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Abstract

A variety of biomedical systems are modeled by networks of deterministic differen-
tial equations with stochastic inputs. In some cases, the network output is remarkably
constant despite a randomly fluctuating input. In the context of biochemistry and cell
biology, chemical reaction networks and multistage processes with this property are
called robust. Similarly, the notion of a forgiving drug in pharmacology is a medication
that maintains therapeutic effect despite lapses in patient adherence to the prescribed
regimen. What makes a network robust to stochastic noise? This question is challeng-
ing due to the many network parameters (size, topology, rate constants) and many types
of noisy inputs. In this paper, we propose a summary statistic to describe the robustness
of a network of linear differential equations (i.e. a first-order mass-action system). This
statistic is the variance of a certain random walk passage time on the network. This
statistic can be quickly computed on a modern computer, even for complex networks
with thousands of nodes. Furthermore, we use this statistic to prove theorems about
how certain network motifs increase robustness. Importantly, our analysis provides
intuition for why a network is or is not robust to noise. We illustrate our results on
thousands of randomly generated networks with a variety of stochastic inputs.

Keywords Homeostasis - Robustness - Pharmacokinetics - Pharmacodynamics -
Medication nonadherence - Medication adherence

1 Introduction

Homeostasis is a pillar of biology (Michael 2007). Coined in the 1930s and stemming
from Greek words meaning “standing still” (Cannon 1932), homeostasis refers to the
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processes that living systems use to maintain stable conditions in the face of fluctuating
environments. Homeostasis or biological “robustness” is seen across many scales in
biology, from ecosystems, to organisms, to organs, to cells, to subcellular systems
(Félix and Barkoulas 2015).

A quantitative understanding of such robustness is often challenging due to the very
large number of interacting constituents. For example, biochemical reaction networks
in cells often involve many different chemical species, where each species may interact
with many other species and be involved in a variety of cellular processes. A key
question is to understand the functional consequences and emergent properties of
such complicated interactions.

A mathematical framework for studying robustness is to consider how stochas-
tic perturbations propagate through a deterministic network of differential equations
(Anderson et al. 2007; Anderson and Mattingly 2007; Browning et al. 2023). Consider
the following system of linear ordinary differential equations (ODEs) with stochastic
forcing,

d

—c=R I(t)e;. 1

3¢ c+1(t)e (H
In (1), c(t) = {c;i(1)}i", is a vector of concentrations in different compartments

(or “states” or “nodes”), R € R™*™ is a reaction rate matrix describing interactions
between compartments, and / () € R is some stochastic input into compartment i = 1
(e1 € R™*! denotes the first standard basis vector). How does the stochastic input 7 (1)
flow through the network? When does the network dampen the stochastic input so that
the “output” of the system (either the concentration in a given node of interest or the
flux out of the system) is nearly constant? How does this depend on network properties
such as the size, topology, and rate constants? How does this depend on properties of
the stochastic input? The purpose of this paper is to address these questions. See Fig. 1
for an illustration.

Motivated by biochemical reaction networks, these mathematical questions were
posed by Anderson, Mattingly, Nijhout, and Reed in 2007. In that very interesting
work, the authors proved that if the network consists of a single chain of irreversible
reactions (see Fig. 1b), then the variance of the flux out of each compartment strictly
decreases down the chain. These authors also studied the effects of side chains and
feedback loops. These authors proved their results under very general assumptions on
the stochastic input, and they also considered the case that the input is white noise and
used the resulting Gaussianity of the system to make explicit calculations.

More recently, Browning et al. (2023) studied this problem. These authors were
motivated by a variety of multistage processes in biology, including viral replica-
tion (Louten 2016), bacteriophage replication (Campbell 2003), progression through
the cell cycle (Morgan 2007), cascade reactions at the molecular level (Huang and
Ferrell 1996), transport through discrete layers (Carr and Simpson 2019), and social
processes such as queuing (Liu et al. 2004). Similar to Anderson et al. (2007), these
authors focused on networks consisting of a single chain of irreversible reactions and
also considered the effects of feedback and feedforward loops. These authors assumed
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Fig.1 aComplex network. b Irreversible linear chain network. ¢ Pharmacokinetic/pharmacodynamic exam-
ple network with a stochastic drug intake modeling medication nonadherence. d Noisy input (red curve)
and noisy output (black curve) for a network that is not robust compared to a nearly constant output (blue
curve) for a robust network (Color figure online)

that the stochastic input is a Ornstein—Uhlenbeck process and used the resulting Gaus-
sianity of the system to make explicit calculations.

An alternative motivation for these mathematical questions comes from the problem
of medication nonadherence. Medication adherence is the extent to which patients take
medications as prescribed by their physicians. Medication nonadherence is a major
problem, resulting in over 100,000 preventable deaths and over $100 billion in pre-
ventable health care costs per year in the United States alone (Osterberg and Blaschke
2005). In fact, the World Health Organization has claimed that improving adherence
may have a far greater impact on public health than any improvement in specific
medical treatments (Sabaté and Sabaté 2003; Haynes et al. 2002). To combat non-
adherence, it is often recommended to prescribe so-called “forgiving” drugs, which
maintain their effect despite lapses in patient adherence (missed doses, late doses, etc.)
(Osterberg et al. 2010). Mathematically, the pharmacokinetics and pharmacodynam-
ics of a drug are often described by a network of ODEs as in (1) (Gibaldi and Perrier
1982; Rosenbaum 2016). The different components of c(¢) = {c; (¢)}{"; model drug
concentrations or effects in different compartments of the body, the matrix R mod-
els the transfer rates between compartments, and the stochastic input 7(¢) models
the patient’s imperfect adherence to the prescribed dosing regimen (which would be
deterministic for a perfectly adherent patient) (Li and Nekka 2007, 2009; Lévy-Véhel
and Lévy-Véhel 2013; Fermin and Lévy-Véhel 2017; Counterman and Lawley 2021,
2022; McAllister and Lawley 2022; Clark and Lawley 2022). See Fig. 1c for an illus-
tration. In this framework, drug forgiveness is a network property (i.e. depending on
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the topology and kinetics of the ODEs) in which the output (drug effect) is robust to
stochastic perturbations of the input (i.e. late doses, missed doses, etc). Hence, drug
forgiveness in pharmacology is akin to network robustness in the biochemical and cell
biology applications described above.

In this paper, we propose a simple summary statistic to characterize network robust-
ness. This summary statistic is the variance of a certain random “network time” 7T
whose probability distribution is defined by the network R (we denote the variance
of T by Var(T)). We show that more variable network times (i.e. larger values of
Var(T)) correspond to more robust networks. Robustness means that the variability in
either the flux out of the system or the variability in a given compartment of interest
is much less than the variability of the stochastic input (see Sect. 2.5 for a discussion
of different notions of robustness). Importantly, this result holds for (i) very general
networks (including large and complex networks such as illustrated in Fig. 1a) and (ii)
very general stochastic inputs. We prove that this network time 7 is a certain passage
time of a random walk on the network. Specifically, if one is interested in the variabil-
ity in the flux out of the system, then T is the first passage time to exit the network. If
one is interested in the variability in a given compartment 7, then T is the last passage
time to compartment n conditioned on arrival to compartment 7.

We now highlight four implications of our analysis. First, Var(T") can be quickly
computed on a modern computer, even for complex networks with thousands of nodes.
Hence, Var(T) is an easily computable measure of network robustness that is inde-
pendent of the noisy input and can be used to compare the robustness of different
networks. Indeed, we demonstrate via numerical simulations on thousands of ran-
domly generated networks that larger values of Var(7') indeed correspond to more
robust networks.

Second, our analysis predicts that a network is robust to a given noisy input if
the standard deviation of the network time 7 (denoted SD(T') := /Var(T)) is large
compared to the correlation time t € (0, oo) of the noisy input, i.e.

SD(T) > .

Third, having established that Var(7") measures network robustness, we determine
how certain network structures and motifs affect robustness by proving how they affect
Var(T). For example, we prove that under quite generic circumstances, appending an
arbitrary network to an existing network must increase Var(7T'). This result therefore
shows how increasing the size and complexity of a network can increase its robustness.

Fourth, and perhaps most importantly, our analysis provides intuition for why a
network is or is not robust to noise. That is, it is a priori rather mysterious why some
networks are robust or why adding or deleting a certain edge in a network may make
it more or less robust. However, characterizing network robustness by variability in
T gives insight into why certain network features increase or decrease robustness. In
particular, if the time for a random walk to traverse the network is highly variable,
then the network is robust. Hence, a network with many different paths tends to be
robust. Further, appending a network to an existing network can increase robustness
because a random walk on the network may or may not visit this appended network
which increases variability in 7.
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The rest of the paper is organized as follows. In Sect. 2, we show how network
robustness depends on variability in 7. In Sect. 3, we verify via numerical simula-
tions on randomly generated networks that Var(7') does indeed characterize network
robustness. In Sect. 4, we find representations for 7 in terms of random walk pas-
sage times on the network. We then use these stochastic representations of 7' to prove
results about how certain network structures can increase or decrease variability in 7.
We conclude with a brief discussion. We collect the proofs in an appendix.

2 Robustness by Variability in Network Time T

In this section, we show that network robustness depends on the variability of a random
time 7 whose probability distribution is defined by the network. As we detail below,
the definition of 7" depends on our specific notion of robustness.

2.1 Model Setup
The following definition characterizes the class of reaction rate matrices R € R"*™
that we consider in this paper.

Definition 1 A matrix R = {Rji};”i:l € R™™ for m > 1 is called admissible if the
following three conditions hold.

(@) Rji = 0ifi # jandd; := —Z;fl:l Rj; >0foralli e {l,...,m}.

(b) For each n € {2,3,...,m}, there exists a sequence of k > 2 distinct states
itv=1,ip,...,ix =nsothat R, j; Riy i» -+ Ri, i, > 0.

(c) For each i € {l,...,m} with d; = 0, there exists a j € {l,...,m} with
d; > 0 and a sequence of k > 2 distinct states i1y = i,i2,...,if = j so that

Riy iy Risi »+* Rig iy, > 0.

We interpret R;; as the transfer rate from node i to node j # i and d; > O as
the decay rate from node i. Property (a) of Definition 1 thus ensures that the ODE in
(1) conserves mass in the sense that mass can only move between compartments or
decay. In particular, property (a) allows us to define a continuous-time Markov chain
associated to R.

Definition 2 If a matrix R = {R j,-}’j’?’ i— € R™*™ satisfies property (a) of Definition 1,
then we say that the continuous-time Markov chain (Norris 1998),

X = {X(1)};>0 with state space {&, 1, 2, ..., m}, 2)
is a random walk on R if X jumps from state i € {1,2,...,m} to state j €
{1,2,...,m} atrate Rj; for i # j, jumps from state i € {1,2,...,m} to state &
at rate

m
di =~ Rji =0, @)
j=1

and never leaves state .
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Table 1 Notation introduced in Sect.2.1

ci(t) Concentration in compartment i at time ¢

c(t) Vector whose entries are ¢;

m The total number of compartments

R The reaction rate matrix

I1(t) The noisy input into compartment 1 at time ¢

E(1) The fluctuation in noisy input about the average (§(¢) := I(t) — E[1(1)])
€ The i'” standard basis vector

d; The decay rate from compartment i (see (3))

X Continuous time Markov chain induced by R (see Definition 2)

Property (b) of Definition 1 avoids trivial cases by ensuring that input into node 1
may reach any node n € {2, 3, ..., m}. Property (c) ensures that any input into the
system eventually decays. The following proposition makes “eventual decay” precise.

Proposition 1 If R is admissible, then its eigenvalues have strictly negative real parts.

Having defined the admissible class of “reaction rate matrices” or “networks” R €
R™>™ consider the following system of linear ODEs with stochastic input,

%c(l‘) = Re(t) + I(t)e;, teRR )

In (@), c(®t) = {c;®)L, € R™*1 is a vector of concentrations in different compart-
ments, /(¢) € R is some noisy input to compartment i = 1, e; € R"™*! is the first
standard basis vector, and R € R™*™ is admissible. Let £(z) denote the fluctuations
of the input about the average,

§(1) = 1(t) — E[I(1)],

so that E[£(¢)] = 0. Assume that E[I ()] + E[£%(r)] < B for all t € R for some
B € (0, 00) and that E[/(¢)] and &(¢) are piecewise continuous and take only finitely
many jumps on any finite time interval. The notation introduced in this section is
collected in Table 1 for convenience.

2.2 Network Times T,,, T, and a Pedagogical Example

We introduce two random times corresponding to different notions of robustness. We
refer to these random times as “network times” since they depend only on the network
R (and thus not on the noisy input /). By using the variance of these network times
as summary statistics, we aim to quantify the contribution of R to robustness under
general stochastic inputs /.

One notion of robustness is the variability of the flux out of the system.
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Definition 3 For a given reaction rate matrix R, let the flux out of the system J be

J@) =) dici(t) =d"c(t), ()

i=1
whered” = —1TR € R™*! is the vector of decay rates dy, . .., dy,.

We show below that the variance of J can be understood in terms of the following
network time Tppg.

Definition 4 For a given reaction rate matrix R, let Typs be a random time with prob-
ability density function given by

pans(t) =d"efle;, >0, (©6)

whered” = —1T R € R"™*! is the vector of decay rates d, ..., dy,.

Rather than the flux J, an alternative notion of robustness concerns the variability
in the concentration ¢, in some given node of interest n € {1, 2, ..., m}. In this case,
we show below that the variability of ¢, can be understood in terms of the following
network time 7,.

Definition 5 For a given reaction rate matrix R, let 7,, be a random time with proba-
bility density function given by

1 1 T Rt
() = —PX() =n|X(©0) = 1) = —¢, e, 120, @)

n
n

where
In := /Oo P(X(t) =n|X(0) = 1)dt = —(R™"),1 € (0, 00). (®)
0

Note that the definitions of Typs and 7,, depends solely on the network R and not on
the stochastic input /. In later sections, we use 7' to refer to both Typs and 7, depending
on context. Furthermore, we show in Sect. 4 that Ty, and 7, can be interpreted as
first passage times and last passage times. In particular, the “abs” in Typs stands for
absorbing state since Typs can be interpreted as the first passage time to the absorbing
state.

To illustrate the connection between our network times and robustness, we give a
simple example regarding J and Typs, which can be easily modified for ¢, and 7,.
Consider the single ODE describing exponential decay at rate d > 0 with a stochastic
input 7(¢),

d
ac = —dc+ 1(1).

@ Springer
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Table 2 Notation introduced in Sect.2.2

ar’ —1TR e R™*1 vector of decay rates dy, ..., dpn

J(1) ch(t). flux out of the system

Pabs () dTeR’el where r > 0. A probability density

Tabs Random network time with density pgpg

tn Expected time a random walk from 1 spends in compartment n
pn(t) %e;,reR’el where ¢ > 0. A probability density

Ty Random network time with density pj (f)

T Random network time. Could be Typs or Tj,

In this simple case, m = 1 and R = —d. The flux out of the system is

t
J(t) = de(t) = d f 109 1(5) ds.
0

Upon changing variables s’ = ¢ — s, we can write this output as the following condi-
tional expectation,

J(1) = /oode’*ds/l(t —s")ds" = E[(t — Tavs) [ {I()}s=t], (C))
0

where, for this example, Typs is exponentially distributed with rate d > 0. This agrees
with Definition 4. In words, (9) says that the output J is a weighted average of the
past input 7, where the weights are pgpg, the probability density function of Typs.

As d grows, paps approaches a Dirac delta function, T,ps becomes highly concen-
trated, and J at time ¢ becomes determined by [ at time ¢. As d vanishes, Typs becomes
highly variable, and J at time ¢ approaches an average with similar weights for any past
inputs. Reminiscent of the law of large numbers, we thus expect fluctuations in input
to average each other out if d is small, resulting in J(¢) being almost deterministic.
Summarizing, J becomes less variable as the variability in Typg increases.

This intuition of a negative correlation between robustness and variability in T
extends beyond the simple exponential decay case. Indeed, one can show that

J(0) = E[I(t — Tavs) | {1 (5)}s=<]

holds for all admissible networks, and we collect that calculation at the beginning of
the proof of Theorem 1 in the appendix. It is also straightforward to apply this intuition
to ¢, and T,,. The remainder of Sect. 2 gives rigorous results where the variance of our
network times serve as a summary statistic for robustness robustness. The notation
introduced in this section is collected in Table 2.
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2.3 Decomposing Network Variability

The two factors determining the dynamics of the system (4) are (i) the stochastic
input I = {I(t)};er and (ii) the topology and rates of the network R. The following
result shows how (i) and (ii) contribute to the variability in the flux out of the system.
Throughout this paper,

E[Z], Var(Z), SD(Z), and CV(Z)
respectively denote the mean, variance, standard deviation, and coefficient of variation
of a random variable Z (note that CV(Z) = SD(Z)/E[Z]).
Theorem 1 Suppose ¢ = {c(t)};cr satisfies (4) for some admissible R € R™*™ ., Then,
for any time t € R, the variance of the flux J in (5) is
Var(J (1)) = E[K (t — Tups, t — Ty)], (10)

where

K(t,s) :=E[5®)E(s)]

is the correlation function of the noisy input and Taps, T, are independent and iden-
tically distributed (iid) realizations of a random variable with probability density in

(6).

Similarly, when interested in the variability in some given node of interest n €
{1,2,...,m}, we have the following result.

Theorem 2 Suppose ¢ = {c(t)};cr satisfies (4) for some admissible R € R™*™ . Then,
for any time t € R and compartment n € {1, 2, ..., m}, we have that

Var(c, (1)) = t’E[K (t — Ty, t — T))], (11)

where T, T, are iid realizations of a random variable with probability density in (7).

Theorems 1-2 thus decompose the variance of J and ¢, into (i) properties of the
noisy input & (through its correlation function K (-, -)) and (ii) properties of the network
(through Taps, T, and ty,).

The following definition characterizes the networks for which paps = p;, (and thus
Tabs = Tn)-

Definition 6 A network R € R™*™ is called n—terminal if it is admissible and

m
dnz—ZRjn>O forsomen € {1, ..., m},
Jj=1
m
and di =— Rj =0 foralli #n.

j=1

@ Springer
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In words, a network is n-terminal if compartment » is the only compartment with
nonzero decay. The following result follows from a quick calculation (collected in the
appendix with the rest of the proofs).

Proposition 2 If R is n-terminal, then paps = pn and t, in (8) is given by

t, =1/d, > 0.

2.4 Stationary Noisy Input

If the input I(r) = E[I(#)] + &(¢) is wide-sense stationary (WSS) (Pavliotis 2014),
then E[/(#)] = E[/] is constant in time and the correlation function simplifies to

K, s) =E[§@ —$)§0)] = K — ),
and must satisfy (Pavliotis 2014)
|K ()| < K(0) = Var(¢§) = Var(I), tecR.

In the WSS case, the conclusions of Theorems 1-2 simplify, and we state these in the
following two corollaries.

Corollary 1 If the input I1(t) is WSS and not constant in time, then the variance of the
Sflux out of the system in (5) satisfies

Var(J) = BIK (Taps — T)y,)] < Var(I). (12)

Corollary 2 Ifthe input 1(t) is WSS, then the mean of compartmentn € {1,2, ..., m}
is
Elc,] = t,E[1].

Ifthe input 1 (t) is WSS, not constant in time, and satisfies E[ 1] # O, then the coefficient
of variation of compartment n satisfies

SD(cn) _ IE[I{(Tn - Ty:)] - \/Var(I)

CV(cy) = T =
[cnl E[7] E[I]

13)

The bound Var(J) < Var(7) in (12) implies that the variance of the output is always
less than the variance of the input. That is, any linear system must strictly dampen a
noisy input. The bound CV(c,) < +/Var(I)/E[I] in (13) was previously shown in
Theorem 3.1 in Anderson et al. (2007).

2.5 Network Robustness from Variability in T

We are interested in determining under what conditions a network is robust to a WSS
noisy input I (¢) with E[/] > 0 and Var(/) > 0. There are two natural notions of
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“robust” which we consider, where either notion might be more relevant depending
on the specific application. The first notion of robustness is that the variance of the
output J in (5) is much less than the variance of the input 7,

Var(J) <« Var(I). (14)

Since E[J] = E[/] (this calculation is collected in Proposition 4 in the appendix),
note that (14) is equivalent to a statement about coefficients of variation,i.e. CV(J) <
Cv{).

Rather than the output, in some applications one is more interested in the concen-
tration in some specific node n € {1, ..., m}. Hence, the second notion of robustness
is that the coefficient of variation of the concentration in node » is much less than the
coefficient of variation of the input,

CV(cn) <K CV(). 5)

We note that Var(c,) and Var(/) cannot be compared directly since they have different
units (concentration versus concentration per time).

Assuming merely that the noisy input has a decaying correlation function (i.e.
K() — 0 as |[t| — o0), the notion of network robustness in (14) corresponds to
variability in the random variable T, with probability density in (6) since Corollary 1
implies

Var(J)  E[K (Tas — T},0)]

= < 1.
Var([/) K (0)

That is, if Typs is highly variable (compared to the decay rate of K), then | Typs — Ta’bs|
is likely large and thus K (Tys — T, ) is likely small. By the same argument, the
notion of network robustness in (15) corresponds to variability in the random variable

T,, with probability density in (7) since Corollary 2 implies

CV(cn)  |E[K(T, —T,)]
CvV() K (0)

< 1.

Therefore, we propose that measures of the variability of Typs and 7, can serve
as summary statistics of the robustness of the network (where one uses Typs for the
robustness notion in (14) and T}, for (15)). A natural measure of the variability of Typg
or 7T, which can be quickly computed via the matrix R is its variance. Specifically, a
quick calculation using (6) and (7) (see Proposition 5 in the appendix) shows that the
variance of Typs 1S

m m 2
Var(Tys) = =2 ) di(R™)i1 — (Zdi(R—%) : (16)

i=1 i=1
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where d; := — Z;flzl Rj; > 0, and the variance of T, is

Var(T,) =

-3 -2 2
2(R )n1_<<R )M)_ 07

(R_])nl (R_l)nl

Hence, by setting either
T = Tabs, or T = ’Tﬂ?

depending on the notion of robustness (either (14) or (15)), the formulas (16)—(17)
allow one to quickly estimate the robustness of a network R in terms of a single

timescale,
SD(T) := +/Var(T),

where large values of SD(T") correspond to more robust networks. Indeed, (16)—(17)
can be computed in seconds on a modern computer for networks with thousands of
nodes. We note that (R™/); is often most efficiently computed by solving the linear
system R/v = e; for v € R”*! and setting

(R)i1 =¢v.
Furthermore, to estimate the robustness of a given network R to a given WSS noisy

input /, we can compare SD(7') to the correlation time of /. That is, if the noisy input
has a finite, nonzero correlation time defined by

1 oo
T = m/{) K (1) dt, (18)

then our analysis suggests that the network R is robust to [ if
SD(T) >» .

We note that in the case of white noise input (which has zero correlation time and
infinite variance), more variable network times 7 still correspond to more robust
networks (see section 3 below).

3 Numerical Simulations

We argued in section 2 that variability in the network time 7 is a proxy for network
robustness. We now illustrate this point via numerical simulations. In particular, for a
variety of randomly generated networks and stochastic inputs, we show that Var(J) is
inversely related to SD(Typs), and CV(c,) is inversely related to SD(7},). The results of
the simulations are seen in Fig. 2. Section3.1 summarizes and interprets Fig. 2, while
Sects. 3.2-3.4 detail how the simulation results were computed.
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3.1 Simulation Results

For WSS noisy inputs, we proved in Sect. 2 that the only property of the noisy input that
affects the variance in the network is the correlation function K () := E[£(?)£(0)].
In the simulations in this section, we consider two choices of the correlation function.
We suppose that the correlation function is either (i) a decaying exponential,

K(1) = a2e 1T, (19)

where T > 0 is the correlation time and Var(§) = 0?2 > 0, or (ii) a Dirac delta
function,

K(t) = 2t0%8(1), (20)

where t > 0 and o7 > 0 are characteristic time and concentration scales of the noisy
input, respectively. As we detail below, (19) corresponds to a variety of noisy inputs,
including that £(¢) is an Ornstein—Uhlenbeck process or a telegraph process. Further,
(20) corresponds to the case that £(¢) is white noise.

In the top panels of Fig.2, we plot the standard deviation of the flux out of the
system,

SD(J (1)) := \/Var (Z:"zl dici (t)) - \/]E[K(Tabs — T/l Q1)

against SD(Typs) for 10* different randomly generated networks. In the bottom panels
of Fig. 2, we plot the coefficient of variation for the nth compartment,

SD(c(1))  EIK(T, —T,)]
Elc, ()] E[1]

CV(c,(2)) := ) (22)

against SD(7},) for 10* different randomly generated networks. The final equalities in
(21)—(22) are due to Corollaries 1-2 and we set E[/] = 1 and T = 0> = 1 in (19)—
(20). The left and right panels of Fig. 2 are for noisy inputs with correlation functions
in (19) and (20), respectively. We detail how the networks were generated in Sect. 3.4,
but here we note that the number of nodes in each network ranges from m = 1 to
m = 100, and approximately half of the networks are linear chains (half of which are
reversible and half irreversible) and half are Erdos-Renyi random networks. Further,
all of the rate constants in the networks were chosen randomly.

Figure 2 demonstrates that SD(T) = +/Var(T) does indeed characterize network
robustness (where one sets 7 = Typs or T = T,, depending on the notion of robustness,
see Sect. 2.5). While close inspection of Fig. 2 shows that it is possible for a network
to have a larger value of SD(T) and yet be less robust than another network, the
overwhelming majority of the networks in Fig.2 show that a larger value of SD(T')
entails a more robust network. Furthermore, the regions SD(7) <« t and SD(T) > t
indeed respectively characterize not robust and robust networks.

Another feature of Fig. 2 is that the data points for the randomly generated networks
agree closely with the red curves. The red curve in each plot is simply for the case
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A ! 1
o random network B 10 O random network
0.8 = Tabs ~ Exponential =—— Thops ~ Exponential
= 10°
= 06 L
L S
S =
a2 0.4 %
n 10-1
0.2
0~ - ; 10720
1072 107t 100 10* 102 103 1072 107t 10° 10t 102 103
SD(Typs) /T SD(Tans) /T
C 1
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SD(T,.) /™ SD(T,,)/T

Fig. 2 Variability in network time 7' characterizes network robustness. The circle markers are for 104
randomly generated networks and the red curves depict the case that T is exponentially distributed. A
Standard deviation of flux out of the system as a function of the standard deviation of T,p¢ for noisy inputs
with exponentially decaying correlation functions. B Standard deviation of the flux out of the system as a
function of the standard deviation of Typg for white noise input. C Coefficient of variation of compartment
of interest ¢;; as a function of the standard deviation of 7, for noisy inputs with exponentially decaying
correlation functions. D Coefficient of variation of compartment of interest ¢, as a function of the standard
deviation of 7, for white noise input. In all plots, the mean input is E[/] = 1 (Color figure online)

that T is exactly exponentially distributed. In the case of the exponentially decaying
correlation function in (19), we show below that this is

o

JI+SD()/t

In the case of the Dirac delta function correlation function in (20), we show below that

this is
— o
VE[K(T —T)] = —S T

The result that the circle markers tend to lie on the red curves in Fig. 2 suggests that
the network time 7 is approximately exponentially distributed for many of the random
networks. This result is perhaps not surprising in light of the matrix exponential forms
of the probability density function of T in (6)—(7). Furthermore, we show in section 4
below that T is equivalent to a certain first passage time on an associated network,
and first passage times on networks are known to be approximately exponentially
distributed in many scenarios (Meyer et al. 2011).

E[K(T —T)] = if T ~ Exponential. (23)

if T ~ Exponential. (24)
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3.2 Exponentially Decaying Correlation Function

A variety of WSS noisy inputs have an exponentially decaying correlation function
as in (19). For example, suppose £(¢) is an Ornstein—Uhlenbeck process, and thus
satisfies the following stochastic differential equation,

2
dS:—%dr—i—,/z%dW, (25)

where W is a standard Brownian motion. In this case, the correlation function of & is
in (19) with correlation time t > 0 and variance o2 > 0.

Another WSS noisy input with the exponentially decaying correlation function
in (19) is a telegraph process (also called dichotomous Markov noise (Bena 2006)),
which is simply a two-state, continuous-time Markov chain. In particular, suppose
&(t) switches between values &) and & according to

s

0o = (26)
(I=q)/7

That is, £ jumps from state &y to state £ at rate ¢/t and jumps from state £ to state
&g atrate (1 — g)/t forg € (0, 1) and T > 0. In this case, the correlation function of
& isin (19) with correlation time 7 > 0 and variance

Var(§) = 02 := (£ — &1)2q(1 — q) > 0.

We note that though both the Ornstein—Uhlenbeck process in (25) and the telegraph
process in (26) share the same correlation function in (19), the Ornstein—Uhlenbeck
process is Gaussian but the telegraph process is not.

The data points in Fig. 2 are computed for this exponentially decaying correlation
function (19) via

o0 o ,
E[K(T - T")] = a2f / p(s)p(sHe =517 ds’ ds
0 0
(o 0] S ,
= 2g2f / p(s)p(se /T dg’ ds, (27)
0 0

and computing the double integral in (27) numerically (where T = Ty and p = paps
or T =T, and p = p,). Note that (23) follows immediately from (27) upon setting
p(t) = re ™ and SD(T) = 1/A.

3.3 White Noise Input
The Dirac delta function correlation function in (20) corresponds to a white noise input.
As is well-known (Pavliotis 2014), white noise can be obtained from the Ornstein—

Uhlenbeck process in (25) by taking the correlation time to zero and the variance to
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infinity while keeping their ratio fixed. Specifically, if we rescale the correlation time
and variance in (25) according to T — &7 and 0> — 0% /¢ and take ¢ — 0 we obtain

2
lim K (1) = lim E[£(1)&(0)] = lim Z—e~1/ED = 2¢625(p),
e—0 e—0 e—>0 &
which implies the heuristic
aw
lim £(7) = V2102 =
lim £ @) [

where dd_vtv denotes white noise. In this white noise limit, 7 is no longer the correlation
time of & and o2 is no longer the variance of & (since white noise has zero correlation
time and infinite variance), but we retain the parameters T € (0, co) and o € (0, 00)
since they represent characteristic scales of &.

Having taken the white noise limit, we then obtain

E[K(T — T")] = 270> /00 /OO p(s)p(sH8(s —s') ds ds’
0 0
= 2707 / T (p6)?ds = 2002 pIE = 200 BT, (29)
0

where T = Tagps and p = paps or T = T, and p = p,. Note that E[p(T)] is
a measure of the variability of 7 (with small values of E[p(7T)] indicating a more
variable 7'), which is akin to the Simpson index (Simpson 1949). Note that (24)
follows immediately from (28) upon setting p(t) = re™*" and SD(T) = 1/A.

3.4 Random Network Construction

We now describe how the 10* random networks were constructed for Fig.2. These
networks were created to show that variability in 7' corresponds to network robustness
across a large variety of networks (i.e. across networks that vary considerably in their
size, connectivity or topology, and rate constants).

First, the size of the network was chosen according to

m= round(lOzU),

where U € [0, 1] is uniformly distributed and round(-) merely rounds to the nearest
integer. Next, a random variable ® was drawn uniformly on {1, 2, 3, 4} to determine
the type of network.

If ® = 1, then the network is an irreversible linear chain with compartment of
interest given by the terminal node n = m. Further, the rate constants were taken to
be

Riv1i=1+E; ief{l,2,....,m—1},

and d,, = 1 + E,,, where {E; };”zl are iid unit rate exponential random variables.
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If ® = 2, then the network is a reversible linear chain created identically to the
case ® = 1, except rather than setting R; ;+1 = 0, we set R; j4+1 = R;4+1,; for
ie{l,2,...,m—1}.

If ® = 3, then the network was taken to be of Erdos-Renyi type. Specifically, we
let connection probability p € [0, 1] be uniformly distributed on [0, 1] and set the
transition rate from i to j # i to be

Rji=2; 0+ E;j;), i,je{l,2,....m}, i # ],

and set the decay rate from state i to be d; = Zp; (1 + Eo,;), where {Z; ;}; ; are iid
with
PZij=)=p, PZ ;=0=1-p,

and {E; ;}; ; are iid unit rate exponential random variables. The compartment of
interest n was taken to be m.

If ® = 4, we first create a network R’ identically to the case ® = 3 and then we set
the network to be R; = (Rl’].l. + lej)/Z sothat R;; = Rj; foralli, j € {1,2,...,m}.

Finally, to ensure that there is a path from state 1 to state n and that all the eigenvalues
of R have strictly negative real parts for cases ® = 3 and ® = 4, if the random
construction of the network resulted in an R such that the condition number of R3
exceeded 101, then the connection probability p, the connections {Z; ;};, ;, and the
jump rates {E; ;}; j were resampled.

4 Stochastic Analysis of Network Time T

In Sects. 2-3 above, we showed that the robustness of a network depends on the
variability of a certain random time T whose probability distribution is defined by the
network R. In this section, we study representations of 7" in terms of a random walk
on the network (Sects. 4.1-4.2). We then use these representations of 7' to study how
certain network structures increase or decrease network robustness (Sects. 4.3-4.5).
In particular, by giving a stochastic interpretation of 7' in terms of random walks on
the network, we obtain (i) understanding for why certain network structures increase
robustness and (ii) a way to study robustness in terms of stochastic analysis of random
walks.

4.1 Stochastic Representation of Network Time T

To define a random walk on the network, let X = {X(#)};>0 be the continuous-time
Markov chain in (2). The next result follows from an elementary calculation (collected
in the appendix with the rest of the proofs).

Theorem 3 The first passage time of X to the absorbing state,

TX

abs

=inf{r >0: X(r) = @}, (29)
has the same probability density paps in (6) as Typs if we condition that X (0) = 1.

@ Springer



55 Page 18 0f 36 H.-R. Tung, S. D. Lawley

We use the superscript X in (29) because Ta’és is defined by paths of X, whereas
Taps 1s defined simply by its probability density pabs.

The next result is that the probability density p, in (7) describes the time that X
leaves node n for the last time (the so-called last passage time (Bao and Jia 2004;
Comtet et al. 2020)), conditioned that X reaches node n starting from node 1.

Theorem 4 The last passage time of X to noden € {1,2,...,m},
TX :=sup{r > 0: X(t) = n}, (30)

has the same probability density p, in (7) as T, if we condition that X(0) = 1 and
X(t) = n for somet > Q.

Although it may not be intuitively clear why the probability densities of 7,, and
T match (and similarly for Tops and T, dbs) it is intuitive that the last passage time is
relevant to robustness. Recall from the intuition given in Sect. 2.2 that 7}, is of interest
since ¢, is a weighted average of past inputs / whose weights are p,,. A highly variable
T,, means that inputs across a wide range in time contribute to ¢,. Similarly, a highly
variable last passage time TX implies that particles from inputs across a wide range
in time could be in compartment n at time ¢.

The proof of Theorem 4 follows from showing that 7,X has the same distribution as
the first passage time of a modified network, then using a similar elementary calculation
as in the proof of Theorem 3 to show that they have probability density p,. We now
discuss the construction of the modified network.

We first relate p, in (7) to the first passage time to the absorbing state & of a
suitably modified random walk denoted X = {X (t)};>0. In addition to its use in
proving Theorem 4, reframing the last passage time as a first passage time can also
be helpful for leveraging the much vaster literature on first passage times to analyze
specific networks. To define X, let A be the event that X reaches compartment n,

= {X(t) = n for some ¢ > 0}, (31)

and let IP; denote the probability measure conditioned that X (0) = i. Without loss of
generality, we assume

P;i(A) >0 forall j €{l,2,...,m},
since if P;(A) = 0, then we can replace compartment j with the absorbing state
& without affecting Dn in g) (or TnX in Theorem 4). Define the following modified
reaction rate matrix R = {Rij}f'szl € R™ M yia
Rij = RijP;(A)/P;(A), (32)
and note that R;; = Rj;. Define X ={X (t)}1>0 to be the continuous-time Markov

chain associated with R (analogous to X in (2) associated with R). In words, Risa
re-weighted version of R so that X is sure to hit node n.
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Fig.3 A network R (top) and its corresponding R network (bottom) as defined in (32)

Theorem 5 The first passage time of X 1o the absorbing state,

TX =inf{t >0: X(1) = @), (33)
has probability density p, in (7) if we condition that )~((0) =1

Recall that a network is called n-terminal if node n is the only compartment with
nonzero decay (see Definition 6). If R is n-terminal, then it follows immediately that

R =R and Ta)gs = Ta)és = TnX . The following result (proof collected in Lemma 2 in
the appendix) states that R is always n-terminal.

Proposition 3 The network R in (32) is n-terminal.

4.2 An lllustration of R

In this section, we find the n-terminal R associated with R in Fig.3 where n = 2 is
the node of interest. To start, we compute the probabilities that the random walk X
starting at compartment i reaches compartment n = 2. It is clear that P,(A) = 1 and

Pg(A) = 0. Since all rates are 1, the other P; (A) must be the average of P; (A) where
J are the neighbors of i. As such

1 2 1
Pi(d)=2. P4y =1 Ps4)= 3 Py(A) = 3
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input of interest

Fig.4 A reversible linear chain

Using the definition ﬁi./ = R;jP(A;)/P(A}), we find that

21 0 0 —21/2 0 0
1 =210 ~ |2 2320
B=1o 1 21| ®5lo23-22

00 1 —2 0 0 1/2-2

Notice that most edges in R are still in R. Edges only disappear when moving along
that edge prevents the particle from ever returning to the compartment of interest,
which in this case are the edges that lead to decay. The only edge that can be created
is from the compartment of interest to decay. An advantage of using R over R is that
it is n-terminal, and therefore 7, can be formulated as in (33) as the first hitting time
of X to @.

4.3 Linear Chains

We first consider an irreversible, linear chain of m = n compartments. Suppose
particles move from compartment i # n to compartmenti + 1 atrate R;+1; = k; > 0,
except compartment n where particles decay to state & at rate d, = k, > 0. A visual
representation is seen in Fig. 1b.

Since R is n-terminal, we have t, = 1/d,, and the network time 7}, is simply the
first passage time to state &, which is

n

E.
Th=2 (34)
i=1 "

where {E;}?_, are iid unit rate exponential random variables. Therefore,

n

1
Var(T,) = ) a2 (35)

i=1

Equation (35) implies that the longer the chain is, the larger the variance of 7, and
therefore suggests that more compartments make the network more robust to stochastic
input. This result agrees with the result of Anderson et al. (2007), which showed that
the variances of the fluxes strictly decrease down an irreversible linear chain. We also
note that (34) implies that 7}, is unaffected by any permutation of the rates and (35)
implies that decreasing any of the rates ki, . . ., k, increases Var(7},) and thus tends to
increase network robustness.

Suppose we now make the chain reversible by supposing that particles move from
compartment i € {2, ..., n} back to compartment i — I atrate R;_;; > 0, as seen in
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Fig.4. Since R is still n-terminal, we have t, = 1/d,, and T, is the first passage time
to &. Since this reversible linear chain is a birth-death process, it is known that this
first passage time is (Fill 2009)

n

Tn:Zf_jy

i=1

where {E;}!_, are iid unit rate exponential random variables and {A;}7_, are the
(necessarily positive) eigenvalues of —R.

4.4 Adding a Side Network

We now consider the effect of adding a general “side” network onto a general network
(i.e. not necessarily a linear chain network). We define a side network as a network
attached onto an existing network R at compartment s € {1, 2, ..., m} such that ran-
dom walks can enter the side network only through compartment s and must eventually
leave the side network through compartment s. Define Ty and 7, as in Theorems 1—
2 for the existing network without the added side network, and define T} and 7,"
analogously for the network with the added side network.

Theorem 6 If a side network is attached to a node s € {1,2, ..., m} whose removal
would disconnect paths from node 1 to the absorbing state &, then

Var(T},s) > Var(Tups).

If a side network is attached to a node s € {1,2,...,m} whose removal would
disconnect paths from node 1 to noden € {1,2, ..., m}, then

Var(T,)) > Var(T,).

Theorem 6 thus suggests that adding a side network at compartments that paths
must cross increases robustness. Hence, as a general principle, this result shows that
network robustness can typically be increased by increasing the network size and
complexity.

We point out that the conclusion of Theorem 6 that adding a side network increases
the variance of the network time may not hold if the side network is attached to a node
s whose removal would not disconnect paths as in Theorem 6. Indeed, an example
where a side chain decreases the variance can be seen in Fig. 5a. A quick calculation
for this example with node of interest n = 5 shows that

Var(Tj,) = Var(T,") = 70.25 < 72 = Var(Typs) = Var(Ty,).

This example does not contradict Theorem 6 because the side chain is added at node
s = 3, and paths from node 1 can reach @ and node n = 5 without hitting node s = 3.
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Fig.5 a Anexample network where adding a side network (seen in dotted box) reduces the variance of the
network time. b A linear chain with feedback loop (top) has the same 7" as a linear chain with side network
(bottom). The gray dashed lines indicate that the nodes (and rates) in the side network are copied from the
nodes in the linear chain

o

of interest

—

4.5 Linear Chain with Feedback

Theorem 6 allows us to study the effect of feedback loops on alinear chain. Specifically,
if the network is a linear chain (either reversible or irreversible) with a feedback loop,
then we can create a network with an equivalent network time by adding a side network
to a linear chain (see Fig.5b). This equivalent network is formed through the same
idea as the proof of Theorem 5.3 in Anderson et al. (2007). As the new network is
a reversible linear chain with a side network, the following result is a corollary of
Theorem 6.

Corollary 3 Suppose R is a linear chain (either reversible or irreversible). If R*
is formed by adding a feedback loop from node s € {1,2,...,n} to node j €
{1,2,...,5}, then

Var(T,}) > Var(T,).

5 Discussion

In this paper, we have argued that the robustness of a network to a stochastic input
can be understood and quantified in terms of the variability of a certain “network
time” 7. The probability distribution of the network time is defined by the network
(see (6)—(7)), and the network time can also be defined in terms of certain passage
times of a random walk on the network (see Theorems 3, 4, and 5). The network
time T is independent of the noisy input, and Var(7) can be quickly computed on
a modern computer, even for complex networks with thousands of nodes. Further,
we can estimate the robustness of a network to a given noisy input by comparing
SD(T) = +/Var(T) to the correlation time of the noisy input. Computational tests on
many complex networks demonstrate the validity of using Var(7T') to estimate network
robustness (see Sect. 3). Importantly, linking network robustness with variability in 7
gives intuition for why certain network structures increase robustness (see Sects. 4.3—
4.5). Indeed, our analysis shows that large, complex networks (perhaps with many
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feedback loops) generally increase robustness by increasing the variability in certain
random walk passage times on the network.

Of course, it is impossible for a single statistic to encapsulate all the properties of
how a network (a possibly very high-dimensional object) modifies all stochastic inputs
(an infinite dimensional space). Nevertheless, we propose that Var(7') is an effective
summary statistic for network robustness. That is, similar to how the variance of a
random variable is a useful measure of the variability of a probability distribution (an
infinite dimensional space), the variance of the network time is an easily computable
and useful statistic to understand and measure network robustness.

Asdescribed in the Introduction section, the basic mathematical problem of network
robustness was previously studied in Anderson et al. (2007) and Browning et al.
(2023). Anderson et al. 2007 was motivated by biochemical reaction networks and
Browning et al. 2023 was motivated by a wide variety of multistage processes in
biology. An alternative motivation stems from models of medication nonadherence,
in which the ODE network describes a drug’s pharmacokinetics/pharmacodynamics
and the stochastic input models the drug dosing behavior of an imperfectly adherent
patient. In this pharmacometric context, a “robust network™ is akin to a “forgiving
drug” (Osterberg et al. 2010; McAllister and Lawley 2022), where we use the notion
of network robustness in (15) with the compartment of interest given by the plasma
compartment or perhaps the effect compartment in the case of a pharmacodynamic
model (Felmlee et al. 2012).

Most of our analysis focused on stationary stochastic inputs (specifically, WSS
stochastic inputs), which is natural for applications to biochemical reaction networks
(Anderson et al. 2007) and various multistage biological processes (Browning et al.
2023). We now make four comments on how the assumption of stationary stochastic
(drug) inputs relate to models of medication nonadherence. First, several prior models
of medication nonadherence assume stationary drug inputs (Li and Nekka 2007; Lévy-
Véhel and Lévy-Véhel 2013; Fermin and Lévy-Véhel 2017), and thus our analysis is
directly applicable to these prior models. Second, though a stationary drug input is
a mathematically convenient assumption, more realistic models allow the drug input
statistics to vary in time relative to the prescribed dosing interval. For example, if the
patient is prescribed to take a medication every morning, it is reasonable to suppose that
they are more likely to take dose in the morning compared to the evening (or the middle
of the night). Third, stationary inputs can sometimes approximate non-stationary inputs
for models of medication nonadherence. To illustrate, consider the common model of
medication nonadherence (Lévy-Véhel and Lévy-Véhel 2013; Fermin and Lévy-Véhel
2017; Counterman and Lawley 2021, 2022; McAllister and Lawley 2022), which
assumes that at every scheduled dosing time (i.e. at integer multiples of the prescribed
dosing interval 7), the patient takes a dose with probability p € (0, 1) independently
of their prior behavior. The stochastic drug input is then

[(t)y=D) &8t —nr), (36)

nez

where D > 0 is the ratio of a dose size to the apparent volume of distribution, {&,},c7
is an iid sequence of Bernoulli random variables withP(§, = 1) = p = 1 -P(§,—0),
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and & denotes the Dirac delta function. Pharmacokinetic models often assume that an
ingested dose initially enters an “absorption” compartment and then moves irreversibly
to the “plasma” compartment at a constant absorption rate k > 0 (Gibaldi and Perrier
1982). Hence, the input (36) into the absorption compartment is equivalent to the
following input into the plasma compartment,

t
Ip(t) = / ke M9 1(s)ds = Dk Y e *Tg, (37)
—00

n<t/t

Now, observe that Iy in (37) evaluated at integer multiples of the dosing interval t
satisfies the following recurrence relation,

Io(nt + 1) = e *"Iy(nt) + Dképy1, n € Z. (38)

Further, (38) is an Euler-Maruyama approximation of the following Ornstein—
Uhlenbeck process,

1—e*/ Dk 1—
Aoy = ——— (=Pl de + Dk | 2L gy, (39)
T 1 —e "t T

on the discrete time grid {nt},cz (Kloeden and Platen 1992). In particular, the
Ornstein—Uhlenbeck process (39) approximates the solution to the recurrence relation
(38) if kT < 1. Summarizing, the non-stationary input in (36) can be approximated
by the stationary input in (39) for drugs which are absorbed slowly compared to their
prescribed dosing interval. Fourth and finally, the decompositions obtained in Theo-
rems 1-2 do not assume stationary inputs. Thus, we expect that our that basic result
that network robustness is characterized by variability in 7 extends to non-stationary
inputs, but we leave a detailed investigation of this point for future work.

Appendix: Proofs
Proofs for Section 2

Proof of Proposition 1 Define the first passage time of X in (2) to the absorbing state
Q’

TX :=inf{t > 0: X(1) = &).

abs

We claim that

P(Tf, < 00| X(0)=i)=1, foreachi e {l,..., m}. (40)

al

To show (40), we first recall some Markov chain definitions and theory.
Following Following Norris (1998), we write i — j if there is a directed path
from i to j or if i = j (meaning, either i = j or there exists k > 2 distinct states
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i1 =1,...,0k = jwith Ry, -~ Ry iy, > 0). We write i < j if bothi — j
and j — i. It is straightforward to check that <> is an equivalence relation and thus
partitions {1, 2, ..., m} into equivalence classes called communicating classes. We
say that a communicating class C C {1,2,...,m}isclosedifi € C andi — j imply
j € C.In words, a closed class is one from which there is no escape.
Now, the absorbing state @ is a closed class. If there was another closed class
C C {1,...,m}, then we must have d; = 0 for all i € C by definition of closed.
However, this would break property (c) in Definition 1 in our assumption that R is
admissible. Therefore, all communicating classes in {1, ..., m} must not be closed
and therefore must be transient (see Theorems 1.5.3, 1.5.5, and 3.4.1 in Norris (1998)),
which proves (40).
Equation (40) implies
lim P(Tf, > 1| X(0) =i) =0, foreachi € {1,2,...,m).
11— 00

Since the survival probability of T, is given in terms of the matrix exponential of R
(Norris 1998),

P(TE > 1|X©0)=i)=1"eRe;, ic{l,2,...,m},

where 1 € R"*! is a column vector of all 1, it follows that all eigenvalues of R have
strictly negative real parts. O

Proof of Theorem 1 1t is immediate that the solution to (4) is

t
c(t) = / eRU=9e, 1(s5) ds. (41)

Therefore, the flux out of the system is
t

J@t):=d c@t) = de

—00

o
M6 ds = [ pum )15 b
0

where we have changed variables s — ¢ — s and used the definition of p,ps(s) =
d ' e®Se; in the final equality. Using that E[£(¢)] = O then yields

Var(J (1) = E[ /0 " s ©E —5) ds)z]
=E| /O h /0 " P () pas E(E — )E(E — ') ds as'|

0 oo
= / / Pabs(8) Pabs (VK (t — 5, — s')ds ds’
0 0

= E[K(t - Tab57t - T/bs)]a

al

where K (s, s’) := E[£(s)&(s")] denotes the correlation function of & (also called
the covariance, autocovariance, or autocorrelation function (Pavliotis 2014)), and
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Tabs, Ta’bs are iid realizations of a random variable with probability density p,ps. Note
that we are assured that p,ps is a probability density by Theorem 3. O

Proof of Theorem 2 From (41), we have that

t [ee)
cn(t) =e) c(t) = e,'{/ eRU=9¢ 1(s)ds = tn/ pu()(t —s)ds,  (42)
5o 0

where we have changed variables s — t — s and used the definition of p,(s) =
t, 1eT Rse, in the final equality. Using that E[£(¢)] = O then yields

> 2
tn_2V n = / n _ d‘

wen =E[( [ pooe —9as) ]

=]E[/ / Prn($) pu(sHEEX — $)E(t — s")ds ds’]
0 0
=f / Pu($)pu(sHK(t — s, —s')ds ds’
0 0

=E[K(t — Ty, t — T))],

where K (s, s") := E[£(s)&(s")] and T,,, T,, are iid realizations of a random variable
with density pj,. O

Proof of Proposition 2 Since R is n-terminal, d = d,e,. Since pays(1) = d'eRle; =
dneT Rte, and pn(t) = _leT Rta, are both probability densities of nonnegative
random variables, we must have

o0
/ dpelefle;dr = 1 =/ 1) eRley dr,
0 0

and therefore d,, = 1/1,. O

Proof of Corollary 1 The result
Var(J) = E[K (Typs — Typg)] < Var(l), (43)

follows immediately from Theorem 1 and the general result that the correlation func-
tion of any WSS process satisfies |K(¢)| < K(0) = Var(/) for all r € R (Pavliotis
2014). Furthermore, if K(s) = K(0) for some time s # 0, then £(¢) is periodic
with period s. Therefore, since £(¢) is not constant in time and Typs has a continuous
probability distribution, the inequality in (43) must be strict. O

Proof of Corollary 2 Taking the expectation of (42) yields E[c,] = t,E[1]. The result

SD(cy)  EIK(T, — T,)] «/_Var(l
Elc,] E[]] —  E[I

CV(c,) = , (44)

@ Springer



Understanding and Quantifying Network Robustness. .. Page270f36 55

follows immediately from Theorem 2 and the general result that the correlation func-
tion of any WSS process satisfies |K ()| < K(0) = Var(/) for all r € R (Pavliotis
2014). The result that the inequality in (44) must be strict follows from the same argu-
ment in the proof of Corollary 1 since 7;, has a continuous probability distribution.

O

Proposition 4 [f the input 1(t) is WSS, then E[J] = E[I].

Proof of Proposition 4 Taking the mean of (41) and using that / is WSS yields

t
E[c(1)] :/ R E[11ds = —R e, E[1].

—oc0
Since J =d'candd” = —1T R, we obtain
E[J]=d E[c] = —d" R 'e|E[I]= 1" RR'e|E[I] = E[]],
which completes the proof. O
Proposition 5 Suppose R € R™*™ is invertible, u, v € R™*!, and
p(t) = ul ey, >0,
is a probability density of a nonnegative random variable T. Then

E[T]=u' R %v, E[T?]=—2u' R v.

Proof of Proposition 5 Integrating by parts yields
o o
IE[T]:/ tp(t)dt:/ tu'eRyde
0 0
(0.¢]
:—/ u' R 'eRydr =u' R %v.
0
Similarly, integrating by parts twice yields
(0.¢]
IE[T2]=/ 2 p(t) dt:f 2u ety dr
0 0
o0
:—/ 2tu’ R 'Ry dr
0
:f 2u'R2eRlydr = —2uT R,
0
which completes the proof. O
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Proofs for Section 4

Proof of Theorem 3 The survival probability of the absorption time conditioned that
X (0) = 1 is (Norris 1998)

P (T, > 1) =1"TeRle;, >0, (45)
where 1 € R™*! is a column vector of all ones. Since d; = — ZT:I Rji > 0, we
have that

1"TR=-d".

Therefore, taking the derivative of (45) yields

d
— 3 P1 Ty > 1) = 1" Relley =d " eMer = puns (1),

which completes the proof. O

Proof of Theorem 5 Theorem 3 implies that T;ES has density
Pabs = dTeR[en,

if we condition that X (0) = 1, whered " = —1T R where 1 € R™*! is the vector of
all 1's. Further, Proposition 3 implies that R is n-terminal, and therefore Proposition 2
implies that B B

Pavs(1) 1= dTeMey = Py (1) = dye, eMen,

where d, = d" e, is the nth element of d. Therefore, Ta}lgs has density p, if we condition
that X (0) = 1.

It thus remains to show that p, = p,. If we define the diagonal matrix A =
diag(P;(A), P2(A), ..., Py (A)), then (32) yields

R=ARA L

Noting that e,TA_1 = e,jm = e,T and Ae; = P(A)e;, we compute

T Rt
hpn(t) =e,e" e

T A—1_Rt
=e, A" e Ae

1 P
T Rt
_ P (A
=e, P )e 1(A)e;

=Pi(Ade, eR'e; = P (A)T, Pu(t).

n

Hence, p, and p, are equal up to a scalar multiple, but since fooo pn(t)dt =
Jo_ Pn(t)dr =1, we must have p, = p,. O
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We now aim to prove Theorem 4. The next lemma proves Theorem 4 in the special
case that R is n-terminal.

Lemma 1 If R is n-terminal, then the last passage time of X tonoden € {1,2, ..., m},
TnX = sup{t > 0: X(¢t) = n},

has probability density py, in (7) if we condition that X (0) = 1.

Proof of Lemma 1 Note that n-terminal implies that a particle leaves compartment n
for the last time by immediately decaying. As such, if a particle is still in a compartment
1,2, ..., m, then it has not left compartment n for the last time. Mathematically, this
means

PI(TX > 1) =Pi(X(t) € {1,2,...,m}) =1TeRley,

where 1 is a column vector with all 1s. Taking the derivative yields

d
fu(t) == —E}P’](Tnx > 1) =1T(=R)efle;.
Since R is n-terminal, 1"R = —dne;'l—. Therefore, (7) implies
fa0) = dye, e®'er = duty pa(0). (46)

Noting that [;° f, (1) dt = [y pa(t) dt = 1, we deduce from (46) that t, = 1/d,, and
fn(t) = pn(t) which completes the proof. O

To prove Theorem 4 in the general case that R may not be n-terminal, we first need
the alternative representation for R in (32).

Lemma2 If BiR is the event that X moves to state i on its first jump, then Rin (32)
satisfies

~ Rj; i=j,
Rij = {—R;;P;(BRIA) i#j,j+#n, (47)
RiyP;(A) i#j,j=n

Furthermore, R is n-terminal.

Proof of Lemma 2 We need to show that when i # j and j # n,

Pi(A)

—R;;P;(BXA) = R;j ==,
JJ= T i ”PJ(A)

The other cases are trivial; the two definitions match when i = j and noting that
P, (A) = 1 resolves the last case. To start, we use Bayes rule to find

Pj(A|Bl.R)Pj(Bl.R)

—R;;P;(BF1A) = R}
Jl15J l JJ ]PJJ(A)
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The Markov property implies P; (A|Bl.R) = P;(A), and therefore

Pi(A)
R R
—R;;P;(B;"|A) = —R;;P;(B; )IP’ @
Using that —R;;P;(B}) = R;;, we find that the representations of Rin (32) and (47)
are equivalent. N

Using the representation in (47), we can easily show R is n-terminal. When j # n,
the sum of the elements of column j of R is

m

m
Y R
ZR]_RJJ Rjj > Pi(BfA)=Rjj — Rj; =0,
i=1 i=1,i#j

since er'n=1,i £ P; (BiR |A) = 1 because conditioning on A means the particle cannot

immediately decay after leaving compartment j and must move into some compart-
ment. When j = n, the sum is

m m
in = Rnn + Z Rin]P)i (A) =< Rnn + Z Rin =< 0.

NE

i=1 i=l,i#n i=1,i#n
Notice that
m m
> Rin = Run + Z RinPi(A) = Run+ Y Rin=0 (48)
i=1 i=l,i#n i=l,i#n

if any only if both of the following two conditions hold

IP;(A) =1 foralli suchthat R;,, > O, 49)

m
R+ Y Rin=0. (50)
i=l,i#n

For the sake of contradiction, assume (48) holds and therefore (49)—(50) both hold.
Equation (50) implies that R does not permit decay from compartment n, and (49)
implies that particles leaving compartment n are guaranteed to arrive at n again.
Together, (49)—(50) imply that particles that have arrived at compartment n never
decay, but this is not possible given our assumptions on R in section 2.1. As such,
(49)—(50) cannot both hold and therefore (48) cannot hold and thus

m
2R
i=1
proving that R is n-terminal. O
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Proof of Theorem 4 Define the probability densities,

fu(t) == %IP(T"X <t|X(0) =1, A),

~ d 7 ~
Ju(®) == EP(T" <t]X(0)=1).

To start, we show f;, = f,,

Let S be the time it takes X leave compartment n for the first time conditioned on X
eventually arriving at compartment n. Let U be the time it takes X to leave compartment
n after reaching compartment n some time after the first jump conditioned on X
eventually arriving at compartment n. Let C be the event that X reaches compartment
n sometime after the first jump.

Then, the number of times a particle visits compartment n follows a geometric
distribution, and

] L
Pi(T,} > 1] A) = (1 =Py(C)) Y _Pu(C)'P (S +) Un> z)
m=0

=0

_ 00 14
P, (T,j‘ > t) — (1 -P,(C) Y RO (§+ > O > t) :

=0 m=0

where the U,1 are iid copies of U, and Cc s §, and ﬁm are defined analogously to C, S,
and U, but X rather than X. Hence, we can show

Pi(TX > | A) = P(TX > 1)

by showing _ ~ _
P, (C) =Py(C), S=q4S8, U=aU,

where =g denotes equality in distribution.

First, we show § =4 S. We prove this by showing sample paths for S and S have
the same rates for moving from compartment j to i. This immediately follows from
looking at the case i # j and j # n in Lemma 2. We can disregard j = n because S
and S do not depend on where the particle goes after leaving compartment 7.

Next, to show P, (C) = P, (5 ), observe that

m m

Rin
PO = ), PuBOPi(A) = ) —Pi(A).

i=1,i#n i=li#n

nn

From Lemma 2, we recall 13,-,1 = R;iyPi(A) and R,,;, = ﬁnn. Then,

m ~

> Rin_p,(a) = > Z P,(BF). (51)

i= ll;én nn i= lt;én Run i=l,i#n

@ Springer



55 Page32o0f36 H.-R. Tung, S. D. Lawley

Because R is n-terminal, a particle leaving compartment n and immediately going to
any other compartment would eventually return to compartment n. As such, the right
hand side of (51) is P, (C) and thus P, (C) = P, (C).

Lastly, we show U =4 U. To do so, we need to confirm that when i # 7],

— Rj;P;(BF|C) = —R;;P;(BF|C) (52)

When j # n, conditioning on C is the same as conditioning on A ; and conditioning
on C is unnecessary since n-terminal systems guarantee arrival to compartment n from
any other compartment. This means we can repeat the proof for § = S. As such, we
just need to examine when j = n. Using Bayes’ rule and the Markov property yields

R R i R
RunPa(BRIC) = Ry CIBOEBL) Bl (BT)
P, (C) P, (C)
Pi(A) _ R
=R —

"Bu(C)  Py(C)’
Since R is n-terminal,

~ P,(BRNC ~ P.BY R
_RnnIED (B |C) nnu —Run n( i‘) = ”L .
Pn(C) P,(C)  Pu(C)

Hence, (52) is confirmed. As such, ]P’(TX >1|A) = ]P’(TX > t) and thus f,, = f,,
Next, we note that f,, = p, follows immediately from Lemma I since R is n-
terminal.
Lastly, we have that p, = p, by Theorems 3 and 5. Therefore, we have

fn = ﬁl = Pn = Dn,
which completes the proof. O

Proof of Theorem 6 We prove the theorem for the case that 7 = T, and T* = T,". The
case for T,ps and TT) is nearly identical. Let X (¢) be a path on R, let ; be the it

time X (r) reaches s, and let 8; be the i time X () leaves s. Similarly, let X*(¢) be a
path on R* (i.e. the network the additional side network), let o« be the i time X*(1)
enters compartment s from a compartment outside the side network, and let 8 be the
i time X*(¢) leaves s for a compartment not in the side network. Let H be a random
variable denoting the largest index for 8, or equivalently the number of times X (¢)
hits s. For notational convenience, we also set /3(“; = Po=0,ay41 =sup,{X(t) =n}
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and ay; | = sup,{X*(¢) = n}. Then we can express

H+1

H
T =7 (a—Bi-D)+ ) (Bi—a
i=1 i=1
H+1

H
T* =) (@ =B+ ) (B —ad).
i=1

i=1
Note that the sum of o; — 8;—1 and the sum of (x;‘ — i*—l have the same distribution,
which we call 7_;. We define 7 as equal in distribution to ; — «; and similarly T}

as equal in distribution to 8 — " and let {Ts(i) }i>1 and {Ts*(i)},-z 1 be iid copies of Tj
and T;*, respectively. This gives

H
T=T_+ Z T,
i=1

H
T* — T—s + Z 71*(1).
i=1

Writing K = — Ry, and k; as the rate from s into the side network, we have

TS‘ - EXP(K)’

G
1) = Exp(K + k) + Y (T + Exp(K + k).
j=1

where G is a geometric variable representing the number of entries from s to the side
network,

PG = i) = (kst)(kSﬁ:K)i, i€0,1,2,...),

and 7" is broken up into the time in the side network, i.e. 7, and the time spent at
compartment s, i.e. Exp(K + k;). It is well known that

ks
E[G] = =,
l61=%
ks (ks + K)
Var[Gl = == 5.
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Using this, we find

which implies
E[T*|A] — E[T|A] > 0. (53)

We also determine

Var(1?) = (— "5 (v Ly
o S)_<K+ks) +1<( e S)+(K+ks))

ks (ks + K) 1
—— | E[T,
. ([SHKHS

ks (ks + K)
K2

1k
=%z + ESVar(TS) + E[T;]

1
> %= Var(T5).

Lastly, note that since «; — Bp and @11 — By are independent of H and 7,*, we have

H H-1 H
cOv(Ts, > Ts*<f>> = Cov( PR Ts*“'))
i=1 i=1 i=1
= Elai+1 — BIE[T; Var(H)
H
> Elajt1 — BiE[Ts]Var(H) = COV(T_S, > TS@).
i=1
Putting everything together gives

H H
Var(T*|A) = Var(T_g|A) + Var( > T;‘“‘)) + Cov(T_s, > T;‘“‘))
i=1 i=1
H H
> Var(T_;|A) + Var( Z Ts(i)> + C0V<T_S, Z Ts(i))’
i=l1

i=1

which yields
Var(T*|A) — Var(T|A) > 0,

the desired result for proving Theorem 6. O
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