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Abstract—Construction of finite-state abstractions
(a.k.a. symbolic abstractions) is a promising approach for
formal verification and controller synthesis of complex
systems. Finite-state abstractions provide simpler models
that can replicate the behaviors of original complex
systems. These abstractions are usually constructed
by leveraging precise knowledge of systems’ dynamics,
which is often unknown in real-life applications. In this
letter, we develop a data-driven technique for constructing
finite abstractions for continuous-time control systems
with unknown dynamics. In our data-driven context, we
collect samples from trajectories of unknown systems
to construct finite abstractions with a guarantee of
correctness. We propose a data-based gridding method
to efficiently determine state-set discretization parameters
while minimizing the expected number of transitions in
the abstraction construction, thus reducing computational
efforts. By establishing a feedback refinement relationship
between an unknown system and its data-driven finite
abstraction, one can design a controller over the data-
driven finite abstraction. The controller can then be refined
back to the original unknown system to meet a desired
property of interest. We illustrate our proposed data-driven
approach using a vehicle motion planning benchmark.

Index Terms—Data driven control,
sampled-data control.

optimal control,

. INTRODUCTION

VER the past two decades, formal methods have gar-

nered significant attention within the autonomous and
hybrid systems community. They have proven invaluable in
addressing the inherent complexities of systems’ dynamics and
offering formal guarantees. These complex systems encompass
a wide range, including biological systems, (air) traffic man-
agement systems, chemical processes, autonomous vehicles,
and more. Given that these systems possess uncountable (infi-
nite) state and input sets, synthesizing controllers to enforce
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intricate specifications presents formidable challenges. On the
other hand, considerable progress has been made in the last
two decades concerning the creation of finite abstractions,
which serve as approximate representations of the concrete
systems (e.g., [1], [2], [3]). To employ the constructed finite
abstraction in the controller synthesis process, it is essential
to establish a systematic relationship between the concrete
system and its finite abstraction (e.g., [4], [5], [6]).

Regrettably, a significant portion of the pertinent literature
on finite abstraction construction (e.g., [1], [2], [3], [4], [5], [6],
[7]) demands the availability of concrete system models, which
are often absent in many real-world applications. To address
this challenge, researchers have explored various indirect data-
driven strategies to derive models for unknown dynamical
systems through identification techniques (e.g., [8] and ref-
erences therein). Nevertheless, obtaining an accurate model
can be arduous, time-intensive, and computationally expensive,
particularly when dealing with intricate dynamics, as is often
the case in real-world scenarios. This inherent complexity
has spurred our pursuit of a direct data-driven approach for
constructing finite abstractions. Our method involves directly
collecting data from trajectories of unknown concrete systems,
bypassing the need for a system identification phase.

Contributions: The contribution of this letter lies in the
development of a data-driven technique for constructing low-
complexity finite abstractions for continuous-time control
systems with unknown dynamics, all while ensuring a correct-
ness guarantee. Our data-driven approach entails the collection
of data from trajectories of unknown systems. We introduce
a data-driven gridding method focused on optimizing the
selection of state-set discretization parameters, which effi-
ciently reduces the expected number of transitions in the
abstraction computations, thus reducing computational efforts.
By establishing a feedback refinement relation, as discussed
in [4], we forge a vital link between an unknown system
and its data-driven finite abstraction. This relation enables
us to design a controller based on the abstract model and
subsequently refine it back to the original system satisfying
desired properties.

Related Work: There exists a limited work dedicated to
the construction of finite abstractions using data. In the work
by [9], a data-driven approach is introduced for constructing
finite abstractions tailored to unknown monotone systems.
Notably, this approach demonstrates minimal conservatism
when applied to unperturbed systems. In contrast, our data-
driven approach extends its applicability to perturbed systems
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characterized by nonlinear dynamics and is not confined to
monotone systems. Another data-driven approach, as outlined
in [10], strives to construct finite abstractions for the synthesis
of controllers to enforce finite-horizon specifications. Our
results broaden the scope compared to those presented in [10]
in two aspects. Firstly, the results proposed in [10] exclusively
address finite-horizon specifications, whereas our approach
can be employed for both finite and infinite horizon prop-
erties. Secondly, our data-driven approach constructs a finite
abstraction with guaranteed confidence, while the abstractions
developed in [10] are valid with a probability less than 1.
More recently, [11] and [12] have introduced data-driven
techniques for constructing finite abstractions in the context
of incrementally input-to-state stable control systems and
continuous-time perturbed systems, respectively. Nevertheless,
the outcomes presented in [11] and [12] are accompanied
by probabilistic confidence levels, necessitating an increasing
volume of data as the confidence approaches one. In stark
contrast, our data-driven approach yields a finite abstraction
with a confidence level of 1, all without imposing any stability
requirements on the underlying systems. Additionally, we
introduce a data-driven gridding method designed to optimize
the selection of state-set discretization parameters, thereby
efficiently reducing the expected number of transitions and
computational efforts during abstraction computations.

II. PRELIMINARIES AND DEFINITIONS
A. Notation

Symbols R, R., and R>g, respectively, represent sets of
real, positive, and non-negative real numbers. Notation U and
N indicate, respectively, set union and intersection. The symbol
N denotes the set of natural numbers and Nx¢ is NU {0}. For
any non-empty set Q and n € N, Q" indicates the Cartesian
product of n duplicates of Q. Given N vectors x; € R™,

ng € Nyand [ € {1,...,N}, we use x = [x1;---;xyn] to
denote the corresponding column vector of dimension ), n;.
The vector 1 € R” is defined as [1;1;---;1] € R”, and

Z, € R™" represents the n x n identity matrix. For any
P, q € R" and relational operator >~ € {<, <, =, >, >}, where
p=Ipi;---spnl and g = [q15--- 5 qnl, p = g is interpreted
as p; ~ q; for every [ € {1,2,...,n}, i.e, component-wise
comparison. Similarly, ¢” := [¢!;--- ; eP"] € R". Assuming
p < q, then the compact hyper-interval [p,q] is given as
[p1,q1]1 %" X[pn, gn]. Furthermore, given ¢ = [c1; --- ; ¢y €
R”, we define the sum & as ¢ & [p,q] = [p1 + c1,¢c1 +
q1] X -+ X [pn + cn, cn + qn]. Notation |c| means the entry-
wise absolute value of ¢ € R”, ie., [|ci]; - ;]|cul], While
lcll means the infinity norm of c. For any r € R”, and
co € R", notation ®;(cg) is interpreted as co @ [—r, r]. We
define the norm of a function X : [0, 7] — R” as ||A|j0,¢] =
sup;c(o.7] 1A (@)|l. For any © € R"™ ", ||#|| denotes the infinity
norm of .

B. Continuous-Time Control Systems

Here, we first present the notions of simple systems and
feedback refinement relations, which are borrowed from [4].
Definition 1: A simple system S is a tuple (X, U, F), where
X # @, and U # 0 are, respectively, state and input sets.

The transition function F : X x U = X is a set-valued map,
whereby for a given input u(k) € U, k € N, the state evolves
as x(k + 1) € F(x(k), u(k)).

Given a simple system S, we define the set of admissible
inputs for state x € X as Us(x) = {u € U | F(x, u) # @}. Later
in this section, we use the notion of simple systems to define
a sampled version of continuous-time control systems. Next,
we present the notion of feedback refinement relation [4].

Definition 2: Consider two simple systems S§; =
(Xi, Uj, F;), where i € {1, 2}, such that U, C U;. A feedback
refinement relation from S; to S> is a nonempty relation
€ € X1 x X, such that for all (x1, x2) € &, the following two
conditions hold:

o Us,(x2) C Us, (x1) and;

o if u € Us,(x2), then E(F1(x1, u)) € Fa(x2, u).

If there exists a feedback refinement relation £ from S; to
S2, we denote it by S; &g S». Given such a relation, one
can synthesize a controller over the finite abstraction and then
refine it back to the original system, while satisfying the same
property of interest. Here, we study continuous-time control
systems, affected by bounded disturbances, as defined next.

Definition 3: A continuous-time control system (ct-CS) is
represented via a tuple

E=X,UYf,A), (1)

where:
e X C R”" is the state set and U € R™ is the input set;
e f: X x U — X is the vector field, which is assumed to
be locally Lipschitz continuous [4] for all input u € Uj;
o A C R" is the disturbance set which is assumed to be of
the form A = [—X, 1], where A € RZ,.
The state evolution of ct-CS E in (1) is described by

X(0) = f(x(1), v(®) + A (D), 2)

with A(f) € A being additive disturbances for all ¢t € Rx.

Consider the sampling time 7 € R.o. We consider input
signals v : R>¢9 — U to be piecewise constant, i.e., for any
n € N>g and ¢ € [nt, (n 4+ 1)T), one has v() = v(nt). In
addition, for an initial state x € X, a trajectory of the system
over [0, ] is defined as an absolutely continuous function
Ecun 1 [0, 7] — R" which satisfies (2) for every ¢ € [0, 7]
given v : [0, 7] — {u} and X : [0, 7] — A. A collection of
such trajectories over the interval [0, t], starting from x € X
under a given constant input with value u € U, is denoted by
Y, u) :={&ur|v:[0,7] = {u} and A : [0, T] — A}. With
a slight abuse of notation, we also use &(x, u, A) = &x ;.1 (7)
throughout this letter. We now describe a sampled version of
a ct-CS as a simple system as in Definition 1.

Definition 4: Consider a ct-CS E as in (1) with a sampling
time T € R.g. We call the simple system &E; = (X;, U, F) a
sampled version of ct-CS E, if X; =X C R", U, = U C R",
and the following holds: for any xj,x; € X and u € U, xp €
F(x1,u) if and only if there is a trajectory &, 4 of (2) over
[0, 7] that satisfies &, ,2(0) = x1 and &, 41 (7) = x2.

In the next subsection, we aim at approximating the system
in (2) (a.k.a. concrete system) by a finite abstraction (a.k.a.
symbolic abstraction). In the constructed finite abstraction,
each discrete state and input associate to a collection of
continuous states and inputs of the system, respectively.
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C. Symbolic Abstractions

In this section, we construct finite abstractions of ct-CS
in (1) with sampling time v € R.(. For a given compact
state set X C R" and discretization parameter vector 7, €
R’;O, we create a partition of X into cells &, (x) such that
X C UXE[X]W &, (x), where [X], represents a finite set
of representative points selected from those partition sets.
A similar procedure is applied to the input set U C R™
using the discretization vector 1, € R”,. Hence, , we generate
symbolic state set X = [X1,, and 1nput set U : = [Ul,,.
Accordlngly, the exact reachable set of states from an abstract
state ¥ € X under a given input i € U is defined as
RG 1) = {&,452(1) | &a € YT, 0t) and x € D, (%)}
However, we aim at constructing an over-approximation
of R(x,u) for any pair (x,u) € X x U, using a
function called growth bound, which is formally defined
next.

Definition 5: Given a ct-CS
symbolic states and input sets of

U— RY, satisfying

as in (1), and X, 6 as
a function y : R” OxXx

=
o/
=
=,

3)

for any x € X, el ¥ ¢ D, (), A2 [0,7] > A,i €
{1, 2}, is called the growth bound of ct-CS &

We now formally define a finite abstraction of ct-CS.

Definition 6: Given a ct-CS E and a growth bound y, let
E¢ be the sampled system associated with E. Then g =

U f) is a ﬁmte abstraction of E;, with the transition map

fXxU=Xif:

o the set iz @y, ( (x) forms a _non-empty cover for X;

o for any x, X’ € Xand it € U, Gar@ e [-p.p DN

~

P, )£V = ¥ ef(x, i) where p’ = x(ny, X, it)
and A : [0, T] — A.

Next theorem, borrowed from [4], shows the usefulness of
finite abstractions in Definition 6 by establishing a feedback
refinement relation between the sampled system associated
with a concrete ct-CS and its finite abstraction.

Theorem 1: Consider a ct-CS E and its sampled version
E;.LetE g (5(\ fj f ) be the ﬁnlte abstraction of E; according
to Definition 6. Then E; g 2, where the feedback refinement
relation £ is defined as (x, %) € € if x € &, _(%).

18,2, (T)

—&aa, (O < x (X =&, %, @),

/\

D. Problem Formulation

In this letter, we assume that the vector field f in (1)
is unknown and the main goal is to synthesize controllers
for the unknown system. Although the underlying dynamics
of ct-CS are considered to be unknown, its trajectories are
accessible and could be sampled over [0, T]. We collect these
sampled data points in a set Dy (g, x) | x =
&xu0.(1), for some &y 4,0 € Y(x,u), y€X, yeU, I=
1,2,...,N}. Now, we formalize the main problem that we
aim to solve in this letter.

Problem 1: Consider a ct-CS E with an unknown vector
field f, affected by some bounded disturbances. Develop
a data-driven approach based on the set of data Dy for
constructing a finite abstraction @, such that E; «g¢ E with a
set membership relation &.

[1I. DATA-DRIVEN CONSTRUCTION OF
FINITE ABSTRACTIONS

In this section, given the growth bound in (3), we first
present the required procedures for computing an over-
approximation of a reachable set for ct-CS. We then propose
our data-driven approach to compute the growth bound of
unknown ct-CS based on data points in Dy.

A. Reachable Set Computation via Growth Bound

Consider a ct-CS E as in (1). Using Definitions 5 and 6
for every abstract state-input pair, the reachable set R (X, it)
is over-approximated using an hyper-interval (&;;,(t) @
[—x (x, X, &), x (1, X, )]). From the model-based analysis
in [4], the growth bound is expressed as

T
X G, &, i) = MOT5 4 / MO dr, 4)
0
for any 5 € R, X € X, 7 € U, where function M : U —
R™" deduces matrix M (i) whose entries satisfy the follow-
ing inequality:

|OfiCx, )|
Opfilx, 1)  I=m ®)

for any x € X and I,m € {1,2,...,n}. The [-th element of
f(x, ) is denoted by fi(x, &t), while 9,,fi(x, i) is its partial
derivative with respect to m-th component of x.

If the underlying model is unknown, the matrix M (&) in (5)
and, hence, the growth bound in (4) cannot be computed.
Here, we introduce a candidate growth bound, inspired by the
analysis in [12], as follows:

xoG. %) =01 G (G + At), (6)

for any 5 € R>0, % e X,it € U, where 9 € R’;ﬁ", and

Mym(@) > { L#m,

U e R’;O is a column vector by stacking those of ¢. It should
be noted that for every abstract state, the parameters of ¢ are
locally defined.

Remark 1: Note that the presence of ¢ in (6) is a con-
sequence of our parameterization of the proposed growth
bound. This parameter will serve as the decision variable in
optimization problems (12) and (13), which are formulated
as robust and scenario convex programs, respectively. For
dimensional consistency, 91 is represented as a square matrix,
while 9 is the vector formed by stacking the columns of
¥1. This distinction is made to account for the need for the
subscript “1” to differentiate between them.

In the next subsection, we present a data-driven approach
utilizing dataset Dy to compute the candidate growth bound
outlined in (6). Our approach also offers a formal correctness
guarantee for (6) implying that it is a growth bound for ct-CS
in (2) (cf. Theorem 2).

B. Lipschitz Continuity of System’s Trajectories

The vector field f is assumed to be locally Lipschitz
continuous. Hence, for any x, X eX A:[0,1] = A, i€
{1,2}, and given & € U, there exist Lipschitz constants
L(1), La(1t) € Rog, such that:

{ I8 Cx, i, 1) — EC A || < L@@ |lx — X,

i ™
& (x, i, A1) — ECx, i, M)l < LaA@ A1 — A2ll[0,7]-
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The two inequalities in (7) can be combined to get

IECe it 1) — EC it A < Le@ lx = Xl
+ La@ 2 = 22llo,r1- (8)

Remark 2: Note that the results proposed in [13], specif-
ically [14, Algorithm 2], can be leveraged to estimate the
Lipschitz constants £, and £, for unknown system dynamics.
This estimation is achieved using a finite dataset collected
from the unknown system. However, for the purposes of this
letter, we assume the availability of correct upper bound for
the Lipschitz constants. Therefore, we do not account for
any associated confidence levels in the estimation of these
constants in our results.

Next lemma shows that the Lipschitz constant L, (&) is an
upper bound for ||# (X, &t)||. This lemma will be leveraged to
show the results of Theorem 2.

Lemma 1: For a given input it € U, the Lipschitz constant
L (it) is an upper bound for ||9 (%, )|, i.e.,

191k, )|l < Lo(@), VieX. )

Proof: We show the proof by contradiction. Suppose (9)
does not hold, ie., ||, )| > L.(i). Since L,(i) is a
Lipschitz constant, (7) implies that Vx' € X, Vx € 5(\, for any
A :[0,7] — A and given & € U,

”‘i:(x/’ ﬁ? )‘) - é()%s ’27 )")” )

L) > - -
! X' — &Il + [IA]

The aforementioned inequality, in conjunction with the con-
trary assumption, leads to

IEW, @, 2) — EG, i, I < 9111 IX = Xl + 911l 2]l (10)

By employing (6), (3), and then applying the infinity norm on
the resulting inequality, one has

IEW, &, 2) — EG, &, ML < 9111 (IF =X+ Al 7). (1D)

By subtracting (10) from (11), one has ||#|| < t, which does
not hold V9 € RZY" and YVt > 0, completing the proof. M

Next, we present our data-driven approach for computing
the growth bound through sampled trajectories.

C. Data-Driven Computation of Growth Bound

The main goal is to search for a less conservative growth
bound, in terms of over-approximating the reachable sets. In
our proposed setting, we first cast the candidate growth bound
in (6) as the following robust convex program (RCP):

ming 17¢
sit. ¥ € [0, 9], Vxr, x2 € @, (§), VA1, A2 : [0, 7] — A,
|&Cer, di, M) — EQa, B, )| — 91 (R, i) (Ixg — x2] + A T)
<0,
(12)

where 1 € R" and ¥ e R’fo is a sufficiently large vector
component-wise.

One can readily verify that a feasible solution of the
RCP in (12) provides a growth bound as in (3) for ct-CS
in (2). Unfortunately, a precise knowledge of the dynamic is
required for solving the problem. To resolve these issues, we

collect data from trajectories of unknown ct-CS and propose a
scenario convex program (SCP) corresponding to the original
RCP. To do so, consider a set of N sampled data points Dy
collected from cells @ (X), where X € [®, (X)];,, which are
sub-grids within a cell ®, (%), where 7, = %Nnx (cf. Fig. 1).
The size of the sub-grid cells is determined\l/a; the extraction
of N data points from the primary cell &, (%), which has a
dimension n. In fact, the process of sampling N data points
from a sub-grid inside a cell with length n necessitates that the

sub-grid cell’s size remains upper bounded by (l/LNnx. Using

Dy, for any % € X and &t € U, we propose the SCP associated
to the RCP (12) for a cell ®, (%) as

miny lTﬂ_ )
SCP:{ s.t. ¥ € [0, 9], Vl,le{l,...,N},_
) — x| = 091G i) (|l —xl +AT) +0 <0,

13)

where ¢ € R”, is a bias term and computed as follows.

Theorem 2: Consider a ct-CS E as in (1) with sampling
time t € R.¢. For any % € [X],, and & € [U],,, suppose for
a cell &, (%), [®,,(X)]j, is constructed where 7y = %an.
Then, the solution of (13) provides a growth bound as in (3)
corresponding to (X, it) where

0 = 4(L@) iy + La(@)1), (14)

L) and L, (&r) are the Lipschitz constants as in (7).

Proof: One can readily verify that the optimization
problem (13) always admits a feasible solution. For any fixed
pair (&, 1) € X x U, let

B, x1, x2, A1, A2) = |EQxr, i, Ay) — E(x2, i1, A2)]
— 01 w)(lx — x| + A1),

for all x1,xy € ®,, (%) and A;, A} : [0, 7] — A with i € {1, 2}.
Furthermore, let ¥* be the optimal solution of SCP (13). By
considering x1,x; € &, (X) and picking samples x;, x; from
cells @5 (x7), @5 (x7) C Py, (X), one gets

IBOO*, x1,x2, A1, A2) — B(O™, xz, x5, A}, A5)|
< |ECer, ity Ap) — EQx, , M) | + (191 (K, )| [x1 — xi
+ 1§, i, M) — £, i, A5) | + 191G, ) || x2 — xg]
< 2L (@) (]x1 — x| + |x2 — x3))
+ La@ (21 = Azlljo,e1 + IA] = A5ll0,21)1
< 4Ly + La(i)r) = 0.

The above inequality implies that for any x{, x» € ®, (%) and
any disturbance within A,

lg(ﬂ*a-xla-XZv )"17)"2) Sﬁ(ﬁ*vxlvva )\'/17)"/2)_’_@ (15)

Therefore, within any cell &, (%), (15) implies that any
optimal solution of SCP (13) is always feasible for RCP (12).
In particular, any feasible solution of (13) results in a growth
bound xy of the form (6) that satisfies inequality (3), which
concludes the proof. |

Remark 3: By applying Theorem 2 to all partition sets, it
is possible to establish a set membership relation g (cf.
Theorem 1) between a concrete ct-CS E and its data-driven
finite abstraction & by solving the SCP (13) over the grid cells.
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D. Abstraction by Optimized State Set Partitioning

Here, we expand upon the model-based approach introduced
n [15], which addressed the problem of choosing the state
discretization parameter 7, = [nx, et e R” . This
parameter choice defines a predetermined volume .72, ... n"
for each grid cell. The primary aim here is to reduce memory
and time consumption during abstraction construction by min-
imizing the number of transitions within the abstraction. We
build upon the work in [15] and develop a data-driven strategy
that optimizes the shape of state space grids, effectively
reducing computational efforts.

Given a finite input set U, we first choose a grid parameter
ny arbitrarily, to construct the symbolic set [X],,. We proceed
as follows to compute an optimized grid parameter while
preserving the volume of each cell ®, L (X). Let J € N be the
cardinality of [X],, x U. Construcung an abstraction & of ct-
CS E in (1) necessitates computing a sequence of (191 )i=1,....»
obtained by solving (13) for each (x, &) € [X],, X U. Hereafter,
we present an optimization technique aimed at reducing the
size of abstractions (in terms of the number of transitions) that
contain grid cells with the volume n!n2, ... n"

J n
. o : _
min E E;(e”) subjected to E o =g, (16)

j=1 =1

where ¢ = In (nxnx, D), o = oy s a] € R” and
Ei : R"y, — R.o, such that Ej(e®) = [, [29At +
Y (T, + 19]), le“’]e_“" and Z/ 1 Ej(e¥) is the expected
number of transitions in E. One can readily verify that IE;(e®)
is a convex function with respect to o € R”. Hence, the
problem in (16) can be solved numerically. In addition, we
present the following theorem, which gives sufficient condition
for (16) to have a unique optimizer. ‘

Theorem 3: Given ¢ € R, J € N, t > 0, let 9] € RLY"
be irreducible for some j = 1,...,J. Then, the optlmlzatlon
problem in (16) admits a unique optimizer.

The proof is similar to that of [15, Th. V.4] and is omitted
here due to lack of space. Following this approach, we obtain
a grid parameter 1} = ¢*", where o* is the optimizer of (16).
We refer the interested reader to [15] for deeper insights on
the optimization problem in (16).

We propose Algorithm 1 to describe the required procedure
in Theorem 2 for the data-driven construction of finite abstrac-
tions. The solution obtained from (16) is fed into Algorithm 1,
yielding a data-driven finite abstraction with a minimized
number of transitions. We visualize the transition function
F(&, &) of a finite abstraction in Fig. 1.

IV. CASE STUDY

Here, we show the efficacy of our data-driven approaches by
applying them to a vehicle motion planning benchmark with
unknown dynamics. The main goal is to design a controller
via the proposed abstraction-based approach to navigate the
vehicle reaching to a target set, while avoiding potential
obstacles. We also provide a detailed comparison between our
proposed results and those presented in [12] (cf. Table I and
Fig. 3). The model of the vehicle is borrowed from [4] as

Algorithm 1 Data Driven Construction of Finite Abstractions
Inputs: X, U, A,y and 7}
1. Construct X = [X ] x and U=
2: for each (J:c, ) € X x U do
3. Initiate f(X, @) =¥, p =0 € R" and ¢ = & ;,(7) €
Y (x, i) where A : [0,T] > A

[Uln,

4: Compute ¢ € R? using (14)

5:  As outlined in Theorem 2, generate [Py (5c)];lx and
select N sampled data points (x, 1, x;) from it.

6:  Obtain the optimal value ¥*(%, &) for SCP (13)

7. Update: p = xp=(nk, X, it)

8 fG )= eX | Pp@)NPylc) # B UFG, i)

9: end for

- & € f(&,a)
X | # (@1,4, f(z1,2)) € D
cy ° Zy
— Xo- (0, &,0) . .
o L e
& i = g5

Fig. 1. A 2-dimensional depiction of a finite abstraction, constructed
using Algorithm 1.

Fig. 2. Closed-loop trajectories by our data-driven abstraction-based
technique (in black) and by the model-based one (in red) in [4] with
perturbation set A = [—A, A], where » = [0.15; 0.15; 0.015] and initial
state xg = [0; 0.2; 0] (green spot). Target and obstacle sets are depicted
by red and blue boxes, respectively.

uy cos (g + x3)/ cos (q)

X(t) = | uysin(g +x3)/cos(q) | + A1), (17)
uy tan (up)
where ¢ = arctan(tan(uz)/2), » : [0,7] - A = [—X, A] C

R3 with 2 = [0.15;0.15; 0.015], x(t) = [x1;5x:x3] €
[0, 101> x [—7 — 0.3798, 7 + 0.3798] and u(r) = [uy; uz] €
[—1, 1]2. States [x]; x3] are the two-dimensional coordinate of
the vehicle’s position, while x3 is its orientation. We assume
the model in (17) is unknown to us. However, the model is
used to sample the system trajectories with the sampling time
T = 0.25s. The main goal is to find a controller that steers the
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TABLE |
COMPARISON RESULTS FOR THE MOTION PLANNING EXPERIMENT

Method: Abstraction Construction
ethods number of memory computation | Samples
transitions (RAM GB) | time (mins) N
Algorithm T
naive 7, 3.5 x 108 0.86 103.75 1331
Algorithm 1
0% from (16) | 1.6 x 108 0.397 42.35 1331
Work [12]
n: from (16) | 1.7 x 1010 | 1.887 583 4410
181 > -y
~d —= el
1.6 S
S 14 ~ S
1.2 =
1.0{ v~o_
ogi  TTeme——
103 104
N

Fig. 3. Comparing bias term ¢ in (14) with y in [12] across the number
of sampled trajectories and » = [0.15; 0.15; 0.015], while assuming a
confidence of 99.9% in the analysis of [12].

108 -
1400 | o Time(s) e
13001 10 T
X -

1200 100
1100 \'\\ 105) -
1000 S 10* S

900 S 10° T

800 \\_\_. 102 e

700 7T -~ | 100 T

1072 1071 1072 1071
(M 1l
Fig. 4. The relationship between the time spent by Algorithm 1, the

number of samples N within the sub-grid, and the number of abstraction
transitions as a function of || 7|/, while maintaining the primary cell size
at a fixed value of nx =[0.3; 0.3; 0.3].

vehicle to the target set [9, 9.51] x [0, 0.51] while avoiding
the areas as depicted in blue in Fig. 2.

We construct [U],, using n, = [0.3;0.3] and with an
initial choice n, = [0.9; 0.9; 0.001], solving (16) yields n} =~
[0.0669; 0.0669; 0.1899], which was input into Algorithm 1.
We utilized the estimated Lipschitz constants, specifically
L, = 1.1697 and L5, = 1.21, as detailed in Remark 2. All
implementations for the construction of the data-driven finite
abstraction have been done in SCOTS [16] with some modifi-
cations on a 64-bit MacBook Pro with 64GB RAM (3.2 GHz).
We then leverage SCOTS for synthesizing a controller enforc-
ing the reach-avoid property. A closed-loop state trajectory
of the unknown vehicle starting from xg = [0; 0.2; 0] based
on our data-driven abstraction-based technique is depicted in
Fig. 2 (see black trajectory). The implementation results are
reported in Table L.

As evident from the results, the controller effectively
ensures that the vehicle avoids collisions with obstacles, as
illustrated by the blue boxes in Fig. 2. The controller’s domain
comprises 927, 916 states. Table I records a notable reduction

of 54.3% in transitions, 59.2% in computational time, and
53.8% in memory consumption, compared to the use of a
naive choice of discretization vector. It is also evident that
our approach consistently surpasses the method presented
in [12] in all of these aspects. Additionally, Fig. 3 shows
that the bias term @ consistently maintains lower conservatism
than y in [12, eq. (19)] with an increase in the number
of sampled trajectories. Hence, our approach demonstrates
reduced conservatism in contrast to the one in [12]. Note
that the sub-grid size significantly impacts the number of
sample points. Finer sub-grid size leads to a larger number of
samples, thereby reducing the value of p. This results in the
SCP algorithm producing a less conservative growth bound in
comparison to when fewer samples are used. An illustrative
comparison of this effect is provided in Fig. 4.
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