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Data-Driven Synthesis of Safety Controllers

via Multiple Control

Ameneh Nejati

Abstract—This letter proposes a data-driven framework
to synthesize safety controllers for nonlinear systems with
finite input sets and unknown mathematical models. The
proposed scheme leverages new notions of multiple con-
trol barrier certificates (M-CBC) and provides controllers
ensuring the safety of systems with confidence 1. While
there may not exist a common control barrier certificate
with a fixed template, our proposed technique adaptively
partitions the state set to potentially find M-CBC of the
same template for different regions. In the proposed data-
driven framework, we first cast our proposed conditions of
M-CBC as a robust optimization program (ROP). Given that
the unknown model appears in some of the constraints of
the ROP, we propose a sampling approach for collecting
data and provide a scenario optimization program (SOP)
associated with the proposed ROP. We solve the resulted
SOP and construct M-CBC together with safety controllers
for the unknown system with 100% correctness guarantee.
We apply our results to a nonlinear jet engine compres-
sor with unknown dynamics to illustrate the efficacy of our
data-driven approach. In the case study, we show that while
there exists no common polynomial-type control barrier
certificate of a given degree, there exist polynomial-type
M-CBC of the same degree by partitioning the state set to
different regions.

Index Terms—Data-driven control, safety controllers,
multiple control barrier certificates, formal methods.

[. INTRODUCTION

ORMAL methods have become popular, over the past

two decades, for providing formal analyses over complex
dynamical systems. In general, providing formal verification
and controller synthesis frameworks for complex systems to
enforce high-level logic properties, e.g., those expressed as
linear temporal logic (LTL) formulae [1], is very challenging.
This is mainly due to (i) continuity of state sets, (ii) dealing
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with complex logic requirements, and (iii) lack of closed-form
mathematical models in many real-world applications.

To alleviate the aforementioned difficulties, one promising
approach, proposed initially in [2], [3], is to employ barrier
certificates as a discretization-free approach for the formal
verification and controller synthesis of dynamical systems. In
particular, barrier certificates are some Lyapunov-like func-
tions whose level sets separate an unsafe region from system’s
trajectories originating from a given set. As a result, the
existence of such a function provides a (probabilistic) safety
certificate for the system. Over the past decade, barrier certifi-
cates have been extensively utilized for formal verification and
controller synthesis of non-stochastic [4], [5] and stochastic
systems [6], [7], [8], to name a few.

Unfortunately, the above-mentioned results require know-
ing the precise models to provide corresponding analyses.
Accordingly, one cannot leverage those techniques when the
model of the system is unknown, which is the case in many
real-life applications. To tackle this difficulty, there have
been some indirect data-driven techniques based on systems
identification to approximate underlying dynamics followed
by model-based analysis approaches (see [9], [10], [11]).
However, those techniques are mainly limited to linear or
some particular classes of nonlinear systems and acquiring
a precise model for complex systems is generally computa-
tionally expensive (see, e.g., [12, and references herein]). Due
to the underlying difficulty, the main goal of this letter is to
develop a direct data-driven technique to bypass the system
identification phase and directly construct a barrier certificate
by collecting data from trajectories of the unknown system.

The main contribution of this letter is to propose a data-
driven technique to synthesize safety controllers for nonlinear
systems with finite input sets and unknown mathematical
models. In general, there may not exist any common con-
trol barrier certificate of a fixed template together with its
corresponding controller for the whole range of the state set
to enforce the safety of the system. In this letter, we pro-
pose a new technique to adaptively partition the state set and
construct multiple control barrier certificates (M-CBC) for dif-
ferent regions. We first cast our new conditions of M-CBC as
a robust optimization program (ROP). Given that the unknown
model appears in some of the constraints of the ROP, we
provide a scenario optimization program (SOP) associated
with the ROP by proposing a sampling approach and col-
lecting data from the system. By solving the acquired SOP,
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we construct M-CBC together with safety controllers for the
unknown system with 100% correctness guarantee. We show
the efficacy of our proposed results over a nonlinear jet engine
compressor with unknown models.

Related Work: In the past few years, several studies have
been performed on the formal analysis of unknown dynamical
systems via direct data-driven approaches. Existing results
include: data-driven learning of control laws ensuring stability
of nonlinear polynomial-type models [13]; stability verification
of unknown switched linear systems via data [14]; data-driven
synthesis of state-feedback controllers to make a compact
polyhedral set including the origin invariant [15], [16]; and
data-driven approaches for the verification and controller syn-
thesis of unknown dynamical systems via control barrier
certificates [17], [18], [19], to name a few.

It is worth mentioning that the results in [15], [16] provide
data-driven synthesis of state-feedback controllers to make
the whole state set invariant. In comparison, we propose
here a less conservative approach by adaptively partition-
ing the state set and constructing multiple CBC together
with corresponding safety controllers for different regions.
The data-driven results in [17] are only tailored to nonlinear
polynomial-type systems, whereas our data-driven controller
synthesis framework here is applicable to any class of non-
linear systems which are locally Lipschitz continuous. Note
that the data-driven approaches in [18], [19] come with a
probabilistic confidence level, whereas we propose here a
deterministic sampling technique to construct M-CBC from
data together with a safety controller with 100% correctness
guarantee. As another pivotal difference, the proposed results
in [17], [18], [19] provide a common control barrier certificate
for unknown systems, whereas we develop here a new notion
of multiple control barrier certificates which is more general.

II. DISCRETE-TIME NONLINEAR CONTROL SYSTEMS
A. Notation

We denote sets of nonnegative and positive integers by
N = {0,1,2,...} and N* := {1,2,3,...}, respectively.
Moreover, symbols R, RT, and R(J)r denote, respectively, sets
of real, positive, and nonnegative real numbers. Symbols R"
and R are used to denote, respectively, an n-dimensional
Euclidean space and the space of real matrices with n rows
and m columns. The Euclidean norm of x € R” is denoted
by |lx||. For any symmetric matrix P € R™*", we have
1Pl == v/ Amax(PTP), where Amax(-) is the maximum eigen-
value. Given N column vectors x; € R%, n; € NT, and
i e{l,...,N}, x = [x1;...;xn] denotes a column vector
of the dimension }_; n;.

B. Discrete-Time Nonlinear Control Systems

Now, we define discrete-time nonlinear control systems
(dt-NCS) as the underlying model in this letter.

Definition 1: A discrete-time nonlinear control system
(dt-NCS) is characterized by

Y xtk+1) =f(x(k), v(k), keN, (1)

where:
¢ X C R” is the state set;
o U={ui,us, ..., uy} withu; e R ie{l,...,m},is the
finite input set, and v : N — U is the input sequence;
e f: X x U — X is the transition map which is assumed
to be unknown.
We denote the state trajectory of dt-NCS at time k£ € N, under
the input trajectory v(-), and starting from xg by xy, , (k).
In the next section, we provide a new notion of multiple
control barrier certificates for discrete-time nonlinear control
systems in (1).

I1I. MULTIPLE CONTROL BARRIER CERTIFICATES

In general, constructing common control barrier certificates
for the whole range of the state set is conservative. To alle-
viate this conservatism, we adaptively partition the state set
of dt-NCS in (1) and propose a new notion of multiple con-
trol barrier certificates (M-CBC) to be constructed in different
regions, as formalized in the next definition.

Definition 2: Consider a dt-NCS X in (1) and Ilet
X = UY X;, with X; € X being a partition element where
XiNX; = @ for any i # j. Consider Xp,X, C X as ini-
tial and unsafe sets of dt-NCS, respectively. A collection
of functions B; : X; — R is called multiple control bar-
rier certificates (M-CBC) for X with respect to an input set

U={uy,uy,...,uy},ifVie{l,...,N}:
Vx € X; N Xo, Bi(x) < vis (2)
Vx € X; N X, Bi(x) = Aj, 3)
Vie{l,...,N}, Ai >y, with A,y eR, (4
and Vx € X;,Ju € U, Jj € {1, ..., N}, such that:
fxou) € X; = Bi(f(x, w) < Bi(x). (5

It is worth emphasizing that condition (5) does not take
into account all pairs (7,j) since the state trajectory of the
system may not necessarily enter other cells in one-step tran-
sition. Note that one can construct a set-valued controller
C : X — 2Y based on Bi(x) as C(x) = {u € U|Bj(f(x,u)) <
Bi(x), for some j € {1,...,N} where f(x,u) € X;} for any
x € X;. Since f is unknown, we explain in Section IV how
this controller is designed based on data collected from the
system’s trajectories.

In the next definition, we present the main safety problem
for dt-NCS X.

Definition 3: Consider a dt-NCS X. Given a safety speci-
fication ¢ = (Xo, X)), where Xp, X;, € X with Xo N X, = 0,
¥ is called safe, denoted by ¥ = ¢, if all trajectories of X
started from the initial set Xy C X never reach the unsafe set
X, € X.

The next theorem, inspired by [2, Th. 3], shows the use-
fulness of M-CBC in Definition 2 for ensuring the safety of
dt-NCS as in Definition 3.

Theorem 1: Consider a dt-NCS X as in (1) with a partition
over its state set as X = Uf\’: 1 Xi. Suppose a collection of
functions B; : X; — R, i€ {l1,...,N}, is M-CBC for X as in
Definition 2. Then one has x , (k) ¢ X, for any xo € Xo and
any k € N under the input trajectory v(k) € C(x(k)), Vk € N.
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Proof: We show the proof by contradiction. Assume there
exists a collection of functions B; satisfying conditions (2)-(5).
Suppose xy,, starts at some xo € X; N Xo for some i €
{1,...,N} and reaches X; N X, for some j € {1,...,N}.
According to (2)-(3), we have B;(x(0)) < y; and Bj(x(k)) > A;
for some k € N. Since B; is M-CBC and using (5), one can
recursively show A; < Bj(x(k)) < B;j(x(0)) < y;. This con-
tradicts condition A; > y; in (4), which completes the proof.

|

Remark 1: Note that in order to ensure the safety of the
system via the results of Theorem 1, one can start partitioning
the state set with an arbitrary N and then search for M-CBC
satisfying conditions (2)-(5). If the required conditions for
some cells are not satisfied, those particular cells can be par-
titioned more such that conditions (2)-(5) may eventually be
fulfilled.

IV. DATA-DRIVEN FRAMEWORK

In this section, we aim at constructing M-CBC using
data collected from trajectories of systems. In our data-
driven setting, we fix the structure of M-CBC as B;(g;, x) =
Zf’zl quf(x) with user-defined (potentially nonlinear) basis
functions pf and unknown coefficients ¢; = [ql.l; cel qlz.i ] € R,
It is worth mentioning that basis functions pf can be consid-
ered to have any arbitrary form, e.g., they can be monomials
over x if one is interested in the polynomial-type M-CBC.

To fulfill conditions (2)-(5) in Definition 2, we recast our
problem as the following robust optimization program (ROP):

min n,

st.  Vie{l,...,Nk

Vx € X; N Xo, Bi(gi, x) — vi < n;, (6a)
Vx € X;i N Xy, —=Bi(qi, x) + Ai < n;, (6b)
Vie{l,...,NLvi—Ai < (6¢)

VxeX;,uelU,Je{l,...,N}:

fx,u) € Xj = Bj(gj, f(x, w) — Bi(gi, x) < n;, (6d)
ni <, (6e)
di =y Aindls - @5 nil, vis Mo @b mism € R.

If » <0, a solution to the ROP ensures conditions (2)-(5) in
Definition 2 are satisfied.

To solve the proposed ROP in (6), one faces two major
challenges. First, the ROP in (6) has infinitely many constraints
since the state set of dt-NCS is continuous (i.e., x € X;). In
addition, the map f is required for solving the ROP, which
is unknown in this letter. To tackle those challenges, we aim
at developing a data-driven scheme for the construction of
M-CBC without solving the ROP in (6). To do so, we first
collect M sampled data within X, denoted by

{GrfGrou)) |re{l,... . My, se{l,....m}}. (D)

We then consider a ball X, around each sample X, with radius
e such that X € UY X, and

Vx € X,. ®)

lx — X1l <e,

We now propose the following scenario optimization
program (SOP), associated with the ROP in (6):

min n,
[dy;...;dnsnl
st Vie{l,... NLVrell,... M)
Vi, € X; N Xo, Bi(gi, X)) — vi < mis (%a)
Vi, € Xi N Xy, —Bi(qi, X)) + Xi < ni, (9b)
Vie{l,....,NLy,—Ai <ni (%)

Vi, €X;,ueclU,Jefl,...,N}:
f(j\crv M) € )(j - Bj(qj’f()%r’ u)) - Bi(qi7 )’Er) ="
(9d)

ni <, (%e)

di =y 2isqls - @ mil vis s gl i m € R

One can readily see that (X, u) in (9d) is the transition of the
unknown dt-NCS after one-step starting from X, under input u.

Remark 2: Note that condition (9d) can be rewritten as a
max-min constraint:

max min(B;(g;, f (&, ) — Bi(gi» %)) < i, (10)

XreX; uel

for those j € {l,...,N}, where f(x-,u) € X;. In gen-
eral, an optimization problem with max-min constraints is
equal to a collection of optimization problems with inequal-
ity constraints. Solving such optimization problem could
be potentially expensive due to having a large collection.
Therefore, we employ the proposed approach in [20] and con-
vert this condition into nonlinear programming in which the
condition is a single inequality constraint as the following,
Vief{l,...,.N},Vre{l,...,M}:

> wo(Bi(g £ Goro us)) = Bilgin &) — mi) <0, (11)

s=1

for those j € {1, ..., N}, such that f(X;,, us) € X;, and where
Z;"zl us =1, ug € Ra’ . The max-min constraint in (10) is
satisfied if and only if the single inequality constraint in (11)
is fulfilled [20, Proposition 2.1]. The resulting optimization
program can then be solved using available software tools such
as NPSOL [21].

V. DATA-DRIVEN CONSTRUCTION OF M-CBC

In this section, we aim at solving the proposed SOP in (9)
and constructing M-CBC for unknown dt-NCS with a guar-
anteed confidence of 1. To do so, we first raise the following
assumption.

Assumption 1: Suppose B;(g;,x) is Lipschitz continuous
with respect to x with a Lipschitz constant .|, for any i €
{1,...,N}, and B;j(gj, f(x, u)) — Bi(g;, x) in (6d) is Lipschitz
continuous with respect to x with a Lipschitz constant .5, for
any i,j € {1,..., N}, and any input u € U.

Under Assumption 1, the next theorem provides a data-
driven construction scheme for M-CBC over unknown dt-NCS
with a certified confidence of 1.

Theorem 2: Given an unknown dt-NCS in (1), let
Assumption 1 hold. Suppose the SOP in (9) is solved with
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M x m sampled data as in (7) with an optimal value nj, and
solution df = [y*; Af; q/*;...5 ¢ s nfl, Vie {1, ..., NLIf

my +ZLe <0, (12)

with . = max{.%, %>}, then the constructed {5, ..., By}
via solving SOP in (9) are M-CBC for unknown dt-NCS with
a confidence of 1. Hence, there exists a set-valued controller
C under which the unknown dt-NCS is safe in the sense of
Theorem 1.

Proof: We first show that, under condition (12), the con-
structed B; via solving SOP in (9) satisfy (5) for the whole
range of Xj, i.e., for any x € X;, there exists u € U such that:

B;(qj, f(x,uw)) — Bi(gi,x) < 0.

Note that according to (8), for any x € X;, there exists x, € X,
such that x and X, are s-close, ie., ||x — X,|| < €. One can
readily observe from (9d) that for any X, there exists a choice
of u € U, namely u*, such that B;(g;, f %y, u*)) — Bi(gi, /) <
ny- Since B;(q;, f(x, u*)) — Bi(g;, x) is Lipschitz continuous
with respect to x with Lipschitz constant .%’>, we have, Vi €
{1,...,N},Vre{l,...,M}:

Bi(gj, f (x, u*)) — Bi(gi, x) = Bj(gj, f(x, u*)) — Bi(gi, x)
—(Bj(gj, f(kr, u")) — Bi(gi, X)) + (Bj(g;, f Gr, u")) — Bi(gi, %))
< Dollx — xell + mjyy < L&+ nyp

Since nj,+.Z¢ < 0, one can readily verify that for any x € X;,
there exists u € U such that:

Bi(gj. f(x, w)) — Bi(gi, x) < 0.

We now leverage a similar argument and show that, under
condition (12), the constructed B; via solving SOP in (9)
satisfy (2) for any x € X; N Xp, as well. Since B;(g;, x) is
Lipschitz continuous with Lipschitz constant .’} according to
Assumption 1, and given that B;(g;, X-) — yi < nj; according
to (9a), one has, Vie {1,...,N},Vre{l,...,M}:

Bi(gi, x) — vi = Bi(gi, x) — yi — (Bi(gi, X») — i)
+ (Bi(qi, X)) — vi)
< Lillx =& +ny < Le 4y

Since 1y, + L& < 0, one can readily verify that

Bi(gi,x) —yi <0, Vx € X; N Xo.

One can employ the same argument and show that the con-
structed B; via solving SOP in (9) satisfy (3) for any x €
X; N X, as well. Then the constructed {B, ..., By} via solv-
ing SOP in (9) are M-CBC for unknown dt-NCS in (1) with
the confidence of 1, which concludes the proof. |

Remark 3: In order to satisfy X C Ulr”: 1Xr under condi-
tion (8), the number of samples M can be computed based on
the parameter ¢ as M = %, where Vol(-) represents the
volume of a set. To potentially reduce the number of samples
required, one can begin by collecting samples using a larger
value of ¢ to solve the SOP in (9). If condition (12) is not
satisfied with the chosen (potentially large) ¢, it is necessary
to select a smaller ¢ and solve the SOP again. If the state set is

manually gridded, condition (8) can be readily met by imple-
menting a uniform gridding approach. When dealing with
real data, one can consider a sufficiently large & (worst-case
scenario) that ensures the satisfaction of condition (8).

Remark 4: To the best of our knowledge, almost all data-
driven approaches whose main goal is to certify with 100%
correctness guarantee some properties over unknown systems
via data suffer from the so-called, sample complexity: the
number of data for providing final guarantees is exponential
with respect to the dimension of the underlying system. This
is the case also in our work and potential ways to mitigate
this computational complexity are to employ either divide and
conquer strategy (a.k.a. compositional techniques) or paral-
lelization over SOP. We will defer these approaches for future
work.

Remark 5: Note that reducing the value of ¢ does not nec-
essarily guarantee the eventual satisfaction of 5}, + Z¢ < 0
and, hence, existence of M-CBC. This is primarily due to the
fact that the existence of M-CBC in our work is only suffi-
cient for the synthesis of a controller, but it is not a necessary
condition.

The results of Theorem 2 ensure that there exists a set-
valued controller C under which unknown dt-NCS is safe in the
sense of Theorem 1. In particular, we construct the set-valued
map C as follows, for any x € X;:

C(x) = [u € U|Bj(gj, fGr, w)) — Bi(gi, %) < n},
for some j € {1, ..., N} where f(x, u) € X;

and dr € {1, ..., M} such that ||x — x| < 8}. (13)

The set-valued map C for any x € X; is not empty according
to condition (8) and Remark 2.

Remark 6: The set-valued map C in (13) intuitively implies
that after solving the SOP in (9) and acquiring the M-CBC, one
can a-posteriori check condition (9d) for all sampled data using
the obtained M-CBC, and construct and store safety controllers
in the form of a lookup table. The constructed lookup table
can then be used in runtime as follows: for any measurement
of the system x € X, one can find the nearest data point X,
such that ||x — X,]| < &. Then corresponding control inputs
valid for X, are also valid inputs for x.

Remark 7: Note that our results offer a significant advan-
tage over indirect approaches such as system identification.
In particular, the direct data-driven technique we propose
has the capability to provide safety guarantees for a broad
range of nonlinear systems that exhibit Lipschitz continu-
ity. In contrast, system identification approaches are primarily
designed for linear systems or specific classes of nonlinear
systems. Moreover, even if the underlying dynamics can be
learned through identification techniques, it remains neces-
sary to construct a barrier certificate for the acquired model.
Consequently, the computational complexity arises at two lev-
els: model identification and barrier certificate construction.
Furthermore, it is important to note that many identification
techniques learn an approximate model with a certain level of
probabilistic confidence. In contrast, our data-driven results
offer a 100% correctness guarantee, ensuring a confidence
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Algorithm 1 Estimation of %, via Data
Input: N, m, B;, B
1: Choose M,Z € Nt and « € R
2:fori=1:N
32 fors=1:m

4: Select M sampled pairs (X, X) from X; such
that ||X, — X,|| <« for any r € {1, ..., M}
5: Compute the slope S, as

_ llgGr) — gGDI
1% — 31
with g(j\cr) = Bj(Qj’f()ACra us)) — Bi(q:% Xr), for
some j € {1,..., N} where f(X,, u;) € X;,
(g(x,) is computed similarly)
6: Compute the maximum slope as

Y =max{Sy, ..., Sy}

Repeat Steps 4-6 Z times and acquire 1, ..., ¥z
Apply Reverse Weibull distribution [23] to ¥, ...,
¥z, which gives us so-called location, scale, and
shape parameters

S, . Yre{l,..., M},

9: The obtained location parameter is the estimated
S
Z ij
10: end
11: end

Output: .2 = max .Z;
ijs

level of 1. For more detailed information regarding the dis-
tinctions between direct and indirect data-driven techniques,
we refer the interested readers to [22].

In order to check condition (12) in Theorem 2, one needs
to first compute Z. In the following, we employ the proposed
results in [23] and provide Algorithm 1 to estimate .Z’> using
a finite number of data. Note that one can employ the pro-
cedure of Algorithm 1 and similarly estimate .#; using a
finite number of data by considering g(x,) = B;j(gi, Xr) in
Step 5. Under Algorithm 1, the following lemma, borrowed
from [23], ensures the convergence of the estimated £, %>
to their actual values in the limit.

Lemma 1: Under Algorithm 1, the estimated ., %> con-
verge to their actual values if and only if o goes to zero and
M, Z go to infinity.

Note that one can pick o very small and M,Z very big to
get a precise approximation for .21, 2.

VI. CASE STuDY: JET ENGINE COMPRESSOR

To show the efficacy of our data-driven results, we apply our
approach to the following discrete-time nonlinear jet engine
compressor [24]:

- [xl (k+ 1)} _ [xl(lo + (=) = 57 (k) — %x?(k))r}
o+ 1) x02(k) + (1 (k) — u(k))T ’

where x1 = & — 1, x» = W — A — 2, with &, U, A being
the mass flow, the pressure rise, and a constant, respectively.
Moreover, u € U = {—1,-0.9,-0.8,...,0.8,0.9, 1}, and
v = 0.1 as the sampling time. The regions of interest are
X = [-1,12, Xy = [-0.6,0.6] x [-0.7,0.7], and X, =
[-0.9,0.9] x [-1, —0.81 U [—0.9,0.9] x [0.8, 1]. The model
is assumed to be unknown. We aim at constructing M-CBC
via solving SOP in (9) with a confidence of 1 while synthe-
sizing controllers C under which unknown dt-NCS remains in
the safe set X\ X, according to Theorem 1.

We first fix a common CBC in the form of B(g, x) = qlx‘l‘—i—
qzx% + q3x%x§ + q4x% + qsx‘z1 + g% We also fix ¢ = 0.01 and
acquire M = 40000. We solve the SOP in (9) (for the common
CBC) with M = 40000 and compute coefficients of a common
CBC for the whole range of the state set, i.e., N = 1, together
with other decision variables as

B(g, x) = 0.002x} — 0.0014x7 — 0.0023x7x3 + 0.0084x3
— 0.0067x3 + 0.4, 7}, = 0.0008.

The resulting common CBC cannot ensure the safety of the
unknown jet engine compressor given that the optimal value
of SOP is positive.

We now apply our proposed results by partitioning our
regions of interest into two different regions, ie., N = 2,
as: X1 = [-1,0] x [-1, 1], Xp, = [-0.6,0] x [-0.7,0.7],
Xy, = [-09,0] x [-1,-0.8] U [-0.9,0] x [0.8,1]; X» =
[0, 1] x [—1, 1], X0, = [0, 0.6] x [-0.7,0.7], X,,, = [0, 0.9] x
[—1,—0.8] U [0, 0.9] x [0.8, 1]. We now consider the struc-
ture of our multiple CBC as the common one: B;(g;, x) =
q}x‘l‘ + qizx% + q?x%x% + q?x% + q?xé + q?, i €{l,2}. We solve
the SOP in (9) with M = 40000 and compute coefficients
of the multiple CBC together with other decision variables in
SOP for two partitions:

Region 1: Bj(g1,x) = 0.002x} — 0.0025x7 + 0.0037x7x3
+0.4x3 — 0.1515x3 + 0.4,
vy = 0.5704, 1% = 0.5830, n} = —0.0127,
Region 2: B;(g2, x) = 0.002x} — 0.0318x7 + 0.0507x7x3
+0.4x35 — 0.1356x + 0.3935,
y5 = 0.5708, 13 = 0.5812, n} = —0.0126,

with ny, = —0.0126. We now employ Algorithm 1 and
compute .21 = 0.2623, %> = 0.9314. Since nj, + L =
—33x107* < 0, according to Theorem 2, one can guarantee
that there exists a controller C under which the system is safe.

Satisfaction of conditions (2) and (3) via constructed
M-CBC from data is illustrated in Fig. 1. As can be observed,
initial sets Xo,, Xo, are inside their corresponding level sets
(i.e., Bi(q1,x) = y1, B2(q2, x) = y2) and unsafe sets X, X,
are outside their corresponding level sets (i.e., Bi(gi,x) =
A1, Ba(g2, x) = X2). We now construct the safety controller
as a lookup table for all sampled data and apply it to the
unknown jet engine system. The closed-loop state trajectory
of the unknown jet engine under the synthesized controller is
also depicted in Fig. 1. As can be observed, the trajectory of
the unknown jet engine remains in the safe set under the syn-
thesized controller, depicted in Fig. 2. It took 20 seconds for
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Fig. 1. Satisfaction of conditions (2)-(3). Green and pink boxes are

initial and unsafe regions, respectively. Red and orange lines are initial
and unsafe level sets of B, respectively, for Region 1. Brown and green
lines are initial and unsafe level sets of By, respectively, for Region 2.
Blue curve is closed-loop state trajectory of unknown jet engine starting
from xg = [-0.18; —0.16].
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Fig. 2. A synthesized control input for the unknown jet engine within
100 time steps.

solving SOP in (9) with M = 40000 samples on a machine
with Windows operating system (Intel i7-8665U CPU with 16
GB of RAM).

VIl. CONCLUSION

The primary objective of this letter was to develop a
data-driven approach for constructing multiple control barrier
certificates (M-CBC) from available data, aiming to ensure
the safety of unknown discrete-time nonlinear systems with a
certified confidence level of 1. In pursuit of this objective,
we introduced a scenario optimization program (SOP) that
effectively utilized data gathered from trajectories of unknown
systems. By successfully solving the SOP, we achieved the
construction of the M-CBC, accompanied by its corresponding
safety controller. Through evaluation on a nonlinear jet engine
compressor with unknown models, we demonstrated the effec-
tiveness and practicality of our data-driven approach. In fact,
as the main contribution of our work, although a common
control barrier certificate with a fixed template did not exist,
our proposed technique adaptively partitioned the state set and
found M-CBC of the same template for distinct regions. As a
promising avenue for future research, we propose the extension
of our data-driven technique to synthesize controllers capa-
ble of enforcing more complex logic properties for unknown
nonlinear systems.
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