
explicit formulas for this Beta distribution fit.

The probability density function of a Beta random variable 
B is given by

and fB(x) = 0 for x ∉ (0, 1) , where Γ(z) = ∫ ∞

0
uz−1e−u du 

denotes the Gamma function. The first and second moments 
of B are

�[X2
0
] =

(
�2(1 − p1) + (1 − �2p0)

(1 − �2p0)(1 − �2p1) − �2�2(1 − p0)(1 − p1)

)

×
(
(1 − �)2�(1) + 2�(1 − �)�[X01�1=1

]
)
.

ℙ(Xn ≤ x) = ℙ(�Xn + (� − �)Xn�n+1 + (1 − �)�n+1 ≤ x)

= (1 − p)ℙ(Xn ≤ x∕�) + pℙ(Xn ≤ (x − 1)∕� + 1).

(26)F(x) = (1 − p)F
(
x

�

)
+ pF

(
x − 1

�
+ 1

)
.

Fm+1(x) = (1 − p)Fm

(
x

�

)
+ pFm

(
x − 1

�
+ 1

)
.

fB(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1, if x ∈ (0, 1),

�[B] =
a

a + b
, �[B2] =

a(a + 1)

(a + b)(a + b + 1)
.
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Therefore, choosing a and b so that �[B] = �[X] and 
�[B2] = �[X2] implies
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