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Data-Driven Synthesis of Safety Controllers
via Multiple Control Barrier Certificates
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Abstract—This letter proposes a data-driven framework
to synthesize safety controllers for nonlinear systems with
finite input sets and unknown mathematical models. The
proposed scheme leverages new notions of multiple con-
trol barrier certificates (M-CBC) and provides controllers
ensuring the safety of systems with confidence 1. While
there may not exist a common control barrier certificate
with a fixed template, our proposed technique adaptively
partitions the state set to potentially find M-CBC of the
same template for different regions. In the proposed data-
driven framework, we first cast our proposed conditions of
M-CBC as a robust optimization program (ROP). Given that
the unknown model appears in some of the constraints of
the ROP, we propose a sampling approach for collecting
data and provide a scenario optimization program (SOP)
associated with the proposed ROP. We solve the resulted
SOP and construct M-CBC together with safety controllers
for the unknown system with 100% correctness guarantee.
We apply our results to a nonlinear jet engine compres-
sor with unknown dynamics to illustrate the efficacy of our
data-driven approach. In the case study, we show that while
there exists no common polynomial-type control barrier
certificate of a given degree, there exist polynomial-type
M-CBC of the same degree by partitioning the state set to
different regions.

Index Terms—Data-driven control, safety controllers,
multiple control barrier certificates, formal methods.

I. INTRODUCTION

F
ORMAL methods have become popular, over the past

two decades, for providing formal analyses over complex

dynamical systems. In general, providing formal verification

and controller synthesis frameworks for complex systems to

enforce high-level logic properties, e.g., those expressed as

linear temporal logic (LTL) formulae [1], is very challenging.

This is mainly due to (i) continuity of state sets, (ii) dealing
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with complex logic requirements, and (iii) lack of closed-form

mathematical models in many real-world applications.

To alleviate the aforementioned difficulties, one promising

approach, proposed initially in [2], [3], is to employ barrier

certificates as a discretization-free approach for the formal

verification and controller synthesis of dynamical systems. In

particular, barrier certificates are some Lyapunov-like func-

tions whose level sets separate an unsafe region from system’s

trajectories originating from a given set. As a result, the

existence of such a function provides a (probabilistic) safety

certificate for the system. Over the past decade, barrier certifi-

cates have been extensively utilized for formal verification and

controller synthesis of non-stochastic [4], [5] and stochastic

systems [6], [7], [8], to name a few.

Unfortunately, the above-mentioned results require know-

ing the precise models to provide corresponding analyses.

Accordingly, one cannot leverage those techniques when the

model of the system is unknown, which is the case in many

real-life applications. To tackle this difficulty, there have

been some indirect data-driven techniques based on systems

identification to approximate underlying dynamics followed

by model-based analysis approaches (see [9], [10], [11]).

However, those techniques are mainly limited to linear or

some particular classes of nonlinear systems and acquiring

a precise model for complex systems is generally computa-

tionally expensive (see, e.g., [12, and references herein]). Due

to the underlying difficulty, the main goal of this letter is to

develop a direct data-driven technique to bypass the system

identification phase and directly construct a barrier certificate

by collecting data from trajectories of the unknown system.

The main contribution of this letter is to propose a data-

driven technique to synthesize safety controllers for nonlinear

systems with finite input sets and unknown mathematical

models. In general, there may not exist any common con-

trol barrier certificate of a fixed template together with its

corresponding controller for the whole range of the state set

to enforce the safety of the system. In this letter, we pro-

pose a new technique to adaptively partition the state set and

construct multiple control barrier certificates (M-CBC) for dif-

ferent regions. We first cast our new conditions of M-CBC as

a robust optimization program (ROP). Given that the unknown

model appears in some of the constraints of the ROP, we

provide a scenario optimization program (SOP) associated

with the ROP by proposing a sampling approach and col-

lecting data from the system. By solving the acquired SOP,
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we construct M-CBC together with safety controllers for the

unknown system with 100% correctness guarantee. We show

the efficacy of our proposed results over a nonlinear jet engine

compressor with unknown models.

Related Work: In the past few years, several studies have

been performed on the formal analysis of unknown dynamical

systems via direct data-driven approaches. Existing results

include: data-driven learning of control laws ensuring stability

of nonlinear polynomial-type models [13]; stability verification

of unknown switched linear systems via data [14]; data-driven

synthesis of state-feedback controllers to make a compact

polyhedral set including the origin invariant [15], [16]; and

data-driven approaches for the verification and controller syn-

thesis of unknown dynamical systems via control barrier

certificates [17], [18], [19], to name a few.

It is worth mentioning that the results in [15], [16] provide

data-driven synthesis of state-feedback controllers to make

the whole state set invariant. In comparison, we propose

here a less conservative approach by adaptively partition-

ing the state set and constructing multiple CBC together

with corresponding safety controllers for different regions.

The data-driven results in [17] are only tailored to nonlinear

polynomial-type systems, whereas our data-driven controller

synthesis framework here is applicable to any class of non-

linear systems which are locally Lipschitz continuous. Note

that the data-driven approaches in [18], [19] come with a

probabilistic confidence level, whereas we propose here a

deterministic sampling technique to construct M-CBC from

data together with a safety controller with 100% correctness

guarantee. As another pivotal difference, the proposed results

in [17], [18], [19] provide a common control barrier certificate

for unknown systems, whereas we develop here a new notion

of multiple control barrier certificates which is more general.

II. DISCRETE-TIME NONLINEAR CONTROL SYSTEMS

A. Notation

We denote sets of nonnegative and positive integers by

N := {0, 1, 2, . . .} and N
+ := {1, 2, 3, . . .}, respectively.

Moreover, symbols R, R+, and R
+
0 denote, respectively, sets

of real, positive, and nonnegative real numbers. Symbols R
n

and R
n×m are used to denote, respectively, an n-dimensional

Euclidean space and the space of real matrices with n rows

and m columns. The Euclidean norm of x ∈ R
n is denoted

by ‖x‖. For any symmetric matrix P ∈ R
m×n, we have

‖P‖ :=
√

λmax(P�P), where λmax(·) is the maximum eigen-

value. Given N column vectors xi ∈ R
ni , ni ∈ N

+, and

i ∈ {1, . . . , N}, x = [x1; . . . ; xN] denotes a column vector

of the dimension
∑

i ni.

B. Discrete-Time Nonlinear Control Systems

Now, we define discrete-time nonlinear control systems

(dt-NCS) as the underlying model in this letter.

Definition 1: A discrete-time nonlinear control system

(dt-NCS) is characterized by

� : x(k + 1) = f (x(k), ν(k)), k ∈ N, (1)

where:

• X ⊆ R
n is the state set;

• U = {u1, u2, . . . , um} with ui ∈ R
m̄, i ∈ {1, . . . , m}, is the

finite input set, and ν : N → U is the input sequence;

• f : X × U → X is the transition map which is assumed

to be unknown.

We denote the state trajectory of dt-NCS at time k ∈ N, under

the input trajectory ν(·), and starting from x0 by xx0,ν(k).

In the next section, we provide a new notion of multiple

control barrier certificates for discrete-time nonlinear control

systems in (1).

III. MULTIPLE CONTROL BARRIER CERTIFICATES

In general, constructing common control barrier certificates

for the whole range of the state set is conservative. To alle-

viate this conservatism, we adaptively partition the state set

of dt-NCS in (1) and propose a new notion of multiple con-

trol barrier certificates (M-CBC) to be constructed in different

regions, as formalized in the next definition.

Definition 2: Consider a dt-NCS � in (1) and let

X = ∪N
i=1Xi, with Xi ⊆ X being a partition element where

Xi ∩ Xj = ∅ for any i 
= j. Consider X0, Xu ⊆ X as ini-

tial and unsafe sets of dt-NCS, respectively. A collection

of functions Bi : Xi → R is called multiple control bar-

rier certificates (M-CBC) for � with respect to an input set

U = {u1, u2, . . . , um}, if ∀i ∈ {1, . . . , N}:

∀x ∈ Xi ∩ X0, Bi(x) ≤ γi, (2)

∀x ∈ Xi ∩ Xu, Bi(x) ≥ λi, (3)

∀j ∈ {1, . . . , N}, λi > γj, with λi, γj ∈ R, (4)

and ∀x ∈ Xi, ∃u ∈ U, ∃j ∈ {1, . . . , N}, such that:

f (x, u) ∈ Xj =⇒ Bj(f (x, u)) ≤ Bi(x). (5)

It is worth emphasizing that condition (5) does not take

into account all pairs (i, j) since the state trajectory of the

system may not necessarily enter other cells in one-step tran-

sition. Note that one can construct a set-valued controller

C : X → 2U based on Bi(x) as C(x) = {u ∈ U |Bj(f (x, u)) ≤

Bi(x), for some j ∈ {1, . . . , N} where f (x, u) ∈ Xj} for any

x ∈ Xi. Since f is unknown, we explain in Section IV how

this controller is designed based on data collected from the

system’s trajectories.

In the next definition, we present the main safety problem

for dt-NCS �.

Definition 3: Consider a dt-NCS �. Given a safety speci-

fication ϕ = (X0, Xu), where X0, Xu ⊆ X with X0 ∩ Xu = ∅,

� is called safe, denoted by � |= ϕ, if all trajectories of �

started from the initial set X0 ⊆ X never reach the unsafe set

Xu ⊆ X.

The next theorem, inspired by [2, Th. 3], shows the use-

fulness of M-CBC in Definition 2 for ensuring the safety of

dt-NCS as in Definition 3.

Theorem 1: Consider a dt-NCS � as in (1) with a partition

over its state set as X = ∪N
i=1Xi. Suppose a collection of

functions Bi : Xi → R, i ∈ {1, . . . , N}, is M-CBC for � as in

Definition 2. Then one has xx0,ν(k) /∈ Xu for any x0 ∈ X0 and

any k ∈ N under the input trajectory ν(k) ∈ C(x(k)), ∀k ∈ N.
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Proof: We show the proof by contradiction. Assume there

exists a collection of functions Bi satisfying conditions (2)-(5).

Suppose xx0,ν starts at some x0 ∈ Xi ∩ X0 for some i ∈

{1, . . . , N} and reaches Xj ∩ Xu for some j ∈ {1, . . . , N}.

According to (2)-(3), we have Bi(x(0)) ≤ γi and Bj(x(k)) ≥ λj

for some k ∈ N. Since Bi is M-CBC and using (5), one can

recursively show λj ≤ Bj(x(k)) ≤ Bi(x(0)) ≤ γi. This con-

tradicts condition λj > γi in (4), which completes the proof.

Remark 1: Note that in order to ensure the safety of the

system via the results of Theorem 1, one can start partitioning

the state set with an arbitrary N and then search for M-CBC

satisfying conditions (2)-(5). If the required conditions for

some cells are not satisfied, those particular cells can be par-

titioned more such that conditions (2)-(5) may eventually be

fulfilled.

IV. DATA-DRIVEN FRAMEWORK

In this section, we aim at constructing M-CBC using

data collected from trajectories of systems. In our data-

driven setting, we fix the structure of M-CBC as Bi(qi, x) =
∑zi

l=1 ql
ip

l
i(x) with user-defined (potentially nonlinear) basis

functions pl
i and unknown coefficients qi = [q1

i ; . . . ; q
zi

i ] ∈ R
zi .

It is worth mentioning that basis functions pl
i can be consid-

ered to have any arbitrary form, e.g., they can be monomials

over x if one is interested in the polynomial-type M-CBC.

To fulfill conditions (2)-(5) in Definition 2, we recast our

problem as the following robust optimization program (ROP):

min
[d1;...;dN ;η]

η,

s.t. ∀i ∈ {1, . . . , N}:

∀x ∈ Xi ∩ X0,Bi(qi, x) − γi ≤ ηi, (6a)

∀x ∈ Xi ∩ Xu,−Bi(qi, x) + λi ≤ ηi, (6b)

∀j ∈ {1, . . . , N}, γj − λi ≤ ηi (6c)

∀x ∈ Xi, ∃u ∈ U, ∃j ∈ {1, . . . , N}:

f (x, u) ∈ Xj =⇒ Bj(qj, f (x, u)) − Bi(qi, x) ≤ ηi, (6d)

ηi ≤ η, (6e)

di = [γi; λi; q1
i ; . . . ; q

zi

i ; ηi], γi, λi, ql
i, ηi, η ∈ R.

If η ≤ 0, a solution to the ROP ensures conditions (2)-(5) in

Definition 2 are satisfied.

To solve the proposed ROP in (6), one faces two major

challenges. First, the ROP in (6) has infinitely many constraints

since the state set of dt-NCS is continuous (i.e., x ∈ Xi). In

addition, the map f is required for solving the ROP, which

is unknown in this letter. To tackle those challenges, we aim

at developing a data-driven scheme for the construction of

M-CBC without solving the ROP in (6). To do so, we first

collect M sampled data within X, denoted by

{

(x̂r, f (x̂r, us))
∣

∣ r ∈ {1, . . . , M}, s ∈ {1, . . . , m}
}

. (7)

We then consider a ball Xr around each sample x̂r with radius

ε such that X ⊆ ∪M
r=1Xr and

‖x − x̂r‖ ≤ ε, ∀x ∈ Xr. (8)

We now propose the following scenario optimization

program (SOP), associated with the ROP in (6):

min
[d1;...;dN ;η]

η,

s.t. ∀i ∈ {1, . . . , N},∀r ∈ {1, . . . , M}:

∀x̂r ∈ Xi ∩ X0,Bi(qi, x̂r) − γi ≤ ηi, (9a)

∀x̂r ∈ Xi ∩ Xu,−Bi(qi, x̂r) + λi ≤ ηi, (9b)

∀j ∈ {1, . . . , N}, γj − λi ≤ ηi (9c)

∀x̂r ∈ Xi, ∃u ∈ U, ∃j ∈ {1, . . . , N}:

f (x̂r, u) ∈ Xj =⇒ Bj(qj, f (x̂r, u)) − Bi(qi, x̂r) ≤ ηi,

(9d)

ηi ≤ η, (9e)

di = [γi; λi; q1
i ; . . . ; q

zi

i ; ηi], γi, λi, ql
i, ηi, η ∈ R.

One can readily see that f (x̂r, u) in (9d) is the transition of the

unknown dt-NCS after one-step starting from x̂r under input u.

Remark 2: Note that condition (9d) can be rewritten as a

max-min constraint:

max
x̂r∈Xi

min
u∈U

(

Bj(qj, f (x̂r, u)) − Bi(qi, x̂r)
)

≤ ηi, (10)

for those j ∈ {1, . . . , N}, where f (x̂r, u) ∈ Xj. In gen-

eral, an optimization problem with max-min constraints is

equal to a collection of optimization problems with inequal-

ity constraints. Solving such optimization problem could

be potentially expensive due to having a large collection.

Therefore, we employ the proposed approach in [20] and con-

vert this condition into nonlinear programming in which the

condition is a single inequality constraint as the following,

∀i ∈ {1, . . . , N},∀r ∈ {1, . . . , M}:

m
∑

s=1

µs

(

Bj(qj, f (x̂r, us)) − Bi(qi, x̂r) − ηi

)

≤ 0, (11)

for those j ∈ {1, . . . , N}, such that f (x̂r, us) ∈ Xj, and where
∑m

s=1 µs = 1, µs ∈ R
+
0 . The max-min constraint in (10) is

satisfied if and only if the single inequality constraint in (11)

is fulfilled [20, Proposition 2.1]. The resulting optimization

program can then be solved using available software tools such

as NPSOL [21].

V. DATA-DRIVEN CONSTRUCTION OF M-CBC

In this section, we aim at solving the proposed SOP in (9)

and constructing M-CBC for unknown dt-NCS with a guar-

anteed confidence of 1. To do so, we first raise the following

assumption.

Assumption 1: Suppose Bi(qi, x) is Lipschitz continuous

with respect to x with a Lipschitz constant L 1, for any i ∈

{1, . . . , N}, and Bj(qj, f (x, u)) − Bi(qi, x) in (6d) is Lipschitz

continuous with respect to x with a Lipschitz constant L 2, for

any i, j ∈ {1, . . . , N}, and any input u ∈ U.

Under Assumption 1, the next theorem provides a data-

driven construction scheme for M-CBC over unknown dt-NCS

with a certified confidence of 1.

Theorem 2: Given an unknown dt-NCS in (1), let

Assumption 1 hold. Suppose the SOP in (9) is solved with
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M × m sampled data as in (7) with an optimal value η∗
M and

solution d∗
i = [γ ∗

i ; λ∗
i ; q1∗

i ; . . . ; q
zi∗
i ; η∗

i ],∀i ∈ {1, . . . , N}. If

η∗
M + L ε ≤ 0, (12)

with L = max{L 1,L 2}, then the constructed {B1, . . . ,BN}

via solving SOP in (9) are M-CBC for unknown dt-NCS with

a confidence of 1. Hence, there exists a set-valued controller

C under which the unknown dt-NCS is safe in the sense of

Theorem 1.

Proof: We first show that, under condition (12), the con-

structed Bi via solving SOP in (9) satisfy (5) for the whole

range of Xi, i.e., for any x ∈ Xi, there exists u ∈ U such that:

Bj(qj, f (x, u)) − Bi(qi, x) ≤ 0.

Note that according to (8), for any x ∈ Xi, there exists x̂r ∈ Xr

such that x and x̂r are ε-close, i.e., ‖x − x̂r‖ ≤ ε. One can

readily observe from (9d) that for any x̂r, there exists a choice

of u ∈ U, namely u∗, such that Bj(qj, f (x̂r, u∗)) −Bi(qi, x̂r) ≤

η∗
M . Since Bj(qj, f (x, u∗)) − Bi(qi, x) is Lipschitz continuous

with respect to x with Lipschitz constant L 2, we have, ∀i ∈

{1, . . . , N},∀r ∈ {1, . . . , M}:

Bj(qj, f (x, u∗)) − Bi(qi, x) = Bj(qj, f (x, u∗)) − Bi(qi, x)

−(Bj(qj, f (x̂r, u∗)) − Bi(qi, x̂r)) + (Bj(qj, f (x̂r, u∗)) − Bi(qi, x̂r))

≤ L 2‖x − x̂r‖ + η∗
M ≤ L ε + η∗

M .

Since η∗
M +L ε ≤ 0, one can readily verify that for any x ∈ Xi,

there exists u ∈ U such that:

Bj(qj, f (x, u)) − Bi(qi, x) ≤ 0.

We now leverage a similar argument and show that, under

condition (12), the constructed Bi via solving SOP in (9)

satisfy (2) for any x ∈ Xi ∩ X0, as well. Since Bi(qi, x) is

Lipschitz continuous with Lipschitz constant L 1 according to

Assumption 1, and given that Bi(qi, x̂r) − γi ≤ η∗
M according

to (9a), one has, ∀i ∈ {1, . . . , N},∀r ∈ {1, . . . , M}:

Bi(qi, x) − γi = Bi(qi, x) − γi − (Bi(qi, x̂r) − γi)

+ (Bi(qi, x̂r) − γi)

≤ L 1‖x − x̂r‖ + η∗
M ≤ L ε + η∗

M.

Since η∗
M + L ε ≤ 0, one can readily verify that

Bi(qi, x) − γi ≤ 0, ∀x ∈ Xi ∩ X0.

One can employ the same argument and show that the con-

structed Bi via solving SOP in (9) satisfy (3) for any x ∈

Xi ∩ Xu, as well. Then the constructed {B1, . . . ,BN} via solv-

ing SOP in (9) are M-CBC for unknown dt-NCS in (1) with

the confidence of 1, which concludes the proof.

Remark 3: In order to satisfy X ⊆ ∪M
r=1Xr under condi-

tion (8), the number of samples M can be computed based on

the parameter ε as M = Vol(X)
εn , where Vol(·) represents the

volume of a set. To potentially reduce the number of samples

required, one can begin by collecting samples using a larger

value of ε to solve the SOP in (9). If condition (12) is not

satisfied with the chosen (potentially large) ε, it is necessary

to select a smaller ε and solve the SOP again. If the state set is

manually gridded, condition (8) can be readily met by imple-

menting a uniform gridding approach. When dealing with

real data, one can consider a sufficiently large ε (worst-case

scenario) that ensures the satisfaction of condition (8).

Remark 4: To the best of our knowledge, almost all data-

driven approaches whose main goal is to certify with 100%

correctness guarantee some properties over unknown systems

via data suffer from the so-called, sample complexity: the

number of data for providing final guarantees is exponential

with respect to the dimension of the underlying system. This

is the case also in our work and potential ways to mitigate

this computational complexity are to employ either divide and

conquer strategy (a.k.a. compositional techniques) or paral-

lelization over SOP. We will defer these approaches for future

work.

Remark 5: Note that reducing the value of ε does not nec-

essarily guarantee the eventual satisfaction of η∗
M + L ε ≤ 0

and, hence, existence of M-CBC. This is primarily due to the

fact that the existence of M-CBC in our work is only suffi-

cient for the synthesis of a controller, but it is not a necessary

condition.

The results of Theorem 2 ensure that there exists a set-

valued controller C under which unknown dt-NCS is safe in the

sense of Theorem 1. In particular, we construct the set-valued

map C as follows, for any x ∈ Xi:

C(x) :=
{

u ∈ U
∣

∣Bj(qj, f (x̂r, u)) − Bi(qi, x̂r) ≤ η∗
i ,

for some j ∈ {1, . . . , N} where f (x, u) ∈ Xj

and ∃r ∈ {1, . . . , M} such that ‖x − x̂r‖ ≤ ε

}

. (13)

The set-valued map C for any x ∈ Xi is not empty according

to condition (8) and Remark 2.

Remark 6: The set-valued map C in (13) intuitively implies

that after solving the SOP in (9) and acquiring the M-CBC, one

can a-posteriori check condition (9d) for all sampled data using

the obtained M-CBC, and construct and store safety controllers

in the form of a lookup table. The constructed lookup table

can then be used in runtime as follows: for any measurement

of the system x ∈ X, one can find the nearest data point x̂r

such that ‖x − x̂r‖ ≤ ε. Then corresponding control inputs

valid for x̂r are also valid inputs for x.

Remark 7: Note that our results offer a significant advan-

tage over indirect approaches such as system identification.

In particular, the direct data-driven technique we propose

has the capability to provide safety guarantees for a broad

range of nonlinear systems that exhibit Lipschitz continu-

ity. In contrast, system identification approaches are primarily

designed for linear systems or specific classes of nonlinear

systems. Moreover, even if the underlying dynamics can be

learned through identification techniques, it remains neces-

sary to construct a barrier certificate for the acquired model.

Consequently, the computational complexity arises at two lev-

els: model identification and barrier certificate construction.

Furthermore, it is important to note that many identification

techniques learn an approximate model with a certain level of

probabilistic confidence. In contrast, our data-driven results

offer a 100% correctness guarantee, ensuring a confidence
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Algorithm 1 Estimation of L 2 via Data

Input: N, m,Bi,Bj

1: Choose M̂, Z ∈ N
+ and α ∈ R

+

2: for i = 1 : N

3: for s = 1 : m

4: Select M̂ sampled pairs (x̂r, x̂′
r) from Xi such

that ‖x̂r − x̂′
r‖ ≤ α for any r ∈ {1, . . . , M̂}

5: Compute the slope Sr as

Sr =
‖g(x̂r) − g(x̂′

r)‖

‖x̂r − x̂′
r‖

, ∀r ∈ {1, . . . , M̂},

with g(x̂r) = Bj(qj, f (x̂r, us)) − Bi(qi, x̂r), for

some j ∈ {1, . . . , N} where f (x̂r, us) ∈ Xj,

(g(x̂′
r) is computed similarly)

6: Compute the maximum slope as

ψ = max{S1, . . . , S
M̂

}

7: Repeat Steps 4-6 Z times and acquire ψ1, . . . , ψZ

8: Apply Reverse Weibull distribution [23] to ψ1, . . . ,

ψZ , which gives us so-called location, scale, and

shape parameters

9: The obtained location parameter is the estimated

L
s
ij

10: end

11: end

Output: L 2 = max
ijs

L
s
ij

level of 1. For more detailed information regarding the dis-

tinctions between direct and indirect data-driven techniques,

we refer the interested readers to [22].

In order to check condition (12) in Theorem 2, one needs

to first compute L . In the following, we employ the proposed

results in [23] and provide Algorithm 1 to estimate L 2 using

a finite number of data. Note that one can employ the pro-

cedure of Algorithm 1 and similarly estimate L 1 using a

finite number of data by considering g(x̂r) = Bi(qi, x̂r) in

Step 5. Under Algorithm 1, the following lemma, borrowed

from [23], ensures the convergence of the estimated L 1,L 2

to their actual values in the limit.

Lemma 1: Under Algorithm 1, the estimated L 1,L 2 con-

verge to their actual values if and only if α goes to zero and

M̂, Z go to infinity.

Note that one can pick α very small and M̂, Z very big to

get a precise approximation for L 1,L 2.

VI. CASE STUDY: JET ENGINE COMPRESSOR

To show the efficacy of our data-driven results, we apply our

approach to the following discrete-time nonlinear jet engine

compressor [24]:

� :

[

x1(k + 1)

x2(k + 1)

]

=

[

x1(k) + (−x2(k) − 3
2

x2
1(k) − 1

2
x3

1(k))τ

x2(k) + (x1(k) − u(k))τ

]

,

where x1 = � − 1, x2 = 
 − � − 2, with �,
,� being

the mass flow, the pressure rise, and a constant, respectively.

Moreover, u ∈ U = {−1,−0.9,−0.8, . . . , 0.8, 0.9, 1}, and

τ = 0.1 as the sampling time. The regions of interest are

X = [−1, 1]2, X0 = [−0.6, 0.6] × [−0.7, 0.7], and Xu =

[−0.9, 0.9] × [−1,−0.8] ∪ [−0.9, 0.9] × [0.8, 1]. The model

is assumed to be unknown. We aim at constructing M-CBC

via solving SOP in (9) with a confidence of 1 while synthe-

sizing controllers C under which unknown dt-NCS remains in

the safe set X\Xu according to Theorem 1.

We first fix a common CBC in the form of B(q, x) = q1x4
1 +

q2x2
1 + q3x2

1x2
2 + q4x2

2 + q5x4
2 + q6. We also fix ε = 0.01 and

acquire M = 40000. We solve the SOP in (9) (for the common

CBC) with M = 40000 and compute coefficients of a common

CBC for the whole range of the state set, i.e., N = 1, together

with other decision variables as

B(q, x) = 0.002x4
1 − 0.0014x2

1 − 0.0023x2
1x2

2 + 0.0084x2
2

− 0.0067x4
2 + 0.4, η∗

M = 0.0008.

The resulting common CBC cannot ensure the safety of the

unknown jet engine compressor given that the optimal value

of SOP is positive.

We now apply our proposed results by partitioning our

regions of interest into two different regions, i.e., N = 2,

as: X1 = [−1, 0] × [−1, 1], X01
= [−0.6, 0] × [−0.7, 0.7],

Xu1
= [−0.9, 0] × [−1,−0.8] ∪ [−0.9, 0] × [0.8, 1]; X2 =

[0, 1] × [−1, 1], X02
= [0, 0.6] × [−0.7, 0.7], Xu2

= [0, 0.9] ×

[−1,−0.8] ∪ [0, 0.9] × [0.8, 1]. We now consider the struc-

ture of our multiple CBC as the common one: Bi(qi, x) =

q1
i x4

1 + q2
i x2

1 + q3
i x2

1x2
2 + q4

i x2
2 + q5

i x4
2 + q6

i , i ∈ {1, 2}. We solve

the SOP in (9) with M = 40000 and compute coefficients

of the multiple CBC together with other decision variables in

SOP for two partitions:

Region 1: B1(q1, x) = 0.002x4
1 − 0.0025x2

1 + 0.0037x2
1x2

2

+0.4x2
2 − 0.1515x4

2 + 0.4,

γ ∗
1 = 0.5704, λ∗

1 = 0.5830, η∗
1 = −0.0127,

Region 2: B2(q2, x) = 0.002x4
1 − 0.0318x2

1 + 0.0507x2
1x2

2

+0.4x2
2 − 0.1356x4

2 + 0.3935,

γ ∗
2 = 0.5708, λ∗

2 = 0.5812, η∗
2 = −0.0126,

with η∗
M = −0.0126. We now employ Algorithm 1 and

compute L 1 = 0.2623,L 2 = 0.9314. Since η∗
M + L ε =

−33 × 10−4 ≤ 0, according to Theorem 2, one can guarantee

that there exists a controller C under which the system is safe.

Satisfaction of conditions (2) and (3) via constructed

M-CBC from data is illustrated in Fig. 1. As can be observed,

initial sets X01
, X02

are inside their corresponding level sets

(i.e., B1(q1, x) = γ1,B2(q2, x) = γ2) and unsafe sets Xu1
, Xu2

are outside their corresponding level sets (i.e., B1(q1, x) =

λ1,B2(q2, x) = λ2). We now construct the safety controller

as a lookup table for all sampled data and apply it to the

unknown jet engine system. The closed-loop state trajectory

of the unknown jet engine under the synthesized controller is

also depicted in Fig. 1. As can be observed, the trajectory of

the unknown jet engine remains in the safe set under the syn-

thesized controller, depicted in Fig. 2. It took 20 seconds for
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Fig. 1. Satisfaction of conditions (2)-(3). Green and pink boxes are
initial and unsafe regions, respectively. Red and orange lines are initial
and unsafe level sets of B1, respectively, for Region 1. Brown and green
lines are initial and unsafe level sets of B2, respectively, for Region 2.
Blue curve is closed-loop state trajectory of unknown jet engine starting
from x0 = [−0.18; −0.16].

Fig. 2. A synthesized control input for the unknown jet engine within
100 time steps.

solving SOP in (9) with M = 40000 samples on a machine

with Windows operating system (Intel i7-8665U CPU with 16

GB of RAM).

VII. CONCLUSION

The primary objective of this letter was to develop a

data-driven approach for constructing multiple control barrier

certificates (M-CBC) from available data, aiming to ensure

the safety of unknown discrete-time nonlinear systems with a

certified confidence level of 1. In pursuit of this objective,

we introduced a scenario optimization program (SOP) that

effectively utilized data gathered from trajectories of unknown

systems. By successfully solving the SOP, we achieved the

construction of the M-CBC, accompanied by its corresponding

safety controller. Through evaluation on a nonlinear jet engine

compressor with unknown models, we demonstrated the effec-

tiveness and practicality of our data-driven approach. In fact,

as the main contribution of our work, although a common

control barrier certificate with a fixed template did not exist,

our proposed technique adaptively partitioned the state set and

found M-CBC of the same template for distinct regions. As a

promising avenue for future research, we propose the extension

of our data-driven technique to synthesize controllers capa-

ble of enforcing more complex logic properties for unknown

nonlinear systems.
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