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Abstract
A variety of biomedical systems are modeled by networks of deterministic differen-
tial equations with stochastic inputs. In some cases, the network output is remarkably
constant despite a randomly fluctuating input. In the context of biochemistry and cell
biology, chemical reaction networks and multistage processes with this property are
called robust. Similarly, the notion of a forgiving drug in pharmacology is amedication
that maintains therapeutic effect despite lapses in patient adherence to the prescribed
regimen. What makes a network robust to stochastic noise? This question is challeng-
ing due to themany network parameters (size, topology, rate constants) andmany types
of noisy inputs. In this paper, we propose a summary statistic to describe the robustness
of a network of linear differential equations (i.e. a first-ordermass-action system). This
statistic is the variance of a certain random walk passage time on the network. This
statistic can be quickly computed on a modern computer, even for complex networks
with thousands of nodes. Furthermore, we use this statistic to prove theorems about
how certain network motifs increase robustness. Importantly, our analysis provides
intuition for why a network is or is not robust to noise. We illustrate our results on
thousands of randomly generated networks with a variety of stochastic inputs.

Keywords Homeostasis · Robustness · Pharmacokinetics · Pharmacodynamics ·
Medication nonadherence · Medication adherence

1 Introduction

Homeostasis is a pillar of biology (Michael 2007). Coined in the 1930s and stemming
from Greek words meaning “standing still” (Cannon 1932), homeostasis refers to the
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processes that living systems use tomaintain stable conditions in the face of fluctuating
environments. Homeostasis or biological “robustness” is seen across many scales in
biology, from ecosystems, to organisms, to organs, to cells, to subcellular systems
(Félix and Barkoulas 2015).

A quantitative understanding of such robustness is often challenging due to the very
large number of interacting constituents. For example, biochemical reaction networks
in cells often involvemany different chemical species, where each speciesmay interact
with many other species and be involved in a variety of cellular processes. A key
question is to understand the functional consequences and emergent properties of
such complicated interactions.

A mathematical framework for studying robustness is to consider how stochas-
tic perturbations propagate through a deterministic network of differential equations
(Anderson et al. 2007; Anderson andMattingly 2007; Browning et al. 2023). Consider
the following system of linear ordinary differential equations (ODEs) with stochastic
forcing,

d

dt
c = Rc + I (t)e1. (1)

In (1), c(t) = {ci (t)}mi=1 is a vector of concentrations in different compartments
(or “states” or “nodes”), R ∈ R

m×m is a reaction rate matrix describing interactions
between compartments, and I (t) ∈ R is some stochastic input into compartment i = 1
(e1 ∈ R

m×1 denotes the first standard basis vector). How does the stochastic input I (t)
flow through the network?When does the network dampen the stochastic input so that
the “output” of the system (either the concentration in a given node of interest or the
flux out of the system) is nearly constant? How does this depend on network properties
such as the size, topology, and rate constants? How does this depend on properties of
the stochastic input? The purpose of this paper is to address these questions. See Fig.1
for an illustration.

Motivated by biochemical reaction networks, these mathematical questions were
posed by Anderson, Mattingly, Nijhout, and Reed in 2007. In that very interesting
work, the authors proved that if the network consists of a single chain of irreversible
reactions (see Fig. 1b), then the variance of the flux out of each compartment strictly
decreases down the chain. These authors also studied the effects of side chains and
feedback loops. These authors proved their results under very general assumptions on
the stochastic input, and they also considered the case that the input is white noise and
used the resulting Gaussianity of the system to make explicit calculations.

More recently, Browning et al. (2023) studied this problem. These authors were
motivated by a variety of multistage processes in biology, including viral replica-
tion (Louten 2016), bacteriophage replication (Campbell 2003), progression through
the cell cycle (Morgan 2007), cascade reactions at the molecular level (Huang and
Ferrell 1996), transport through discrete layers (Carr and Simpson 2019), and social
processes such as queuing (Liu et al. 2004). Similar to Anderson et al. (2007), these
authors focused on networks consisting of a single chain of irreversible reactions and
also considered the effects of feedback and feedforward loops. These authors assumed
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Fig. 1 aComplex network.b Irreversible linear chain network. c Pharmacokinetic/pharmacodynamic exam-
ple network with a stochastic drug intake modeling medication nonadherence. d Noisy input (red curve)
and noisy output (black curve) for a network that is not robust compared to a nearly constant output (blue
curve) for a robust network (Color figure online)

that the stochastic input is a Ornstein–Uhlenbeck process and used the resulting Gaus-
sianity of the system to make explicit calculations.

An alternativemotivation for thesemathematical questions comes from the problem
ofmedication nonadherence.Medication adherence is the extent towhich patients take
medications as prescribed by their physicians. Medication nonadherence is a major
problem, resulting in over 100,000 preventable deaths and over $100 billion in pre-
ventable health care costs per year in the United States alone (Osterberg and Blaschke
2005). In fact, the World Health Organization has claimed that improving adherence
may have a far greater impact on public health than any improvement in specific
medical treatments (Sabaté and Sabaté 2003; Haynes et al. 2002). To combat non-
adherence, it is often recommended to prescribe so-called “forgiving” drugs, which
maintain their effect despite lapses in patient adherence (missed doses, late doses, etc.)
(Osterberg et al. 2010). Mathematically, the pharmacokinetics and pharmacodynam-
ics of a drug are often described by a network of ODEs as in (1) (Gibaldi and Perrier
1982; Rosenbaum 2016). The different components of c(t) = {ci (t)}mi=1 model drug
concentrations or effects in different compartments of the body, the matrix R mod-
els the transfer rates between compartments, and the stochastic input I (t) models
the patient’s imperfect adherence to the prescribed dosing regimen (which would be
deterministic for a perfectly adherent patient) (Li and Nekka 2007, 2009; Lévy-Véhel
and Lévy-Véhel 2013; Fermín and Lévy-Véhel 2017; Counterman and Lawley 2021,
2022; McAllister and Lawley 2022; Clark and Lawley 2022). See Fig. 1c for an illus-
tration. In this framework, drug forgiveness is a network property (i.e. depending on
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the topology and kinetics of the ODEs) in which the output (drug effect) is robust to
stochastic perturbations of the input (i.e. late doses, missed doses, etc). Hence, drug
forgiveness in pharmacology is akin to network robustness in the biochemical and cell
biology applications described above.

In this paper, we propose a simple summary statistic to characterize network robust-
ness. This summary statistic is the variance of a certain random “network time” T
whose probability distribution is defined by the network R (we denote the variance
of T by Var(T )). We show that more variable network times (i.e. larger values of
Var(T )) correspond to more robust networks. Robustness means that the variability in
either the flux out of the system or the variability in a given compartment of interest
is much less than the variability of the stochastic input (see Sect. 2.5 for a discussion
of different notions of robustness). Importantly, this result holds for (i) very general
networks (including large and complex networks such as illustrated in Fig. 1a) and (ii)
very general stochastic inputs. We prove that this network time T is a certain passage
time of a random walk on the network. Specifically, if one is interested in the variabil-
ity in the flux out of the system, then T is the first passage time to exit the network. If
one is interested in the variability in a given compartment n, then T is the last passage
time to compartment n conditioned on arrival to compartment n.

We now highlight four implications of our analysis. First, Var(T ) can be quickly
computed on amodern computer, even for complex networks with thousands of nodes.
Hence, Var(T ) is an easily computable measure of network robustness that is inde-
pendent of the noisy input and can be used to compare the robustness of different
networks. Indeed, we demonstrate via numerical simulations on thousands of ran-
domly generated networks that larger values of Var(T ) indeed correspond to more
robust networks.

Second, our analysis predicts that a network is robust to a given noisy input if
the standard deviation of the network time T (denoted SD(T ) := √

Var(T )) is large
compared to the correlation time τ ∈ (0,∞) of the noisy input, i.e.

SD(T ) � τ.

Third, having established that Var(T ) measures network robustness, we determine
how certain network structures andmotifs affect robustness by proving how they affect
Var(T ). For example, we prove that under quite generic circumstances, appending an
arbitrary network to an existing network must increase Var(T ). This result therefore
shows how increasing the size and complexity of a network can increase its robustness.

Fourth, and perhaps most importantly, our analysis provides intuition for why a
network is or is not robust to noise. That is, it is a priori rather mysterious why some
networks are robust or why adding or deleting a certain edge in a network may make
it more or less robust. However, characterizing network robustness by variability in
T gives insight into why certain network features increase or decrease robustness. In
particular, if the time for a random walk to traverse the network is highly variable,
then the network is robust. Hence, a network with many different paths tends to be
robust. Further, appending a network to an existing network can increase robustness
because a random walk on the network may or may not visit this appended network
which increases variability in T .
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The rest of the paper is organized as follows. In Sect. 2, we show how network
robustness depends on variability in T . In Sect. 3, we verify via numerical simula-
tions on randomly generated networks that Var(T ) does indeed characterize network
robustness. In Sect. 4, we find representations for T in terms of random walk pas-
sage times on the network. We then use these stochastic representations of T to prove
results about how certain network structures can increase or decrease variability in T .
We conclude with a brief discussion. We collect the proofs in an appendix.

2 Robustness by Variability in Network Time T

In this section, we show that network robustness depends on the variability of a random
time T whose probability distribution is defined by the network. As we detail below,
the definition of T depends on our specific notion of robustness.

2.1 Model Setup

The following definition characterizes the class of reaction rate matrices R ∈ R
m×m

that we consider in this paper.

Definition 1 A matrix R = {R ji }mj,i=1 ∈ R
m×m for m ≥ 1 is called admissible if the

following three conditions hold.

(a) R ji ≥ 0 if i �= j and di := −∑m
j=1 R ji ≥ 0 for all i ∈ {1, . . . ,m}.

(b) For each n ∈ {2, 3, . . . ,m}, there exists a sequence of k ≥ 2 distinct states
i1 = 1, i2, . . . , ik = n so that Ri2,i1Ri3,i2 · · · Rik ,ik−1 > 0.

(c) For each i ∈ {1, . . . ,m} with di = 0, there exists a j ∈ {1, . . . ,m} with
d j > 0 and a sequence of k ≥ 2 distinct states i1 = i, i2, . . . , ik = j so that
Ri2,i1Ri3,i2 · · · Rik ,ik−1 > 0.

We interpret R ji as the transfer rate from node i to node j �= i and di ≥ 0 as
the decay rate from node i . Property (a) of Definition 1 thus ensures that the ODE in
(1) conserves mass in the sense that mass can only move between compartments or
decay. In particular, property (a) allows us to define a continuous-time Markov chain
associated to R.

Definition 2 If a matrix R = {R ji }mj,i=1 ∈ R
m×m satisfies property (a) of Definition 1,

then we say that the continuous-time Markov chain (Norris 1998),

X = {X(t)}t≥0 with state space {∅, 1, 2, . . . ,m}, (2)

is a random walk on R if X jumps from state i ∈ {1, 2, . . . ,m} to state j ∈
{1, 2, . . . ,m} at rate R ji for i �= j , jumps from state i ∈ {1, 2, . . . ,m} to state ∅

at rate

di := −
m∑

j=1

R ji ≥ 0, (3)

and never leaves state ∅.
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Table 1 Notation introduced in Sect. 2.1

ci (t) Concentration in compartment i at time t

c(t) Vector whose entries are ci
m The total number of compartments

R The reaction rate matrix

I (t) The noisy input into compartment 1 at time t

ξ(t) The fluctuation in noisy input about the average (ξ(t) := I (t) − E[I (t)])
ei The i th standard basis vector

di The decay rate from compartment i (see (3))

X Continuous time Markov chain induced by R (see Definition 2)

Property (b) of Definition 1 avoids trivial cases by ensuring that input into node 1
may reach any node n ∈ {2, 3, . . . ,m}. Property (c) ensures that any input into the
system eventually decays. The following proposition makes “eventual decay” precise.

Proposition 1 If R is admissible, then its eigenvalues have strictly negative real parts.

Having defined the admissible class of “reaction rate matrices” or “networks” R ∈
R
m×m , consider the following system of linear ODEs with stochastic input,

d

dt
c(t) = Rc(t) + I (t)e1, t ∈ R. (4)

In (4), c(t) = {ci (t)}mi=1 ∈ R
m×1 is a vector of concentrations in different compart-

ments, I (t) ∈ R is some noisy input to compartment i = 1, e1 ∈ R
m×1 is the first

standard basis vector, and R ∈ R
m×m is admissible. Let ξ(t) denote the fluctuations

of the input about the average,

ξ(t) := I (t) − E[I (t)],

so that E[ξ(t)] = 0. Assume that E[I (t)] + E[ξ2(t)] ≤ B for all t ∈ R for some
B ∈ (0,∞) and that E[I (t)] and ξ(t) are piecewise continuous and take only finitely
many jumps on any finite time interval. The notation introduced in this section is
collected in Table 1 for convenience.

2.2 Network Times Tn, Tabs and a Pedagogical Example

We introduce two random times corresponding to different notions of robustness. We
refer to these random times as “network times” since they depend only on the network
R (and thus not on the noisy input I ). By using the variance of these network times
as summary statistics, we aim to quantify the contribution of R to robustness under
general stochastic inputs I .

One notion of robustness is the variability of the flux out of the system.
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Definition 3 For a given reaction rate matrix R, let the flux out of the system J be

J (t) :=
m∑

i=1

di ci (t) = d	c(t), (5)

where d	 = −1	R ∈ R
m×1 is the vector of decay rates d1, . . . , dm .

We show below that the variance of J can be understood in terms of the following
network time Tabs.

Definition 4 For a given reaction rate matrix R, let Tabs be a random time with prob-
ability density function given by

pabs(t) = d	eRte1, t ≥ 0, (6)

where d	 = −1	R ∈ R
m×1 is the vector of decay rates d1, . . . , dm .

Rather than the flux J , an alternative notion of robustness concerns the variability
in the concentration cn in some given node of interest n ∈ {1, 2, . . . ,m}. In this case,
we show below that the variability of cn can be understood in terms of the following
network time Tn .

Definition 5 For a given reaction rate matrix R, let Tn be a random time with proba-
bility density function given by

pn(t) := 1

tn
P(X(t) = n |X(0) = 1) = 1

tn
e	
n e

Rte1, t ≥ 0, (7)

where

tn :=
∫ ∞

0
P(X(t) = n | X(0) = 1) dt = −(R−1)n1 ∈ (0,∞). (8)

Note that the definitions of Tabs and Tn depends solely on the network R and not on
the stochastic input I . In later sections, we use T to refer to both Tabs and Tn depending
on context. Furthermore, we show in Sect. 4 that Tabs and Tn can be interpreted as
first passage times and last passage times. In particular, the “abs” in Tabs stands for
absorbing state since Tabs can be interpreted as the first passage time to the absorbing
state.

To illustrate the connection between our network times and robustness, we give a
simple example regarding J and Tabs, which can be easily modified for cn and Tn .
Consider the single ODE describing exponential decay at rate d > 0 with a stochastic
input I (t),

d

dt
c = −dc + I (t).
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Table 2 Notation introduced in Sect. 2.2

d	 −1	R ∈ R
m×1. vector of decay rates d1, . . . , dm

J (t) d	c(t). flux out of the system

pabs(t) d	eRt e1 where t ≥ 0. A probability density

Tabs Random network time with density pabs
tn Expected time a random walk from 1 spends in compartment n

pn(t) 1
tn
e	n eRt e1 where t ≥ 0. A probability density

Tn Random network time with density pn(t)

T Random network time. Could be Tabs or Tn

In this simple case, m = 1 and R = −d. The flux out of the system is

J (t) = dc(t) = d
∫ t

0
e−d(t−s) I (s) ds.

Upon changing variables s′ = t − s, we can write this output as the following condi-
tional expectation,

J (t) =
∫ ∞

0
de−ds′ I (t − s′) ds′ = E[I (t − Tabs) | {I (s)}s≤t ], (9)

where, for this example, Tabs is exponentially distributed with rate d > 0. This agrees
with Definition 4. In words, (9) says that the output J is a weighted average of the
past input I , where the weights are pabs, the probability density function of Tabs.

As d grows, pabs approaches a Dirac delta function, Tabs becomes highly concen-
trated, and J at time t becomes determined by I at time t . As d vanishes, Tabs becomes
highly variable, and J at time t approaches an averagewith similar weights for any past
inputs. Reminiscent of the law of large numbers, we thus expect fluctuations in input
to average each other out if d is small, resulting in J (t) being almost deterministic.
Summarizing, J becomes less variable as the variability in Tabs increases.

This intuition of a negative correlation between robustness and variability in T
extends beyond the simple exponential decay case. Indeed, one can show that

J (t) = E[I (t − Tabs) | {I (s)}s≤t ]

holds for all admissible networks, and we collect that calculation at the beginning of
the proof of Theorem 1 in the appendix. It is also straightforward to apply this intuition
to cn and Tn . The remainder of Sect. 2 gives rigorous results where the variance of our
network times serve as a summary statistic for robustness robustness. The notation
introduced in this section is collected in Table 2.
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2.3 Decomposing Network Variability

The two factors determining the dynamics of the system (4) are (i) the stochastic
input I = {I (t)}t∈R and (ii) the topology and rates of the network R. The following
result shows how (i) and (ii) contribute to the variability in the flux out of the system.
Throughout this paper,

E[Z ], Var(Z), SD(Z), and CV(Z)

respectively denote themean, variance, standard deviation, and coefficient of variation
of a random variable Z (note that CV(Z) = SD(Z)/E[Z ]).
Theorem 1 Suppose c = {c(t)}t∈R satisfies (4) for some admissible R ∈ R

m×m. Then,
for any time t ∈ R, the variance of the flux J in (5) is

Var(J (t)) = E[K (t − Tabs, t − T ′
abs)], (10)

where

K (t, s) := E[ξ(t)ξ(s)]

is the correlation function of the noisy input and Tabs, T ′
abs are independent and iden-

tically distributed (iid) realizations of a random variable with probability density in
(6).

Similarly, when interested in the variability in some given node of interest n ∈
{1, 2, . . . ,m}, we have the following result.

Theorem 2 Suppose c = {c(t)}t∈R satisfies (4) for some admissible R ∈ R
m×m. Then,

for any time t ∈ R and compartment n ∈ {1, 2, . . . ,m}, we have that

Var(cn(t)) = t2nE[K (t − Tn, t − T ′
n)], (11)

where Tn, T ′
n are iid realizations of a random variable with probability density in (7).

Theorems 1–2 thus decompose the variance of J and cn into (i) properties of the
noisy input ξ (through its correlation function K (·, ·)) and (ii) properties of the network
(through Tabs, Tn , and tn).

The following definition characterizes the networks for which pabs = pn (and thus
Tabs = Tn).

Definition 6 A network R ∈ R
m×m is called n−terminal if it is admissible and

dn = −
m∑

j=1

R jn > 0 for some n ∈ {1, . . . ,m},

and di = −
m∑

j=1

R ji = 0 for all i �= n.

123



   55 Page 10 of 36 H.-R. Tung, S. D. Lawley

In words, a network is n-terminal if compartment n is the only compartment with
nonzero decay. The following result follows from a quick calculation (collected in the
appendix with the rest of the proofs).

Proposition 2 If R is n-terminal, then pabs = pn and tn in (8) is given by

tn = 1/dn > 0.

2.4 Stationary Noisy Input

If the input I (t) = E[I (t)] + ξ(t) is wide-sense stationary (WSS) (Pavliotis 2014),
then E[I (t)] = E[I ] is constant in time and the correlation function simplifies to

K (t, s) = E[ξ(t − s)ξ(0)] =: K (t − s),

and must satisfy (Pavliotis 2014)

|K (t)| ≤ K (0) = Var(ξ) = Var(I ), t ∈ R.

In the WSS case, the conclusions of Theorems 1–2 simplify, and we state these in the
following two corollaries.

Corollary 1 If the input I (t) is WSS and not constant in time, then the variance of the
flux out of the system in (5) satisfies

Var(J ) = E[K (Tabs − T ′
abs)] < Var(I ). (12)

Corollary 2 If the input I (t) is WSS, then the mean of compartment n ∈ {1, 2, . . . ,m}
is

E[cn] = tnE[I ].
If the input I (t) isWSS, not constant in time, and satisfiesE[I ] �= 0, then the coefficient
of variation of compartment n satisfies

CV(cn) := SD(cn)

E[cn] =
√

E[K (Tn − T ′
n)]

E[I ] <

√
Var(I )

E[I ] . (13)

The boundVar(J ) < Var(I ) in (12) implies that the variance of the output is always
less than the variance of the input. That is, any linear system must strictly dampen a
noisy input. The bound CV(cn) <

√
Var(I )/E[I ] in (13) was previously shown in

Theorem 3.1 in Anderson et al. (2007).

2.5 Network Robustness fromVariability in T

We are interested in determining under what conditions a network is robust to a WSS
noisy input I (t) with E[I ] > 0 and Var(I ) > 0. There are two natural notions of
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“robust” which we consider, where either notion might be more relevant depending
on the specific application. The first notion of robustness is that the variance of the
output J in (5) is much less than the variance of the input I ,

Var(J ) � Var(I ). (14)

Since E[J ] = E[I ] (this calculation is collected in Proposition 4 in the appendix),
note that (14) is equivalent to a statement about coefficients of variation, i.e. CV(J ) �
CV(I ).

Rather than the output, in some applications one is more interested in the concen-
tration in some specific node n ∈ {1, . . . ,m}. Hence, the second notion of robustness
is that the coefficient of variation of the concentration in node n is much less than the
coefficient of variation of the input,

CV(cn) � CV(I ). (15)

We note that Var(cn) and Var(I ) cannot be compared directly since they have different
units (concentration versus concentration per time).

Assuming merely that the noisy input has a decaying correlation function (i.e.
K (t) → 0 as |t | → ∞), the notion of network robustness in (14) corresponds to
variability in the random variable Tabs with probability density in (6) since Corollary 1
implies

Var(J )

Var(I )
= E[K (Tabs − T ′

abs)]
K (0)

< 1.

That is, if Tabs is highly variable (compared to the decay rate of K ), then |Tabs − T ′
abs|

is likely large and thus K (Tabs − T ′
abs) is likely small. By the same argument, the

notion of network robustness in (15) corresponds to variability in the random variable
Tn with probability density in (7) since Corollary 2 implies

CV(cn)

CV(I )
=

√
E[K (Tn − T ′

n)]
K (0)

< 1.

Therefore, we propose that measures of the variability of Tabs and Tn can serve
as summary statistics of the robustness of the network (where one uses Tabs for the
robustness notion in (14) and Tn for (15)). A natural measure of the variability of Tabs
or Tn which can be quickly computed via the matrix R is its variance. Specifically, a
quick calculation using (6) and (7) (see Proposition 5 in the appendix) shows that the
variance of Tabs is

Var(Tabs) = −2
m∑

i=1

di (R
−3)i1 −

( m∑

i=1

di (R
−2)i1

)2

, (16)
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where di := −∑m
j=1 R ji ≥ 0, and the variance of Tn is

Var(Tn) = 2(R−3)n1

(R−1)n1
−

(
(R−2)n1

(R−1)n1

)2

. (17)

Hence, by setting either
T = Tabs, or T = Tn,

depending on the notion of robustness (either (14) or (15)), the formulas (16)–(17)
allow one to quickly estimate the robustness of a network R in terms of a single
timescale,

SD(T ) := √
Var(T ),

where large values of SD(T ) correspond to more robust networks. Indeed, (16)–(17)
can be computed in seconds on a modern computer for networks with thousands of
nodes. We note that (R− j )i1 is often most efficiently computed by solving the linear
system R jv = e1 for v ∈ R

m×1 and setting

(R− j )i1 = e	
i v.

Furthermore, to estimate the robustness of a given network R to a givenWSS noisy
input I , we can compare SD(T ) to the correlation time of I . That is, if the noisy input
has a finite, nonzero correlation time defined by

τ := 1

K (0)

∫ ∞

0
K (t) dt, (18)

then our analysis suggests that the network R is robust to I if

SD(T ) � τ.

We note that in the case of white noise input (which has zero correlation time and
infinite variance), more variable network times T still correspond to more robust
networks (see section 3 below).

3 Numerical Simulations

We argued in section 2 that variability in the network time T is a proxy for network
robustness. We now illustrate this point via numerical simulations. In particular, for a
variety of randomly generated networks and stochastic inputs, we show that Var(J ) is
inversely related to SD(Tabs), and CV(cn) is inversely related to SD(Tn). The results of
the simulations are seen in Fig. 2. Section3.1 summarizes and interprets Fig. 2, while
Sects. 3.2–3.4 detail how the simulation results were computed.
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3.1 Simulation Results

ForWSSnoisy inputs, we proved in Sect. 2 that the only property of the noisy input that
affects the variance in the network is the correlation function K (t) := E[ξ(t)ξ(0)].
In the simulations in this section, we consider two choices of the correlation function.
We suppose that the correlation function is either (i) a decaying exponential,

K (t) = σ 2e−|t |/τ , (19)

where τ > 0 is the correlation time and Var(ξ) = σ 2 > 0, or (ii) a Dirac delta
function,

K (t) = 2τσ 2δ(t), (20)

where τ > 0 and στ > 0 are characteristic time and concentration scales of the noisy
input, respectively. As we detail below, (19) corresponds to a variety of noisy inputs,
including that ξ(t) is an Ornstein–Uhlenbeck process or a telegraph process. Further,
(20) corresponds to the case that ξ(t) is white noise.

In the top panels of Fig. 2, we plot the standard deviation of the flux out of the
system,

SD(J (t)) :=
√

Var
(∑m

i=1
di ci (t)

)
=

√
E[K (Tabs − T ′

abs)], (21)

against SD(Tabs) for 104 different randomly generated networks. In the bottom panels
of Fig. 2, we plot the coefficient of variation for the nth compartment,

CV(cn(t)) := SD(cn(t))

E[cn(t)] =
√

E[K (Tn − T ′
n)]

E[I ] , (22)

against SD(Tn) for 104 different randomly generated networks. The final equalities in
(21)–(22) are due to Corollaries 1–2 and we set E[I ] = 1 and τ = σ 2 = 1 in (19)–
(20). The left and right panels of Fig. 2 are for noisy inputs with correlation functions
in (19) and (20), respectively. We detail how the networks were generated in Sect. 3.4,
but here we note that the number of nodes in each network ranges from m = 1 to
m = 100, and approximately half of the networks are linear chains (half of which are
reversible and half irreversible) and half are Erdos-Renyi random networks. Further,
all of the rate constants in the networks were chosen randomly.

Figure 2 demonstrates that SD(T ) = √
Var(T ) does indeed characterize network

robustness (where one sets T = Tabs or T = Tn depending on the notion of robustness,
see Sect. 2.5). While close inspection of Fig. 2 shows that it is possible for a network
to have a larger value of SD(T ) and yet be less robust than another network, the
overwhelming majority of the networks in Fig. 2 show that a larger value of SD(T )

entails a more robust network. Furthermore, the regions SD(T ) � τ and SD(T ) � τ

indeed respectively characterize not robust and robust networks.
Another feature of Fig. 2 is that the data points for the randomly generated networks

agree closely with the red curves. The red curve in each plot is simply for the case
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Fig. 2 Variability in network time T characterizes network robustness. The circle markers are for 104

randomly generated networks and the red curves depict the case that T is exponentially distributed. A
Standard deviation of flux out of the system as a function of the standard deviation of Tabs for noisy inputs
with exponentially decaying correlation functions. B Standard deviation of the flux out of the system as a
function of the standard deviation of Tabs for white noise input. C Coefficient of variation of compartment
of interest cn as a function of the standard deviation of Tn for noisy inputs with exponentially decaying
correlation functions. D Coefficient of variation of compartment of interest cn as a function of the standard
deviation of Tn for white noise input. In all plots, the mean input is E[I ] = 1 (Color figure online)

that T is exactly exponentially distributed. In the case of the exponentially decaying
correlation function in (19), we show below that this is

√
E[K (T − T ′)] = σ√

1 + SD(T )/τ
if T ∼ Exponential. (23)

In the case of the Dirac delta function correlation function in (20), we show below that
this is √

E[K (T − T ′)] = σ√
SD(T )/τ

if T ∼ Exponential. (24)

The result that the circle markers tend to lie on the red curves in Fig. 2 suggests that
the network time T is approximately exponentially distributed for many of the random
networks. This result is perhaps not surprising in light of the matrix exponential forms
of the probability density function of T in (6)–(7). Furthermore, we show in section 4
below that T is equivalent to a certain first passage time on an associated network,
and first passage times on networks are known to be approximately exponentially
distributed in many scenarios (Meyer et al. 2011).
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3.2 Exponentially Decaying Correlation Function

A variety of WSS noisy inputs have an exponentially decaying correlation function
as in (19). For example, suppose ξ(t) is an Ornstein–Uhlenbeck process, and thus
satisfies the following stochastic differential equation,

dξ = −ξ

τ
dt +

√
2σ 2

τ
dW , (25)

where W is a standard Brownian motion. In this case, the correlation function of ξ is
in (19) with correlation time τ > 0 and variance σ 2 > 0.

Another WSS noisy input with the exponentially decaying correlation function
in (19) is a telegraph process (also called dichotomous Markov noise (Bena 2006)),
which is simply a two-state, continuous-time Markov chain. In particular, suppose
ξ(t) switches between values ξ0 and ξ1 according to

ξ0
q/τ
�

(1−q)/τ
ξ1. (26)

That is, ξ jumps from state ξ0 to state ξ1 at rate q/τ and jumps from state ξ1 to state
ξ0 at rate (1 − q)/τ for q ∈ (0, 1) and τ > 0. In this case, the correlation function of
ξ is in (19) with correlation time τ > 0 and variance

Var(ξ) = σ 2 := (ξ0 − ξ1)
2q(1 − q) > 0.

We note that though both the Ornstein–Uhlenbeck process in (25) and the telegraph
process in (26) share the same correlation function in (19), the Ornstein–Uhlenbeck
process is Gaussian but the telegraph process is not.

The data points in Fig. 2 are computed for this exponentially decaying correlation
function (19) via

E[K (T − T ′)] = σ 2
∫ ∞

0

∫ ∞

0
p(s)p(s′)e−|s−s′|/τ ds′ ds

= 2σ 2
∫ ∞

0

∫ s

0
p(s)p(s′)e−(s−s′)/τ ds′ ds, (27)

and computing the double integral in (27) numerically (where T = Tabs and p = pabs
or T = Tn and p = pn). Note that (23) follows immediately from (27) upon setting
p(t) = λe−λt and SD(T ) = 1/λ.

3.3 White Noise Input

TheDirac delta function correlation function in (20) corresponds to awhite noise input.
As is well-known (Pavliotis 2014), white noise can be obtained from the Ornstein–
Uhlenbeck process in (25) by taking the correlation time to zero and the variance to
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infinity while keeping their ratio fixed. Specifically, if we rescale the correlation time
and variance in (25) according to τ → ετ and σ 2 → σ 2/ε and take ε → 0 we obtain

lim
ε→0

K (t) = lim
ε→0

E[ξ(t)ξ(0)] = lim
ε→0

σ 2

ε
e−|t |/(ετ) = 2τσ 2δ(t),

which implies the heuristic

lim
ε→0

ξ(t) =
√
2τσ 2 dW

dt
,

where dW
dt denotes white noise. In this white noise limit, τ is no longer the correlation

time of ξ and σ 2 is no longer the variance of ξ (since white noise has zero correlation
time and infinite variance), but we retain the parameters τ ∈ (0,∞) and σ ∈ (0,∞)

since they represent characteristic scales of ξ .
Having taken the white noise limit, we then obtain

E[K (T − T ′)] = 2τσ 2
∫ ∞

0

∫ ∞

0
p(s)p(s′)δ(s − s′) ds ds′

= 2τσ 2
∫ ∞

0
(p(s))2 ds = 2τσ 2‖p‖22 = 2τσ 2

E[p(T )], (28)

where T = Tabs and p = pabs or T = Tn and p = pn . Note that E[p(T )] is
a measure of the variability of T (with small values of E[p(T )] indicating a more
variable T ), which is akin to the Simpson index (Simpson 1949). Note that (24)
follows immediately from (28) upon setting p(t) = λe−λt and SD(T ) = 1/λ.

3.4 RandomNetwork Construction

We now describe how the 104 random networks were constructed for Fig. 2. These
networks were created to show that variability in T corresponds to network robustness
across a large variety of networks (i.e. across networks that vary considerably in their
size, connectivity or topology, and rate constants).

First, the size of the network was chosen according to

m = round(102U ),

where U ∈ [0, 1] is uniformly distributed and round(·) merely rounds to the nearest
integer. Next, a random variable � was drawn uniformly on {1, 2, 3, 4} to determine
the type of network.

If � = 1, then the network is an irreversible linear chain with compartment of
interest given by the terminal node n = m. Further, the rate constants were taken to
be

Ri+1,i = 1 + Ei , i ∈ {1, 2, . . . ,m − 1},
and dm = 1 + Em , where {Ei }mi=1 are iid unit rate exponential random variables.
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If � = 2, then the network is a reversible linear chain created identically to the
case � = 1, except rather than setting Ri,i+1 = 0, we set Ri,i+1 = Ri+1,i for
i ∈ {1, 2, . . . ,m − 1}.

If � = 3, then the network was taken to be of Erdos-Renyi type. Specifically, we
let connection probability p ∈ [0, 1] be uniformly distributed on [0, 1] and set the
transition rate from i to j �= i to be

R j,i = Zi, j (1 + Ei, j ), i, j ∈ {1, 2, . . . ,m}, i �= j,

and set the decay rate from state i to be di = Z0,i (1 + E0,i ), where {Zi, j }i, j are iid
with

P(Zi, j = 1) = p, P(Zi, j = 0) = 1 − p,

and {Ei, j }i, j are iid unit rate exponential random variables. The compartment of
interest n was taken to be m.

If� = 4, we first create a network R′ identically to the case � = 3 and then we set
the network to be R ji = (R′

j i + R′
i j )/2 so that Ri j = R ji for all i, j ∈ {1, 2, . . . ,m}.

Finally, to ensure that there is a path from state 1 to state n and that all the eigenvalues
of R have strictly negative real parts for cases � = 3 and � = 4, if the random
construction of the network resulted in an R such that the condition number of R3

exceeded 1016, then the connection probability p, the connections {Zi, j }i, j , and the
jump rates {Ei, j }i, j were resampled.

4 Stochastic Analysis of Network Time T

In Sects. 2–3 above, we showed that the robustness of a network depends on the
variability of a certain random time T whose probability distribution is defined by the
network R. In this section, we study representations of T in terms of a random walk
on the network (Sects. 4.1–4.2). We then use these representations of T to study how
certain network structures increase or decrease network robustness (Sects. 4.3–4.5).
In particular, by giving a stochastic interpretation of T in terms of random walks on
the network, we obtain (i) understanding for why certain network structures increase
robustness and (ii) a way to study robustness in terms of stochastic analysis of random
walks.

4.1 Stochastic Representation of Network Time T

To define a random walk on the network, let X = {X(t)}t≥0 be the continuous-time
Markov chain in (2). The next result follows from an elementary calculation (collected
in the appendix with the rest of the proofs).

Theorem 3 The first passage time of X to the absorbing state,

T X
abs := inf{t ≥ 0 : X(t) = ∅}, (29)

has the same probability density pabs in (6) as Tabs if we condition that X(0) = 1.
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We use the superscript X in (29) because T X
abs is defined by paths of X , whereas

Tabs is defined simply by its probability density pabs.
The next result is that the probability density pn in (7) describes the time that X

leaves node n for the last time (the so-called last passage time (Bao and Jia 2004;
Comtet et al. 2020)), conditioned that X reaches node n starting from node 1.

Theorem 4 The last passage time of X to node n ∈ {1, 2, . . . ,m},

T X
n := sup{t ≥ 0 : X(t) = n}, (30)

has the same probability density pn in (7) as Tn if we condition that X(0) = 1 and
X(t) = n for some t > 0.

Although it may not be intuitively clear why the probability densities of Tn and
T X
n match (and similarly for Tabs and T X

abs), it is intuitive that the last passage time is
relevant to robustness. Recall from the intuition given in Sect. 2.2 that Tn is of interest
since cn is a weighted average of past inputs I whose weights are pn . A highly variable
Tn means that inputs across a wide range in time contribute to cn . Similarly, a highly
variable last passage time T X

n implies that particles from inputs across a wide range
in time could be in compartment n at time t .

The proof of Theorem 4 follows from showing that T X
n has the same distribution as

thefirst passage timeof amodifiednetwork, then using a similar elementary calculation
as in the proof of Theorem 3 to show that they have probability density pn . We now
discuss the construction of the modified network.

We first relate pn in (7) to the first passage time to the absorbing state ∅ of a
suitably modified random walk denoted X̃ = {X̃(t)}t≥0. In addition to its use in
proving Theorem 4, reframing the last passage time as a first passage time can also
be helpful for leveraging the much vaster literature on first passage times to analyze
specific networks. To define X̃ , let A be the event that X reaches compartment n,

A = {X(t) = n for some t ≥ 0}, (31)

and let Pi denote the probability measure conditioned that X(0) = i . Without loss of
generality, we assume

P j (A) > 0 for all j ∈ {1, 2, . . . ,m},

since if P j (A) = 0, then we can replace compartment j with the absorbing state
∅ without affecting pn in (7) (or T X

n in Theorem 4). Define the following modified
reaction rate matrix R̃ = {R̃i j }mi, j=1 ∈ R

m×m via

R̃i j = Ri jPi (A)/P j (A), (32)

and note that R̃ii = Rii . Define X̃ = {X̃(t)}t≥0 to be the continuous-time Markov
chain associated with R̃ (analogous to X in (2) associated with R). In words, R̃ is a
re-weighted version of R so that X̃ is sure to hit node n.
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Fig. 3 A network R (top) and its corresponding R̃ network (bottom) as defined in (32)

Theorem 5 The first passage time of X̃ to the absorbing state,

T X̃
abs := inf{t ≥ 0 : X̃(t) = ∅}, (33)

has probability density pn in (7) if we condition that X̃(0) = 1.

Recall that a network is called n-terminal if node n is the only compartment with
nonzero decay (see Definition 6). If R is n-terminal, then it follows immediately that
R = R̃ and T X

abs = T X̃
abs = T X

n . The following result (proof collected in Lemma 2 in
the appendix) states that R̃ is always n-terminal.

Proposition 3 The network R̃ in (32) is n-terminal.

4.2 An Illustration of ˜R

In this section, we find the n-terminal R̃ associated with R in Fig. 3 where n = 2 is
the node of interest. To start, we compute the probabilities that the random walk X
starting at compartment i reaches compartment n = 2. It is clear that P2(A) = 1 and
P∅(A) = 0. Since all rates are 1, the other Pi (A) must be the average of P j (A) where
j are the neighbors of i . As such

P1(A) = 1

2
, P2(A) = 1, P3(A) = 2

3
, P4(A) = 1

3
.
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Fig. 4 A reversible linear chain

Using the definition R̃i j = Ri jP(Ai )/P(A j ), we find that

R =

⎛

⎜
⎜
⎝

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

⎞

⎟
⎟
⎠ , R̃ =

⎛

⎜
⎜
⎝

−2 1/2 0 0
2 −2 3/2 0
0 2/3 −2 2
0 0 1/2 −2

⎞

⎟
⎟
⎠ .

Notice that most edges in R are still in R̃. Edges only disappear when moving along
that edge prevents the particle from ever returning to the compartment of interest,
which in this case are the edges that lead to decay. The only edge that can be created
is from the compartment of interest to decay. An advantage of using R̃ over R is that
it is n-terminal, and therefore Tn can be formulated as in (33) as the first hitting time
of X̃ to ∅.

4.3 Linear Chains

We first consider an irreversible, linear chain of m = n compartments. Suppose
particles move from compartment i �= n to compartment i+1 at rate Ri+1,i = ki > 0,
except compartment n where particles decay to state ∅ at rate dn = kn > 0. A visual
representation is seen in Fig. 1b.

Since R is n-terminal, we have tn = 1/dn and the network time Tn is simply the
first passage time to state ∅, which is

Tn =
n∑

i=1

Ei

ki
, (34)

where {Ei }ni=1 are iid unit rate exponential random variables. Therefore,

Var(Tn) =
n∑

i=1

1

k2i
. (35)

Equation (35) implies that the longer the chain is, the larger the variance of Tn and
therefore suggests thatmore compartmentsmake the networkmore robust to stochastic
input. This result agrees with the result of Anderson et al. (2007), which showed that
the variances of the fluxes strictly decrease down an irreversible linear chain. We also
note that (34) implies that Tn is unaffected by any permutation of the rates and (35)
implies that decreasing any of the rates k1, . . . , kn increases Var(Tn) and thus tends to
increase network robustness.

Suppose we now make the chain reversible by supposing that particles move from
compartment i ∈ {2, . . . , n} back to compartment i − 1 at rate Ri−1,i > 0, as seen in
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Fig. 4. Since R is still n-terminal, we have tn = 1/dn and Tn is the first passage time
to ∅. Since this reversible linear chain is a birth-death process, it is known that this
first passage time is (Fill 2009)

Tn =
n∑

i=1

Ei

λi
,

where {Ei }ni=1 are iid unit rate exponential random variables and {λi }ni=1 are the
(necessarily positive) eigenvalues of −R.

4.4 Adding a Side Network

We now consider the effect of adding a general “side” network onto a general network
(i.e. not necessarily a linear chain network). We define a side network as a network
attached onto an existing network R at compartment s ∈ {1, 2, . . . ,m} such that ran-
domwalks can enter the side network only through compartment s andmust eventually
leave the side network through compartment s. Define Tabs and Tn as in Theorems 1–
2 for the existing network without the added side network, and define T ∗

abs and T ∗
n

analogously for the network with the added side network.

Theorem 6 If a side network is attached to a node s ∈ {1, 2, . . . ,m} whose removal
would disconnect paths from node 1 to the absorbing state ∅, then

Var(T ∗
abs) > Var(Tabs).

If a side network is attached to a node s ∈ {1, 2, . . . ,m} whose removal would
disconnect paths from node 1 to node n ∈ {1, 2, . . . ,m}, then

Var(T ∗
n ) > Var(Tn).

Theorem 6 thus suggests that adding a side network at compartments that paths
must cross increases robustness. Hence, as a general principle, this result shows that
network robustness can typically be increased by increasing the network size and
complexity.

We point out that the conclusion of Theorem 6 that adding a side network increases
the variance of the network time may not hold if the side network is attached to a node
s whose removal would not disconnect paths as in Theorem 6. Indeed, an example
where a side chain decreases the variance can be seen in Fig. 5a. A quick calculation
for this example with node of interest n = 5 shows that

Var(T ∗
abs) = Var(T ∗

n ) = 70.25 < 72 = Var(Tabs) = Var(Tn).

This example does not contradict Theorem 6 because the side chain is added at node
s = 3, and paths from node 1 can reach ∅ and node n = 5 without hitting node s = 3.
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Fig. 5 a An example network where adding a side network (seen in dotted box) reduces the variance of the
network time. b A linear chain with feedback loop (top) has the same T as a linear chain with side network
(bottom). The gray dashed lines indicate that the nodes (and rates) in the side network are copied from the
nodes in the linear chain

4.5 Linear Chain with Feedback

Theorem6allows us to study the effect of feedback loops on a linear chain. Specifically,
if the network is a linear chain (either reversible or irreversible) with a feedback loop,
thenwe can create a networkwith an equivalent network time by adding a side network
to a linear chain (see Fig. 5b). This equivalent network is formed through the same
idea as the proof of Theorem 5.3 in Anderson et al. (2007). As the new network is
a reversible linear chain with a side network, the following result is a corollary of
Theorem 6.

Corollary 3 Suppose R is a linear chain (either reversible or irreversible). If R∗
is formed by adding a feedback loop from node s ∈ {1, 2, . . . , n} to node j ∈
{1, 2, . . . , s}, then

Var(T ∗
n ) > Var(Tn).

5 Discussion

In this paper, we have argued that the robustness of a network to a stochastic input
can be understood and quantified in terms of the variability of a certain “network
time” T . The probability distribution of the network time is defined by the network
(see (6)–(7)), and the network time can also be defined in terms of certain passage
times of a random walk on the network (see Theorems 3, 4, and 5). The network
time T is independent of the noisy input, and Var(T ) can be quickly computed on
a modern computer, even for complex networks with thousands of nodes. Further,
we can estimate the robustness of a network to a given noisy input by comparing
SD(T ) = √

Var(T ) to the correlation time of the noisy input. Computational tests on
many complex networks demonstrate the validity of using Var(T ) to estimate network
robustness (see Sect. 3). Importantly, linking network robustness with variability in T
gives intuition for why certain network structures increase robustness (see Sects. 4.3–
4.5). Indeed, our analysis shows that large, complex networks (perhaps with many
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feedback loops) generally increase robustness by increasing the variability in certain
random walk passage times on the network.

Of course, it is impossible for a single statistic to encapsulate all the properties of
how a network (a possibly very high-dimensional object) modifies all stochastic inputs
(an infinite dimensional space). Nevertheless, we propose that Var(T ) is an effective
summary statistic for network robustness. That is, similar to how the variance of a
random variable is a useful measure of the variability of a probability distribution (an
infinite dimensional space), the variance of the network time is an easily computable
and useful statistic to understand and measure network robustness.

As described in the Introduction section, the basicmathematical problemof network
robustness was previously studied in Anderson et al. (2007) and Browning et al.
(2023). Anderson et al. 2007 was motivated by biochemical reaction networks and
Browning et al. 2023 was motivated by a wide variety of multistage processes in
biology. An alternative motivation stems from models of medication nonadherence,
in which the ODE network describes a drug’s pharmacokinetics/pharmacodynamics
and the stochastic input models the drug dosing behavior of an imperfectly adherent
patient. In this pharmacometric context, a “robust network” is akin to a “forgiving
drug” (Osterberg et al. 2010; McAllister and Lawley 2022), where we use the notion
of network robustness in (15) with the compartment of interest given by the plasma
compartment or perhaps the effect compartment in the case of a pharmacodynamic
model (Felmlee et al. 2012).

Most of our analysis focused on stationary stochastic inputs (specifically, WSS
stochastic inputs), which is natural for applications to biochemical reaction networks
(Anderson et al. 2007) and various multistage biological processes (Browning et al.
2023). We now make four comments on how the assumption of stationary stochastic
(drug) inputs relate to models of medication nonadherence. First, several prior models
of medication nonadherence assume stationary drug inputs (Li andNekka 2007; Lévy-
Véhel and Lévy-Véhel 2013; Fermín and Lévy-Véhel 2017), and thus our analysis is
directly applicable to these prior models. Second, though a stationary drug input is
a mathematically convenient assumption, more realistic models allow the drug input
statistics to vary in time relative to the prescribed dosing interval. For example, if the
patient is prescribed to take amedication everymorning, it is reasonable to suppose that
they aremore likely to take dose in themorning compared to the evening (or themiddle
of the night). Third, stationary inputs can sometimes approximate non-stationary inputs
for models of medication nonadherence. To illustrate, consider the common model of
medication nonadherence (Lévy-Véhel and Lévy-Véhel 2013; Fermín and Lévy-Véhel
2017; Counterman and Lawley 2021, 2022; McAllister and Lawley 2022), which
assumes that at every scheduled dosing time (i.e. at integer multiples of the prescribed
dosing interval τ ), the patient takes a dose with probability p ∈ (0, 1) independently
of their prior behavior. The stochastic drug input is then

I (t) = D
∑

n∈Z

ξnδ(t − nτ), (36)

where D > 0 is the ratio of a dose size to the apparent volume of distribution, {ξn}n∈Z

is an iid sequence of Bernoulli random variables withP(ξn = 1) = p = 1−P(ξn−0),
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and δ denotes the Dirac delta function. Pharmacokinetic models often assume that an
ingested dose initially enters an “absorption” compartment and thenmoves irreversibly
to the “plasma” compartment at a constant absorption rate k > 0 (Gibaldi and Perrier
1982). Hence, the input (36) into the absorption compartment is equivalent to the
following input into the plasma compartment,

I0(t) =
∫ t

−∞
ke−k(t−s) I (s) ds = Dk

∑

n≤t/τ

e−k(t−nτ)ξn . (37)

Now, observe that I0 in (37) evaluated at integer multiples of the dosing interval τ

satisfies the following recurrence relation,

I0(nτ + τ) = e−kτ I0(nτ) + Dkξn+1, n ∈ Z. (38)

Further, (38) is an Euler-Maruyama approximation of the following Ornstein–
Uhlenbeck process,

dIou = 1 − e−kτ

τ

( Dkp

1 − e−kτ
− Iou

)
dt + Dk

√
p(1 − p)

τ
dW , (39)

on the discrete time grid {nτ }n∈Z (Kloeden and Platen 1992). In particular, the
Ornstein–Uhlenbeck process (39) approximates the solution to the recurrence relation
(38) if kτ � 1. Summarizing, the non-stationary input in (36) can be approximated
by the stationary input in (39) for drugs which are absorbed slowly compared to their
prescribed dosing interval. Fourth and finally, the decompositions obtained in Theo-
rems 1–2 do not assume stationary inputs. Thus, we expect that our that basic result
that network robustness is characterized by variability in T extends to non-stationary
inputs, but we leave a detailed investigation of this point for future work.

Appendix: Proofs

Proofs for Section 2

Proof of Proposition 1 Define the first passage time of X in (2) to the absorbing state
∅,

T X
abs := inf{t > 0 : X(t) = ∅}.

We claim that

P(T X
abs < ∞| X(0) = i) = 1, for each i ∈ {1, . . . ,m}. (40)

To show (40), we first recall some Markov chain definitions and theory.
Following Following Norris (1998), we write i → j if there is a directed path

from i to j or if i = j (meaning, either i = j or there exists k ≥ 2 distinct states
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i1 = i, . . . , ik = j with Ri2,i1 · · · Rik ,ik−1 > 0). We write i ↔ j if both i → j
and j → i . It is straightforward to check that ↔ is an equivalence relation and thus
partitions {1, 2, . . . ,m} into equivalence classes called communicating classes. We
say that a communicating class C ⊆ {1, 2, . . . ,m} is closed if i ∈ C and i → j imply
j ∈ C . In words, a closed class is one from which there is no escape.
Now, the absorbing state ∅ is a closed class. If there was another closed class

C ⊆ {1, . . . ,m}, then we must have di = 0 for all i ∈ C by definition of closed.
However, this would break property (c) in Definition 1 in our assumption that R is
admissible. Therefore, all communicating classes in {1, . . . ,m} must not be closed
and therefore must be transient (see Theorems 1.5.3, 1.5.5, and 3.4.1 in Norris (1998)),
which proves (40).

Equation (40) implies

lim
t→∞ P(T X

abs > t | X(0) = i) = 0, for each i ∈ {1, 2, . . . ,m}.

Since the survival probability of Tabs is given in terms of the matrix exponential of R
(Norris 1998),

P(T X
abs > t | X(0) = i) = 1	eRtei , i ∈ {1, 2, . . . ,m},

where 1 ∈ R
m×1 is a column vector of all 1 s, it follows that all eigenvalues of R have

strictly negative real parts. ��
Proof of Theorem 1 It is immediate that the solution to (4) is

c(t) =
∫ t

−∞
eR(t−s)e1 I (s) ds. (41)

Therefore, the flux out of the system is

J (t) := d	c(t) = d	
∫ t

−∞
eR(t−s)e1 I (s) ds =

∫ ∞

0
pabs(s)I (t − s) ds,

where we have changed variables s → t − s and used the definition of pabs(s) =
d	eRse1 in the final equality. Using that E[ξ(t)] = 0 then yields

Var(J (t)) = E

[( ∫ ∞

0
pabs(s)ξ(t − s) ds

)2]

= E

[ ∫ ∞

0

∫ ∞

0
pabs(s)pabs(s

′)ξ(t − s)ξ(t − s′) ds ds′]

=
∫ ∞

0

∫ ∞

0
pabs(s)pabs(s

′)K (t − s, t − s′) ds ds′

= E[K (t − Tabs, t − T ′
abs)],

where K (s, s′) := E[ξ(s)ξ(s′)] denotes the correlation function of ξ (also called
the covariance, autocovariance, or autocorrelation function (Pavliotis 2014)), and
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Tabs, T ′
abs are iid realizations of a random variable with probability density pabs. Note

that we are assured that pabs is a probability density by Theorem 3. ��
Proof of Theorem 2 From (41), we have that

cn(t) = e	
n c(t) = e	

n

∫ t

−∞
eR(t−s)e1 I (s) ds = tn

∫ ∞

0
pn(s)I (t − s) ds, (42)

where we have changed variables s → t − s and used the definition of pn(s) =
t−1
n e	

n e
Rse1 in the final equality. Using that E[ξ(t)] = 0 then yields

t−2
n Var(cn(t)) = E

[( ∫ ∞

0
pn(s)ξ(t − s) ds

)2]

= E

[ ∫ ∞

0

∫ ∞

0
pn(s)pn(s

′)ξ(t − s)ξ(t − s′) ds ds′]

=
∫ ∞

0

∫ ∞

0
pn(s)pn(s

′)K (t − s, t − s′) ds ds′

= E[K (t − Tn, t − T ′
n)],

where K (s, s′) := E[ξ(s)ξ(s′)] and Tn, T ′
n are iid realizations of a random variable

with density pn . ��
Proof of Proposition 2 Since R is n-terminal, d = dnen . Since pabs(t) = d	eRte1 =
dne	

n e
Rte1 and pn(t) = t−1

n e	
n e

Rte1 are both probability densities of nonnegative
random variables, we must have

∫ ∞

0
dne	

n e
Rte1 dt = 1 =

∫ ∞

0
t−1
n e	

n e
Rte1 dt,

and therefore dn = 1/tn . ��
Proof of Corollary 1 The result

Var(J ) = E[K (Tabs − T ′
abs)] ≤ Var(I ), (43)

follows immediately from Theorem 1 and the general result that the correlation func-
tion of any WSS process satisfies |K (t)| ≤ K (0) = Var(I ) for all t ∈ R (Pavliotis
2014). Furthermore, if K (s) = K (0) for some time s �= 0, then ξ(t) is periodic
with period s. Therefore, since ξ(t) is not constant in time and Tabs has a continuous
probability distribution, the inequality in (43) must be strict. ��
Proof of Corollary 2 Taking the expectation of (42) yields E[cn] = tnE[I ]. The result

CV(cn) := SD(cn)

E[cn] =
√

E[K (Tn − T ′
n)]

E[I ] ≤
√
Var(I )

E[I ] , (44)
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follows immediately from Theorem 2 and the general result that the correlation func-
tion of any WSS process satisfies |K (t)| ≤ K (0) = Var(I ) for all t ∈ R (Pavliotis
2014). The result that the inequality in (44) must be strict follows from the same argu-
ment in the proof of Corollary 1 since Tn has a continuous probability distribution.

��
Proposition 4 If the input I (t) is WSS, then E[J ] = E[I ].
Proof of Proposition 4 Taking the mean of (41) and using that I is WSS yields

E[c(t)] =
∫ t

−∞
eR(t−s)e1E[I ] ds = −R−1e1E[I ].

Since J = d	c and d	 = −1	R, we obtain

E[J ] = d	
E[c] = −d	R−1e1E[I ] = 1	RR−1e1E[I ] = E[I ],

which completes the proof. ��
Proposition 5 Suppose R ∈ R

m×m is invertible, u, v ∈ R
m×1, and

p(t) = u	eRtv, t ≥ 0,

is a probability density of a nonnegative random variable T . Then

E[T ] = u	R−2v, E[T 2] = −2u	R−3v.

Proof of Proposition 5 Integrating by parts yields

E[T ] =
∫ ∞

0
tp(t) dt =

∫ ∞

0
tu	eRtv dt

= −
∫ ∞

0
u	R−1eRtv dt = u	R−2v.

Similarly, integrating by parts twice yields

E[T 2] =
∫ ∞

0
t2 p(t) dt =

∫ ∞

0
t2u	eRtv dt

= −
∫ ∞

0
2tu	R−1eRtv dt

=
∫ ∞

0
2u	R−2eRtv dt = −2u	R−3v,

which completes the proof. ��
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Proofs for Section 4

Proof of Theorem 3 The survival probability of the absorption time conditioned that
X(0) = 1 is (Norris 1998)

P1(T
X
abs > t) = 1	eRte1, t > 0, (45)

where 1 ∈ R
m×1 is a column vector of all ones. Since di = −∑m

j=1 R ji ≥ 0, we
have that

1	R = −d	.

Therefore, taking the derivative of (45) yields

− d

dt
P1(T

X
abs > t) = −1	ReRte1 = d	eRte1 = pabs(t),

which completes the proof. ��

Proof of Theorem 5 Theorem 3 implies that T X̃
abs has density

p̃abs := d	eR̃ten,

if we condition that X̃(0) = 1, where d	 := −1	 R̃ where 1 ∈ R
m×1 is the vector of

all 1 s. Further, Proposition 3 implies that R̃ is n-terminal, and therefore Proposition 2
implies that

p̃abs(t) := d	eR̃ten = p̃n(t) := d̃ne	
n e

R̃te1,

where d̃n = d	en is the nth element ofd. Therefore, T X̃
abs has density p̃n if we condition

that X̃(0) = 1.
It thus remains to show that p̃n = pn . If we define the diagonal matrix 	 =

diag(P1(A), P2(A), . . . , Pm(A)), then (32) yields

R̃ = 	R	−1.

Noting that e	
n 	−1 = e	

n
1

Pn(A)
= e	

n and 	e1 = P1(A)e1, we compute

tn pn(t) = e	
n e

Rte1

= e	
n 	−1eR̃t	e1

= e	
n

1

Pn(A)
eR̃tP1(A)e1

= P1(A)e	
n e

R̃te1 = P1(A)̃tn p̃n(t).

Hence, pn and p̃n are equal up to a scalar multiple, but since
∫ ∞
0 pn(t) dt =

∫ ∞
0 p̃n(t) dt = 1, we must have pn = p̃n . ��
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We now aim to prove Theorem 4. The next lemma proves Theorem 4 in the special
case that R is n-terminal.

Lemma 1 If R is n-terminal, then the last passage time of X to node n ∈ {1, 2, . . . ,m},

T X
n := sup{t ≥ 0 : X(t) = n},

has probability density pn in (7) if we condition that X(0) = 1.

Proof of Lemma 1 Note that n-terminal implies that a particle leaves compartment n
for the last time by immediately decaying.As such, if a particle is still in a compartment
1, 2, . . . ,m, then it has not left compartment n for the last time. Mathematically, this
means

P1(T
X
n > t) = P1(X(t) ∈ {1, 2, . . . ,m}) = 1	eRte1,

where 1 is a column vector with all 1 s. Taking the derivative yields

fn(t) := − d

dt
P1(T

X
n > t) = 1	(−R)eRte1.

Since R is n-terminal, 1	R = −dne	
n . Therefore, (7) implies

fn(t) = dne	
n e

Rte1 = dntn pn(t). (46)

Noting that
∫ ∞
0 fn(t) dt = ∫ ∞

0 pn(t) dt = 1, we deduce from (46) that tn = 1/dn and
fn(t) = pn(t) which completes the proof. ��
To prove Theorem 4 in the general case that R may not be n-terminal, we first need

the alternative representation for R̃ in (32).

Lemma 2 If BR
i is the event that X moves to state i on its first jump, then R̃ in (32)

satisfies

R̃i j =

⎧
⎪⎨

⎪⎩

R j j i = j,

−R j jP j (BR
i |A) i �= j, j �= n,

RinPi (A) i �= j, j = n.

(47)

Furthermore, R̃ is n-terminal.

Proof of Lemma 2 We need to show that when i �= j and j �= n,

−R j jP j (B
R
i |A) = Ri j

Pi (A)

P j (A)
.

The other cases are trivial; the two definitions match when i = j and noting that
Pn(A) = 1 resolves the last case. To start, we use Bayes rule to find

−R j jP j (B
R
i |A) = −R j j

P j (A|BR
i )P j (BR

i )

P j (A)
.
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The Markov property implies P j (A|BR
i ) = Pi (A), and therefore

−R j jP j (B
R
i |A) = −R j jP j (B

R
i )

Pi (A)

P j (A)
.

Using that −R j jP j (BR
i ) = Ri j , we find that the representations of R̃ in (32) and (47)

are equivalent.
Using the representation in (47), we can easily show R̃ is n-terminal. When j �= n,

the sum of the elements of column j of R̃ is

m∑

i=1

R̃i j = R j j − R j j

m∑

i=1,i �= j

P j (B
R
i |A) = R j j − R j j = 0,

since
∑m

i=1,i �= j P j (BR
i |A) = 1 because conditioning on A means the particle cannot

immediately decay after leaving compartment j and must move into some compart-
ment. When j = n, the sum is

m∑

i=1

R̃in = Rnn +
m∑

i=1,i �=n

RinPi (A) ≤ Rnn +
m∑

i=1,i �=n

Rin ≤ 0.

Notice that

m∑

i=1

R̃in = Rnn +
m∑

i=1,i �=n

RinPi (A) = Rnn +
m∑

i=1,i �=n

Rin = 0 (48)

if any only if both of the following two conditions hold

Pi (A) = 1 for all i such that Rin > 0, (49)

Rnn +
m∑

i=1,i �=n

Rin = 0. (50)

For the sake of contradiction, assume (48) holds and therefore (49)–(50) both hold.
Equation (50) implies that R does not permit decay from compartment n, and (49)
implies that particles leaving compartment n are guaranteed to arrive at n again.
Together, (49)–(50) imply that particles that have arrived at compartment n never
decay, but this is not possible given our assumptions on R in section 2.1. As such,
(49)–(50) cannot both hold and therefore (48) cannot hold and thus

m∑

i=1

R̃in < 0,

proving that R̃ is n-terminal. ��
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Proof of Theorem 4 Define the probability densities,

fn(t) := d

dt
P(T X

n ≤ t | X(0) = 1, A),

f̃n(t) := d

dt
P(T X̃

n ≤ t | X̃(0) = 1).

To start, we show fn = f̃n .
Let S be the time it takes X leave compartment n for the first time conditioned on X

eventually arriving at compartmentn. LetU be the time it takes X to leave compartment
n after reaching compartment n some time after the first jump conditioned on X
eventually arriving at compartment n. Let C be the event that X reaches compartment
n sometime after the first jump.

Then, the number of times a particle visits compartment n follows a geometric
distribution, and

P1(T
X
n > t | A) = (1 − Pn(C))

∞∑


=0

Pn(C)
P

(

S +

∑

m=0

Um > t

)

P1

(
T X̃
n > t

)
= (1 − Pn(C̃))

∞∑


=0

Pn(C̃)
P

(

S̃ +

∑

m=0

Ũm > t

)

,

where the Um are iid copies of U , and C̃ , S̃, and Ũm are defined analogously to C , S,
and Um but X̃ rather than X . Hence, we can show

P1(T
X
n > t | A) = P1(T

X̃
n > t)

by showing
Pn(C) = Pn(C̃), S =d S̃, U =d Ũ ,

where =d denotes equality in distribution.
First, we show S =d S̃. We prove this by showing sample paths for S and S̃ have

the same rates for moving from compartment j to i . This immediately follows from
looking at the case i �= j and j �= n in Lemma 2. We can disregard j = n because S
and S̃ do not depend on where the particle goes after leaving compartment n.

Next, to show Pn(C) = Pn(C̃), observe that

Pn(C) =
m∑

i=1,i �=n

Pn(B
R
i )Pi (A) =

m∑

i=1,i �=n

Rin

−Rnn
Pi (A).

From Lemma 2, we recall R̃in = RinPi (A) and Rnn = R̃nn . Then,

m∑

i=1,i �=n

Rin

−Rnn
Pi (A) =

m∑

i=1,i �=n

R̃in

−R̃nn
=

m∑

i=1,i �=n

Pn(B
R̃
i ). (51)
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Because R̃ is n-terminal, a particle leaving compartment n and immediately going to
any other compartment would eventually return to compartment n. As such, the right
hand side of (51) is Pn(C̃) and thus Pn(C) = Pn(C̃).

Lastly, we show U =d Ũ . To do so, we need to confirm that when i �= j ,

− R j jP j (B
R
i |C) = −R̃ j jP j (B

R̃
i |C̃) (52)

When j �= n, conditioning on C is the same as conditioning on A j and conditioning
on C̃ is unnecessary since n-terminal systems guarantee arrival to compartment n from
any other compartment. This means we can repeat the proof for S = S̃. As such, we
just need to examine when j = n. Using Bayes’ rule and the Markov property yields

−RnnPn(B
R
i |C) = −Rnn

Pn(C | BR
i )Pn(BR

i )

Pn(C)
= −Rnn

Pi (A)Pn(BR
i )

Pn(C)

= Rin
Pi (A)

Pn(C)
= R̃in

Pn(C̃)
.

Since R̃ is n-terminal,

−R̃nnPn(B
R̃
i |C̃) = −R̃nn

Pn(BR̃
i ∩ C̃)

Pn(C̃)
= −R̃nn

Pn(BR̃
i )

Pn(C̃)
= R̃in

Pn(C̃)
.

Hence, (52) is confirmed. As such, P(T X
n > t | A) = P(T X̃

n > t) and thus fn = f̃n .
Next, we note that f̃n = p̃n follows immediately from Lemma 1 since R̃ is n-

terminal.
Lastly, we have that p̃n = pn by Theorems 3 and 5. Therefore, we have

fn = f̃n = p̃n = pn,

which completes the proof. ��

Proof of Theorem 6 We prove the theorem for the case that T = Tn and T ∗ = T ∗
n . The

case for Tabs and T ∗
abs is nearly identical. Let X(t) be a path on R, let αi be the i th

time X(t) reaches s, and let βi be the i th time X(t) leaves s. Similarly, let X∗(t) be a
path on R∗ (i.e. the network the additional side network), let α∗

i be the i th time X∗(t)
enters compartment s from a compartment outside the side network, and let β∗

i be the
i th time X∗(t) leaves s for a compartment not in the side network. Let H be a random
variable denoting the largest index for β, or equivalently the number of times X(t)
hits s. For notational convenience, we also set β∗

0 = β0 = 0, αH+1 = supt {X(t) = n}
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and α∗
H+1 = supt {X∗(t) = n}. Then we can express

T =
H+1∑

i=1

(αi − βi−1) +
H∑

i=1

(βi − αi ),

T ∗ =
H+1∑

i=1

(α∗
i − β∗

i−1) +
H∑

i=1

(β∗
i − α∗

i ).

Note that the sum of αi − βi−1 and the sum of α∗
i − β∗

i−1 have the same distribution,
which we call T−s . We define Ts as equal in distribution to βi − αi and similarly T ∗

s

as equal in distribution to β∗
i − α∗

i and let {T (i)
s }i≥1 and {T ∗(i)

s }i≥1 be iid copies of Ts
and T ∗

s , respectively. This gives

T = T−s +
H∑

i=1

T (i)
s ,

T ∗ = T−s +
H∑

i=1

T ∗(i)
s .

Writing K = −Rss and ks as the rate from s into the side network, we have

Ts = Exp(K ),

T ∗
s = Exp(K + ks) +

G∑

j=1

(
T ( j)
s + Exp(K + ks)

)
,

where G is a geometric variable representing the number of entries from s to the side
network,

P(G = i) =
( K

ks + K

)( ks
ks + K

)i
, i ∈ {0, 1, 2, . . . },

and T ∗
s is broken up into the time in the side network, i.e. Ts , and the time spent at

compartment s, i.e. Exp(K + ks). It is well known that

E[G] = ks
K

,

Var[G] = ks(ks + K )

K 2 .
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Using this, we find

E[T ∗
s ] = 1

K + ks
+ ks

K

(
E[Ts] + 1

K + ks

)

= 1

K
+ ks

K
E[Ts]

>
1

K
= E[Ts],

which implies
E[T ∗|A] − E[T |A] > 0. (53)

We also determine

Var(T ∗
s ) =

(
1

K + ks

)2

+ ks
K

(

Var(Ts) +
(

1

K + ks

)2)

+ ks(ks + K )

K 2

(

E[Ts] + 1

K + ks

)

= 1

K 2 + ks
K
Var(Ts) + ks(ks + K )

K 2 E[Ts]

>
1

K 2 = Var(Ts).

Lastly, note that since α1 −β0 and αH+1 −βH are independent of H and T ∗
s , we have

Cov

(

T−s,

H∑

i=1

T ∗(i)
s

)

= Cov

( H−1∑

i=1

(αi+1 − βi ),

H∑

i=1

T ∗(i)
s

)

= E[αi+1 − βi ]E[T ∗
s ]Var(H)

> E[αi+1 − βi ]E[Ts]Var(H) = Cov

(

T−s,

H∑

i=1

T (i)
s

)

.

Putting everything together gives

Var(T ∗|A) = Var(T−s |A) + Var

( H∑

i=1

T ∗(i)
s

)

+ Cov

(

T−s,

H∑

i=1

T ∗(i)
s

)

> Var(T−s |A) + Var

( H∑

i=1

T (i)
s

)

+ Cov

(

T−s,

H∑

i=1

T (i)
s

)

,

which yields

Var(T ∗|A) − Var(T |A) > 0,

the desired result for proving Theorem 6. ��
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