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Abstract—In password security a defender would like to
identify and warn users with weak passwords. Similarly, the
defender may also want to predict what fraction of passwords
would be cracked within B guesses as the attacker’s guessing
budget B varies from small (online attacker) to large (offline
attacker). Towards each of these goals the defender would like
to quickly estimate the guessing number for each user password
pwd assuming that the attacker uses a password cracking model
M i.e., how many password guesses will the attacker check before
s/he cracks each user password pwd. Since naı̈ve brute-force
enumeration can be prohibitively expensive when the guessing
number is very large, Dell’Amico and Filippone [1] developed an
efficient Monte Carlo algorithm to estimate the guessing number
of a given password pwd. While Dell’Amico and Filippone proved
that their estimator is unbiased there is no guarantee that the
Monte Carlo estimates are accurate nor does the method provide
confidence ranges on the estimated guessing number or even
indicate if/when there is a higher degree of uncertainty.

Our contributions are as follows: First, we identify theoretical
examples where, with high probability, Monte Carlo Strength
estimation produces highly inaccurate estimates of individual
guessing numbers as well as the entire guessing curve. Second,
we introduce Confident Monte Carlo Strength Estimation as an
extension of Dell’Amico and Filippone [1]. Given a password
our estimator generates an upper and lower bound with the
guarantee that, except with probability δ, the true guessing
number lies within the given confidence range. Our techniques
can also be used to characterize the attacker’s guessing curve.
In particular, given a probabilistic password cracking model M
we can generate high confidence upper and lower bounds on the
fraction of passwords that the attacker will crack as the guessing
budget B varies.

Index Terms—Monte Carlo Estimation, Password Cracking
Models, Concentration bounds

I. INTRODUCTION

In addition to their offensive uses, Probabilistic Password
Cracking Models have many defensive applications. One de-
fensive application is to use the password cracking model
to estimate the strength of a user’s password during account
registration so that we can warn users who attempt to register
with a weak password that would be easy for an attacker to
guess. For this application we would like to quickly determine
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how many guesses an attacker using password cracking model
M would need to check before s/he cracks a particular
user’s password pwd. One way to determine the guessing
number of a particular password pwd would simply be to
enumerate all possible password guesses, ordered according
to their probability under the model M , keeping track of the
number of incorrect guesses which appear before the correct
password pwd. However, naı̈ve brute-force enumeration is
often prohibitively expensive especially when the guessing
number is very large e.g., > 1015.

Dell’Amico and Filippone [1] developed a Monte Carlo
algorithm to efficiently output an estimate of the guessing
number of a given password pwd without resorting to brute-
force enumeration. Their technique applies generically to any
probabilistic password model M under the assumption that
(1) the model M defines a distribution over passwords and
we can efficiently sample from this distribution, and (2)
given a particular password pwd we can quickly compute the
probability that this password is generated by M . Dell’Amico
and Filippone proved that their Monte Carlo estimator is
unbiased i.e., the expected value of the estimate is equal to
the actual guessing number. However, there is no absolute
guarantee that the estimate is accurate. Their Monte Carlo
estimator does not provide any statistical confidence intervals
for the range of possible guessing numbers or even indicate
if/when there is a high degree of uncertainty about the true
guessing number.

In other defensive applications we may want to estimate the
attacker’s entire guessing curve. How many consecutive incor-
rect login attempts should be allowed before we lockdown an
account? Will doubling the cost of the password hash function
significantly reduce the fraction of passwords that an offline
attacker will crack?

Formally, let λM,B,D denote the fraction of passwords
in a dataset D which would be cracked within the first B
guesses generated by model M . Similarly, let λM,B denote the
probability that a fresh password sampled from an (unknown)
distribution P over user passwords would be cracked within
the first B guesses output by the model M . Characterizing
the entire guessing curve λM,B,D (or λM,B) as B ranges
from small (online attack) to very large (offline attack) can
help a defender set password policies. Thus, we would like to



generate high confidence upper/lower bounds on the guessing
curves λM,B,D and/or λM,B .

However, when B is sufficiently large we cannot efficiently
compute λM,B,D since that would require enumeration of the
top B passwords in the distribution M . As a heuristic approach
we could use Monte Carlo strength estimation [1] to quickly
estimate the guessing number of each password in D and then
compute the fraction of passwords whose estimated guessing
number is below B. While this heuristic approach has become
popular in the password literature (e.g., [2]–[5]), it could
yield poor estimates of λM,B,D when the estimated guessing
numbers are inaccurate. Indeed, in our empirical analysis we
identify several instances where the heuristically estimated
guessing curve is highly inaccurate. These problematic cases
tend to arise when the guessing number B is very large. The
bottom line is that there is no absolute guarantee that our
heuristic estimate of λM,B,D is accurate nor does this heuristic
approach provide any statistical confidence intervals on the
attacker’s guessing curve.

In many settings we would like to characterize the guessing
curve λM,B using a relatively small number of samples from
our unknown password distribution. For example, suppose
that we conduct a user study to determine whether or not a
particular password policy intervention, e.g., requiring users to
select passwords with upper and lower case letters1, effectively
strengthens the distribution over user passwords. We can
view the data collected from the user study as samples D0

(control group) and D1 (intervention group) from two different
(unknown) password distributions P0 and P1 respectively. We
would like to use these samples to draw statistical comparisons
about the guessing curves before/after the policy intervention
i.e., does the policy reduce the fraction of user passwords
cracked by an offline attacker making B = 1015 guesses per
user. Observe that if we assume that the dataset Si was sam-
pled iid from distribution Pi that we have λM,B = E [λM,B,D].
We could use the popular heuristic estimate for λM,B,Di

(described above) to estimate the guessing curves λM,B for
the two different distributions. However, we now have an
additional source of estimation error due to sampling of the
datasets D0 and D1 — in addition to the error from Monte
Carlo strength estimation. One challenge is that the number
of samples collected from the user study will typically be
constrained by research budgets making it harder to ensure
that the sampling error is small.

A. Contributions

First, we provide theoretical examples of models M and
passwords pwd where regular Monte Carlo will (1) signifi-
cantly overestimate the true guessing number of pwd with high
probability, and (2) underestimate the guessing number by a

1There are many password interventions that one could consider. We
could require passwords to include special characters or numbers (password
composition policies). We could display a password strength meter during
registration. We could warn users about the risks of picking weak passwords
before registration. We could require users to participate in training activ-
ities or watch an instructional video about picking good passwords before
registration.

factor of ≈ 2 with probability at least 0.3. We also consider
the popular heuristic of using regular Monte Carlo strength
estimation to estimate the attacker’s guessing curve. We pro-
vide a (theoretical) example of a model M and a password
distribution P such that (1) an attacker following model M
will actually crack 0% of passwords within B guesses i.e.,
λM,B = 0 and λM,B,D = 0, but (2) the popular heuristic using
regular Monte Carlo Strength estimation incorrectly predicts
that an attacker will crack 100% of user passwords sampled
from P within B guesses! We argue that such issues are
inherent to any blackbox method for Monte Carlo strength
estimation.

Second, we introduce several rigorous statistical techniques
to upper/lower bound the guessing number of a password and
show how these techniques can be extended to upper/lower
bound an attacker’s entire guessing curve. On a technical
note our upper/lower bounds are derived using concentra-
tion inequalities such as Hoeffding and Chernoff as well
as a strategic application of Markov’s inequality. We call
our new toolkit Confident Monte Carlo. In particular, given
a password cracking model M , a particular password pwd
and a confidence parameter δ Confident Monte Carlo will
output an upper bound U and a lower bound L on the
(unknown) true guessing number G(pwd) with the guarantee
that Pr[L ≤ G(pwd)] ≥ 1− δ and Pr[U ≥ G(pwd)] ≥ 1− δ.
We stress that this is distinct from the weaker task of finding
of upper/lower bounds for a Monte Carlo estimate Ĝ(pwd)
of G(pwd) e.g., finding L < U such that Pr[L ≤ Ĝ(pwd) ≤
U ] ≥ 1−δ. This weaker goal could be easily accomplished by
standard techniques for generating confidence intervals such
as multiple sampling iterations. Confident Monte Carlo works
under the exact same generic assumptions as regular Monte
Carlo strength estimation.2 Thus, whenever we can apply apply
regular Monte Carlo strength estimation to estimate guessing
numbers for a password cracking model M we can also apply
our Confident Monte Carlo techniques to obtain confidence
bounds for the estimated guessing number. Empirical analysis
shows that our upper/lower bounds on the guessing number
are usually quite close. Typically, we find that the estimates
generated by regular Monte Carlo lie within our confidence
range, but we also find that for many rare passwords the
estimated guessing number generated by regular Monte Carlo
is demonstrably inaccurate e.g., the estimate lies below our
lower bound.

Third, we develop rigorous statistical techniques to up-
per/lower bound the attacker’s entire guessing curve. In par-
ticular, given a dataset D we can generate curves λub

M,B,D

(resp. λlb
M,B,D) such that with probability at least 1 − δ for

all guessing budgets B we have λM,B,D ≤ λub
M,B,D (resp.

λM,B,D ≥ λub
M,B,D).

If we assume that our dataset D was sampled iid from the
(unknown) password distribution P then we can apply McDi-

2We assume that (1) the model M describes a distribution M over
passwords and we can efficiently sample from this distribution, and (2) given
a particular password pwd we can quickly compute the probability that this
password is generated by M .



armid’s inequality to argue that (whp) |λM,B,D − λM,B | ≤ ϵ.
This allows us to confidently upper/lower bound the guessing
curve λM,B for our (unknown) user password distribution P
using only a dataset D sampled from this distribution. This
observation also provides a rigorous statistical framework for
many natural tasks in password research (1) analyzing the
impact of a password policy on the guessing curve given
samples S1 (resp. S2) from the unknown distribution P1

(resp. P2) representing the distribution of user passwords
before (resp. after) the policy intervention, (2) comparing the
performance of different password cracking models M and
M ′ against an unknown password distribution P .

Finally, we evaluate Confident Monte Carlo empirically
using several large breached password datasets. We find that
our upper/lower bounds on the guessing curve are typically
very close and thus tightly bound the true values λM,B,D

or λM,B . We compare our upper/lower bounds with the
popular heuristic estimate using Regular Monte Carlo strength
estimation. On the positive side, our empirical experiments
demonstrate that Regular Monte Carlo generates reasonable
estimates of the guessing curve in most cases i.e., as long as
the guessing budget B is not too large (e.g., B ≤ 1020) the
estimated guessing curve is tightly sandwiched between our
upper/lower bounds. Thus, Confident Monte Carlo can often
be used as a tool to verify if the heuristic guessing curve
generated by Regular Monte Carlo is accurate. On the negative
side when the guessing budget B grows very large we find
several examples where the Regular Monte Carlo guessing
curve is provably inaccurate i.e., lies above our upper bound.

B. Related Work

Password Guessing Models. Offline password attacks have
been a concern since the Unix system was devised [6].
Many sophisticated probabilistic password models have been
proposed to generate password guesses for an online attacker
such as Probabilistic Context-Free Grammars [7]–[9], Markov
models [10]–[13], and neural networks [2]. Each of these
probabilistic password models are compatible with regular
Monte Carlo Strength estimation [1] and our Confident Monte
Carlo techniques. Thus, we can apply our statistical techniques
to derive high confidence upper/lower bounds on guessing
numbers for each of these models. By contrast, heuristic (rule-
based) tools such as Hashcat [14] and John the Ripper [15]
are not compatible with Monte Carlo Strength Estimation. Liu
et al. [3] developed tools to estimate guessing numbers for
Hashcat and John the Ripper without resorting naı̈ve brute-
force enumeration.
Password Strength Estimation. Regular Monte Carlo
strength estimation [1] has been widely used in the password
research literature to understand the impact of culture/language
on password strength [16], evaluate the impact of policy
interventions such as password composition policies [2], [13],
[17], develop password strength meters [18] and evaluate
the effectiveness of key-stretching mechanisms against offline
attacks [4]. However, to the best of our knowledge the problem
of providing rigorous confidence intervals for the estimated

guessing numbers has not been explored.3 Blocki and Liu [19]
recently focused on the problem of upper/lower bounding the
guessing curve of a perfect knowledge attacker who knows the
user password distribution P . While this can be a useful goal,
in practice it can also be useful to characterize the guessing
curve of an attacker following a state of the art password
cracking model M since a real world attacker will not have
perfect knowledge of the user password distribution. We also
note that the upper/lower bounds of Blocki and Liu [19] for
the guessing curve of a perfect knowledge attacker rapidly
diverge even for moderately large values of B e.g., B = 107.
By contrast, we are able to obtain relatively tight upper/lower
bounds on the guessing curve of an attacker using model M
even when the guessing budget B is very large e.g., B = 1024.

II. BACKGROUND

In this section we introduce probabilistic password models,
regular Monte Carlo Estimation and password guessing curves
more formally. A summary of notations is found in Table III
in Appendix F.
Probabilistic Password Guessing Model. In this work we
assume that our attacker is untargeted and that the attacker
uses a Probabilistic Password Model M to crack passwords. To
apply regular Monte Carlo or Confident Monte Carlo we make
several assumptions about the model M . First, we assume
that the model M implicitly defines a distribution M over
passwords and that M allows us to efficiently sample from the
distribution M. Second, given an arbitrary password pwd we
assume that we can efficiently compute pMpwd

.
= Prx←M[x =

pwd] i.e., likelihood of the password pwd according to our
distributionM. We note that these assumptions hold for most
sophisticated password cracking models such as Probabilistic
Context-Free Grammars [7]–[9], Markov models [10]–[13],
and neural networks [2].

It will be convenient to let pwd1, pwd2, . . . denote the list
of passwords in the support of our distribution M and to let
pMi

.
= pMpwdi

denote the probability of password i. It will also
be convenient to assume that these passwords are ordered such
that pM1 ≥ pM2 ≥ . . . i.e., so that an attacker using model
M would check guesses in the order pwd1, pwd2, . . .. We
let G(pwd) denote the number of guesses that an attacker,
following model M , would need to attempt in order to crack
the password pwd i.e., G(pwdi) = i.

Given a probability value q ∈ [0, 1] we would like to define
G(q) as the hypothetical guessing number for a password
pwd with probability pMpwd = q. However, if there are
multiple passwords in M with probability exactly q there
will be multiple different values of the guessing number.
To avoid ambiguity we instead define an exclusive bound

3Melicher et al. [2] mention that with at least one million samples typically
they observe “95% confidence intervals of less than 10% of the value of
the guess-number estimate” and “passwords for which the error exceeded
10% tended to be guessed only after more than 1018 guesses” in their
experiments. However, the paper does not contain any details about these
claimed confidence intervals or the methodology by which they were derived.
We reached out the the authors to provide clarification, but received no
response.



GEX(q) := |{i : pMi > q}| to count the number of passwords
with probability strictly greater than q and an inclusive bound
GIN(q) := |{i : pMi ≥ q}| to count the number of passwords
with probabilities greater than or equal to q. Observe that for
a password pwd with probability pMpwd we have GEX(q)+ 1 ≤
G(pwd) ≤ GIN(q). It will sometimes be convenient to write
GEX(pwd)

.
= GEX(pMpwd) or GIN(pwd)

.
= GIN(pMpwd).

Regular Monte Carlo Estimation. To compute G(pwd) (or
GEX(q) or GIN(q)) exactly a defender would need to enumerate
all possible passwords in M whose probability is above a
given threshold (pMpwd). This can be prohibitively expensive
for the defender when the guessing number is large. Thus,
Dell’Amico and Filippone [1] developed a Monte Carlo algo-
rithm to efficiently estimate G(pwd). More accurately, for any
probability value q their algorithm produces an unbiased esti-
mate of GEX(q) — we have G(pwd) = GEX(q)+1 in whenever
there is a unique password pwd with probability pMpwd = q.
This regular Monte Carlo algorithm works as follows: (1) draw
k iid samples from the distribution M i.e., S ← Mk, (2)
output the estimate ĜEX

S (q) = 1
k

∑
x∈S,pM

x >q
1

pM
x

. In practice,
Dell’Amico and Filippone [1] proposed that one could draw
the sample S ahead of time and use this sample to obtain out
strength estimate ĜEX

S (pwd) for multiple different passwords.
Dell’Amico and Filippone [1] proved that for any probabil-

ity parameter q ∈ [0, 1] the expectation of the estimation is
equal to its true value, i.e., E(ĜEX

S (q)) = GEX(q). They also
argued that the variance Var(ĜEX

S (q)) = 1
k (
∑

i:pM
i >q

1
pM
i
−

GEX(q))2 converges to 0 as the sample size k gets to infinite.
However, in practice the sample size k is finite and can be
very small compared to 1

q .
Similarly, as a trivial extension of [1] one can define

ĜIN
S (q) := 1

k

∑
x∈S,pM

x ≥q
1

pM
x

as an unbiased estimate for our
inclusive term GIN(q).
Password Guessing Curve. Given a dataset D4 we let
λM,B,D

.
= 1
|D| |{x ∈ D : G(x) ≤ B}| denote the fraction

of passwords in D that would be cracked within B guesses
by an untargeted attacker following model M . Similarly, we
define λM,B := Pry←P [G(y) ≤ B] to be the probability that a
random password y sampled from P would be cracked within
B guesses. We will typically assume that the user password
distribution P is unknown, but that we are given a dataset
D consisting of iid samples from P . In this case we have
λM,B = E[λM,B,D] where the randomness is taken over the
selection of D from the unknown distribution P .

For an online attacker B is usually small since an authenti-
cation service can lock out the user account after several failed
login attempts. For an offline attacker B can be much larger
since with the stolen (salted) cryptographic hash of the user’s
password an offline attacker can check as many passwords
as s/he wants by comparing the (salted) cryptographic hash
with the hashes of the top B guesses pwd1, . . . , pwdB . An
offline attacker is limited only by the resources s/he is willing

4D may contain duplicated passwords since different users might select the
same password.

to invest cracking and by the cost of repeatedly evaluating the
password hash function.

III. LIMITATIONS OF REGULAR MONTE CARLO
STRENGTH ESTIMATION

In this section we discuss the limitations of the regular
Monte Carlo strength estimation [1]. We provide a theoretical
example of password models where regular Monte Carlo will
dramatically underestimate the guessing number with high
probability, and another example of a password model where
Monte Carlo will overestimate the guessing number by a factor
of 2 with probability at least 0.3. Specifically, for any sample
size k we define a model for which the estimation is inaccurate
with a significant probability. We also provide a theoretical
example of a password model and a password distribution
where the regular Monte Carlo estimation has a large error on
predicting the guessing curve. We further demonstrate that the
above issue is inherent to any blackbox method for estimation
given only a finite amount of samples without exploiting
specific properties of the password guessing model. All exam-
ples of password models and distributions in this section are
constructed for the purpose of illustration. We are not claiming
that they are representative of distributions/models one would
encounter in practice.

A. Error on Guessing Number

1) Underestimating the Guessing Number: We first provide
an example of a password model where Monte Carlo will
(whp) dramatically underestimate the true guessing number.

The Model/Distribution M: Consider a model M which
induces a distributionM over passwords pwd1, pwd2, . . . such
that Prx←M[x = pwdi] = 2−i.

Actual Guessing Number: The actual guessing number of
each password pwdi is G(y) = i.

Analysis of Monte Carlo Estimate: Suppose that we apply
Monte Carlo with k = |S| ≥ 210 iid samples S ←Mk from
M to estimate the guessing number of a password. For any
i > 2 log(k) with high probability (1 − 2−i+1)k > 0.99 our
sample set S will contain no passwords with probability equal
to or less than 2−i. In this case for any j ≥ i our estimated
guessing number for pwdj is ĜEX

S (pwdj) = 1
k

∑
x∈S

1
pM
x

where 1
k

∑
x∈S

1
pM
x
≤ 2log(k

2)

k = k. Thus, if j ≫ k Monte
Carlo will dramatically underestimate the true guessing num-
ber with high probability.

The authors of [1] state that the variance of ĜEX
S (pwdj)

approaches 0 as k increases. However, in the above example
the variance for the jth most probable password pwdj is
V ar(ĜEX

S (pwdj)) =
1
k (
∑j−1

t=1
1

2−t − (j − 1)2) = 1
k (2

j − 1 −
(j − 1)2). While the variance does decrease linearly with the
sample size k it also increases exponentially with the true
guessing number j.

2) Overestimating the Guessing Number: We now give an
example where regular Monte Carlo estimation can overes-
timate the guessing number by a factor of ≈ 2 with non-
negligible probability (e.g., 0.3).



The Model/DistributionM: Fix the sample size k ≥ 5 and
consider a model M corresponding to a password distribution
M where there are n1 = 2k − 1 passwords with probability
p1 = 1

2k , n2 = k2

2 − 1 passwords with probability p2 = 1
k3 ,

and ni = 1 password with probability pi =
1

2i−2k3 < pi−1 for
any i ≥ 3. Observe that

∑
i≥1 nipi = 1.

Actual Guessing Number: The actual guessing number of
the password with probability p3 is G(p3) = n1 + n2 + 1 =

2k − 1 + k2

2 .
Analysis of Monte Carlo Estimate: Suppose |S| = k (k ≥

5) samples are generated to estimate the guessing numbers.
Consider the event E that S contains exactly one password
with probability p2 and all the remaining (k − 1) samples
have probability p1 (i.e., none of the remaining samples in S
have probability smaller than p2). If the event E occurs then
the estimated guessing number of password with probability
p3 is ĜEX

S (p3) + 1 = 1
k ((k − 1) 1

p1
+ 1

p2
) + 1 = 2k − 1 + k2

while the actual guessing number is G(p3) = n1 + n2 + 1 =
2k − 1 + 1

2k
2 i.e., we overestimate the guessing number by

a factor ĜEX
S (p3)+1
G(p3)

≈ 2. The probability of the event E is
n2

(
k
1

)
p2(n1p1)

k−1 = ( 12 −
1
k2 )(1− 1

2k )
k−1 > 0.3.

3) Inherent Limitations of Any Blackbox Guessing Number
Estimate: We now argue that any blackbox method for esti-
mating the guessing number will have similar issues. In partic-
ular, for any sample size k and any blackbox strength estima-
tion method we can find cases where the model will (whp) give
us highly inaccurate strength estimates. As a concrete example
consider the model M defined in Section III-A1 i.e., the model
induces a distributionM over passwords pwd1, pwd2, . . . such
that Prx←M[x = pwdj ] = 2−j for each j ≥ 1. Now let us
define a model M ’ inducing a distribution M′ similar to M
except that we replace the i passwords pwdi+1, . . . , pwd2i
with an exponentially large subset of 2i−1 new passwords of
probability 2−2i. In particular, we have Prx←M′ [x = pwdj ] =
Prx←M[x = pwdj ] = 2−j for all j ≤ i and all j ≥ 2i+1. In
model M ′ the passwords pwdi+1, . . . , pwd2i are replaced with
2i−1 new passwords pw1, . . . , pw2i−1. For each j ≤ 2i−1 we
set Prx←M′ [x = pwj ] = 2−2i so that

∑2i−1
j=1 Prx←M′ [x =

pwj ] = 2−i
(
1− 2−i

)
=

∑2i
j=i+1 Prx←M[x = pwj ].

We now make several observations about the models M and
M ′. First, we note that if we draw k = o

(
2i
)

samples in a
blackbox manner then we will not even be able to distinguish
between the distributions M and M′ (whp).5 Second, we
note that, when j ≥ 2i + 1, the actual guessing number for
pwdj is very different under model M and M ′ due to the
presence/absence of the exponentially large set of passwords
{pw1, . . . , pw2i−1} which would be guessed before pwdj .
In particular, the actual guessing number number is j (resp.
2i − 1 + j − i) under model M (resp. M ′). If we cannot
even distinguish between distributions M and M′ then, for

5To see this let E denote the event that we never sample a password y
with probability py < 2−i. Observe that if we condition on the event E that
we only sample passwords from pwd1, . . . , pwdi then the two distributions
M and M′ are equivalent. Furthermore, by union-bounds we have Pr[E] ≤
k2−i = o(1).
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Fig. 1: Blackbox Limitations (Example)

j ≥ 2i + 1, we cannot rule out the possibility that the actual
guessing number for pwdj could be as small as j (model M )
or as large as 2i − 1 + j − i (model M ′). Thus, providing
a concrete strength estimate without providing any indication
that there is a high degree of uncertainty would be particularly
problematic in this example.

We visualize these results in Figure 1 where we set k =
220 and i = 2 log k = 40. We also show the upper/lower
bounds obtained using our Confident Monte Carlo approach
( ≥ 98% confidence) as well as the estimates generated by
regular Monte Carlo. We note that the regular Monte Carlo
estimates are reasonable accurate for model M , but highly
inaccurate for the model M ′. Because Confident Monte Carlo
is also blackbox we cannot hope to achieve tight upper/lower
bounds. In particular, observe that any accurate blackbox lower
bound for the guessing number of pwd2i+1 must be at least
2i+1 (ground truth under model M ) and at least 2i+i (ground
truth under model M ′). This is precisely what we observe
in Figure 1 e.g., for passwords with probability 10−37 the
gap between our upper/lower bounds is ≈ 1033. In particular,
Confident Monte Carlo accurately indicates that we are highly
uncertain about the real guessing number.

B. Error on Guessing Curve

1) Regular Monte Carlo Guessing Curves: Another appli-
cation of Monte Carlo strength estimation is generating (an
approximation of) the attacker’s guessing curve. For example,
we might like to estimate the probability λM,B that an attacker
can crack a random user’s password (sampled from potentially
unknown distribution P) within B guesses using model M
or, given a dataset D of user passwords we might want to
estimate λM,B,D — the fraction of passwords in D that the
attacker using model M can crack within B guesses per
user account. The standard (heuristic) way to approximate
λM,B,D and λM,B is to simply compute λ̂M,B,D := 1

|D| |{y ∈
D : ĜEX(y) ≤ B}|. This heuristic approach has been widely
adopted in the password literature (e.g., [2]–[5]). However,
for any guessing budget B and sampling parameter k we
can provide an example of a model M and a distribution P
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Fig. 2: Error on Monte Carlo Estimated Guessing Curve

over user passwords such that: (1) an attacker who makes B
guesses will never crack any user password sampled from P
i.e., λM,B = 0, and (2) with high probability λ̂M,B,D = 1
i.e., the widely adopted heuristic using regular Monte Carlo
strength estimation predicts that the attacker cracks 100% of
passwords within B guesses.

Model Distribution M: Consider a distribution M gen-
erated by a cracking model M where there are k2 − 1
passwords pwd1, . . . , pwdk2−1 with probability 1

k2 . The re-
maining k2 passwords pwdk2 , . . . , pwd2k2−1 in the sup-
port of our distribution satisfy the following properties: (1)∑2k2−1

i=k2 Prx←M[x = pwdi] = 1
k2 and (2) Prx←M[x =

pwdi] > Prx←M[x = pwdi+1] for each k2− 1 ≤ i < 2k2− 1
i.e., passwords are listed in descending order of probability.
Let B = k2 +1, let F = {pwd1, . . . , pwdB} denote the most
popular B passwords and let L = {pwdB+1, . . . , pwdk2−1}
denote the remaining passwords.

Actual Password Distribution P: For the actual user
password distribution we can consider any distribution P with
support L i.e., Prx←P [x ∈ F ] = 0.

Actual Guessing Curve: Notice that the attacker’s first
B guesses will all be from the set F . By construction, the
support of our user password distribution P does not include
any password from F . Thus, for any dataset D of passwords
sampled from P we will have λM,B,D = 0 and we also have
λM,B = E[λM,B,D] = 0.

Analysis of Monte Carlo Curve: Given a sample set S
with size k from M, except with probability at most 1

k , all
k samples are from pwd1, . . . , pwdk2−1. In this case the esti-
mated guessing number for any password pwdi with k2−1 ≤
i ≤ 2k2−1 is ĜEX

S (pwdi)+1 = 1+ 1
k

∑
x∈S k2 = 1+k2 ≤ B.

Thus, with probability at least 1 − 1
k , we have λ̂M,B,D = 1

meaning that this widely adopted heuristic incorrectly predicts
that the attacker will crack 100% of passwords in our dataset
D. We compare the (regular) Monte Carlo estimated guessing
curve with the actual (ground truth) guessing curve in Figure 2.

2) Inherent Limitations of Any Blackbox Guessing Curve
Estimate: Let us reconsider the models M and M ′ as defined
in Section III-A3. We will define a user password distribution
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Fig. 3: Limitations: Blackbox Guessing Curve Estimate

P such that (1) any blackbox method given samples from
P in addition to samples from either M or M′ still cannot
distinguish between the models M and M ′ i.e., Prx←M′ [x =
pwd] = Prx←M′ [x = pwd] for all passwords pwd in the
support of P and (2) the guessing curves λM′,B and λM,B

are dramatically different.
User Password Distribution: Define the actual user pass-

word distribution P to be the uniform distribution over
{pwd2i+1, . . . , pwd3i} i.e., for all j ∈ [2i + 1, 3i] we have
Prx←P [x = pwdj ] = 1

i , Prx←P [x = pwdj ] = 0 for
j ̸∈ [2i + 1, 3i] and Prx←P [x = pwj ] = 0 for j ≤ 2i − 1.
Recall that for all j ∈ [2i+ 1, 3i] that we have Prx←M′ [x =
pwdj ] = 2−j = Prx←M′ [x = pwdj ]. Thus, it will not be
possible to distinguish the models M and M ′ using samples
from P .

Actual Guessing Curves: Under model M ′ the guessing
number for any password pwdj in the support of P is at least
2i+ i. Thus, λM ′,B = 0 for all B ≤ 2i+ i. By contrast, under
model M the guessing number for any password pwdj in the
support of P is at most 3i so we will have λM,B = 1 for all
B ≥ 3i.

We visualize these results in Figure 3 where we set k = 220

and i = 2 log k = 40. The orange and green curves plot the
ground truth guessing curves λM,B and λM ′,B for the models
M and M ′ respectively. The blue curve shows the heuristic
guessing curve estimate obtained using Regular Monte Carlo
(RMC). While this curve is reasonably close to λM,B , it quite
far from λM ′,B . Thus, if the real password cracking model
is M ′ the RMC curve is highly inaccurate. Finally, the red
(resp. purple) curves plot the best upper (resp. lower) bounds
obtained using Confident Monte Carlo (CMC) — several
rigorous statistical techniques we introduce later in the paper
to upper/lower bound the guessing number and the guessing
curve with high confidence (we used 99% confidence in Figure
3). We note that both Regular and Confident Monte Carlo
utilize the model in a blackbox manner and cannot distinguish
the distributions M or M′. Thus, we do not label the CMC
or RMC curves with the model M or M ′ since the results will
be the same (whp). Observe that the curves λM,B and λM ′,B



both lie between our upper/lower bounds. Thus, Confident
Monte Carlo accurately indicates that there is a high degree
of uncertainly about the true guessing curve.

IV. THEORETICAL BOUNDS ON GUESSING NUMBER

In this section, we present two techniques to rigorously
bound the actual guessing number G(y) of an arbitrary pass-
word y using iid password samples randomly selected from
a model distribution M generated by a password cracking
model M . In particular, we can ensure that the actual guessing
number G(y) is sandwiched between our upper/lower bounds
with high confidence (e.g., 99%) allowing us to quantify the
uncertainty of guessing number estimates.

A. Upper/Lower Bounds Using Hoeffding’s Inequality

In this section, we prove an upper bound and a lower
bound on the actual guessing number G(q) of a password
with probability q using Hoeffding’s inequality. The formal
statement is shown below:

Theorem 1. Given a set S with k iid password samples
sampled from distribution M, for any probability q ∈ [0, 1]
and any parameter ϵ ≥ 0, we have:

Pr[G(q) ≤ ĜIN
S (q) + ϵ/q] ≥ 1− exp

(
−2kϵ2

)
Pr[G(q) ≥ ĜEX

S (q) + 1− ϵ/q] ≥ 1− exp
(
−2kϵ2

)
where the randomness is taken over S ←Mk.

Due to space limitations the formal proof is deferred to Ap-
pendix E. Briefly, we observe that ĜEX

S (q) can be viewed as the
sum of k independent random variables XEX

1 , . . . , XEX
k where

XEX
i = 0 if the ith password z from our sample has probability

pMz < q and XEX
i = 1/pMz otherwise. Since the random

variable are independent we can apply Hoeffding’s inequality
to upper bound the probability that our estimate ĜEX

S (q) is
significantly smaller than its expectation E

[
ĜEX

S (q)
]
= GEX

S (q)

where G(q) ≥ GEX
S (q)+1. Similarly, we can apply Hoeffding’s

inequality to bound ĜIN
S (q). In particular, for ϕ ∈ {EX, IN} we

have |Ĝϕ
S(q)−Gϕ(q)| ≤ ϵ/q with any ϵ ≥ 0 as below:

Pr[Gϕ(q) ≤ Ĝϕ
S(q) + ϵ/q] ≥ 1− exp

(
−2kϵ2

)
(1)

Pr[Gϕ(q) ≥ Ĝϕ
S(q)− ϵ/q] ≥ 1− exp

(
−2kϵ2

)
(2)

Note that given a password y the upper/lower bounds in
Theorem 1 differ by an additive factor of ϵ/pMy . Thus, we can
obtain tight upper/lower bounds ϵ/pMy ≪ G(y) although the
bounds can diverge as pMy grows small i.e., when the password
is particularly rare.

B. A Tighter Lower Bound For Rare Passwords

The upper and lower bounds in Section IV-A will diverge
when the password is rare. In the worst case, the lower
bound will be useless if ĜEX

S (q)+ 1− ϵ/q becomes a negative
value. Is it possible to derive tighter bounds on the guessing
numbers of rare passwords? In this section we further tighten
the lower bound for rare passwords by applying Markov’s
inequality and taking the median estimates. In particular, for

any password probability q ∈ [0, 1] we define Ĝϕ
S,med(q) =

median
(
{Ĝϕ

Si
(q)}1≤i≤n

)
where S = {S1, S2, . . . , Sn} and

each Si contains k independent samples from our model.
Fixing any parameter δ < 1

2 we show that (whp) δ ·ĜEX
S,med(q)

lower bounds the true guessing number as stated in the
following theorem:

Theorem 2. For any password probability q ∈ [0, 1], and any
parameters 0 ≤ δ ≤ 1

2 and 0 ≤ ϵ ≤ 1
2 − δ,

Pr[G(q) ≥ δ · ĜEX
S,med(q) + 1] ≥ 1− exp(−2nϵ2)

where the randomness is taken over n sets of k Monte Carlo
samples S = {S1, · · · , Sn} from model M .

Theorem 2 often allows us to tighten the lower bounds
on the guessing number of rare passwords. Due to space
limitations the formal proof is deferred to Appendix E. In-
tuitively, we can define an indicator random variable Xϕ

i

for ϕ ∈ {EX, IN} such that Xϕ
i = 1 if and only if

Gϕ(q) ≥ δ · Ĝϕ
Si
(q), i.e., if and only if the ith sample set

Si overestimates Gϕ(q) by at most a factor of 1/δ, and
Xϕ

i = 0 otherwise. As long as
∑n

i=1 X
ϕ
i ≥ n/2 we are

guaranteed that the median estimate is not too bad and that
G(q) ≥ δ · ĜEX

S,med(q) + 1. Thus, it suffices to upper bound
the probability that

∑n
i=1 X

ϕ
i ≥ n/2. We first apply Markov’s

inequality to show that Pr[Xϕ
i = 1] ≥ 1 − δ. Finally, since

each Xϕ
i is independent we can apply concentration bounds to

show that
∑n

i=1 X
ϕ
i ≥ n/2 with high probability. In particular,

by Chernoff bounds for any 0 ≤ ϵ ≤ 1
2 − δ we have

Pr[Ĝϕ
S,med(q) ≤

1

δ
Gϕ(q)] ≥ Pr[

n∑
i=1

Xϕ
i ≥

n

2
]

≥ Pr[

n∑
i=1

Xϕ
i ≥ n(1− δ − ϵ)] ≥ 1− exp(−2nϵ2). (3)

V. THEORETICAL BOUNDS ON GUESSING CURVE

So far our focus has been on upper/lower bounding the
guessing number of a particular user password against a
cracking model M . However, in some defensive applications
our goal will be to upper/lower bound the attacker’s entire
guessing curve e.g., to determine whether or not a password
policy intervention results in a password distribution that is
harder for the adversary to crack. More formally, in this
section we develop techniques to upper/lower bound the curves
λM,B,D and λM,B as the guessing budget B varies from small
to large. Recall that λM,B,D denotes the fraction of passwords
in dataset D that would be cracked within B guesses, and that
λM,B denotes the probability that randomly sampled password
would be cracked within B guesses.

Given a dataset D of independent samples from an unknown
password distribution, our first observation is that the expected
value of λM,B,D (over the random selection of D) is simply
λM,B and, if D is large enough, the random variable λM,B,D is
tightly concentrated around its mean — see Theorem 3. Given
this result our main task will be to develop high confidence



upper/lower bounds on λM,B,D which will immediately yield
high-confidence upper/lower bound for λM,B as a corollary.
Thus, we will focus primarily on bounding λM,B,D in the
remainder of this section. Theorem 3 follows directly from
McDiarmid’s inequality [20]. The formal proof is deferred to
Appendix E.

Theorem 3. For any guessing number B ≥ 0 and any 0 ≤
ϵ ≤ 1, we have:

Pr[λM,B ≥ λM,B,D − ϵ] ≥ 1− exp(−2|D|ϵ2), and

Pr[λM,B ≤ λM,B,D + ϵ] ≥ 1− exp(−2|D|ϵ2)

where the randomness is taken over the sample set D ← P |D|.

A. The General Framework

In this section, we propose a generalized framework for
converting confident upper/lower bounds on guessing numbers
into confident upper and lower bounds on λM,B,D (and by
extension λM,B). Suppose that G(q) denotes the guessing
number for a password pwd whose probability (according to
our model) is q — for simplicity of exposition let us first
suppose that there is only one such password with probability
exactly q. Although B = G(q) is unknown we observe
that it is still possible compute the quantity λM,B,D i.e., by
computing the fraction of passwords in D (i.e., pw ∈ D)
whose probability is pMpw ≥ q. Unfortunately, this is still not
sufficient to plot the curve λM,B,D since we do not actually
know the value of B. However, if we are given upper/lower
bounds L ≤ B ≤ U then we can use the value of λM,B,D as
an upper bound for λM,L,D and as a lower bound for λM,U,D

since we know that λM,L,D ≤ λM,B,D ≤ λM,U,D.
Our key idea is to pick a sequence q1, q2, . . . , qℓ of ℓ

probability mesh points and obtain upper (resp. lower) bounds
U1, . . . , Uℓ (resp. L1, . . . , Lℓ) on the corresponding guess-
ing numbers. Intuitively, as long as all of our upper (resp.
lower) bounds are valid we can use them to lower (resp.
upper) bound the guessing curve λM,B,D at multiple points
B ∈ {U1, . . . , Uℓ} (resp. B ∈ {L1, . . . , Lℓ}).

The formal framework is slightly complicated by the fact
that we will occasionally have multiple passwords with the
same probability q according to model M . However, we can
deal with this concern by lower (resp. upper) bounding the
exclusive (resp. inclusive) guessing numbers. Recall that for
any ϕ = {EX, IN} equations (1), (2) and (3) in Section IV
provide high confidence upper and lower bounds on Gϕ(q).
In general, for any probability 0 ≤ q ≤ 1 we define
UBGϕ,|S|(q, S) (resp. LBGϕ,|S|(q, S)) to be an arbitrary upper
(resp. lower) bound of Gϕ(q) with error rate ERR(UBGϕ,|S|)
(resp. ERR(LBGϕ,|S|)), i.e., with randomness taken over the
selection of sample set S from model M we have:

Pr[Gϕ(q) ≥ LBGϕ,|S|(q, S)] ≥ 1− ERR(LBGϕ,|S|) (4)

Pr[Gϕ(q) ≤ UBGϕ,|S|(q, S)] ≥ 1− ERR(UBGϕ,|S|) (5)

Formally, we define λ̂ub
M,B,D,S and λ̂lb

M,B,D,S as below:

λ̂ub
M,B,D,S := min

1≤i≤ℓ,B≤LBGIN,|S|(qi,S)

(
λM,GIN(qi),D

)
, (6)

λ̂lb
M,B,D,S := max

1≤i≤ℓ,B≥UBGEX,|S|(qi,S)

(
λM,GEX(qi),D

)
. (7)

For completeness, we set our upper (res. lower) bound
λ̂ub
M,B,D,S = 1 (resp. λ̂lb

M,B,D,S = 0) if B >
max
1≤i≤ℓ

{LBGIN,|S|(qi, S)} (resp. B < min
1≤i≤ℓ

{UBGEX,|S|(qi, S)}).

Theorem 4 shows that λ̂ub
M,B,D,S (resp. λ̂lb

M,B,D,S) upper
(resp. lower) bounds the value of λM,B,D with high con-
fidence. Intuitively, the error terms ℓ · ERR(LBGIN,|S|) and
ℓ · ERR(UBGEX,|S|) are obtained by taking union bounds.

Theorem 4. Given a password dataset D containing iid
samples from distribution P and a sequence of probability
mesh points Q = {q1, · · · , qℓ}, we have:

Pr
[
∀B ≥ 0, λM,B,D ≤ λ̂ub

M,B,D,S

]
≥ 1− ℓ · ERR(LBGIN,|S|)

Pr
[
∀B ≥ 0, λM,B,D ≥ λ̂lb

M,B,D,S

]
≥ 1− ℓ · ERR(UBGEX,|S|)

where the randomness is taken over the sample set S from
model M .

If we assume that our dataset D is sampled iid from
our unknown password distribution we can apply Theorem 3
to upper/lower bound λM,B as an immediate corollary of
Theorem 4 — see Corollary 5.

Corollary 5. Given a password distribution P and a sequence
of probability mesh points Q = {q1, · · · , qℓ}, for any guessing
number B > 0 and any parameters 0 ≤ ϵ ≤ 1, we have:

Pr
[
λM,B ≤ λ̂ub

M,B,D,S + ϵ
]

≥ 1− ℓ · ERR(LBGIN,|S|)− exp(−2|D|ϵ2)

Pr
[
λM,B ≥ λ̂lb

M,B,D,S − ϵ
]

≥ 1− ℓ · ERR(UBGEX,|S|)− exp(−2|D|ϵ2)

where the randomness is taken over the sample set S from
model M and the dataset D ← P |D|.

Due to space limitations the formal proofs are deferred to
the full version [21].

B. Concrete Bounds on Guessing Curves

We now derive concrete upper/lower bounds on the guessing
curves (λM,B,D and λM,B) by applying our general framework
from Section V-A with the concrete upper/lower bounds on the
guessing numbers GEX(q) and GIN(q) from Section IV. Due
to space limitations, we present the concrete bounds on λM,B

here and defer the formal statements of concrete bounds on
λM,B,D to Appendix C.
First Concrete Upper/Lower Bound. We first apply Theorem
4 to the upper and lower bounds on GEX(q) and GIN(q) from



equations (1) and (2). In particular, we define λ̂ub1
M,B,D,S,ϵ and

λ̂lb1
M,B,D,S,ϵ as the concrete upper/lower bounds on λM,B,D:

λ̂ub1
M,B,D,S,ϵ := min

1≤i≤ℓ,B≤ĜIN
S (qi)−ϵ/qi

(
λM,GIN(qi),D

)
,

λ̂lb1
M,B,D,S,ϵ := max

1≤i≤ℓ,B≥ĜEX
S (qi)+ϵ/qi

(
λM,GEX(qi),D

)
.

For completeness, we set λ̂ub1
M,B,D,S,ϵ = 1 (resp. λ̂lb1

M,B,D,S,ϵ =

0) if B > max
1≤i≤ℓ

{ĜIN
S (qi)− ϵ/qi} (resp. B < min

1≤i≤ℓ
{ĜEX

S (qi)+

ϵ/qi}).
By Theorem 4 it follows that with probability at least ℓ ·

exp(−2kϵ2) that λ̂ub1
M,B,D,S,ϵ (resp. λ̂lb1

M,B,D,S,ϵ) is an upper
(resp. lower) bound on λM,B,D for every B ≥ 1 where the
randomness depends only on the selection the selection of
k samples |S| = k from our model M — see Theorem 12
in Appendix C for the formal statement. If we additionally
assume that our dataset D was sampled iid from our unknown
password distribution P then we can apply Theorem 3 (or
Corollary 5) and use λ̂ub1

M,B,D,S,ϵ (resp. λ̂lb1
M,B,D,S,ϵ to upper

(resp. lower) bound λM,B for every B ≥ 1. To ensure that we
obtain high confidence bounds we include a small additional
slack term (ϵ2) to account for sampling error selecting our
dataset D — see Theorem 6.

Theorem 6. Given a password distribution P and a sequence
of probability mesh points Q = {q1, · · · , qℓ}, for any guessing
number B > 0 and any parameters 0 ≤ ϵ1, ϵ2 ≤ 1, we have:

Pr
[
λM,B ≤ λ̂ub1

M,B,D,S,ϵ1 + ϵ2

]
≥ 1− α

Pr
[
λM,B ≥ λ̂lb1

M,B,D,S,ϵ1 − ϵ2

]
≥ 1− α

where α = ℓ·exp(−2kϵ21)−exp(−2|D|ϵ22) and the randomness
is taken over the sample set S ← Mk with size k and the
dataset D ← P |D|.

As long as the number of mesh points ℓ = |Q| is not too
large and the sample size k (and |D|) is not too small, both
the upper and lower bounds will hold with high probability.
Second Upper Bound. Recall that in equation (3) we derived
a second guessing number lower bound using Markov’s in-
equality and concentration bounds. This lower bound can be
effective for rare passwords. We can use this lower bound on
the guessing number to derive a second upper bound on the
attacker’s guessing curve. In particular, we define λ̂ub2

M,B,D,S,δ
as another upper bound on λM,B,D:

λ̂ub2
M,B,D,S,δ := min

1≤i≤ℓ,B≤δ·ĜIN
S,med(qi)

(
λM,GIN(qi),D

)
As before we set λ̂ub2

M,B,D,S,δ = 1 whenever B > max
1≤i≤ℓ

δ ·

ĜIN
S,med(qi). Applying Theorem 4 we can conclude that with

high probability we have λM,B,D ≤ λ̂ub2
M,B,D,S,δ for all B ≥ 1

— see Theorem 13 in Appendix C for the formal statement.
If we additionally assume that the dataset D was sampled
iid from our (unknown) password distribution P we can also
upper bound λM,B as in Theorem 7.

Theorem 7. Given a password distribution P and a sequence
of probability mesh points Q = {q1, · · · , qℓ}, for any guessing
number B > 0 and any parameters 0 < δ ≤ 1

2 , 0 ≤ ϵ1 ≤
1
2 − δ, 0 ≤ ϵ2 ≤ 1, we have:

Pr
[
λM,B ≤ λ̂ub2

M,B,D,S,δ + ϵ2

]
≥ 1− α

where α = ℓ · exp(−2nϵ21) − exp(−2|D|ϵ22) and the ran-
domness is taken over n Monte Carlo sample sets S =
{S1, S2, . . . , Sn} each of which contains k samples from
model M and the dataset D ← P |D|.

C. A Trivial Upper Bound for Large Guessing Number

The previous section presents two upper bounds and
one lower bound on λM,B,D using a series of mesh
points q1, . . . , qℓ. However, when B gets large (i.e., B >
max(Ĝmed,S(qℓ) − ϵ/qℓ, δ · Ĝmed,S(qℓ))) we will run out
of mesh points q1, . . . , qℓ and the two upper bounds will
immediately jump to 1.

Note that if a password y is never outputted by a password
cracking model M (i.e., pMy = 0), then the attacker using M
will not be able to successfully guess this password in a dataset
D. Denote λ̂ub3

M,D := 1
|D| |y ∈ D : pMy > 0| be the percentage

of passwords that will be eventually guessed by model M .
Trivially, we have λM,B,D ≤ λ̂ub3

M,D for all finite guessing
budgets B ≥ 0 — see Theorem 14 in Appendix C for the
formal theorem statement. We can also obtain the following
upper bound on λM,B :

Theorem 8. Given a password distribution P and a password
cracking model M , for any parameters 0 ≤ ϵ ≤ 1, we have:

Pr
[
∀B ≥ 0, λM,B ≤ λ̂ub3

M,D + ϵ
]
≥ 1− exp(−2|D|ϵ2)

where the randomness is taken over the dataset D ← P |D|.

Theorem 8 is derived by the observation that λ̂ub3
M,D is

concentrated on its expectation
∑

y∈P pMy which is the total
probability mass of passwords in distribution P that will be
guessed with non-zero probability in model M , and λM,B ≤
λM,∞ =

∑
y∈P pMy . The formal proof is in Appendix E.

We remark that for the neural network models we consider
we have pMpw > 0 for every password pw ∈ D in our datasets.
Thus, the upper bound λ̂ub3

M,D = 1 becomes trivial. However,
as we will show in Section VI, for some other probabilistic
models such as Markov Models and PCFG, over 20% and 40%
of passwords in some of the datasets we consider had pMpwd =
0 indicating that these passwords will never be guessed by
these particular cracking models. In these cases, our trivial
upper bound λ̂ub3

M,D can yield tighter bounds for large guessing
number B.

D. Password Composition Policies

Some organizations impose restrictions (password composi-
tion policies) on the passwords that user’s are allowed to select
e.g., users may be required to include numbers, special sym-
bols and/or capital letters. Even if our model M was trained
entirely on passwords that are consistent with the policy C it is



still possible that some of the guesses generated by the model
will be inconsistent with C. In this case a trivial optimization
for the attacker would be to simply filter out inconsistent
guesses since they cannot appear in our password dataset D or
in the support of our user password distribution P . Intuitively,
our bounds work by sampling |S| = k passwords from our
model M and then filtering to obtain S′ ⊆ S the subset of
passwords which are consistent with our policy. We can then
show that 1

k

∑
z∈S′,pM

z >q
1

pM
z

is an unbiased estimate of the
updated (exclusive) guessing number after filtering.

We show how our statistical techniques can be extended
to provide confident upper/lower bounds on the guessing
numbers after this filtering step. We can then apply our
general framework from Section V-A to upper/lower bound
the attacker’s updated guessing curves λC

M,B and λC
M,B,D after

filtering out password guesses that are inconsistent with C—
as before concentration bounds imply that λC

M,B and λC
M,B,D

will be close (whp). See Appendix B for formal claims
(Theorems 9, 10, 11) about our high confidence upper and
lower bounds on λC

M,B . Due to space limitations, we defer all
the formal proofs and theorems of bounding guessing numbers
and λC

M,B,D to the full version [21].

VI. EMPIRICAL EXPERIMENTS

In this section we apply our statistical techniques to up-
per/lower bound the guessing numbers for user passwords and
to upper/lower bound the attacker’s guessing curve λM,B,D

and λM,B as the guessing budget B varies from small to
large.6 To apply our statistical techniques we need to fix a
password cracking model M and a password dataset D.
Password Cracking Models We consider 3 generative prob-
abilistic models: Transformer neural network [22], 4-gram
Markov model [10] and PCFG [7] (probabilistic context free
grammar), each representing a different category of password
cracking models. For Markov Models and PCFGs we use the
same implementations as [23]. We chose Transformer as the
representative of neural network because Transformer is the
state-of-the-art machine learning model in learning sequential
data. It is faster in training and sampling than RNN [2];
also, it was more efficient in guessing strong passwords in
our local tests. The structure and hyperparameters in training
Transformer model can be found in the Appendix A-A. We did
not expend significant effort optimizing our password cracking
models as our primary focus is demonstrating how our sta-
tistical techniques can be applied to obtain tight upper/lower
bounds on guessing numbers and the attacker’s guessing curve
λM,B .
Password Datasets We consider six breached password
datasets in our experiments: Bfield (0.54m user accounts),
Brazzers (0.93m), Clixsense (2.2m), CSDN (6.4m), Neopets
(68.3m), 000webhost (15.3m). When we analyze the guessing
curve λM,D we will assume that each dataset D represents
|D| independent samples from an (unknown) probability dis-
tribution over user passwords — this unknown password

6Our source code is publicly available at the Github repository https://
github.com/ConfidentMonteCarlo/ConfidentMonteCarlo.

distribution may be different at different sites. We remark that
when analyzing the guessing curve λM,B,D we do not need to
make any assumptions about how the dataset D was sampled.
However, we argue that the independent samples assumption
is reasonable for the datasets we consider. Blocki and Liu [19]
developed a linear programming technique which can detect
when a dataset is blatantly inconsistent with our assumption
about iid samples, e.g., if many user registered for two
accounts with the same password or if a large fraction of the
dataset was duplicated. Their technique rejects the LinkedIn
frequency corpus, which contained far more passwords than
unique e-mail addresses. By contrast, all of the datasets that
we consider passed the consistency checks from [19].
Ethical Considerations The usage of password datasets which
contain stolen passwords that were subsequently leaked on
the internet raises important ethical considerations. Our usage
of the datasets does not pose any additional risk to users
as the datasets are already publicly available. We do not
crack any new passwords as part of our analysis nor do we
attempt to deanonymize the datasets by linking passwords
to particular user accounts. Furthermore, we believe that the
statistical techniques developed in this paper may benefit users
by helping defenders to pick informed password policies.

A. Bounding Guessing Number with Confidence

We begin by using Theorems 1 and 2 to upper and lower
bound the guessing numbers for specific passwords. When
applying Theorem 1 we set the number of samples k = 206848
7 and ϵ = 0.005 to obtain confidence > 99% that each up-
per/lower bound is correct. Similarly, when applying Theorem
2 we set n = 186, k = 5120, δ = 0.333 and ϵ = 0.167 to
obtain 99% confidence that each upper bound is correct. Since
we have two separate lower bounds on the guessing number
we will take the maximum of the lower bounds obtained
from Theorems 1 and 2 — union bounds imply that the
maximum lower bound will be correct with probability at least
98%. Figure 4a plots our upper/lower bounds for the guessing
number as the probability q ranges from 10−19 to 10−12.
We consider three models: PCFG, Markov and Transformer
each trained on the Bfield dataset (due to space limitations
we omit similar plots for models trained on other datasets).
As we can see, the distance between the upper/lower bounds
increases as the password probability probability decreases.
For example, consider the PCFG model, for passwords with
probability q = 10−19 our upper/lower bound on the guessing
number range from 2.3×1015 to 1.3×1017. By contrast, when
q = 10−11 the range is [1.9 × 108, 3.9 × 108]. Estimating
the guessing numbers for strong passwords is particularly
error prone. Thus, it is important to consider the confi-
dence range of guessing numbers when measuring password
strength/resistance to brute-force guessing attacks.
Limitation of Regular Monte Carlo Strength Estimation
Figure 4b shows what happens if we apply regular Monte

7Throughout the experiments we set number of samples a multiple of 512
since sample generation using transformer is computed by GPU in parallel
with batch size 512.
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Fig. 4: Limitation of Regular Monte Carlo Estimation

Carlo estimation as a heuristic to estimate the attacker’s
guessing curve. We train our PCFG model using the Bfield
dataset withholding 25, 000 passwords Dtest for testing. For
the purpose of comparison we run regular Monte Carlo
strength estimation with three different sampling parameters
k ∈ {512, 5120, 50176}. The figure plots the guessing budget
B vs. the estimated fraction of cracked passwords i.e., the
fraction of passwords in Dtest whose estimated guessing
number is less than B. As we noted previously our guessing
number estimates become less and less certain as q decreases
so intuitively we might expect the estimated guessing curves to
be less accurate when the guessing budget B is large. Indeed
this is what we observe. In reality the PCFG model does not
perform well i.e., for 43% of the passwords x in Dtest we have
pMx = 0 meaning that this particular password will never be
guessed and the curve λM,B,Dtest

will plateau before 57%.8

However, we observe that each of the estimated guessing
curves suddenly spikes to 100%. In particular, given any set S
of |S| = k passwords sampled from the our model M we can
define BS

.
= 1

k

∑
x

1
pM
x

. Observe that the estimated guessing
number for any password y is 1

k

∑
x:pM

x ≥pM
y

1
pM
x
≤ BS even

if pMy = 0. Thus, for sample S any B ≥ BS regular Monte
Carlo will incorrectly estimate that λM,B,D = 1. The spikes
appear at different points for k ∈ {512, 5120, 50176} since
the upper bound BS increases with k = |S| as there are more
opportunities to sample rare passwords in M . This example
demonstrates that regular Monte Carlo can produce inaccurate
results on real datasets and further motivates the need to derive
upper/lower bounds on the attacker’s guessing curve which
hold with high probability.

B. Confident Guessing Curves

We now turn our attention to the problem of upper/lower
bounding the attacker’s guessing curve using Theorem 6, 7, 8,
12, 13 and 14.

8The problem of PCFG plateauing has been observed in prior work e.g.,
see [13]. Our focus is on how the plateau impacts Monte Carlo guessing curve
estimates.

Experimental Setup: For each password dataset Doriginal we
first perform train-test split to obtain Dtrain and Dtest with
|Dtest| = 25, 000. All 3 probabilistic models are trained with
Dtrain, then we use Dtest to upper/lower bound the attacker’s
guessing curve.

To apply Theorem 6 and 7 we need to define a set of
probability mesh points Q = {q1, · · · , qℓ}. In particular, we
fix probability mesh points to be j × 10−4−i for i ∈ [1, 25]
and j ∈ {0.25, 0.5, 0.75, 1} for a total of ℓ = 25 · 4 = 100
mesh points. In Theorem 6 and 7 there are two sources of
confidence loss. The term ℓ · exp(2kϵ21) (resp. ℓ · exp(−2nϵ21))
in Theorem 6 (resp. 7) upper bounds the guessing number
error associated with any point in our probability mesh. The
term exp(−2|Dtest|ϵ22) accounts for confidence loss due to
sampling error from our unknown password distribution.

The parameter setting of Theorem 12, 13 and 14 is identical
with that of Theorem 6, 7 and 8, respectively.

In our experiments we instantiate the parameters k, ϵ1, ϵ2,
n and |Dtest| to ensure that the total probability of failure for
each bound is at most 0.01. More specifically, we set |Dtest| =
25, 000 and ϵ2 = 0.01 in both Theorem 6 and 7. We set ϵ1 =
0.005 and k = 206848 in Theorem 6; we set ϵ1 = 0.167,
k = 5120, n = 186 and δ = 0.333 in Theorem 7. Similarly, in
Theorem 8 we set ϵ = 0.0096 and |Dtest| = 25, 000 to ensure
that, except with probability 0.01, λ̂ub3

M,D+ϵ is an upper bound
on λM,B for all guessing budgets B ≥ 0.

Because we have multiple techniques to generate
upper bounds it will often make sense to consider
the best upper/lower bound. Thus, we define λ̂ub

M,B =

min
{
λ̂ub1
M,B,D,S,ϵ1

+ ϵ2, λ̂
ub2
M,B,D,S,δ + ϵ2, λ̂

ub3
M,D + ϵ, 1

}
and

λ̂ub
M,B,D = min

{
λ̂ub1
M,B,D,S,ϵ1

, λ̂ub2
M,B,D,S,δ, λ̂

ub3
M,D, 1

}
which

are best upper bounds for λM,B and λM,B,D, respectively.
Applying union bounds the probability that the curve
λ̂ub
M,B (resp. λ̂ub

M,B,D) is not a valid upper bound for λM,B

(resp. λM,B,D) is at most 0.03 (resp. 0.029). For notional

9For any B > 0 we have λ̂ub3
M,D ≥ λM,B,D with probability 1.
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(a) Upper/Lower Bounds on λM,B,D (Bfield)
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(b) Upper/Lower Bounds on λM,B,D (000Webhost)
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(c) Three Upper Bounds on λM,B (Bfield)
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(d) Three Upper Bounds on λM,B (000Webhost)
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(e) Upper/Lower Bounds on λM,B (Bfield)
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Fig. 5: Upper/Lower Bounds on Guessing Curves



convenience we also define λ̂lb
M,B = λ̂lb1

M,B,D,S,ϵ1
− ϵ2

and λ̂lb
M,B,D = λ̂lb1

M,B,D,S,ϵ1
. In figure legends we use

modelname_ub to denote λ̂ub
M,B or λ̂ub

M,B,D contingent on
the figure caption. The same case applies to lower bound
legend modelname_lb. Figure 5 plots our upper/lower
bounds, the regular Monte Carlo estimation, and the ground
truth of password guessing curves for the Bfield and
000webhost datasets. Due to space limitations the remaining
plots for the Brazzers, Clixsense, CSDN, and Neopets datasets
are deferred to Appendix D — see Figure 7 and the full
version [21].
Upper/Lower Bounds on λM,B,D. Figure 5a and 5b plot our
best upper bound λ̂ub

M,B,D (resp. best lower bound λ̂lb
M,B,D)

as the guessing budget B varies for each password model M .
We additionally plot the ground truth10 λM,B,D for B ≤ 106

— denoted by modelname_gt in figure legends.
Discussion. Consider Figure 5a (Bfield) as an example. We
find the the upper and lower bounds are reasonably close
to each other. Furthermore, when B ≤ 106 we note that
λM,B,D (the ground truth of fraction of cracked passwords
against dataset D) is sandwiched between our upper/lower
bounds for all three models M . We can also use our confi-
dent guessing curves to draw rigorous statistical comparisons
between the three cracking models. In general, if we find that
λ̂lb
M1,B,D > λ̂ub

M2,B,D then this supports the hypothesis that
model M1 outperforms model M2 with guessing budget B
against dataset D. Notice that whenever B ≥ 1011 the lower
bound for Transformer is strictly higher than the upper bound
of 4-gram Markov model. This supports the hypothesis that
Transformers outperforms 4-gram for larger guessing budgets.
This observation is consistent with prior work (e.g., [2] ),
but by using Confident Monte Carlo we can increase our
confidence that this observation is correct and not the result
of inaccurate estimates for the guessing curve.
Comparing Our Upper Bounds on λM,B . For the sake of
comparison Figure 5c and 5d plot our three upper bounds
on λM,B separately. In the legend modelname_ub1 denotes
the upper bound min{1, λ̂ub1

M,B,D,S,ϵ1
+ϵ2}, modelname_ub2

denotes the upper bound min{1, λ̂ub2
M,B,D,S,δ + ϵ2} and

modelname_ub3 denotes the upper bound min{1, λ̂ub3
M,D +

ϵ}. In Figure 5c and 5d we occasionally observe spiking
behavior for the first two upperbounds (ub1 and ub2). We
note that for an upper bound this behavior is not problematic
for two reasons. First, even if an upper bound spikes to 1.0 the
upper bound continues to be accurate i.e., the interpretation is
simply that the current statistical approach does not rule out
the possibility that the attackers cracks 100% of passwords.
By contrast, for regular Monte Carlo strength estimation if the
guessing curve spikes to 1 this represents a (likely incorrect)
prediction that the attacker will crack 100% of passwords.
Second, in all of the plots from Figure 5c and 5d we find
that the first two upper bounds ub1 and ub2 approach the

10We generated a dictionary of the top 1 million popular passwords in each
model-defined distribution M by brute-force and use the dictionary to crack
passwords in Dtest.

third upper bound ub3 (a straight line) before we observe the
spiking behavior. Thus, we expect to obtain reasonably tight
upper bounds by considering best of the three bounds i.e.,
λ̂ub
M,B .

Confident Bounds on λM,B . Figure 5e and 5f compare our
best upper/lower bounds λ̂ub

M,B and λ̂lb
M,B with the guessing

curve obtained from regular Monte Carlo Strength estimation
— denoted by λMC

M,B .11 The number of samples used to
compute λMC

M,B is 10240, a multiple of 512 that is closest to
sample size 10000 which is recommended in [1].
Discussion. Given that Monte Carlo Strength estimation has
been widely used in password research (e.g., [2], [4], [13],
[16]–[18]) it is natural to ask when regular Monte Carlo esti-
mates are (in)accurate. If λMC

M,B < λ̂lb
M,B (resp. λMC

M,B > λ̂ub
M,B)

then we can confidently conclude that regular Monte Carlo
Strength Estimation is underestimating (resp. overestimating)
the true guessing curve. We observed that regular Monte
Carlo tends to overestimate the true guessing curve when
the guessing budget B is sufficiently large. As an example,
consider Figure 5e (Bfield) using PCFG as a our probabilistic
password model. When B ≈ 1.2×1020, λMC

M,B suddenly jumps
to 1 whereas λ̂ub

M,B = 0.56. Thus, we can confidently conclude
that regular Monte Carlo Strength estimation significantly
overestimates the fraction of passwords cracked by PCFG
when B ≥ 1.2 × 1020. On the positive side we consistently
found that λ̂lb

M,B ≤ λMC
M,B ≤ λ̂ub

M,B as long as the guessing
budget B is not too large indicating that the Monte Carlo
estimate λMC

M,B is plausibly accurate. Furthermore, if we have
λ̂lb
M,B ≤ λMC

M,B ≤ λ̂ub
M,B and the difference λ̂ub

M,B − λ̂lb
M,B

is sufficiently small (e.g., < 0.05) then we can confidently
conclude that λMC

M,B is an accurate estimation. For most
guessing budgets 1.7 × 105 ≤ B ≤ 1.2 × 1020 we have
λ̂ub
M,B − λ̂lb

M,B < 0.05 allowing us to confidently conclude
that λMC

M,B is an accurate estimate for λM,B . Thus, our find-
ings indicate that regular Monte Carlo may be a reasonable
heuristic whenever the guessing budget B is not too large —
with the caveat that one would still need to use Confident
Monte Carlo to be fully confident that the heuristic Monte
Carlo guessing curve is still accurate for each new password
model/distribution or dataset.

We can also apply our results to compare the distributions
from different datasets. For example, we compare Bfield and
000webhost by fixing the password probabilistic model M to
be transformer and guessing budget to be B = 1012, then
we consider bounds for fraction of cracked passwords. We
have λ̂lb

M,B = 0.84 for the Bfield distribution and λ̂ub
M,B =

0.63 for the 000webhost distribution. Thus, we can confidently
conclude that the 000webhost distribution is more resistant to
attacks by an attacker using the Transformer Cracking Model
with guessing budget B = 1012.

11Note that the regular Monte Carlo estimate λMC
M,B will also depend on the

test dataset D (sampled from the unknown password distribution) and samples
S (sampled from the model M ) in addition to the model M and guessing
budget B. We omit S and D from the subscript to simplify notation.



C. Small Password Datasets

In this subsection we apply Confident Monte Carlo to
analyze small password datasets D motivated by applications
to password user studies where the number of users |D| may
be constrained by research budgets e.g., 20000 participants
in [2], 4509 participants in [18], 5000 participants in [24].
Typically, the dataset D is further partitioned into disjoint sets
D0 (control group) and D1, D2, . . . (treatment groups) and we
would like to apply hypothesis testing to determine whether or
not a particular intervention (e.g., requiring user’s to include
numbers, capital letters and/or special symbols) results in
passwords that are harder for an attacker to crack. More specif-
ically, fixing a model M and a guessing budget B we would
like to test the hypothesis that E[λM,B,D0

] < E[λM,B,D1
]

when D0 and D1 are sampled from different distributions P0

(control) and P1 (treatment).
If we knew λM,B,D0 and λM,B,D1 then we could ap-

ply standard hypothesis tests, but unfortunately when B is
very large we cannot compute λM,B,D0

or λM,B,D1
exactly.

However, we can obtain tight upper/lower bounds λ̂ub
M,B,Di

and λ̂lb
M,B,Di

since the number of samples from our model
M is not constrained by user study size. Now to test the
hypothesis E[λM,B,D0

] < E[λM,B,D1
] we can apply stan-

dard hypothesis tests under the (pessimistic) assumption that
λM,B,D0

= λ̂ub
M,B,D0

and λM,B,D1
= λ̂lb

M,B,D1
. As long as the

upper/lower bounds are close λ̂ub
M,B,Di

≈ λ̂lb
M,B,Di

the impact
on statistical power will be minimal.

When reporting confidence levels we need to account for
errors which might occur if our upper/lower bounds are
inaccurate (i.e., λM,B,Di

> λ̂ub
M,B,Di

or λM,B,Di
< λ̂lb

M,B,Di
)

in addition to standard sampling error over the selection of Di

from Pi. Thus, when we apply hypothesis testing and obtain
a “p”-value p′ our final “p”-value would be p = p′+δ1 where
δ1 denotes the probability of the event that either one of our
upper/lower bounds for λM,B,Di was incorrect. In our analysis
below we ensure that Pr[λM,B,Di > λ̂ub

M,B,Di
∨ λM,B,Di <

λ̂lb
M,B,Di

] ≤ δ1 = 0.01.
We provide a concrete example in Figure 6. To simulate a

small user study we subsampled datasets D0 (000webhost)
and D1 (Bfield) of size |D0| = |D1| = 500. Figure 6
plots the upper bound λ̂ub

M,B,Di
and lower bound λ̂lb

M,B,Di
for

both datasets where the model M is a Transformer model
trained on the Neopets dataset using the same parameters
in section VI-B. In Table I we also provide 96% binomial
confidence intervals for B = 1013 under the assumption
that (1) λM,B,Di

= λ̂ub
M,B,Di

and (2) under the assumption
that λM,B,Di = λ̂lb

M,B,Di
. We can combine both confidence

intervals to obtain a new 95% confidence interval. In this case
we observe that the binomial confidence intervals are disjoint
and that λ̂ub

M,B,D0
< λ̂lb

M,B,D1
where D0 denotes 000webhost

and D1 denotes Bfield. Thus, we accept the hypothesis that the
000webhost password distribution provide stronger resistance
against an password attacker with a guessing budget B = 1013

using model M .
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Fig. 6: Upper/Lower Bound on λM,B,D and the Confidence
Interval at B = 1013

TABLE I: Overall 95% Binomial Confidence Interval When
Guessing Budget B = 1013

Bfield 000webhost
ub (0.821, 0.887) (0.544, 0.636)
lb (0.814, 0.882) (0.532, 0.624)

overall (0.814, 0.887) (0.532, 0.636)

VII. CONCLUSION

In this paper, we provided theoretical and empirical evi-
dence that regular Monte Carlo will sometimes yield inaccu-
rate estimations of the guessing number of a password and of
the attacker’s guessing curve. We extend the regular Monte
Carlo method by developing rigorous statistical techniques to
confidently upper/lower bound the guessing number of a pass-
word. We also showed how to use our Confident Monte Carlo
framework to provide high confidence upper/lower bounds
on the attacker’s guessing curve. Our rigorous statistical
framework allows us to evaluate the impact of a password
policy interventions (e.g., password composition policies) on
password strength, rigorously compare the performance of
different cracking models and characterize the resistance of a
password dataset/distribution to an offline password attacker.
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[10] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from Markov models,” in NDSS 2012. The Internet
Society, Feb. 2012.

[11] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito, “When
privacy meets security: Leveraging personal information for password
cracking,” arXiv preprint arXiv:1304.6584, 2013.

[12] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2014, pp. 689–704.

[13] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
real-world accuracies and biases in modeling password guessability,” in
USENIX Security 2015, J. Jung and T. Holz, Eds. USENIX Association,
Aug. 2015, pp. 463–481.

[14] “Hashcat: advanced password recovery,” https://hashcat.net/hashcat/.
[15] S. Designer, “John the ripper password cracker,” 2006.
[16] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-

security: Understanding passwords of chinese web users,” in USENIX
Security 2019, N. Heninger and P. Traynor, Eds. USENIX Association,
Aug. 2019, pp. 1537–1555.

[17] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek,
S. M. Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor,
“Designing password policies for strength and usability,” ACM Trans.
Inf. Syst. Secur., vol. 18, no. 4, may 2016. [Online]. Available:
https://doi.org/10.1145/2891411

[18] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F.
Cranor, H. Dixon, P. Emami Naeini, H. Habib et al., “Design and
evaluation of a data-driven password meter,” in Proceedings of the 2017
chi conference on human factors in computing systems, 2017, pp. 3775–
3786.

[19] J. Blocki and P. Liu, “Towards a rigorous statistical analysis of empirical
password datasets,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023.

[20] C. McDiarmid et al., “On the method of bounded differences,” Surveys
in combinatorics, vol. 141, no. 1, pp. 148–188, 1989.

[21] “Confident monte carlo: Rigorous analysis of guessing curves for
probabilistic password models (full version),” https://github.com/
ConfidentMonteCarlo/ConfidentMonteCarlo/blob/main/Rigorous
Analysis of Guessing Curves for Password Cracking Models.pdf,
accessed: 2023-04-07.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[23] M. Dell‘Amico. (2017) Implementation of monte carlo estimation. https:
//github.com/matteodellamico/montecarlopwd.

[24] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Proceedings
of the sigchi conference on human factors in computing systems, 2011,
pp. 2595–2604.

TABLE II: The percentage of filtered passwords

Bfield Brazzers Clixsense CSDN Neopets 000Webhost
0.155% 0.009% 1.317% 0.445% 2.128% 2.410%

APPENDIX A
EXPERIMENT DETAILS

A. Transformer neural network

Our Transformer neural network is composed of a classic
encoder-decoder structure. The encoder contains 16 identical
layers stacked upon each other. Each layer has 2 sub-layers.
The first is a multi-head self-attention mechanism with 16
heads, and the second is a simple, position-wise fully con-
nected feed-forward network. The decoder is a basic linear
layer. In addition, we set the embedding size to be 128 and
the size of hidden layers to be 1024.

B. Data Preprocessing

For Transformer neural network, we restrict the alphabet set
to be the union of 95 printable ASCII characters and 2 special
characters — start/⊥ denoting the start/end of a password
text string, respectively. Also, we fix the maximum length of
passwords to be 16. Thus, passwords in Dtrain containing
non-ASCII characters or having length larger than 16 are
filtered out, and the remaining passwords are prepend/append
with start/⊥. The percentage of filtered passwords are shown
in Table II. Passwords in Dtest are untouched in evaluation,
passwords containing characters not in the alphabet set are
assigned probability 0, which implies not being cracked under
any circumstances. For 4-gram Markov model, we adopted
implementation from [23] which only performs prepend-
ing/appending without any smoothing techniques. We did not
apply any smoothing techniques to make sure the probabilities
of all allowable strings add up to 1, i.e., the model strictly de-
fines a probability distribution. How heuristics like smoothing
techniques affect rigorous analysis of password probabilistic
models remains a open question.

APPENDIX B
BOUNDING GUESSING CURVE UNDER PASSWORD

COMPOSITION POLICIES

For any password pwd we use AllowedC(pwd) to describe
the password policy C an attacker would follow when making
guesses. We set AllowedC(pwd) = 1 if and only if password
pwd satisfies the policy C (e.g., passwords must be at least
8 characters long). Similar to GEX(·) and GIN(·), we define
GC,EX(q) = |{z ∈ M : pMz > q ∧ AllowedC(z) = 1}| and
GC,IN(q) = |{z ∈ M : pMz ≥ q ∧ AllowedC(z) = 1}| such
that GC,EX(q)+1 and GC,IN(q) are the smallest and largest pos-
sible guessing number of a password with probability q in M
under policy C, i.e., GC,EX(q)+1 ≤ GC(q) ≤ GC,IN(q). Given
a set S of k iid samples randomly selected from model distri-
bution M, we let ĜC,EX

S (q) = 1
k

∑
z∈S,pM

z >q,AllowedC(z)=1
1

pM
z

be the regular Monte Carlo estimate of GC,EX(q), and
ĜC,IN

S (q) = 1
k

∑
z∈S,pM

z ≥q,AllowedC(z)=1
1

pM
z

be the regular
Monte Carlo estimate of GC,IN(q). For ϕ = {EX, IN}, we



denote ĜC,ϕ
S,med(q) = median

(
{ĜC,ϕ

Si
(q)}1≤i≤n

)
where S =

{S1, S2, . . . , Sn} and each Si contains k independent samples
from model M .

In this section, we state the theorems that upper and lower
bound the guessing curve of an attacker who follows given
password policies C. Due to space limitations we defer the
formal proof to the full version [21]. We define λC

M,B,D =
1
|D| |y ∈ D : GC(y) ≥ B| to be the guessing curve of set D
against an attacker with model M under password policy C,
i.e., the percentage of passwords in D cracked by making the
top B most probable guesses outputted by model M satisfying
password policy C. Define λC

M,B = Pry←P [G
C(y) ≤ B] to be

the probability of a password from some unknown distribution
P cracked by an attacker making the top B guesses of model
M satisfying password policy C.
First Upper/Lower Bound. We define λ̂C,ub1

M,B,D,S,ϵ and
λ̂C,lb1
M,B,D,S,ϵ below to be the first upper and lower bounds on

λC
M,B,D:

λ̂C,ub1
M,B,D,S,ϵ := min

1≤i≤ℓ,B≤ĜC,IN
S (qi)−ϵ/qi

(
λC
M,GC(qi),D

)
,

λ̂C,lb1
M,B,D,S,ϵ := max

1≤i≤ℓ,B≥ĜC,EX
S (qi)+ϵ/qi

(
λC
M,GC(qi),D

)
.

For completeness, we set λ̂C,ub1
M,B,D,S,ϵ = 1 (resp.

λ̂C,lb1
M,B,D,S,ϵ = 0) if B > max

1≤i≤ℓ
{ĜC,IN

S (qi) − ϵ/qi} (resp.

B < min
1≤i≤ℓ

{ĜC,EX
S (qi)+ϵ/qi}). Then our first upper and lower

bounds on λC
M,B is shown below:

Theorem 9. Given a password distribution P , a sequence
of probability mesh points Q = {q1, · · · , qℓ} and a password
policy C, for any guessing number B ≥ 0 and any parameters
0 ≤ ϵ1, ϵ2 ≤ 1, we have:

Pr
[
λC
M,B ≤ λ̂C,ub1

M,B,D,S,ϵ1
+ ϵ2

]
≥ 1− α

Pr
[
λC
M,B ≥ λ̂C,lb1

M,B,D,S,ϵ1
− ϵ2

]
≥ 1− α

where α = ℓ·exp(−2kϵ21)−exp(−2|D|ϵ22) and the randomness
is taken over the sample set S ← Mk with size k and the
dataset D ← P |D|.

Second Upper Bound. We define λ̂C,ub2
M,B,D,S,δ below to be our

second bound on λC
M,B,D:

λ̂C,ub2
M,B,D,S,δ := min

1≤i≤ℓ,B≤δ·ĜC,IN
S,med(q)

(
λC
M,GC(qi),D

)
For completeness, we set λ̂C,ub2

M,B,D,S,ϵ = 1 if B > max
1≤i≤ℓ

{δ ·

ĜC,IN
S,med(q)}. Then our second upper bound on λC

M,B is shown
below:

Theorem 10. Given a password distribution P , a sequence
of probability mesh points Q = {q1, · · · , qℓ} and a password

policy C, for any guessing number B ≥ 0 and any parameters
0 < δ ≤ 1

2 , 0 ≤ ϵ1 ≤ 1
2 − δ, 0 ≤ ϵ2 ≤ 1, we have:

Pr
[
λC
M,B ≤ λ̂C,ub2

M,B,D,S,δ + ϵ2

]
≥ 1− α

where α = ℓ · exp(−2nϵ21)− exp(−2|D|ϵ22) the randomness is
taken over n Monte Carlo sample sets S = {S1, S2, . . . , Sn}
each of which contains k samples from model M and the
dataset D ← P |D|.

Third Upper Bound. We denote λ̂C,ub3
M,D := 1

|D| |y ∈ D : pMy >

0∧ AllowedC(y) = 1| to be the percentage of passwords that
will be eventually guessed by model M restricted by policy
C. We have λC

M,B,D ≤ λ̂C,ub3
M,D for any guessing number B > 0

due to the fact that passwords with zero probability in M will
never be guessed by M . Then we have the following trivial
upper bound on λC

M,B :

Theorem 11. Given a password distribution P , a password
cracking model M and a password policy C, for any param-
eters 0 ≤ ϵ ≤ 1, we have:

Pr
[
∀B ≥ 0, λC

M,B ≤ λ̂C,ub3
M,D + ϵ

]
≥ 1− exp(−2|D|ϵ2)

where the randomness is taken over the dataset D ← P |D|.

APPENDIX C
BOUNDING GUESSING CURVE λM,B,D

In this section we present the theorems of bounding
λM,B,D.

First, by applying Theorem 4 to the upper and lower bounds
on GEX(q) and GIN(q) from equations (1) and (2) we have our
first upper and lower bounds on λM,B,D:

Theorem 12. Given a password dataset D containing iid
samples from distribution P and a sequence of probability
mesh points Q = {q1, · · · , qℓ}, for any parameter 0 ≤ ϵ ≤ 1,
we have:

Pr
[
∀B ≥ 0, λM,B,D ≤ λ̂ub1

M,B,D,S,ϵ

]
≥ 1− ℓ · exp(−2kϵ2)

Pr
[
∀B ≥ 0, λM,B,D ≥ λ̂lb1

M,B,D,S,ϵ

]
≥ 1− ℓ · exp(−2kϵ2)

where the randomness is taken over the sample set S ←Mk

with size k.

Second, by applying Theorem 4 to the lower bound on
GIN(q) from equation (3) we have our second upper bound
on λM,B,D:

Theorem 13. Given a password dataset D containing iid
samples from distribution P and a sequence of probability
mesh points Q = {q1, · · · , qℓ}, for any parameters 0 < δ ≤
1
2 , 0 ≤ ϵ ≤ 1

2 − δ, we have:

Pr
[
∀B ≥ 0, λM,B,D ≤ λ̂ub2

M,B,D,S,δ

]
≥ 1− ℓ · exp(−2nϵ2)

where the randomness is taken over n Monte Carlo sample
sets S = {S1, S2, . . . , Sn} each of which contains k samples
from model M .



Third, we show the formal statement of the trivial upper
bound on λM,B,D proposed in Section V-C as below:

Theorem 14. Given a password cracking model M , for any
guessing number B ≥ 0, λM,B,D ≤ λ̂ub3

M,D.

APPENDIX D
ADDITIONAL PLOTS

Figure 7 shows the additional plots (Brazzers and CSDN)
for experiments described in Section VI. Due to space limita-
tions the plots for Clixsense and Neopets are deferred to the
full version [21].

APPENDIX E
MISSING PROOFS

Reminder of Theorem 3. For any guessing number B ≥ 0
and any 0 ≤ ϵ ≤ 1, we have:

Pr[λM,B ≥ λM,B,D − ϵ] ≥ 1− exp(−2|D|ϵ2), and

Pr[λM,B ≤ λM,B,D + ϵ] ≥ 1− exp(−2|D|ϵ2)

where the randomness is taken over the sample set D ← P |D|.
Proof of Theorem 3. Consider λM,B,D to be a function
of the |D| samples in D. For any two sets with the same
number of iid samples from P D = {d1, · · · , di, · · · , d|D|}
and D′ = {d1, · · · , d′i, · · · , dN} that only differs on the one
sample di and d′i, the difference of λM,B,D and λM,B,D′ is
at most 1/|D|, i.e., |λM,B,D − λM,B,D′ | ≤ 1/|D|. Therefore,
using McDiarmid’s inequality [20] we have:

Pr[λM,B ≥ λM,B,D − ϵ] ≥ 1− exp(−2|D|ϵ)
Pr[λM,B ≤ λM,B,D + ϵ] ≥ 1− exp(−2|D|ϵ)

Reminder of Theorem 8. Given a password distribution
P and a password cracking model M , for any parameters
0 ≤ ϵ ≤ 1, we have:

Pr
[
∀B ≥ 0, λM,B ≤ λ̂ub3

M,D + ϵ
]
≥ 1− exp(−2|D|ϵ2)

where the randomness is taken over the dataset D ← P |D|.
Proof of Theorem 8. Let

∑
y∈P pMy be the total prob-

ability mass of passwords in distribution P that will be
guessed with non-zero probability in model M . Then we have
λM,B ≤

∑
y∈P pMy for any B ≥ 0, since passwords with zero

probability in M will never be guessed. Let X1, . . . , X|D|
be |D| random variables where Xi = 1 if the ith sample in
D has non-zero probability in M , and Xi = 0 otherwise.
Then

∑|D|
i=1 Xi = |D|λ̂ub3

M,D is the number of passwords
in D that will eventually be guessed by model M . Note
that λ̂ub3

M,D = 1
|D|E(

∑|D|
i=1 Xi) =

∑
y∈P pMy . Using Chernoff

bound, for any 0 ≤ ϵ ≤ 1 we have:

Pr[
∑
y∈P

pMy ≤ λ̂ub3
M,D + ϵ] ≥ 1− exp(−2|D|ϵ2).

Since ∀B ≥ 0, λM,B ≤
∑

y∈P pMy , we have:

Pr
[
∀B ≥ 0, λM,B ≤ λ̂ub3

M,D + ϵ
]
≥ 1− exp(−2|D|ϵ2).

Reminder of Theorem 1. Given a set S with k iid password
samples sampled from distributionM, for any probability q ∈
[0, 1] and any parameter ϵ ≥ 0, we have:

Pr[G(q) ≤ ĜIN
S (q) + ϵ/q] ≥ 1− exp

(
−2kϵ2

)
Pr[G(q) ≥ ĜEX

S (q) + 1− ϵ/q] ≥ 1− exp
(
−2kϵ2

)
where the randomness is taken over S ←Mk.
Proof of Theorem 1. Given a password probability q and a
set S with k samples randomly sampled from distributionM,
consider k independent random variables Xϕ

1 , . . . , X
ϕ
k where

for any 1 ≤ i ≤ k and ϕ ∈ {EX, IN} we define:

XEX
i :=

{
1

pM
z

if the ith sampled password is z and pMz > q;

0 otherwise.

XIN
i :=

{
1

pM
z

if the ith sampled password is z and pMz ≥ q;

0 otherwise.

Then we have 0 ≤ Xϕ
i ≤ 1

q and the expectation of Xϕ
i is

Gϕ(q) as shown below:

E(XEX
i ) =

∑
z∈M,pMz >q

pMz · 1

pMz
= |{z ∈ M : pMz > q}| = GEX(q)

E(XIN
i ) =

∑
z∈M,pMz ≥q

pMz · 1

pMz
= |{z ∈ M : pMz ≥ q}| = GIN(q)

Observe that Ĝϕ
S(q) = 1

k

∑k
i=1 X

ϕ
i and E( 1k

∑k
i=1 X

ϕ
i ) =

1
k

∑k
i=1 E(X

ϕ
i ) = Gϕ(q). Using Hoeffding’s inequality we

can bound |Ĝϕ
S(q)−Gϕ(q)| with any t ≥ 0 as below:

Pr[Gϕ(q)− Ĝϕ
S(q) ≤ t] = Pr[E( 1

k

k∑
i=1

Xϕ
i )−

1

k

k∑
i=1

Xϕ
i ≤ t]

≥ 1− exp

(
−2t2k2∑k

i=1(
1
q
− 0)2

)
= 1− exp

(
−2kt2q2

)
;

Pr[Gϕ(q)− Ĝϕ
S(q) ≥ −t] = Pr[E( 1

k

k∑
i=1

Xϕ
i )−

1

k

k∑
i=1

Xϕ
i ≥ −t]

≥ 1− exp

(
−2t2k2∑k

i=1(
1
q
− 0)2

)
= 1− exp

(
−2kt2q2

)
.

Setting t = ϵ/q, then for any ϵ ≥ 0 we have:

Pr[Gϕ(q) ≤ Ĝϕ
S(q) + ϵ/q] ≥ 1− exp

(
−2kϵ2

)
Pr[Gϕ(q) ≥ Ĝϕ

S(q)− ϵ/q] ≥ 1− exp
(
−2kϵ2

)
Note that the actual guessing number G(q) in between

GEX(q) + 1 and GIN(q), i.e., GEX(q) + 1 ≤ G(q) ≤ GIN(q).
Therefore, by directly applying the upper bound of GIN(q) and
the lower bound of GEX(q) above, we can rigorously bound
G(q) with high confidence as stated in this theorem.

Reminder of Theorem 2. For any password probability
q ∈ [0, 1], and any parameters 0 ≤ δ ≤ 1

2 and 0 ≤ ϵ ≤ 1
2 − δ,

Pr[G(q) ≥ δ · ĜEX
S,med(q) + 1] ≥ 1− exp(−2nϵ2)
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Fig. 7: Confident Bounds for Additional Datasets



where the randomness is taken over n sets of k Monte Carlo
samples S = {S1, · · · , Sn} from model M .
Proof of Theorem 2. We start with lower bounding Gϕ(q) for
ϕ ∈ {EX, IN} by directly applying Markov’s inequality. Recall
that E(Ĝϕ

S(q))S←M|S| = Gϕ(q). Using Markov’s inequality,
for any 0 < δ ≤ 1 we have:

Pr[Ĝϕ
S(q) ≤ Gϕ(q)/δ] ≥ 1− δ. (8)

Let Xϕ
i be the indicator variable corresponding to the ith

execution of the regular Monte Carlo estimation with randomly
selected sample set Si. X

ϕ
i = 1 if and only if the ith estimation

Ĝϕ
Si
(q) ≤ Gϕ(q)/δ; otherwise, Xϕ

i = 0. Note that E(Xϕ
i ) ≥

1 − δ according to equation (8). Using Chernoff bound we
have:

Pr[

n∑
i=1

Xϕ
i ≤ n

2
] ≤ Pr[

n∑
i=1

Xϕ
i ≤ n(1− δ − ϵ)] ≤ exp(−2nϵ2)

where we set δ ≤ 1
2 and ϵ ≤ 1

2 − δ. Then we have:

Pr[Ĝϕ
S,med(q) ≤

Gϕ(q)

δ
] ≥ Pr[

n∑
i=1

Ii ≥
n

2
] ≥ 1− exp(−2nϵ2)

Recall G(q) ≥ GEX(q) + 1. By directly applying the lower
bound of GEX(q) above on G(q) this theorem is proved.

APPENDIX F
NOTATION TABLE

Table III lists the common notations that are used in this
paper.

TABLE III: Notation Table

M A probabilistic password guessing model
M Password distribution generated by model M
pMpwd Probability of password pwd outputted by model M
G(pwd) Number of guesses that an attacker using model M

needs to check in order to crack the password pwd
G(q) Guessing number of a password pwd with probabil-

ity pMpwd = q

GEX(q) Number of passwords with probability strictly
greater than q

GIN(q) Number of passwords with probability greater than
or equal to q

ϕ A variable representing EX or IN
k Number of Monte Carlo iid samples in S from M
S Sample set that has k iid samples from M
Ĝϕ

S(q) Monte Carlo estimation of Gϕ(q) for ϕ ∈ {EX, IN}
N Number of repetitions of Monte Carlo estimation
S Set of N Monte Carlo sample sets S1, . . . , SN

Ĝϕ
S,med(q) Median estimated guessing number among N esti-

mated guessing numbers Ĝϕ
S1

(q), . . . , Ĝϕ
SN

(q)

B Number of guesses checked by an attacker
D Password dataset an attacker wants to crack
λM,B,D Fraction of passwords in D that can be cracked

within B guesses by an attacker using model M
P Real password distribution that D is sampled from.
λM,B The probability that a random password pwd sam-

pled from P would be cracked within B guesses
C Password composition policy


