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Data-Driven Controller Synthesis via Finite
Abstractions With Formal Guarantees
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Abstract—Construction of finite-state abstractions
(a.k.a. symbolic abstractions) is a promising approach for
formal verification and controller synthesis of complex
systems. Finite-state abstractions provide simpler models
that can replicate the behaviors of original complex
systems. These abstractions are usually constructed
by leveraging precise knowledge of systems’ dynamics,
which is often unknown in real-life applications. In this
letter, we develop a data-driven technique for constructing
finite abstractions for continuous-time control systems
with unknown dynamics. In our data-driven context, we
collect samples from trajectories of unknown systems
to construct finite abstractions with a guarantee of
correctness. We propose a data-based gridding method
to efficiently determine state-set discretization parameters
while minimizing the expected number of transitions in
the abstraction construction, thus reducing computational
efforts. By establishing a feedback refinement relationship
between an unknown system and its data-driven finite
abstraction, one can design a controller over the data-
driven finite abstraction. The controller can then be refined
back to the original unknown system to meet a desired
property of interest. We illustrate our proposed data-driven
approach using a vehicle motion planning benchmark.

Index Terms—Data driven control, optimal control,
sampled-data control.

I. INTRODUCTION

O
VER the past two decades, formal methods have gar-

nered significant attention within the autonomous and

hybrid systems community. They have proven invaluable in

addressing the inherent complexities of systems’ dynamics and

offering formal guarantees. These complex systems encompass

a wide range, including biological systems, (air) traffic man-

agement systems, chemical processes, autonomous vehicles,

and more. Given that these systems possess uncountable (infi-

nite) state and input sets, synthesizing controllers to enforce
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intricate specifications presents formidable challenges. On the

other hand, considerable progress has been made in the last

two decades concerning the creation of finite abstractions,

which serve as approximate representations of the concrete

systems (e.g., [1], [2], [3]). To employ the constructed finite

abstraction in the controller synthesis process, it is essential

to establish a systematic relationship between the concrete

system and its finite abstraction (e.g., [4], [5], [6]).

Regrettably, a significant portion of the pertinent literature

on finite abstraction construction (e.g., [1], [2], [3], [4], [5], [6],

[7]) demands the availability of concrete system models, which

are often absent in many real-world applications. To address

this challenge, researchers have explored various indirect data-

driven strategies to derive models for unknown dynamical

systems through identification techniques (e.g., [8] and ref-

erences therein). Nevertheless, obtaining an accurate model

can be arduous, time-intensive, and computationally expensive,

particularly when dealing with intricate dynamics, as is often

the case in real-world scenarios. This inherent complexity

has spurred our pursuit of a direct data-driven approach for

constructing finite abstractions. Our method involves directly

collecting data from trajectories of unknown concrete systems,

bypassing the need for a system identification phase.

Contributions: The contribution of this letter lies in the

development of a data-driven technique for constructing low-

complexity finite abstractions for continuous-time control

systems with unknown dynamics, all while ensuring a correct-

ness guarantee. Our data-driven approach entails the collection

of data from trajectories of unknown systems. We introduce

a data-driven gridding method focused on optimizing the

selection of state-set discretization parameters, which effi-

ciently reduces the expected number of transitions in the

abstraction computations, thus reducing computational efforts.

By establishing a feedback refinement relation, as discussed

in [4], we forge a vital link between an unknown system

and its data-driven finite abstraction. This relation enables

us to design a controller based on the abstract model and

subsequently refine it back to the original system satisfying

desired properties.

Related Work: There exists a limited work dedicated to

the construction of finite abstractions using data. In the work

by [9], a data-driven approach is introduced for constructing

finite abstractions tailored to unknown monotone systems.

Notably, this approach demonstrates minimal conservatism

when applied to unperturbed systems. In contrast, our data-

driven approach extends its applicability to perturbed systems
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characterized by nonlinear dynamics and is not confined to

monotone systems. Another data-driven approach, as outlined

in [10], strives to construct finite abstractions for the synthesis

of controllers to enforce finite-horizon specifications. Our

results broaden the scope compared to those presented in [10]

in two aspects. Firstly, the results proposed in [10] exclusively

address finite-horizon specifications, whereas our approach

can be employed for both finite and infinite horizon prop-

erties. Secondly, our data-driven approach constructs a finite

abstraction with guaranteed confidence, while the abstractions

developed in [10] are valid with a probability less than 1.

More recently, [11] and [12] have introduced data-driven

techniques for constructing finite abstractions in the context

of incrementally input-to-state stable control systems and

continuous-time perturbed systems, respectively. Nevertheless,

the outcomes presented in [11] and [12] are accompanied

by probabilistic confidence levels, necessitating an increasing

volume of data as the confidence approaches one. In stark

contrast, our data-driven approach yields a finite abstraction

with a confidence level of 1, all without imposing any stability

requirements on the underlying systems. Additionally, we

introduce a data-driven gridding method designed to optimize

the selection of state-set discretization parameters, thereby

efficiently reducing the expected number of transitions and

computational efforts during abstraction computations.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

Symbols R, R>0, and R≥0, respectively, represent sets of

real, positive, and non-negative real numbers. Notation ∪ and

∩ indicate, respectively, set union and intersection. The symbol

N denotes the set of natural numbers and N≥0 is N∪ {0}. For

any non-empty set Q and n ∈ N, Qn indicates the Cartesian

product of n duplicates of Q. Given N vectors xl ∈ R
nl ,

nl ∈ N, and l ∈ {1, . . . , N}, we use x = [x1; · · · ; xN] to

denote the corresponding column vector of dimension
∑

l nl.

The vector 1 ∈ R
n is defined as [1; 1; · · · ; 1] ∈ R

n, and

In ∈ R
n×n represents the n × n identity matrix. For any

p̄, q̄ ∈ R
n and relational operator � ∈ {≤,<,=,>,≥}, where

p̄ = [p1; · · · ; pn] and q̄ = [q1; · · · ; qn], p̄ � q̄ is interpreted

as pl � ql for every l ∈ {1, 2, . . . , n}, i.e., component-wise

comparison. Similarly, ep̄ := [ep1; · · · ; epn ] ∈ R
n. Assuming

p̄ < q̄, then the compact hyper-interval [p̄, q̄] is given as

[p1, q1]×· · ·×[pn, qn]. Furthermore, given c = [c1; · · · ; cn] ∈
R

n, we define the sum ⊕ as c ⊕ [p̄, q̄] := [p1 + c1, c1 +
q1] × · · · × [pn + cn, cn + qn]. Notation |c| means the entry-

wise absolute value of c ∈ R
n, i.e., [|c1|; · · · ; |cn|], while

‖c‖ means the infinity norm of c. For any r̄ ∈ R
n
>0 and

c0 ∈ R
n, notation �r̄(c0) is interpreted as c0 ⊕ [−r̄, r̄]. We

define the norm of a function λ : [0, τ ] → R
n as ‖λ‖[0,τ ] :=

supt∈[0,τ ] ‖λ(t)‖. For any ϑ ∈ R
n×n, ‖ϑ‖ denotes the infinity

norm of ϑ .

B. Continuous-Time Control Systems

Here, we first present the notions of simple systems and

feedback refinement relations, which are borrowed from [4].

Definition 1: A simple system S is a tuple (X, U, F), where

X �= ∅, and U �= ∅ are, respectively, state and input sets.

The transition function F : X × U ⇒ X is a set-valued map,

whereby for a given input u(k) ∈ U, k ∈ N, the state evolves

as x(k + 1) ∈ F(x(k), u(k)).

Given a simple system S, we define the set of admissible

inputs for state x ∈ X as US(x) = {u ∈ U | F(x, u) �= ∅}. Later

in this section, we use the notion of simple systems to define

a sampled version of continuous-time control systems. Next,

we present the notion of feedback refinement relation [4].

Definition 2: Consider two simple systems Si =
(Xi, Ui, Fi), where i ∈ {1, 2}, such that U2 ⊆ U1. A feedback

refinement relation from S1 to S2 is a nonempty relation

E ⊆ X1 × X2 such that for all (x1, x2) ∈ E , the following two

conditions hold:

• US2
(x2) ⊆ US1

(x1) and;

• if u ∈ US2
(x2), then E(F1(x1, u)) ⊆ F2(x2, u).

If there exists a feedback refinement relation E from S1 to

S2, we denote it by S1 ∝E S2. Given such a relation, one

can synthesize a controller over the finite abstraction and then

refine it back to the original system, while satisfying the same

property of interest. Here, we study continuous-time control

systems, affected by bounded disturbances, as defined next.

Definition 3: A continuous-time control system (ct-CS) is

represented via a tuple

� = (X, U, f ,�), (1)

where:

• X ⊆ R
n is the state set and U ⊆ R

m is the input set;

• f : X × U → X is the vector field, which is assumed to

be locally Lipschitz continuous [4] for all input u ∈ U;

• � ⊂ R
n is the disturbance set which is assumed to be of

the form � = [−λ̄, λ̄], where λ̄ ∈ R
n
≥0.

The state evolution of ct-CS � in (1) is described by

ẋ(t) = f (x(t), ν(t)) + λ(t), (2)

with λ(t) ∈ � being additive disturbances for all t ∈ R≥0.

Consider the sampling time τ ∈ R>0. We consider input

signals ν : R≥0 → U to be piecewise constant, i.e., for any

n ∈ N≥0 and t′ ∈ [nτ, (n + 1)τ ), one has ν(t′) = ν(nτ). In

addition, for an initial state x ∈ X, a trajectory of the system

over [0, τ ] is defined as an absolutely continuous function

ξx,u,λ : [0, τ ] → R
n which satisfies (2) for every t ∈ [0, τ ]

given ν : [0, τ ] → {u} and λ : [0, τ ] → �. A collection of

such trajectories over the interval [0, τ ], starting from x ∈ X

under a given constant input with value u ∈ U, is denoted by

ϒ(x, u) := {ξx,u,λ | ν : [0, τ ] → {u} and λ : [0, τ ] → �}. With

a slight abuse of notation, we also use ξ(x, u, λ) := ξx,u,λ(τ )

throughout this letter. We now describe a sampled version of

a ct-CS as a simple system as in Definition 1.

Definition 4: Consider a ct-CS � as in (1) with a sampling

time τ ∈ R>0. We call the simple system �τ = (Xτ , Uτ , F) a

sampled version of ct-CS �, if Xτ = X ⊆ R
n, Uτ = U ⊆ R

m,

and the following holds: for any x1, x2 ∈ X and u ∈ U, x2 ∈
F(x1, u) if and only if there is a trajectory ξx1,u,λ of (2) over

[0, τ ] that satisfies ξx1,u,λ(0) = x1 and ξx1,u,λ(τ ) = x2.

In the next subsection, we aim at approximating the system

in (2) (a.k.a. concrete system) by a finite abstraction (a.k.a.

symbolic abstraction). In the constructed finite abstraction,

each discrete state and input associate to a collection of

continuous states and inputs of the system, respectively.
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C. Symbolic Abstractions

In this section, we construct finite abstractions of ct-CS

in (1) with sampling time τ ∈ R>0. For a given compact

state set X ⊂ R
n and discretization parameter vector ηx ∈

R
n
≥0, we create a partition of X into cells �ηx(x) such that

X ⊆
⋃

x∈[X]ηx
�ηx(x), where [X]ηx represents a finite set

of representative points selected from those partition sets.

A similar procedure is applied to the input set U ⊂ R
m

using the discretization vector ηu ∈ R
m
>0. Hence, we generate

symbolic state set X̂ := [X]ηx and input set Û := [U]ηu .

Accordingly, the exact reachable set of states from an abstract

state x̂ ∈ X̂ under a given input û ∈ Û is defined as

R(x̂, û) := {ξx,û,λ(τ ) | ξx,û,λ ∈ ϒ(x, û) and x ∈ �ηx(x̂)}.
However, we aim at constructing an over-approximation

of R(x̂, û) for any pair (x̂, û) ∈ X̂ × Û, using a

function called growth bound, which is formally defined

next.

Definition 5: Given a ct-CS � as in (1), and X̂, Û as

symbolic states and input sets of �, a function χ : Rn
≥0 × X̂ ×

Û → R
n
≥0 satisfying

|ξx′,û,λ1
(τ ) − ξx̂,û,λ2

(τ )| ≤ χ(|x′ − x̂|, x̂, û), (3)

for any x̂ ∈ X̂, û ∈ Û, x′ ∈ �ηx(x̂), λi : [0, τ ] → �, i ∈
{1, 2}, is called the growth bound of ct-CS �.

We now formally define a finite abstraction of ct-CS.

Definition 6: Given a ct-CS � and a growth bound χ , let

�τ be the sampled system associated with �. Then �̂ =
(X̂, Û, f̂ ) is a finite abstraction of �τ , with the transition map

f̂ : X̂ × Û ⇒ X̂ if:

• the set
⋃

x̂∈X̂ �ηx(x̂) forms a non-empty cover for X;

• for any x̂, x̂′ ∈ X̂ and û ∈ Û, (ξx̂,û,λ(τ ) ⊕ [−p′, p′]) ∩
�ηx(x̂

′) �= ∅ =⇒ x̂′ ∈ f̂ (x̂, û) where p′ = χ(ηx, x̂, û)

and λ : [0, τ ] → �.

Next theorem, borrowed from [4], shows the usefulness of

finite abstractions in Definition 6 by establishing a feedback

refinement relation between the sampled system associated

with a concrete ct-CS and its finite abstraction.

Theorem 1: Consider a ct-CS � and its sampled version

�τ . Let �̂ = (X̂, Û, f̂ ) be the finite abstraction of �τ according

to Definition 6. Then �τ ∝E �̂, where the feedback refinement

relation E is defined as (x, x̂) ∈ E if x ∈ �ηx(x̂).

D. Problem Formulation

In this letter, we assume that the vector field f in (1)

is unknown and the main goal is to synthesize controllers

for the unknown system. Although the underlying dynamics

of ct-CS are considered to be unknown, its trajectories are

accessible and could be sampled over [0, τ ]. We collect these

sampled data points in a set DN := {(xl, ul, x′
l) | x′

l =
ξxl,ul,λ(τ ), for some ξxl,ul,λ ∈ ϒ(xl, ul), xl ∈ X, ul ∈ U, l =
1, 2, . . . , N}. Now, we formalize the main problem that we

aim to solve in this letter.

Problem 1: Consider a ct-CS � with an unknown vector

field f , affected by some bounded disturbances. Develop

a data-driven approach based on the set of data DN for

constructing a finite abstraction �̂, such that �τ ∝E �̂ with a

set membership relation E .

III. DATA-DRIVEN CONSTRUCTION OF

FINITE ABSTRACTIONS

In this section, given the growth bound in (3), we first

present the required procedures for computing an over-

approximation of a reachable set for ct-CS. We then propose

our data-driven approach to compute the growth bound of

unknown ct-CS based on data points in DN .

A. Reachable Set Computation via Growth Bound

Consider a ct-CS � as in (1). Using Definitions 5 and 6

for every abstract state-input pair, the reachable set R(x̂, û)

is over-approximated using an hyper-interval (ξx̂,û,λ(τ ) ⊕
[−χ(ηx, x̂, û), χ(ηx, x̂, û)]). From the model-based analysis

in [4], the growth bound is expressed as

χ(s̄, x̂, û) = eM(û)τ s̄ +
∫ τ

0

eM(û)rλ̄dr, (4)

for any s̄ ∈ R
n
≥0, x̂ ∈ X̂, û ∈ Û, where function M : Û →

R
n×n deduces matrix M(û) whose entries satisfy the follow-

ing inequality:

Ml,m(û) ≥
{ ∣∣∂mfl(x, û)

∣∣ l �= m,

∂mfl(x, û) l = m,
(5)

for any x ∈ X and l, m ∈ {1, 2, . . . , n}. The l-th element of

f (x, û) is denoted by fl(x, û), while ∂mfl(x, û) is its partial

derivative with respect to m-th component of x.

If the underlying model is unknown, the matrix M(û) in (5)

and, hence, the growth bound in (4) cannot be computed.

Here, we introduce a candidate growth bound, inspired by the

analysis in [12], as follows:

χϑ (s̄, x̂, û) := ϑ1(x̂, û)
(
s̄ + λ̄ τ

)
, (6)

for any s̄ ∈ R
n
≥0, x̂ ∈ X̂, û ∈ Û, where ϑ1 ∈ R

n×n
≥0 , and

ϑ ∈ R
n2

≥0 is a column vector by stacking those of ϑ1. It should

be noted that for every abstract state, the parameters of ϑ1 are

locally defined.

Remark 1: Note that the presence of ϑ1 in (6) is a con-

sequence of our parameterization of the proposed growth

bound. This parameter will serve as the decision variable in

optimization problems (12) and (13), which are formulated

as robust and scenario convex programs, respectively. For

dimensional consistency, ϑ1 is represented as a square matrix,

while ϑ is the vector formed by stacking the columns of

ϑ1. This distinction is made to account for the need for the

subscript “1” to differentiate between them.

In the next subsection, we present a data-driven approach

utilizing dataset DN to compute the candidate growth bound

outlined in (6). Our approach also offers a formal correctness

guarantee for (6) implying that it is a growth bound for ct-CS

in (2) (cf. Theorem 2).

B. Lipschitz Continuity of System’s Trajectories

The vector field f is assumed to be locally Lipschitz

continuous. Hence, for any x, x′ ∈ X, λi : [0, τ ] → �, i ∈
{1, 2}, and given û ∈ Û, there exist Lipschitz constants

Lx(û),L�(û) ∈ R>0, such that:
{

‖ξ(x, û, λ1) − ξ(x′, û, λ1)‖ ≤ Lx(û)‖x − x′‖,
‖ξ(x, û, λ1) − ξ(x, û, λ2)‖ ≤ L�(û)‖λ1 − λ2‖[0,τ ].

(7)
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The two inequalities in (7) can be combined to get

‖ξ(x, û, λ1) − ξ(x′, û, λ2)‖ ≤ Lx(û)‖x − x′‖
+ L�(û)‖λ1 − λ2‖[0,τ ]. (8)

Remark 2: Note that the results proposed in [13], specif-

ically [14, Algorithm 2], can be leveraged to estimate the

Lipschitz constants Lx and L� for unknown system dynamics.

This estimation is achieved using a finite dataset collected

from the unknown system. However, for the purposes of this

letter, we assume the availability of correct upper bound for

the Lipschitz constants. Therefore, we do not account for

any associated confidence levels in the estimation of these

constants in our results.

Next lemma shows that the Lipschitz constant Lx(û) is an

upper bound for ‖ϑ1(x̂, û)‖. This lemma will be leveraged to

show the results of Theorem 2.

Lemma 1: For a given input û ∈ Û, the Lipschitz constant

Lx(û) is an upper bound for ‖ϑ1(x̂, û)‖, i.e.,

‖ϑ1(x̂, û)‖ ≤ Lx(û), ∀x̂ ∈ X̂. (9)

Proof: We show the proof by contradiction. Suppose (9)

does not hold, i.e., ‖ϑ1(x̂, û)‖ > Lx(û). Since Lx(û) is a

Lipschitz constant, (7) implies that ∀x′ ∈ X, ∀x̂ ∈ X̂, for any

λ : [0, τ ] → � and given û ∈ Û,

Lx(û) >
‖ξ(x′, û, λ) − ξ(x̂, û, λ)‖

‖x′ − x̂‖ + ‖λ̄‖
.

The aforementioned inequality, in conjunction with the con-

trary assumption, leads to

‖ξ(x′, û, λ) − ξ(x̂, û, λ)‖ < ‖ϑ1‖ ‖x′ − x̂‖ + ‖ϑ1‖ ‖λ̄‖. (10)

By employing (6), (3), and then applying the infinity norm on

the resulting inequality, one has

‖ξ(x′, û, λ) − ξ(x̂, û, λ)‖ ≤ ‖ϑ1‖
(
‖x′ − x̂‖ + ‖λ̄‖ τ

)
. (11)

By subtracting (10) from (11), one has ‖ϑ1‖ ≤ τ , which does

not hold ∀ϑ1 ∈ R
n×n
≥0 and ∀τ > 0, completing the proof.

Next, we present our data-driven approach for computing

the growth bound through sampled trajectories.

C. Data-Driven Computation of Growth Bound

The main goal is to search for a less conservative growth

bound, in terms of over-approximating the reachable sets. In

our proposed setting, we first cast the candidate growth bound

in (6) as the following robust convex program (RCP):
⎧
⎪⎪⎨
⎪⎪⎩

minϑ 1�ϑ

s.t. ϑ ∈ [0, ϑ̄], ∀x1, x2 ∈ �ηx(x̂), ∀λ1, λ2 : [0, τ ] → �,

|ξ(x1, û, λ1) − ξ(x2, û, λ2)| − ϑ1(x̂, û)
(
|x1 − x2| + λ̄ τ

)

≤ 0,

(12)

where 1 ∈ R
n2

and ϑ̄ ∈ R
n2

>0 is a sufficiently large vector

component-wise.

One can readily verify that a feasible solution of the

RCP in (12) provides a growth bound as in (3) for ct-CS

in (2). Unfortunately, a precise knowledge of the dynamic is

required for solving the problem. To resolve these issues, we

collect data from trajectories of unknown ct-CS and propose a

scenario convex program (SCP) corresponding to the original

RCP. To do so, consider a set of N sampled data points DN

collected from cells �η̂x
(x̃), where x̃ ∈ [�ηx(x̂)]η̂x

, which are

sub-grids within a cell �ηx(x̂), where η̂x := 1
n√

N
ηx (cf. Fig. 1).

The size of the sub-grid cells is determined by the extraction

of N data points from the primary cell �ηx(x̂), which has a

dimension n. In fact, the process of sampling N data points

from a sub-grid inside a cell with length η necessitates that the

sub-grid cell’s size remains upper bounded by 1
n√

N
ηx. Using

DN , for any x̂ ∈ X̂ and û ∈ Û, we propose the SCP associated

to the RCP (12) for a cell �ηx(x̂) as

SCP :

⎧
⎨
⎩

minϑ 1�ϑ

s.t. ϑ ∈ [0, ϑ̄], ∀ l, l̄ ∈ {1, . . . , N},
|x′

l − x′
l̄
| − ϑ1(x̂, û)

(
|xl − xl̄| + λ̄ τ

)
+ � ≤ 0,

(13)

where � ∈ R
n
≥0 is a bias term and computed as follows.

Theorem 2: Consider a ct-CS � as in (1) with sampling

time τ ∈ R>0. For any x̂ ∈ [X]ηx and û ∈ [U]ηu , suppose for

a cell �ηx(x̂), [�ηx(x̂)]η̂x
is constructed where η̂x := 1

n√
N

ηx.

Then, the solution of (13) provides a growth bound as in (3)

corresponding to (x̂, û) where

� := 4
(
Lx(û)η̂x + L�(û)λ̄

)
, (14)

Lx(û) and L�(û) are the Lipschitz constants as in (7).

Proof: One can readily verify that the optimization

problem (13) always admits a feasible solution. For any fixed

pair (x̂, û) ∈ X̂ × Û, let

β(ϑ, x1, x2, λ1, λ2) := |ξ(x1, û, λ1) − ξ(x2, û, λ2)|
− ϑ1(x̂, û)

(
|x1 − x2| + λ̄ τ

)
,

for all x1, x2 ∈ �ηx(x̂) and λi, λ
′
i : [0, τ ] → � with i ∈ {1, 2}.

Furthermore, let ϑ∗ be the optimal solution of SCP (13). By

considering x1, x2 ∈ �ηx(x̂) and picking samples xl, xl̄ from

cells �η̂x
(xl),�η̂x

(xl̄) ⊂ �ηx(x̂), one gets

|β(ϑ∗, x1, x2, λ1, λ2) − β(ϑ∗, xl, xl̄, λ
′
1, λ

′
2)|

≤ |ξ(x1, û, λ1) − ξ(xl, û, λ2)| + ‖ϑ1(x̂, û)‖ |x1 − xl|
+ |ξ(x2, û, λ′

1) − ξ(xl̄, û, λ′
2)| + ‖ϑ1(x̂, û)‖ |x2 − xl̄|

≤ 2Lx(û)
(
|x1 − xl| + |x2 − xl̄|

)

+ L�(û)
(
‖λ1 − λ2‖[0,τ ] + ‖λ′

1 − λ′
2‖[0,τ ]

)
1

≤ 4
(
Lx(û)η̂x + L�(û)λ̄

)
=: �.

The above inequality implies that for any x1, x2 ∈ �ηx(x̂) and

any disturbance within �,

β(ϑ∗, x1, x2, λ1, λ2) ≤ β(ϑ∗, xl, xl̄, λ
′
1, λ

′
2) + �. (15)

Therefore, within any cell �ηx(x̂), (15) implies that any

optimal solution of SCP (13) is always feasible for RCP (12).

In particular, any feasible solution of (13) results in a growth

bound χϑ of the form (6) that satisfies inequality (3), which

concludes the proof.

Remark 3: By applying Theorem 2 to all partition sets, it

is possible to establish a set membership relation ∝E (cf.

Theorem 1) between a concrete ct-CS � and its data-driven

finite abstraction �̂ by solving the SCP (13) over the grid cells.
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D. Abstraction by Optimized State Set Partitioning

Here, we expand upon the model-based approach introduced

in [15], which addressed the problem of choosing the state

discretization parameter ηx = [η1
x ; · · · ; ηn

x ] ∈ R
n
>0. This

parameter choice defines a predetermined volume η1
xη

2
x , . . . η

n
x

for each grid cell. The primary aim here is to reduce memory

and time consumption during abstraction construction by min-

imizing the number of transitions within the abstraction. We

build upon the work in [15] and develop a data-driven strategy

that optimizes the shape of state space grids, effectively

reducing computational efforts.

Given a finite input set Û, we first choose a grid parameter

ηx arbitrarily, to construct the symbolic set [X]ηx . We proceed

as follows to compute an optimized grid parameter while

preserving the volume of each cell �ηx(x̂). Let J ∈ N be the

cardinality of [X]ηx × Û. Constructing an abstraction �̂ of ct-

CS � in (1) necessitates computing a sequence of (ϑ
j

1)j=1,...,J ,

obtained by solving (13) for each (x̂, û) ∈ [X]ηx ×Û. Hereafter,

we present an optimization technique aimed at reducing the

size of abstractions (in terms of the number of transitions) that

contain grid cells with the volume η1
xη

2
x , . . . η

n
x :

min
α

J∑

j=1

Ej(e
α) subjected to

n∑

l=1

αl = ς, (16)

where ς = ln (η1
xη

2
x , . . . η

n
x), α = [α1; · · · ;αn] ∈ R

n and

Ej : R
n
>0 → R>0, such that Ej(e

α) =
∏n

i=1 [2ϑ
j

1λ̄ τ +∑n
l=1(In + ϑ

j

1)i,le
αl ]e−αi and

∑J
j=1 Ej(e

α) is the expected

number of transitions in �̂. One can readily verify that Ej(e
α)

is a convex function with respect to α ∈ R
n. Hence, the

problem in (16) can be solved numerically. In addition, we

present the following theorem, which gives sufficient condition

for (16) to have a unique optimizer.

Theorem 3: Given ς ∈ R, J ∈ N, τ > 0, let ϑ
j

1 ∈ R
n×n
≥0

be irreducible for some j = 1, . . . , J. Then, the optimization

problem in (16) admits a unique optimizer.

The proof is similar to that of [15, Th. V.4] and is omitted

here due to lack of space. Following this approach, we obtain

a grid parameter η∗
x := eα∗

, where α∗ is the optimizer of (16).

We refer the interested reader to [15] for deeper insights on

the optimization problem in (16).

We propose Algorithm 1 to describe the required procedure

in Theorem 2 for the data-driven construction of finite abstrac-

tions. The solution obtained from (16) is fed into Algorithm 1,

yielding a data-driven finite abstraction with a minimized

number of transitions. We visualize the transition function

f̂ (x̂, û) of a finite abstraction in Fig. 1.

IV. CASE STUDY

Here, we show the efficacy of our data-driven approaches by

applying them to a vehicle motion planning benchmark with

unknown dynamics. The main goal is to design a controller

via the proposed abstraction-based approach to navigate the

vehicle reaching to a target set, while avoiding potential

obstacles. We also provide a detailed comparison between our

proposed results and those presented in [12] (cf. Table I and

Fig. 3). The model of the vehicle is borrowed from [4] as

Algorithm 1 Data Driven Construction of Finite Abstractions

Inputs: X, U,�, ηu and η∗
x

1: Construct X̂ = [X]η∗
x

and Û = [U]ηu

2: for each (x̂, û) ∈ X̂ × Û do

3: Initiate f̂ (x̂, û) = ∅, ρ = 0 ∈ R
n and c = ξx̂,û,λ(τ ) ∈

ϒ(x̂, û) where λ : [0, τ ] → �

4: Compute � ∈ R
n
≥0 using (14)

5: As outlined in Theorem 2, generate [�η∗
x
(x̂)]η̂x

and

select N sampled data points (xl, û, x′
l) from it.

6: Obtain the optimal value ϑ∗(x̂, û) for SCP (13)

7: Update: ρ = χϑ∗(η∗
x , x̂, û)

8: f̂ (x̂, û) = {x̂′ ∈ X̂ | �η∗
x
(x̂′) ∩ �ρ(c) �= ∅} ∪ f̂ (x̂, û)

9: end for

Output: �̂ = (X̂, Û, f̂ )

Fig. 1. A 2-dimensional depiction of a finite abstraction, constructed
using Algorithm 1.

Fig. 2. Closed-loop trajectories by our data-driven abstraction-based
technique (in black) and by the model-based one (in red) in [4] with
perturbation set � = [−λ̄, λ̄], where λ̄ = [0.15; 0.15; 0.015] and initial
state x0 = [0; 0.2; 0] (green spot). Target and obstacle sets are depicted
by red and blue boxes, respectively.

ẋ(t) =

⎡
⎣

u1 cos (q + x3)/ cos (q)

u1 sin (q + x3)/ cos (q)

u1 tan (u2)

⎤
⎦ + λ(t), (17)

where q := arctan(tan(u2)/2), λ : [0, τ ] → � = [−λ̄, λ̄] ⊂
R

3 with λ̄ = [0.15; 0.15; 0.015], x(t) = [x1; x2; x3] ∈
[0, 10]2 × [−π − 0.3798, π + 0.3798] and u(t) = [u1; u2] ∈
[−1, 1]2. States [x1; x2] are the two-dimensional coordinate of

the vehicle’s position, while x3 is its orientation. We assume

the model in (17) is unknown to us. However, the model is

used to sample the system trajectories with the sampling time

τ = 0.25s. The main goal is to find a controller that steers the
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TABLE I
COMPARISON RESULTS FOR THE MOTION PLANNING EXPERIMENT

Fig. 3. Comparing bias term � in (14) with γ in [12] across the number
of sampled trajectories and λ̄ = [0.15; 0.15; 0.015], while assuming a
confidence of 99.9% in the analysis of [12].

Fig. 4. The relationship between the time spent by Algorithm 1, the
number of samples N within the sub-grid, and the number of abstraction
transitions as a function of ‖η̂x ‖, while maintaining the primary cell size
at a fixed value of ηx = [0.3; 0.3; 0.3].

vehicle to the target set [9, 9.51] × [0, 0.51] while avoiding

the areas as depicted in blue in Fig. 2.

We construct [U]ηu using ηu = [0.3; 0.3] and with an

initial choice ηx = [0.9; 0.9; 0.001], solving (16) yields η∗
x ≈

[0.0669; 0.0669; 0.1899], which was input into Algorithm 1.

We utilized the estimated Lipschitz constants, specifically

Lx = 1.1697 and L� = 1.21, as detailed in Remark 2. All

implementations for the construction of the data-driven finite

abstraction have been done in SCOTS [16] with some modifi-

cations on a 64-bit MacBook Pro with 64GB RAM (3.2 GHz).

We then leverage SCOTS for synthesizing a controller enforc-

ing the reach-avoid property. A closed-loop state trajectory

of the unknown vehicle starting from x0 = [0; 0.2; 0] based

on our data-driven abstraction-based technique is depicted in

Fig. 2 (see black trajectory). The implementation results are

reported in Table I.

As evident from the results, the controller effectively

ensures that the vehicle avoids collisions with obstacles, as

illustrated by the blue boxes in Fig. 2. The controller’s domain

comprises 927, 916 states. Table I records a notable reduction

of 54.3% in transitions, 59.2% in computational time, and

53.8% in memory consumption, compared to the use of a

naive choice of discretization vector. It is also evident that

our approach consistently surpasses the method presented

in [12] in all of these aspects. Additionally, Fig. 3 shows

that the bias term � consistently maintains lower conservatism

than γ in [12, eq. (19)] with an increase in the number

of sampled trajectories. Hence, our approach demonstrates

reduced conservatism in contrast to the one in [12]. Note

that the sub-grid size significantly impacts the number of

sample points. Finer sub-grid size leads to a larger number of

samples, thereby reducing the value of �. This results in the

SCP algorithm producing a less conservative growth bound in

comparison to when fewer samples are used. An illustrative

comparison of this effect is provided in Fig. 4.
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