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COVER TIMES OF MANY DIFFUSIVE OR SUBDIFFUSIVE
SEARCHERS∗

HYUNJOONG KIM† AND SEAN D. LAWLEY‡

Abstract. Cover times measure the speed of exhaustive searches which require the exploration
of an entire spatial region(s). Applications include the immune system hunting pathogens, animals
collecting food, robotic demining or cleaning, and computer search algorithms. Mathematically, a
cover time is the first time a random searcher(s) comes within a specified “detection radius” of every
point in the target region (often the entire spatial domain). Due to their many applications and
their fundamental probabilistic importance, cover times have been extensively studied in the physics
and probability literatures. This prior work has generally studied cover times of a single searcher
with a vanishing detection radius or a large target region. This prior work has further claimed that
cover times for multiple searchers can be estimated by a simple rescaling of the cover time of a single
searcher. In this paper, we study cover times of many diffusive or subdiffusive searchers and show
that prior estimates break down as the number of searchers grows. We prove a rather universal
formula for all the moments of such cover times in the many searcher limit that depends only on (i)
the searcher’s characteristic (sub)diffusivity and (ii) a certain geodesic distance between the searcher
starting location(s) and the farthest point in the target. This formula is otherwise independent of the
detection radius, space dimension, target size, and domain size. We illustrate our results in several
examples and compare them to detailed stochastic simulations.
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1. Introduction. How long does it take a random search process to find an
entire collection of targets? This so-called cover time measures the speed of exhaus-
tive searches [1]. Such exhaustive or comprehensive searches demand that the search
process fully explore a region(s) (possibly the entire spatial domain), which contrasts
searches that terminate upon the first hit to a target (whose speed is typically mea-
sured by a so-called first hitting time or first passage time [10, 44]). Exhaustive
searches are involved in a variety of applications [12], including the immune sys-
tem hunting pathogens (bacteria, viruses, etc.), animals collecting food and other
resources, robots combing for dangers (chemical leaks, explosives, mines, etc.) or
simply cleaning an area, and computer search algorithms.

There is a long history in both the physics literature [8, 9, 11, 12, 17, 21, 22, 23,
34, 35, 36, 39, 40, 50, 51] and the probability literature [1, 2, 3, 5, 6, 7, 14, 15, 16,
25] analyzing cover times. To describe more precisely, let X = {X(t)}t≥0 denote the
path of a searcher randomly exploring a d-dimensional spatial domain M ⊆Rd. If the
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 603

searcher has some detection radius r > 0, then the region explored by the searcher by
time t≥ 0 is

S(t) :=∪t
s=0B(X(s), r)⊆M,(1.1)

where B(x, r) denotes the ball of radius r centered at x∈M (in the case that X is a
Brownian motion, (1.1) is called the Wiener sausage [18]). The cover time of a given
target region UT ⊆M is then

σ := inf{t > 0 :UT ⊆ S(t)}.(1.2)

Prior work has generally studied the statistics and distribution of the cover time
σ in the case that the detection radius r is much smaller than the size of the target
region UT, which is often taken to be the entire domain (i.e., UT =M). For example,
suppose X is a Brownian motion with diffusivity D > 0 on a smooth, compact,
connected, d-dimensional Riemannian manifold without boundary. In the limit of a
vanishing detection radius, it was proven that the cover time σ diverges according to

σ∼ td almost surely as r→ 0,(1.3)

where the divergence of the deterministic time td depends critically on the space
dimension,

td =






1

π

|M |
D

(ln(1/r))2 if d= 2,

dΓ(d/2)

2(d− 2)πd/2

|M |r2−d

D
ln(1/r) if d≥ 3,

(1.4)

where |M | denotes the d-dimensional volume of the spatial domain. The results in
(1.3)–(1.4) can be derived heuristically (see [14]) by combining (i) asymptotics of the
principal eigenvalue of the Laplacian in a domain with a small hole [43, 49] with (ii)
classical results in extreme value theory [13]. Indeed, it was shown in the physics
literature [12] that cover times for noncompact random walks on discrete state spaces
follow an extreme value distribution (specifically, Gumbel) with a diverging mean in
the limit of a large target region.

Equations (1.1)–(1.2) and (1.3)–(1.4) concern a single searcher, but the applica-
tions mentioned above generally involve cover times of multiple searchers. To explain,
consider N ≥ 1 independent and identically distributed (i.i.d.) random searchers,
{Xn}Nn=1, and let SN (t) denote the region explored by this collection of searchers by
time t≥ 0,

SN (t) :=∪N
n=1 ∪t

s=0 B(Xn(s), r)⊆M.(1.5)

The cover time of a target UT by these N searchers is then

σN := inf{t > 0 :UT ⊆ SN (t)}.

See Figure 1 for an illustration. Prior works have argued that the cover time for N
searchers can be obtained by simply rescaling the cover time of a single searcher [12,
17]. Specifically, these works have claimed that as long as N is not too large,

σN ≈dist σ/N,(1.6)

where ≈dist denotes approximate equality in distribution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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604 HYUNJOONG KIM AND SEAN D. LAWLEY

MUT

U0

L

Fig. 1. Example of a spatial domain M given by the (d = 2)-dimensional torus with N = 3
diffusive searchers that all start at the single point labeled U0. The dark blue indicates the paths of
the searchers and the light blue region indicates the corresponding region detected (the set SN (t) in
(1.5)). The red region labeled UT denotes the target and the black curve labeled L depicts the shortest
path a searcher must travel to cover the farthest part of the target. Note: color appears only in the
online article.

In this paper, we analyze the cover time of N ) 1 diffusive or subdiffusive
searchers. We find that the approximation (1.6) breaks down as N grows, as we
prove the following rather universal formula for the mth moment of the cover time
for N diffusive searchers,

E[(σN )m]∼
(

L2

4D lnN

)m

as N →∞(1.7)

for any moment m ≥ 1. In (1.7), D > 0 is a searcher’s characteristic diffusivity, and
L > 0 is the distance a searcher must travel to reach the farthest part of the target.
More precisely,

L= sup
y∈UT

L(U0,B(y, r))> 0,(1.8)

where U0 ⊂M is the support of the initial positions of the searchers and L :M×M →
[0,∞) is a certain distance metric depending on the geometry of the space M (and
also on the stochastic dynamics of the searchers in the case of a space-dependent
diffusivity; see section 3.4). The formula in (1.7) means that the 1/N decay in (1.6)
slows down markedly to 1/ lnN for large N . Hence, the cover time “speedup” gained
from additional searchers saturates for many searchers. Put another way, halving the
cover time requires merely doubling the number of searchers in the regime in (1.6),
whereas halving the cover time requires squaring the number of searchers in the large
N regime of (1.7).

To illustrate (1.7) in a simple example, suppose the searchers move by pure Brown-
ian motion with diffusivity D, the spatial domain M is the d-dimensional torus with
diameter l = supx,y∈M ‖x − y‖ with l > r, the target is the entire torus UT = M ,
and the searchers all start at a single point U0 = x0 ∈ M . In this case, (1.7) holds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 605

with L= l− r > 0. Our proof of (1.7) relies on large deviation theory and short-time
asymptotics of the heat kernel [41, 48], extreme first passage time theory [30], and
combinatorial arguments using the inclusion-exclusion principle [19]. We note that
(1.7) was previously shown for the time it takes one-dimensional, pure Brownian mo-
tions to cover an interval with either periodic or reflecting boundary conditions [34].

There are several counterintuitive features of (1.7). First, (1.7) is independent of
the space dimension d ≥ 1. This contrasts the cover time for a single searcher (i.e.,
N = 1), which, as one expects, is slower for higher space dimensions d. Second, (1.7)
depends only weakly on the detection radius r. In particular, if we fix any detection
radius r > 0, then (1.7) implies that the mth moment of the cover time has the
following upper bound for sufficiently large N ,

E[(σN )m]≤
(

(L+)2

4D lnN

)m

,(1.9)

where L+ = supy∈UT
L(U0, y)>L. The upper bound (1.9) is perhaps counterintuitive

since the cover time diverges as the detection radius vanishes. Naturally, a smaller
detection radius r requires a larger searcher number N in order for (1.9) to hold. In
the discussion section, we address the question of when a system is in the large N
regime versus the small detection radius regime.

Third, (1.7) depends on the geometry of the target set UT only through (1.8).
In particular, (1.7) is unchanged if the target set is reduced to only a single point
achieving the supremum in (1.8). That is, the cover time for a large target is no longer
than the cover time of this single point in the many searcher limit. In addition, the
cover time is unaffected by changing the domainM (assuming L in (1.8) is unchanged).
This contrasts with the cover time of a single searcher which is proportional to the
volume of the domain M for a small detection radius (see (1.3)–(1.4)). Finally, we find
in section 3.4 that (1.7) is independent of any deterministic drift biasing the motion
of the searchers.

We also determine the moments of the cover time for many subdiffusive searchers.
Subdiffusion is marked by a mean-squared displacement that grows according to a
sublinear power law. Specifically, if {Y (t)}t≥0 denotes the path of a subdiffusive
searcher, then

E‖Y (t)− Y (0)‖2 ∝ tα, α∈ (0,1),

and α∈ (0,1) is termed the subdiffusive exponent. Subdiffusion has been observed in
many physical systems [4, 26, 42, 47] and is especially prevalent in cell biology [20,
24]. Assuming that the subdiffusion is modeled by a time fractional Fokker–Planck
equation [37] (which is equivalent to an appropriate random time change of a normal
diffusive process; see section 3.3), we prove the following formula for the mth moment
of the cover time for N subdiffusive searchers,

E[(σN )m]∼
(
α(2− α)

2−α
α

(
L2/(4D)

)1/α

(lnN)2/α−1

)m

as N →∞,(1.10)

where α ∈ (0,1) is the subdiffusion exponent, D > 0 is a characteristic subdiffusion
coefficient (with dimension (length)2(time)−α), and the length L is in (1.8). Notably,
comparing (1.10) with (1.7) implies that many subdiffusive searchers cover a target
faster than many diffusive searchers (i.e., the cover time in (1.10) is less than the cover
time in (1.7) for sufficiently large N).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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606 HYUNJOONG KIM AND SEAN D. LAWLEY

The rest of the paper is organized as follows. In section 2, we prove (1.7) and
(1.10) in a general mathematical setting. In section 3, we illustrate these general
results in several specific examples and compare them to stochastic simulations. We
conclude by discussing related work, including addressing the question of when a
system is in the small detection radius regime of (1.3)–(1.4) versus the many searcher
regime of (1.7).

2. General mathematical analysis. In this section, we prove the cover time
moment formulas in (1.7) and (1.10) for diffusive and subdiffusive search under generic
assumptions on the first passage times of single searchers.

2.1. Setup and main theorem for diffusive search. Consider N ≥ 1 i.i.d.
searchers, {Xn(t)}t≥0 for n = 1, . . . ,N on a set M ⊂ Rd. For a given metric LB on
M , let B(x, r) denote the closed ball of radius r > 0 centered at x∈M ,

B(x, r) := {y ∈M :LB(x, y)≤ r}.(2.1)

Consider the d-dimensional region detected by the N searchers by time t≥ 0,

SN (t) :=∪N
n=1 ∪t

s=0 B(Xn(s), r)⊆M.

For some compact target set UT ⊆M , define the cover time

σN := inf{t > 0 :UT ⊆ SN (t)}.

Assume the initial distribution of the searchers has compact support U0 ⊂M which
satisfies

sup
y∈UT

LB(U0,B(y, r))> 0,(2.2)

where we define the distance between any two sets U,V ⊆M by

LB(U,V ) := inf
x∈U,y∈V

LB(x, y).(2.3)

The assumption (2.2) precludes the trivial case that the searchers immediately cover
the target due to their initial placement (i.e., σN = 0).

For any set U ⊂M , let τ(U) denote the first passage time (FPT) to U for a single
searcher,

τ(U) := inf{t > 0 :X1(t)∈U}.(2.4)

Assume there exists a diffusivity D > 0 and a metric L on M that is bi-Lipschitz
equivalent1 to LB such that for any set U ⊂M equal to a finite union of balls of the
form

U =∪k
i=1B(xi, r′),

for r′ > 0 and x1, . . . , xk ∈UT with 1≤ k <∞, we have that
∫ ∞

0
(P(τ(U)> t))N dt <∞ for some N ≥ 1(2.5)

1A pair of metrics L and LB on M are bi-Lipschitz equivalent if there exists constants β1 > 0,
β2 > 0 such that β1L(x, y)≤LB(x, y)≤ β2L(x, y) for all x, y ∈M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 607

and

lim
t→0+

t lnP(τ(U)≤ t) =−L2(U0,U)

4D
≤ 0,(2.6)

where L(U0,U) is defined analogously to (2.3).
Before stating our main theorem, we comment on assumptions (2.5) and (2.6).

The integral in (2.5) is the mean fastest FPT out of N searchers, i.e. E[min{τ1(U), . . . ,
τN (U)}], where τ1(U), . . . , τN (U) are N i.i.d. realizations of τ(U) in (2.4). Hence,
assumption (2.5) requires that this mean fastest FPT is finite for sufficiently large N .
The simplest way for (2.5) to hold is simply that E[τ(U)]<∞ (i.e., (2.5) holds for all
N ≥ 1), which is typically the case for diffusion in a bounded spatial domain. More
generally, (2.5) is assured as long as P(τ(U) > t) decays no slower than a power law
as t → ∞. Assumption (2.6) concerns the short-time behavior of the distribution
of FPTs. As we review in section 3, the particular short-time behavior in (2.6) is
characteristic of diffusion in very general mathematical scenarios and is often referred
to as Varadhan’s formula in the large deviation literature [41, 48].

Theorem 1. Under the assumptions of (2.2), (2.5), and (2.6), for any moment
m≥ 1 we have that

E[(σN )m]∼
(

L2

4D lnN

)m

as N →∞,(2.7)

where

L= sup
y∈UT

L(U0,B(y, r))> 0.

An immediate corollary of Theorem 1 is that the cover time becomes deterministic
for many searchers in the sense that its coefficient of variation vanishes,

√
Variance(σN )

E[σN ]
→ 0 as N →∞.(2.8)

2.2. Extension to subdiffusive search. The moment formula in Theorem 1
can be quickly extended to subdiffusive search. As we discuss in section 3.3, the short-
time behavior of the FPT of a subdiffusive searcher modeled by a fractional Fokker–
Planck equation is generally given by a minor modification of (2.6). In particular,
(2.6) is replaced by

lim
t→0+

t
α

2−α lnP(τ(U)≤ t) =−(2− α)α
α

2−α

(
L2(U0,U)

4D

) 1
2−α

≤ 0,(2.9)

where α ∈ (0,1) is the subdiffusion exponent and D > 0 a characteristic subdiffusion
coefficient (with dimension (length)2(time)−α).

Theorem 2. Under the assumptions of (2.2), (2.5), and (2.9), for any moment
m≥ 1 we have that

E[(σN )m]∼
(
α(2− α)

2−α
α

(
L2/(4D)

)1/α

(lnN)2/α−1

)m

as N →∞,(2.10)

where

L= sup
y∈UT

L(U0,B(y, r))> 0.

Observe that the vanishing coefficient of variation in (2.8) is also implied by
Theorem 2. Observe also that Theorem 2 reduces to Theorem 1 if α= 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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608 HYUNJOONG KIM AND SEAN D. LAWLEY

2.3. Proofs.

Proof of Theorem 1. For each x ∈ UT and r > 0, let τn(B(x, r)) be the FPT of
the nth searcher to the ball B(x, r) defined in (2.1),

τn(B(x, r)) := inf{t > 0 :Xn(t)∈B(x, r)}, n∈ {1, . . . ,N}.

Let TN (x, r) denote the corresponding fastest FPT,

TN (x, r) :=min{τ1(B(x, r)), . . . , τN (B(x, r))}.

The survival probability of σN can be written in terms of these fastest FPTs,

P(σN > t) = P(∪x∈UT{TN (x, r)> t}).(2.11)

The representation (2.11) immediately yields the lower bound,

P(σN > t)≥ P(TN (y, r)> t) for any y ∈UT.(2.12)

Since for any nonnegative random variable T ≥ 0 and any moment m≥ 1 we have [19]

E[Tm] =

∫ ∞

0
P(T > z1/m)dz,(2.13)

replacing t by z1/m and integrating the bound (2.12) over z ≥ 0 implies that

E[(σN )m]≥E[(TN (y, r))m] for any y ∈UT.

Hence, the assumptions in (2.5)–(2.6) and Theorem 1 in [30] imply

lim inf
N→∞

E[(σN )m](lnN)m ≥
(
L2(U0,B(y, r))

4D

)m

≥ 0 for any y ∈UT.(2.14)

Taking the supremum over y ∈UT yields the best lower bound,

lim inf
N→∞

E[(σN )m](lnN)m ≥
(

sup
y∈UT

L2(U0,B(y, r))

4D

)m

> 0,(2.15)

where the final inequality is strict due to (2.2) and the bi-Lipschitz equivalence of L
and LB .

To get an upper bound on the large N behavior of E[(σN )m], let ε ∈ (0,1) be
arbitrary. Since the target UT is compact, we may choose a finite set of points
x1, x2, . . . , xk ∈UT so that ∪k

i=1B(xk,εr) covers UT,

UT ⊂∪k
i=1B(xi,εr).(2.16)

We claim that for any i∈ {1, . . . , k},

B(xi,εr)⊂B(yi, r) if yi ∈B(xi, (1− ε)r).(2.17)

To see (2.17), assume yi ∈ B(xi, (1 − ε)r) and z ∈ B(xi,εr) and observe that the
triangle inequality implies

LB(z, yi)≤LB(z,xi) +LB(xi, yi)≤ εr+ (1− ε)r= r,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 609

and thus z ∈B(yi, r), which proves (2.17). Hence, (2.11) implies

P(σN > t) = P(∪x∈UT{TN (x, r)> t})
≤ P(∪k

i=1{TN (xi, (1− ε)r)> t}).
(2.18)

To see this, suppose that there is an x ∈ UT such that TN (x, r)> t. By (2.16), there
exists an xi ∈UT such that LB(xi, x)≤ εr and thus B(xi, (1− ε)r)⊂B(x, r). Hence,
TN (xi, (1− ε)r)> t which proves (2.18).

To estimate the upper bound in (2.18), we use the inclusion-exclusion principle
to obtain [19]

P
(
∪k
i=1{TN (xi, (1− ε)r)> t}

)

=
k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

P (∩i∈I{TN (xi, (1− ε)r)> t})





=
k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

P
(
min
i∈I

{TN (xi, (1− ε)r)}> t

)


 ,

where the inner sum runs over all subsets I of the indices 1, . . . , k which contain
exactly j elements. Replacing t by z1/m and integrating over z ≥ 0 yields

k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

∫ ∞

0
P
(
min
i∈I

{TN (xi, (1− ε)r)}> z1/m
)

dz





=
k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

E
[(

min
i∈I

{TN (xi, (1− ε)r)}
)m]



 .

Further, the assumptions in (2.5)–(2.6) and Theorem 1 in [30] imply

lim
N→∞

(lnN)mE
[(

min
i∈I

{TN (xi, (1− ε)r)}
)m]

=

(
mini∈I L2(U0,B(xi, (1− ε)r)

4D

)m

≥ 0.

(2.19)

Therefore, (2.18) implies

limsup
N→∞

(lnN)mE[(σN )m]

≤
k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

(
mini∈I L2(U0,B(xi, (1− ε)r)

4D

)m





= max
i∈{1,...,k}

(
L2(U0,B(xi, (1− ε)r)

4D

)m

,

(2.20)

where the equality is due to Lemma 3 below. It follows from (2.16) that for any η> 0,
we may choose ε sufficiently small so that

max
i∈{1,...,k}

(
L2(U0,B(xi, (1− ε)r)

4D

)m

≤
(

sup
y∈UT

L2(U0,B(y, r))

4D

)m

+ η.

Since η> 0 is arbitrary, the proof is complete.
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610 HYUNJOONG KIM AND SEAN D. LAWLEY

Proof of Theorem 2. The proof of Theorem 2 follows identical steps to the proof
of Theorem 1, except for a few differences. The first difference is that, due to an
application of Theorem 6 in [29], the inequality (2.14) is replaced by the following
inequality for any y ∈UT,

lim inf
N→∞

E[(σN )m](lnN)m(2/α−1) ≥
(
θ
[
L2(U0,B(y, r))

] 1
2−α

)m(2/α−1)

≥ 0,

where θ = (2− α)α
α

2−α (4D)−1/(2−α). Taking the supremum over y ∈ UT then yields
the following lower bound in place of (2.15):

lim inf
N→∞

E[(σN )m](lnN)m(2/α−1) ≥
(
θ sup
y∈UT

[
L2(U0,B(y, r))

] 1
2−α

)m(2/α−1)

=

(
θ

2−α
α sup

y∈UT

[
L2(U0,B(y, r))

]1/α
)m

> 0.

The next difference is that, due to an application of Theorem 6 in [29], (2.19) is
replaced by

lim
N→∞

(lnN)m(2/α−1)E
[(

min
i∈I

{TN (xi, (1− ε)r)}
)m]

=

(
θ

2−α
α

[
min
i∈I

L2(U0,B(xi, (1− ε)r)

]1/α)m

≥ 0,

and thus (2.20) is replaced by

limsup
N→∞

(lnN)m(2/α−1)E[(σN )m]

≤
k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

(
θ

2−α
α

[
min
i∈I

L2(U0,B(xi, (1− ε)r)

]1/α)m




= max
i∈{1,...,k}

(
θ

2−α
α

[
L2(U0,B(xi, (1− ε)r)

]1/α)m
,

where the equality is due to Lemma 3 below. It follows from (2.16) that for any η> 0,
we may choose ε sufficiently small so that

max
i∈{1,...,k}

(
θ

2−α
α

[
L2(U0,B(xi, (1− ε)r)

]1/α)m ≤
(
θ

2−α
α sup

y∈UT

[
L2(U0,B(y, r))

]1/α
)m

+ η.

Since η> 0 is arbitrary, the proof is complete.

Lemma 3. If {li}ki=1 is any set of k≥ 1 real numbers, then

k∑

j=1



(−1)j−1
∑

I⊆{1,...,k}
|I|=j

min
i∈I

li



= max
i∈{1,...,k}

li.(2.21)

Proof of Lemma 3. Without loss of generality, assume l1 ≤ l2 ≤ · · ·≤ lk. For any
j ∈ {1, . . . , k}, we thus have

∑

I⊆{1,...,k}
|I|=j

min
i∈I

li =
k−j+1∑

i=1

(
k− i

j − 1

)
li.(2.22)
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 611

To derive (2.22), first observe that the smallest element of a subset of {l1, . . . , lk} of
size j ∈ {1, . . . , k} can be li for any i∈ {1, . . . , k− j+1}. Further, there are

(k−i
j−1

)
such

subsets since having chosen index i ∈ {1, . . . , k − j + 1}, one must choose the other
j − 1 elements from the k− i elements which are not smaller than li.

Hence, upon changing the order of summation in (2.21), it remains to show

k∑

i=1

li

k−i+1∑

j=1

(−1)j−1

(
k− i

j − 1

)
= lk.

Since l1 ≤ l2 ≤ · · ·≤ lk are arbitrary, it thus remains to show

k−i+1∑

j=1

(−1)j−1

(
k− i

j − 1

)
=

{
1 if i= k,

0 if i∈ {1, . . . , k− 1}.

The case i= k is immediate. The case i∈ {1, . . . , k− 1} is a special case of Corollary
2 in [45].

3. Examples. We now illustrate Theorems 1 and 2 in several examples.

3.1. Pure diffusion on a d-dimensional torus. Suppose the searchers are
pure diffusion processes with diffusivity D> 0 on the d-dimensional torus with diam-
eter l= supx,y∈M ‖x− y‖> 0. That is, the searchers diffuse on

M =
[
0,2l/

√
d
)d ⊂Rd(3.1)

with periodic boundary conditions and suppose the searchers all start at the “center”
of the torus,

U0 = x0 = (l/
√
d, . . . , l/

√
d)∈M ⊂Rd.(3.2)

Suppose the metric LB in (2.1) is the standard Euclidean metric and the target is the
entire torus, UT = M . To avoid trivial cases, assume the searcher detection radius
does not cover the entire torus (i.e., r < l so that (2.2) is satisfied).

Now, it is immediate that (2.5) holds with N = 1. Further, Theorem 1.2 in [41]
implies that (2.6) holds with L given by the standard Euclidean metric,

lim
t→0+

t lnP(τ(U)≤ t) =− supx∈U ‖x0 − x‖2

4D
≤ 0.

Hence, the moment formula (2.7) in Theorem 1 holds with L given by the standard
Euclidean metric. In particular,

E[(σN )m]∼
(
(l− r)2

4D lnN

)m

as N →∞(3.3)

since

sup
y∈UT

L(x0,B(y, r)) = l− r > 0.(3.4)

As noted in the Introduction, (3.3) is counterintuitive in that it (i) is independent of
the space dimension d ≥ 1, (ii) depends only weakly on the detection radius r > 0,
(iii) depends on the geometry of the target set UT only through (3.4). In particular,
(3.3) is unchanged if the target set is either the entire torus, UT =M or a single point
at the origin,

UT = (0, . . . ,0)∈M ⊂Rd.
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Fig. 2. Comparison of stochastic simulations (dashed curve) on the (d= 2)-dimensional torus
and the moment formula (solid curve) in (3.3) for the m = 1 moment (left panel), m = 2 moment
(middle panel), and m = 3 moment (right panel). The circle markers at N = 100,101, . . . ,105 are
scatter plots of individual stochastic realizations of the diffusive cover time σN . The concentration
of these scatter plots at the mean for large N illustrates that the cover time becomes deterministic
as N → ∞ (see (2.8)). The target is the entire torus with diameter l = 1/

√
2 (i.e., the torus is a

square with side length 1 and periodic boundary conditions), the detection radius is r= 0.3, and the
diffusion coefficient is D= 1. Note: color appears only in the online article.

r

U0

UT

L

RT

1

100 101 102 103 104 105

10−2

10−1

N

E[
σ
N
]

RT = 1
RT = 1/2
RT = 1/4
RT = 1/8
theory

Fig. 3. The left panel is a diagram showing that the searchers start in the center of the (d= 2)-
dimensional torus and the target is a disk of radius RT > 0 occupying the “corners” of the torus. The
right panel compares stochastic simulations of the mean diffusive cover time for different choices of
the target radius RT. In agreement with theory in (3.3), the cover time is independent of the target
radius for large N . Note: color appears only in the online article.

3.2. Stochastics simulations on the torus in dimensions d= 1 and d= 2.
In Figure 2, we compare the moments of σN computed from stochastic simulations
with the asymptotic result in (3.3) from Theorem 1 for diffusion on a (d = 2)-
dimensional torus. The stochastic simulation algorithm is detailed in the appendix.
This plot illustrates excellent agreement between the simulations and the asymptotic
theory. This plot also illustrates how the cover time becomes deterministic for many
searchers, as the blue circle markers (which show individual stochastic realizations of
σN ) concentrate at their mean for large N (see also (2.8)).

In Figure 3, we illustrate how the cover time σN is independent of the size of
the target for large N (assuming a fixed L= supy∈UT

L(U0,B(y, r))). Specifically, we
plot the moments of σN for the (d= 2)-dimensional torus in (3.1) where the searchers
start at the center in (3.2) and the target is the disk centered (0, 0) ∈ M ⊂ R2 with
radius RT > 0 (see Figure 3 for an illustration). For the largest value of RT in this
plot, the target is the entire domain, and for the smallest value of RT in this plot, the
target occupies less than 5% of the area of the domain. Nevertheless, the cover times
for these vastly different target areas are nearly indistinguishable once the number of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1

RT
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L
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100 101 102 103 104 105

10−2

10−1

N

E[
σ
N
]

RT = 1/4
RT = 1/8
RT = 1/12
RT = 1/16
theory

Fig. 4. The left panel is a diagram showing that the searchers start in the center of the (d= 2)-
dimensional torus and the target is several irregularly placed disks of radius RT > 0. The right
panel compares stochastic simulations of the mean diffusive cover time for different choices of RT.
In agreement with theory in (3.3), the cover time is independent of RT for large N since L is
independent of RT. Note: color appears only in the online article.

100 101 102 103 104 105
0.85

0.9

0.95

1

N

E[
σ
(d
=
1)

N
]/
E[
σ
(d
=
2)

N
]

101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

N

E[
σ
N
]

normal diffusion, simulation
normal diffusion, theory
subdiffusion, simulation
subdiffusion, theory

Fig. 5. The left panel plots results from stochastic simulations of the diffusive cover time of a
(d = 1)-dimensional torus and a (d = 2)-dimensional torus. In agreement with the theory in (3.3),
the cover time is independent of the space dimension d for large N . The right panel compares the
cover time of the (d = 1)-dimensional torus for normal diffusion (blue) versus subdiffusion (red).
In agreement with the theory, cover times are faster for subdiffusion than for normal diffusion for
large N . The circle and square markers are scatter plots of individual stochastic realizations of the
cover time σN . In this plot, we take L=D= 1. Note: color appears only in the online article.

searchers exceeds about N = 10. This point is further illustrated in Figure 4, where
we plot the moments of σN in the case that the target consists of several disks of
common radius RT > 0 placed irregularly on the torus.

In Figure 5, we illustrate that the cover time σN is independent of the space
dimension d≥ 1 for large N . Specifically, Figure 5 plots the ratio of the mean cover
times for a torus in dimensions d= 1 and d= 2 (i.e., E[σ(d=1)

N ]/E[σ(d=2)
N ]). As implied

by (3.3) from Theorem 1, this ratio approaches unity as N grows.

3.3. Subdiffusion. We now illustrate how Theorem 2 can be applied to subdif-
fusive motion. A common model of subdiffusion is a time fractional diffusion equation
or Fokker–Planck equation of the following form [37],

∂

∂t
q=

∂1−α

∂t1−α
D∆q, x∈Rd,(3.5)
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614 HYUNJOONG KIM AND SEAN D. LAWLEY

where q= q(x, t) denotes the probability density of the subdiffusive searcher,

q(x, t)dx= P(Y (t) = dx),

∂1−α

∂t1−α denotes the Riemann–Liouville time-fractional derivative [46] defined by

∂1−α

∂t1−α
q(x, t) =

∂

∂t

∫ t

0

1

Γ(α)(t− t′)1−α
q(x, t′)dt′, α∈ (0,1),

and D > 0 is the subdiffusion coefficient (with dimension (length)2(time)−α). Note
that ∂1−α

∂t1−α is often denoted by 0D
1−α
t [37]. The stochastic path of such subdiffusive

searchers whose probability densities satisfy (3.5) can be obtained via a random time
change or “subordination” of a normal diffusive searcher [33]. More precisely, suppose
X = {X(s)}s≥0 denotes the path of a normal diffusive searcher,

dX(s) =
√
2D dW (s),(3.6)

where W = {W (s)}s≥0 is a standard Brownian motion (note that X and W are
indexed by s ≥ 0 which has dimension [s] = (time)−α). The path of the subdiffusive
searcher can then be obtained as

Y (t) =X(S(t)), t≥ 0,(3.7)

where {S(t)}t≥0 is an inverse α-stable subordinator that is independent of X [33].
For our purposes, the important point is that the short-time distribution of FPTs

of Y can be obtained via the short-time distribution of X using the relation (3.7).
In particular, Corollary 3 in [29] implies that if FPTs of any process X satisfy (2.6),
then FPTs of any process Y defined via the time change of X in (3.7) must satisfy
(2.9). Therefore, any application of Theorem 1 to study the cover times of a diffusive
process X can be generalized to an application of Theorem 2 to a subdiffusive process
Y defined as a time change of X in (3.7), assuming merely that (2.5) is satisfied for
FPTs of the subdiffusive search process. We note that Theorem 8 in [29] ensures
that (2.5) is satisfied as long as FPTs of the normal diffusive search process X have
survival probabilities that decay no slower than algebraically at large time.

In Figure 5, we plot the moments of the cover time σN for a subdiffusive search
on the (d = 1)-dimensional torus as in sections 3.1–3.2 above (i.e., the domain is an
interval with periodic boundary conditions). The paths of the subdiffusive searchers
{Yn(t)}Nn=1 are i.i.d. realizations of Y defined in (3.7), where X satisfies (3.6). The
stochastic simulation algorithm is detailed in the appendix. In this plot, we take the
subdiffusive exponent α = 1/2 and the target is the entire domain. As a technical
point, we note that (2.5) must hold for subdiffusion in this example since survival
probabilities of FPTs of normal diffusion decay exponentially at large time (due to
the finite domain), and thus Theorem 8 in [29] implies that (2.5) holds for subdiffusion
for all N > 1/α.

Figure 5 illustrates excellent agreement between the simulations and the asymp-
totic theory. Furthermore, Figure 5 illustrates that subdiffusive cover times are actu-
ally faster than normal diffusive cover times for many searchers (assuming subdiffusion
is modeled by the fractional Fokker–Planck equation). Indeed, Theorem 1 implies that
diffusive cover times decay as 1/ logN whereas Theorem 2 implies that subdiffusive
cover times decay as 1/ logN2/α−1, where 2/α− 1> 1 since α ∈ (0,1). This is shown
in Figure 5 where the blue curves and markers show cover times for normal diffusion
and the red curves and markers show cover times for subdiffusion.
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COVER TIMES OF MANY DIFFUSIVE SEARCHERS 615

To understand why cover times for many subdiffusive searchers are faster than
cover times for many diffusive searchers, note that (i) both depend on rare events in
which searchers move very quickly away from their initial position and (ii) subdiffusive
searchers (modeled by a time-fractional Fokker–Planck equation) are more likely to
move a long distance more quickly than their normal diffusive counterpart. Point (ii) is
most easily illustrated by comparing the normal diffusive and subdiffusive propagators
in free space. Specifically, the probability density that a one-dimensional diffusive
particle starting from the origin is at position x after time t > 0 is

p(x, t) =
1√
4πDt

e−x2/(4Dt),

whereas this density for a subdiffusive particle decays as

pα(x, t)≈ e−(tα/t)α/(2−α)

for |x|)
√
Dtα,

where we have defined the timescale tα = (αα(2 − α)2−α |x|2
4D )1/α > 0 (the approx-

imate equality omits the subdominant prefactors; see equation (45) in [38] for the
full expansion). Point (ii) follows from observing that pα(x, t)) p(x, t) for small t if
α∈ (0,1).

3.4. Diffusion with space-dependent diffusivity and drift. We now illus-
trate how Theorem 1 applies to more general drift-diffusion processes. Assume the
searchers diffuse according to an Itô stochastic differential equation (SDE) on M =Rd,

dXn = µ(Xn)dt+
√
2Dσ(Xn)dWn,(3.8)

where µ : Rd → Rd is a possibly space-dependent drift, D > 0 is a characteristic
diffusion coefficient, σ : Rd → Rd×q is a dimensionless, matrix-valued function that
describes possible space dependence or anisotropy in the diffusion, and Wn(t) ∈ Rq

is a standard Brownian motion in q-dimensional space. As technicalities, we follow
[30] and assume µ is uniformly bounded and uniformly Hölder continuous and σσ(

is uniformly Hölder continuous and its eigenvalues are in a finite interval bounded
above zero. For a smooth path ω : [0,1]→M , define its length, l(ω), in the following
Riemannian metric which depends on the diffusivity matrix a := σσ( in (3.8):

l(ω) :=

∫ 1

0

√
ω̇((s)a−1(ω(s))ω̇(s)ds.(3.9)

For any pair x0, x ∈Rd, define the geodesic to be the following infimum over smooth
paths ω : [0,1]→M connecting ω(0) = x0 to ω(1) = x:

Lrie(x0, x) := inf{l(ω) : ω(0) = x0, ω(1) = x}, x0, x∈Rd.(3.10)

Under these assumption, Varadhan’s formula [48] was used in [30] to show that
(2.6) holds with the metric in L=Lrie in (3.10). Further, assume that the drift µ and
diffusivity σ are such that (2.5) holds. One simple way to ensure that (2.5) holds for
N = 1 is to assume that at all sufficiently large radii, the drift µ is a constant force
pointing toward the origin and σ is the d× d identity matrix.

Hence, the moment formula (2.7) in Theorem 1 holds with L = Lrie for any
compact target set UT ⊂Rd. Notice that the many searcher cover time is independent
of the drift in µ in the SDE (3.8). Notice also that the space-dependent diffusivity σ
affects the many searcher cover time through the geodesic Lrie. Also, as in the simple
example in sections 3.1–3.2 above, the many searcher cover time depends only weakly
on the detection radius r > 0 and depends on the target only through the single length
L and is otherwise independent of the target size.
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616 HYUNJOONG KIM AND SEAN D. LAWLEY

3.5. Diffusion on a manifold. To illustrate another scenario in which Theo-
rem 1 applies, assume M is a d-dimensional smooth Riemannian manifold. Assume
the N searchers are i.i.d. realizations of a searcher {X(t)}t≥0 which is a diffusion on
M which is described by its generator A, which in each coordinate chart is a second
order differential operator of the following form,

Af =D
n∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj

)
,

where a= {aij}ni,j=1 satisfies certain technical assumptions (in each coordinate chart,
assume a is continuous, symmetric, and that its eigenvalues are in a finite interval
bounded above zero). AssumeX reflects from the boundary ofM ifM has a boundary
and assume M is connected and compact to ensure that (2.5) is satisfied.

Theorem 1.2 in [41] implies that (2.6) holds with L = Lrie in (3.10). Hence, the
moment formula (2.7) in Theorem 1 holds with L=Lrie in (3.10).

4. Discussion. In this paper, we proved a simple formula for all the moments
of cover times of many diffusive or subdiffusive searchers that applies in a great va-
riety of mathematical models of stochastic search. This formula shows that the only
relevant parameters in the many searcher limit is (i) the searcher’s characteristic
(sub)diffusivity and (ii) a certain geodesic distance between the searcher starting loca-
tion(s) and the farthest point in the target. We illustrated these general mathematical
results in several examples and using stochastic simulations.

As detailed in the introduction, there is a vast literature on cover times, and the
majority of this prior work considers a single stochastic searcher in the parameter
regime in which the cover time diverges. In a continuous space setting, this means
the target to be covered is much larger than the detection radius of the searcher.
For search on a discrete network, this means the target consists of a large number of
discrete nodes [12]. A notable exception is the very interesting work of Majumdar,
Sabhapandit, and Schehr [34] which studied the time for N ≥ 1 purely diffusive, for
one-dimensional searchers to cover a finite interval with either reflecting or periodic
boundary conditions. In the many searcher limit N →∞, these authors obtained the
moment formula in (1.7). We have thus shown that this simple one-dimensional result
for pure diffusion (i.e., Brownian motion) extends to arbitrary, higher-dimensional
spatial domains and much more general stochastic search dynamics.

It has been claimed that the cover time for N ≥ 1 searchers is a simple rescaling of
the cover time for a single searcher [12, 17]. We have shown how this approximation
breaks down as N grows. Nevertheless, this investigation raises the following question:
when is a particular system in the “small detection radius r” regime versus the “many
searcher N” regime? That is, notice that for any fixed number of searchers N (even
large), the cover time σN must diverge as the detection radius r vanishes:

σN →∞ as r→ 0.(4.1)

On the other hand, for any fixed detection radius r > 0 (even small) we have shown
that the cover time σN must vanish as the number of searchers N grows:

σN → 0 as N →∞.(4.2)

We conjecture that the regimes in (4.1) and (4.2) can be distinguished by comparing
the mean cover time for a single searcher, E[σ1], with the formula L2

4D lnN as in (1.7).
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In particular, we conjecture that

E[σN ]≈max

{
E[σ1]

N
,

L2

4D lnN

}
,(4.3)

so that the small detection radius r regime of (4.1) is guaranteed if E[σ1]
N ) L2

4D lnN ,

whereas the many searcher N regime is guaranteed by E[σ1]
N 2 L2

4D lnN . Investigating
the conjecture in (4.3) is an interesting avenue for future work. We note that numerical
investigation of (4.3) is challenging due to the difficulty in sampling σN for a small
detection radius [21, 36].

An interesting avenue for future research is to investigate cover times of many
searchers for other modes of stochastic search. For example, it is natural to ask about
many random walkers on a discrete network [28], since many prior works on cover
times investigate such discrete search scenarios [1, 2, 3, 5, 7, 8, 9, 11, 12, 16, 17, 21,
22, 23, 25, 35, 36, 39, 40, 50, 51]. In addition, given the results of the present paper,
it is natural to ask about cover times of superdiffusive searches. Such an investigation
would depend on the model of superdiffusive search. One possible approach would be
to consider cover times of Lévy flights, since the extreme FPT distributions of such
superdiffusive searchers has been worked out [31].

5. Appendix: Stochastic simulations algorithms. In this appendix, we de-
scribe the stochastic simulation algorithms used in section 3.

5.1. Normal diffusion on (d= 2)-dimensional torus. We discretize the do-
main M to a square lattice M̃ with minimum distance ∆x and approximate the cover
time over the lattice by

σN ≈ inf{t > 0 : S̃N (t)⊆ ŨT },(5.1)

where ŨT = UT ∩ M̃ and S̃N (t) = SN (t) ∩ M̃ . Using this approximation, we sample
σN by simulating the N diffusive paths {Xn}Nn=1 with unit diffusivity via a standard
Euler–Maruyama scheme [27] with discrete time step ∆t until the condition (5.1) is
satisfied. We choose ∆x ≤ r/10 so that the lattice approximates the detection area
well and ∆t≤∆x2/8 so that most of the diffusion step sizes are under ∆x.

5.2. Normal diffusion on (d= 1)-dimensional torus. Let the spatial do-
main M be the one-dimensional torus with diameter l > 0 (i.e., the interval (−l, l)
with periodic boundary conditions) and suppose the searchers who move by pure dif-
fusion at all start at the origin. In this simple one-dimensional setting, the cover time
can be written as

σN = inf

{
t > 0 : max

1≤n≤N,0≤s≤t
{Xn(s)}− min

1≤n≤N,0≤s≤t
{Xn(s)}> 2(l− r)

}
,(5.2)

where {Xn}Nn=1 are N ≥ 1 i.i.d. diffusion processes on the entire real line. Using
the representation (5.2), we sample σN by simulating the N paths {Xn}Nn=1 via a
standard Euler–Maruyama scheme [27] with discrete time step ∆t = 10−6 until the
condition in (5.2) is satisfied.

5.3. Subdiffusion on (d= 1)-dimensional torus. The subdiffusion simula-
tions in section 3.3 follow along similar lines as the normal diffusion simulations de-
scribed in section 5.2, except the subdiffusive paths Yn = Yn(t) for n = 1, . . . ,N are
more complicated to simulate. Specifically, we first simulate an α-stable subordinator
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618 HYUNJOONG KIM AND SEAN D. LAWLEY

T = T (s) on a discrete time grid {sk}k for sk = k∆s for some ∆s > 0 following the
method of Magdziarz, Weron, and Weron [32]. In particular, T is exactly simulated
on the discrete grid {sk}k according to

T (sk+1) = T (sk) + (∆s)1/αΘk, k≥ 0,

where T (s0) = T (0) = 0 and {Θk}k∈N is an i.i.d. sequence of realizations of

Θ=
sin(α(V + π/2)

(cos(V ))1/α

(
cos(V − α(V + π/2))

E

) 1−α
α

,

where V is uniformly distributed on (−π/2,π/2) and E is an independent unit rate
exponential random variable. Having sampled {T (sk)}k, we approximate the inverse
subordinator S = {S(t)}t≥0 defined by

S(t) := inf{s > 0 : T (s)> t}

on a discrete time grid {tm}m with tm =m∆t for some ∆t > 0. In particular, we set
S(tm) = sk, where k is the unique index such that T (sk−1)< tm ≤ T (sk). Finally, we
obtain Y on the discrete time grid {tm}m via linear interpolation,

Y (tm) =

(
S(tm)− sk
sk+1 − sk

)
X(sk+1) +

(
sk+1 − S(tm)

sk+1 − sk

)
X(sk), m≥ 1,

where k is the largest index such that sk ≤ S(tm)≤ sk+1 and {X(sk)}k is simulated
via a standard Euler–Maruyama scheme [27]. We take ∆s = ∆t = 10−2/(4 lnN) for
the simulations in section 3.3.
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