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Abstract

We recently presented the first 3D numerical simulation of the solar interior for which tachocline confinement was
achieved by a dynamo-generated magnetic field. In this follow-up study, we analyze the degree of confinement as
the magnetic field strength changes (controlled by varying the magnetic Prandtl number) in a coupled radiative
zone (RZ) and convection zone (CZ) system. We broadly find three solution regimes, corresponding to weak,
medium, and strong dynamo magnetic field strengths. In the weak-field regime, the large-scale magnetic field is
mostly axisymmetric with regular, periodic polarity reversals (reminiscent of the observed solar cycle) but fails to
create a confined tachocline. In the strong-field regime, the large-scale field is mostly nonaxisymmetric with
irregular, quasi-periodic polarity reversals and creates a confined tachocline. In the medium-field regime, the large-
scale field resembles a strong-field dynamo for extended intervals but intermittently weakens to allow temporary
epochs of strong differential rotation. In all regimes, the amplitude of poloidal field strength in the RZ is very well
explained by skin-depth arguments, wherein the oscillating field that gives rise to the skin depth (in the medium-
and strong-field cases) is a nonaxisymmetric field structure at the base of the CZ that rotates with respect to the RZ.
These simulations suggest a new picture of solar tachocline confinement by the dynamo, in which
nonaxisymmetric, very long-lived (effectively permanent) field structures rotating with respect to the RZ play
the primary role, instead of the regularly reversing axisymmetric field associated with the 22 yr cycle.

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Solar differential rotation (1996); Solar radiative
zone (1999); Solar convective zone (1998); Solar interior (1500)

1. The Solar Tachocline

The solar tachocline is a region of primarily radial shear at the
base of the solar convection zone (CZ), where strong latitudinal
differential rotation transitions to nearly solid-body rotation in
the underlying radiative zone (RZ). The tachocline is observed
helioseismically to be centered at rt,e≈ 0.69Re (which roughly
coincides with the base of the CZ) and to have a thickness of
Γe 0.05Re (Γe is too small to be helioseismically resolved,
implying that it has an upper bound roughly equal to the
helioseismic inversion kernel width; e.g., Howe 2009). Some
measurements estimate a wider tachocline (Γe 0.10Re; e.g.,
Kosovichev 1996; Wilson et al. 1996) or a narrower tachocline
(Γe 0.02Re; e.g., Elliott 1997; Basu & Antia 2003).

Regardless of the true tachocline thickness, even the most
liberal estimates for Γe pose a major dynamical problem for
solar physics. It is hypothesized (Spiegel & Zahn 1992) that the
CZ’s differential rotation should spread into the RZ by a
process similar to circulation “burrowing” in rotating stably
stratified shear flows (e.g., Clark 1973; Haynes et al. 1991),
thus widening the tachocline. A shear flow in a rotating system
(i.e., differential rotation) is usually accompanied by a
horizontal temperature gradient due to thermal wind balance
(e.g., Aurnou & Aubert 2011; Matilsky 2023). This gradient

tends to spread (burrow) further into the stable layer via
thermal conduction, carrying with it the circulation and
differential rotation associated with the thermal wind. In the
Sun, the dominant thermal diffusion is radiative, and Spiegel &
Zahn (1992) showed that burrowing (now referred to as
“radiative spread”) should have increased Γe to ∼0.4Re by the
current age of the Sun.
Spiegel & Zahn (1992)ʼs original argument that the solar

tachocline should radiatively spread assumes axisymmetry and
linearized fluid equations. Under those conditions, radiative
spread occurs “hyperdiffusively” (governed by∇4 instead of∇2)
on the solar Eddington–Sweet time PES,e. In the hyperdiffusive
case, G G ~ t t PES, 1 4( ) ( ) , where Γ(t) is the time-dependent
tachocline thickness and t is the time since initial confinement
(i.e., Γ(0)= Γe). Since the Eddington–Sweet time is so long for
the Sun (PES,e≈ 600 Gyr; see Table B1), this hyperdiffusive
property is essential for the burrowing to be significant on
timescales as small as the solar age (∼5 Gyr). Recent 3D fully
nonlinear simulations have shown that circulation burrowing
does indeed occur in more realistic settings (as long as the
timescales are properly ordered; see Wood & Brummell
2012, 2018). But whether realistic solar burrowing would be
hyperdiffusive is still an open question and requires further
investigation.
If circulation burrowing is indeed significant for the Sun, it is

obvious that there must be a confining (or “rigidifying”) torque in
the RZ to keep Γe under the helioseismically constrained upper
bound. There are currently two dominant tachocline confinement
scenarios that postulate the origin of this torque. The first,
proposed by Spiegel & Zahn (1992), is essentially hydrodynamic.
It is supposed that hydrodynamic shear instabilities associated
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with the differential rotation create turbulence with predomi-
nantly horizontal motion, due to the strong convectively stable
stratification of the RZ. The Reynolds stresses from this
horizontal turbulence then act like an enhanced horizontal
viscosity, causing preferentially horizontal angular momentum
transport, thereby eliminating any burrowing shear on the
relatively fast timescale of months to years. Hence, this scenario
is often also called the “fast confinement scenario” (e.g.,
Gilman 2000; Brun & Browning 2017).

However, similar horizontal turbulence in Earth’s stratosphere
is theorized to be “anti-diffusive,” that is, transporting angular
velocity up the rotation gradient instead of down it and driving
the system away from solid-body rotation (e.g., Starr 1968;
McIntyre 1994). In any event, angular momentum transport by
stratified turbulence in a solar-like system is likely more
complicated than simply “diffusive or anti-diffusive.” For
example, Tobias et al. (2007) argue that horizontal turbulence
in the presence of a weak toroidal magnetic field creates Maxwell
stresses that nearly exactly cancel the Reynolds stresses, yielding
zero net momentum transport. Finally, it remains unclear exactly
how anisotropic stratified turbulent transport really is. For
example, recent 3D direct numerical simulations (DNSs; Cope
et al. 2020; Garaud 2020) show that meanders of the streamwise
flow (in a sufficiently turbulent regime) can vary on small vertical
length scales until secondary vertical shear instabilities (and
associated vertical momentum transport) develop.

Gough & McIntyre (1998) proposed an alternative, magnetic
confinement scenario. They argued that a weak (minimum
∼1 G) poloidal magnetic field in the RZ could resist the shearing
motion of any imposed differential rotation via magnetic tension.
This magnetic torque would be generated on the timescale of
radiative spread, namely some fraction of PES,e. Hence, Gough
& McIntyre (1998)ʼs scenario is sometimes called the “slow
confinement scenario.” Note that the fast confinement scenario is
mostly hydrodynamic (with magnetism possibly playing a
secondary role in modifying the primary baroclinic and shear
instabilities), while the slow confinement scenario is fundamen-
tally magnetic.

Finally, a “fast magnetic confinement scenario” has been
proposed and modeled in 1D (e.g., Forgács-Dajka &
Petrovay 2001; Barnabé et al. 2017). Here the source of the
RZ’s confining poloidal field is the cycling solar dynamo (with
a cycle period of ∼11 yr, i.e., fast compared to PES,e but slow
compared to timescales associated with most hydrodynamic
instabilities) diffusing downward to a skin depth.

In prior global simulations of solar-like CZ–RZ systems, the
chosen parameters have made radiative spread insignificant on
the timescales on which the simulations can be run. Never-
theless, significant viscous spread occurs (see Section 4.2), and
simulated tachoclines have been confined against this viscous
spread through a variety of mechanisms. Browning et al.
(2006) used combined mechanical and thermal forcing to
explicitly impose a steady-state tachocline in a simulation using
the ASH code. Further simulations using the ASH and
Rayleigh codes—which are DNS codes—have implemented
temporary, slowly spreading tachoclines through significantly
lowered values of the viscosity in the RZ compared to the CZ
(e.g., Augustson et al. 2013; Brun et al. 2017; Bice &
Toomre 2022). Finally, the implicit large-eddy simulation
(ILES) code EULAG ensures very small effective numerical
viscosity in stable regions owing to the nature of the ILES
time-stepping algorithm MPDATA (Prusa et al. 2008). On the

timescales for which EULAG simulations are run, both viscous
spread and radiative spread are thus negligible, and tachoclines
that are effectively steady can occur (in both magnetic and
purely hydrodynamic cases) without an explicit confinement
mechanism being necessary (e.g., Guerrero et al. 2013;
Beaudoin et al. 2018).
We recently presented (Matilsky et al. 2022, hereafter Paper I;

see also Matilsky & Toomre 2021) the first 3D, spherical-shell
simulation (in our case, a DNS) to achieve a steady-state
tachocline that was self-consistently confined against explicit
viscous spread. The source of the confinement was magnetic
torque, which was in turn generated by the nonaxisymmetric
modes of a quasi-periodic dynamo. In the CZ, the magnetism
was topologically similar to the “partial wreaths” (longitudinally
elongated bands of intense toroidal magnetism, with alternating
polarity in longitude) identified in our prior CZ-only dynamos
(Matilsky & Toomre 2020a, 2020b). We showed in Matilsky &
Toomre (2020a) that the partial wreaths in the CZ-only case
tended to form a long-lasting magnetic structure that more or less
rotated rigidly in a preferred frame. In the combined CZ–RZ
tachocline systems considered in the current work, the partial
wreaths rotate with respect to the RZ below. As far as the rigidly
rotating RZ is concerned, the partial wreaths above resemble a
periodically reversing poloidal field, and therefore the field
diffusively imprints from the overshoot layer to a depth in the
RZ consistent with the electromagnetic skin effect.
The main conclusion of the present paper is that the

confinement mechanism identified in Paper I can be regarded as
a more general version of the fast magnetic confinement
scenario that stays robust in a wider parameter space (contain-
ing multiple cycling frequency components of the dynamo) and
in a 3D geometry with a fully coupled CZ and RZ.
Furthermore, a rotating, large-scale nonaxisymmetric poloidal
field structure takes the place of the reversing axisymmetric
magnetism (“full wreaths”) typically invoked in connection
with the observed solar cycle, or magnetic butterfly diagram.
Our evidence consists of a family of solutions related to the one
from Paper I, but with a range of magnetic Prandtl numbers
Prm. One key effect of varying Prm (while keeping the other
control parameters fixed) is to achieve a range of magnetic field
strengths in the saturated dynamo state, while keeping other
key diagnostic parameters (like the Reynolds and Rossby
numbers) relatively unchanged.
The rest of this paper is structured as follows. In Section 2,

we describe our equation set and control parameters. In
Section 3, we describe the three solution regimes (weak,
medium, and strong field) that our dynamos achieve. In
Section 4, we present the degree of tachocline confinement, as
well as the associated torque balance, for our simulations. In
Section 5, we describe the two distinct types of magnetic cycle
exemplified by the weak- and strong-field regimes. In
Section 6, we show that for all cases the poloidal magnetic
field strength in the RZ is consistent with diffusive imprinting
of the CZ’s poloidal field according to the electromagnetic skin
effect. In Section 7, we highlight the distinctions between
axisymmetric and nonaxisymmetric polarity reversals. Finally,
in Section 8, we discuss our results in the context of the solar
tachocline confinement problem.

2. Numerical Scheme and Simulation Parameters

We evolve the 3D magnetohydrodynamic (MHD) equations
in spherical shells using the open-source Rayleigh code
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(Featherstone & Hindman 2016; Matsui et al. 2016; Feath-
erstone et al. 2021). We make use of both spherical coordinates
(r (radius), θ (colatitude), and f (azimuth angle)) and
cylindrical coordinates (l q= r sin (cylindrical radius), f
(azimuth angle), and q=z r cos (axial coordinate)). The
symbol ê denotes a unit vector. The equations are solved in a
frame rotating with the constant angular velocity W = W ez0 0 ˆ .
The Coriolis force is kept, but the oblateness and centrifugal
force are ignored. Each shell extends from an inner radius rin to
an outer radius rout. We divide the shell into two layers of equal
depth, separated at r0 ≡ (rin+ rout)/2. The top half (r0 to
rout; the CZ) is nominally convectively unstable, and the
bottom half (rin to r0; the RZ) is convectively stable.

Rayleigh solves the anelastic MHD equations, which allow
significant density contrast across the shell but disallow sound
waves (e.g., Ogura & Phillips 1962; Gough 1969; Gilman &
Glatzmaier 1981; Clune et al. 1999). The anelastic approximation
consists of assuming a solenoidal mass flux (see Equation (1))
and thermodynamic perturbations that are small relative to a well-
chosen “background” or “reference” state. In Rayleigh, the
background state is always spherically symmetric and time
independent (e.g., Featherstone & Hindman 2016). We choose a
background entropy gradient dS dr that changes from stable to
unstable near r= r0 over the transition width δ and a gravitational
acceleration = g GM r2 (where G= 6.67× 10−8 cm3 g−1 s−2

is the universal gravitational constant and Me= 1.99× 1033 g is
the solar mass). If we further assume a hydrostatic, ideal gas
(with constant specific heats cv (at constant volume) and cp (at
constant pressure)), the choices for dS dr and g determine the
background density r, temperature T , and squared buoyancy
frequency ºN g c dS dr2

p
¯ ( ¯ ) ¯ (we use N 2 in favor of dS dr in

the equations).
We choose all diffusivities (kinematic viscosity n , thermal

diffusivity k, and magnetic diffusivity h) to increase with
height like r1 1 2. We choose an internal heating function Q
(representing radiative heating from below) that deposits
thermal energy preferentially in roughly the bottom third of
the CZ and drives convection. In the RZ, we set =Q 0,
tapered from its profile in the CZ over a width δheat. We fully
describe our reference state in Appendix A and its analogy to
the Sun in Appendix B.

The dimensional equations of motion are

r =u 0, 1· ( ) ( )

 =B 0, 2· ( )

r r r
r

r

m

W=- ´ -  +

+  +  ´ ´

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

u
u e

D B B

D

Dt

P gS

c
2

1
, 3a

r0
p

¯ ¯ ¯
¯

¯ ¯ ˆ

· ( ) ( )

r n dº - ⎡
⎣

⎤
⎦

uD ewhere 2
1

3
3bij ij ij( · ) ( )

º
¶
¶

+
¶

¶
⎜ ⎟
⎛
⎝

⎞
⎠

e
u

x

u

x
and

1

2
, 3cij

i

j

j

i
( )

r r k r

h
p

= - +  

+ +  ´

⎛
⎝

⎞
⎠

B

T
DS

Dt
Q T

dS

dr
u T S

D e
4

, 4

r

ij ij
2

· ( ]

∣ ∣ ( )

and

h
¶
¶

=  ´ ´ -  ´
B

u B B
t

. 5( ) ( )

Here D/Dt ≡ ∂/∂t+ u ·∇ is the material derivative and μ the
vacuum permeability (μ= 4π in Gaussian units).
Rayleigh was originally run by solving these dimensional

equations. In this work, however, we discuss only the
equivalent nondimensional simulations. Length is scaled by
the CZ (or RZ) thickness H ≡ (rout− rin)/2 and time by the
rotational timescale W-

0
1. The velocity u is scaled by

[u] ≡ Ω0H and the vorticity ω ≡ ∇× u by Ω0 (we use
square brackets to denote the unit of each fluid variable). Each
background-state profile is scaled by its volume average over
the CZ (denoted by a tilde, e.g., r̃), except for N 2, which is
scaled by its volume average over the RZ (denoted by á ñN 2

RZ),
and Q , which is scaled as described below. The pressure
perturbation P is scaled by rº WP H0 2[ ] ˜( ) and the magnetic
field B by mrº WB H0[ ] ˜ ( ).
As noted by Christensen & Aubert (2006), the chosen

nondimensionalization omits the diffusivities from the scales
for time and the magnetic field. This is helpful in extending
scaling relationships to stellar regimes, where diffusive effects
are not believed to play a large role (although we note at the
outset that such scaling relationships are likely not present in
this work, where diffusive effects do play a large role). An
added benefit of this nondimensionalization is that u and B
appear with order-unity coefficients in the momentum equation,
so their relative importance (to both the force balance and the
partition of kinetic and magnetic energy) can be inferred
directly from their nondimensional values.
The internal heating Q , coupled with the thermal boundary

conditions described below, drives convection by establishing
sharp entropy gradients in a thermal boundary layer near the
top of the CZ (e.g., Featherstone & Hindman 2016; Matilsky
et al. 2020). This convection (and conduction, especially in the
boundary layer) must carry a “nonradiative” energy flux

òºF r Q x x dx1
r

r
nr

2 2

0
( ) ( ) in the statistically steady state.

The entropy perturbation S is thus scaled by its estimated
difference across the conductive boundary layer
( r k= D º

~
S S F H Tnr[ ] ˜ ˜ ˜ ) and Q by

~
F Hnr .

With these scaling choices, the nondimensional equations of
motion are
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Here Equations (1) and (2) still apply and are unchanged, and
Dij and eij are defined exactly as in Equations (3b) and (3c),
respectively. All field variables (u, B, S, and P), spatial
quantities (r, t, λ, z, and ∇), and background-state profiles now
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denote their nondimensional values. The nondimensional input
numbers (definitions and values) are given in Table 1.

The reference-state control parameters are the ratio of
specific heats γ, the CZ-to-RZ aspect ratio α, the CZ aspect
ratio β, the number of scale heights across the CZ Nρ, and the
transition widths δ and δheat. This reference state (except for the
diffusivity profiles) is reasonably solar-like and describes the
upper 2.1 density scale heights of the solar RZ and the lower 3
density scale heights of the solar CZ (see Appendix A). In units
of H, the nondimensional solar radius is Re= 4.39 (see
Table B1). We plot radial profiles as functions of r/Re, to more
easily compare to prior work.

The fluid control parameters are the Prandtl number Pr, the
magnetic Prandtl number Prm, the modified Rayleigh number

*RaF, the Ekman number Ek, and the buoyancy number Bu. The
dissipation number º =gH c TDi 1.72p˜ ( ˜ ) for the cases here
and is not a control parameter in our convention, being a
function of γ, β, and Nρ, which we deem reference-state control
parameters (see Appendix A and Korre & Featherstone 2021).
Some additional parameters (that can be derived from the input
parameters given in Table 1) are given in Table A1.

Equations (1)–(5) are discretized in space. For all simula-
tions, we use three sets of stacked Chebyshev collocation
points in r (Nr/3= 64 points in each domain), Nθ= 384
Legendre collocation points in θ, and Nf= 2Nθ= 768
uniformly spaced collocation points in f. The Chebyshev
points cluster near each domain’s boundaries. We require
increased resolution in the overshoot layer (i.e., in the vicinity
of r0/Re= 0.719), and so we set the radial domain boundaries
to lie at r/Re= {0.491, 0.669, 0.719, 0.947} (or equivalently,
r− r0= {−1.000, −0.219, 0.000, 1.000}). Nonlinear terms
and the Coriolis force are evaluated in physical space (i.e., on
the discretized spatial grid), while the remaining linear terms
are evaluated in spectral space, using Chebyshev polynomials
in each r subdomain and spherical harmonics in θ and f. The
variables in physical space are de-aliased using the 2/3 rule:
the maximum Chebyshev degree (in each r subdomain) is

=n 42max , and the maximum spherical harmonic degree is
=ℓ 255max . For more details, see Glatzmaier (1984) and Clune

et al. (1999), who pioneered Rayleighʼs pseudospectral
algorithm.

Each magnetic simulation differs only in the choice of Prm,
which ranges from 1 to 8. We also consider a purely
hydrodynamic simulation (referred to as “Case H”), which

has all the parameters listed in Table 1 but no magnetic field.
We refer to each magnetic case by its value of Prm rounded to
two decimal places: e.g., “Case 1.08” means Prm= 1.076.
Cases H and 4.00 were analyzed in Paper I. All chosen values
of Prm are listed in Table 2.
At both boundaries, we use stress-free and impenetrable

conditions on u, potential-field-matching conditions on B, and
fixed-entropy-gradient conditions on S. Specifically, we set ∂S/
∂r to zero at the bottom boundary (thus allowing no conductive
flux in or out) and set it to a latitudinally independent negative
value at the top boundary, such that the energy conducted out the
top is equal to the energy injected by Q (e.g., Matilsky et al.
2020). The convection is initialized by introducing weak noise in
S (amplitude ∼10−3), randomly distributed in space throughout
the entire shell. For the magnetic cases, we further introduce
weak noise in B (amplitude ∼10−6), randomly distributed in
space throughout the CZ only. The other field variables (u and P)
are initialized to zero in all space.
We use several types of averages in this work. Let ψ= ψ(r,

θ, f, t) denote a scalar quantity (or a single component of a
vector quantity) dependent on position and time. Then, yá ñf,
yá ñsph, yá ñCZ, yá ñRZ, and yá ñfull denote instantaneous averages
of ψ over longitude, spherical surfaces, the CZ (volume
average from r0 to rout), the RZ (volume average from rin to r0),
and the full shell (volume average from rin to rout), respectively.
An additional temporal average (over the “equilibrated state”;
see the following section) is denoted by appending a “t” to the
subscript in the average: e.g., yá ñf t, . Subtracting the instanta-
neous longitudinal average is denoted by a prime:
y y y¢ º - á ñf. We also colloquially refer to yá ñf and y¢ as
the “mean and fluctuating” components of ψ, respectively.

3. Dynamo Regimes

All the magnetic cases presented here yield sustained large-
scale dynamos. As convection and dynamo action become
significant, the field variables grow from their initially small
values to amplitudes of order unity. We quantify this growth in
terms of the kinetic energy density of the differential rotation,
KEDR, and the magnetic energy density, ME:

rº á ñ º á ñf f fBuKE
1

2
and ME

1

2
. 9DR

2 2 ( )

In Equation (9), the energy densities are functions of r, θ,
and t, which we average further in the subsequent analysis. In
Figure 1, we show the growth and long-term behavior of the
full-shell-averaged energy densities for some representative
simulations. After a certain time (which we call t= teq), the
system achieves a “statistically steady” or “equilibrated” state,
in which the volume-averaged magnitude of each field variable
fluctuates about a well-defined temporal mean. We choose teq
(fairly roughly) by eye from plots like Figure 1(a). For
example, we choose teq= 2000Prot for Case 1.06, teq=1000Prot

for Case 2.00, and teq= 600Prot for Case 4.00 (see Table 2 for
all values of teq).
Figure 1(a) suggests three basic dynamo regimes. The

low-Prm solution (Case 1.06; blue curves) lies in a “weak-field
regime,” characterized by á ñME full always being orders of
magnitude weaker than á ñKEDR full. There is a regular magnetic
energy cycle, with a period of roughly 750Prot. The high-Prm
solution (Case 4.00; red curves) lies in a “strong-field regime,”
characterized by á ñME full about in equipartition with á ñKEDR full,
while á ñKEDR full itself is much weaker than in the weak-field

Table 1
Nondimensional Control Parameters for Our Simulations

Parameter Definition Value

γ cp/cv 5/3
α (rout − r0)/(r0 − rin) 1
β r0/rout 0.759
Nρ r rr rln 0 out[ ( ) ( )] 3.00
δ stability transition width 0.219
δheat heating transition width 0.132

Pr n k˜ ˜ 1
Prm n h˜ ˜ 1 to 8

*RaF r kW~
F g c Tnr p

2˜ ( ˜ ˜ ˜ ) 0.638

Ek n W H0 2˜ ( ) 1.07 × 10−3

Bu á ñ WN 2
RZ 0

2 2.54 × 104

Note. We list reference-state parameters first, then the fluid control parameters.
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case. Finally, the intermediate-Prm solution (Case 2.00; orange
curves) lies in a “medium-field regime.” Case 2.00 has
properties similar to those of a strong-field dynamo some of
the time, but occasionally á ñME full falls below its strong-field
value and then á ñKEDR full steadily increases above its strong-
field value (representing an increase in differential rotation or
partial disappearance of the tachocline). After á ñKEDR full
reaches a critical level, á ñME full grows rapidly, lowering
á ñKEDR full back to its lower, strong-field value. There is no
clear cycling behavior, obvious physical trigger, or general
predictability for the medium-field cases’ temporary epochs of
strong differential rotation.

Figure 1(b) shows the equilibrated levels of the kinetic
energy in the differential rotation, á ñKE tDR full, , and the
magnetic energy, á ñME tfull, , for all simulations. The weak-field
regime (for which the differential rotation has the same
magnitude as in Case H) sits in the narrow range of roughly
1.00 Prm 1.06. The medium-field regime (for which the
differential rotation is substantially weakened compared to the
weak-field cases but intermittently becomes stronger) occupies
roughly 1.08 Prm 2.5. The strong-field regime (lowest
differential rotation and highest magnetic energy) occupies
Prm 2.5. Note that these identified regimes and their
boundaries are only suggestive, given our limited resolution in
Prm-space.

The weak-field dynamos tend to be more axisymmetric
(magnetism dominated by azimuthal wavenumber m= 0) than
the strong-field dynamos. Figure 2 shows the toroidal magnetic
field projected on spherical surfaces for four solutions at

different Prm and therefore in the different regimes. For Case
1.00 (the weak-field regime), there is a strong m= 0
component, both in the CZ and even more so in the RZ. For
higher values of Prm (the medium- and strong-field regimes),
the field in the CZ becomes increasingly dominated by small
scales but retains a large-scale (m= 0, 1, 2) envelope. For all
cases, the RZ appears to act as a low-pass filter for the spatial
scales of the field, letting only the low mʼs survive. This is
especially apparent for Case 8.00 (Figures 2(g), (h)).
As a whole, the dominant m= 0 field structures at low Prm

resemble what has previously been called magnetic “wreaths”—
toroidal bands of strong magnetism looping the full sphere in a
given hemisphere (e.g., Brown et al. 2010; Passos &
Charbonneau 2014; Bice & Toomre 2020). Such wreaths are
often invoked in connection to the magnetic butterfly diagram, as
interior reservoirs of toroidal field from which smaller loops can
potentially break off and buoyantly rise to form sunspot pairs
(e.g., D’Silva & Choudhuri 1993; Stenflo & Kosovichev 2012;
Nelson et al. 2013; Li 2018; Bice & Toomre 2023).
For higher Prm, the strong m= 1,2 components of B

resemble the “partial wreaths” discussed at some length by
Matilsky & Toomre (2020a, 2020b). The cases from that work
contained a dominant m= 1 field structure that appeared to be
two opposite-polarity full wreaths tilted into each other, or
possibly linked. On a spherical slice, the tilted full wreaths
showed up as two opposite-polarity “partial wreaths,” extend-
ing in longitude by about 180°, with central longitudes on
opposite sides of the sphere. We should note that “partial
wreath” is really a placeholder for lack of a better term. The 3D

Table 2
Basic Simulation Properties (Prm, Regime, Run Time tmax, and Equilibration Time teq) and the Partition of Kinetic and Magnetic Energy for Each Simulation’s CZ

and RZ

Case H 1.00 1.05 1.06 1.08 1.33 1.67 2.00 3.00 4.00 6.00 8.00

Prm L 1.000 1.054 1.065 1.076 1.333 1.667 2.000 3.000 4.000 6.000 8.000
Regime L W W W M M M M S S S S
teq/Prot 1000 1500 1500 2000 2300 1500 1200 1000 1700 600 500 500
t Pmax rot 9930 9740 6670 7770 9400 7480 8170 9200 7730 16000 5450 5750
t Pmax diff 12.7 12.5 8.13 9.36 11.2 7.20 6.29 5.90 3.31 5.15 1.17 0.92

CZ Energy Density Parameters

KEDR 0.011 0.011 0.011 0.011 2.05e-3 1.83e-3 1.24e-3 1.25e-3 4.70e-4 3.75e-4 2.82e-4 2.19e-4
KEc 1.71e-3 1.71e-3 1.69e-3 1.69e-3 9.71e-4 9.52e-4 9.35e-4 9.31e-4 9.08e-4 8.90e-4 8.74e-4 8.58e-4
ME L 1.99e-8 1.82e-7 3.16e-6 1.56e-4 2.08e-4 2.72e-4 2.94e-4 4.21e-4 5.08e-4 5.52e-4 5.98e-4
á ñfB B2 2 L 0.389 0.371 0.334 0.088 0.108 0.077 0.066 0.028 0.021 0.017 0.013

2|B1|
2/B2 L 0.042 0.042 0.043 0.248 0.156 0.144 0.117 0.121 0.106 0.064 0.044

2|B2|
2/B2 L 0.040 0.042 0.067 0.165 0.179 0.162 0.149 0.091 0.063 0.046 0.041

ME�3/ME L 0.529 0.545 0.556 0.499 0.556 0.617 0.668 0.760 0.809 0.874 0.902

RZ Energy Density Parameters

KEDR 0.016 0.016 0.016 0.016 1.20e-3 1.30e-3 8.97e-4 9.40e-4 5.33e-5 3.62e-5 3.17e-5 2.38e-5
KEc 4.14e-4 4.14e-4 4.00e-4 4.09e-4 5.37e-5 4.03e-5 3.12e-5 2.98e-5 2.28e-5 2.18e-5 2.03e-5 1.90e-5
ME L 3.71e-7 3.41e-6 5.47e-5 1.97e-4 2.26e-4 2.28e-4 2.09e-4 1.36e-4 1.38e-4 1.34e-4 1.28e-4
á ñfB B2 2 L 0.957 0.955 0.957 0.527 0.658 0.603 0.587 0.117 0.076 0.127 0.096

2|B1|
2/B2 L 5.01e-3 5.02e-3 5.10e-3 0.320 0.151 0.161 0.149 0.399 0.446 0.397 0.359

2|B2|
2/B2 L 4.21e-3 4.33e-3 4.53e-3 0.098 0.132 0.162 0.172 0.273 0.242 0.210 0.249

ME�3/ME L 0.034 0.035 0.033 0.054 0.059 0.074 0.092 0.210 0.236 0.266 0.296

Note. Here we define the kinetic energy of the convection (fluctuating flows) as rº á ¢ ñfuKE 1 2c
2( ) ( ) . Recall that the magnetic energy in the fluctuating fields is

defined through ME�3 ≡ (1/2)∑|m|�3|Bm|
2. The diffusion time Pdiff refers to the viscous (or, equivalently, thermal) diffusion time Pν = Pκ for Case H and to the

magnetic diffusion time Pη for the magnetic cases (see Table A1). The letters “W,” “M,” and “S,” denote the weak-, medium-, and strong-field regimes, respectively.
For the energy ratios, a volumetric (over the CZ or RZ) and temporal mean is implied for the numerator and denominator separately. For example, “ 2|B1|

2/B2
” in the

“CZ block” of the table should be read as á ñ á ñB B2 t t1
2

CZ,
2

CZ,∣ ∣ . The factors of 2 account for the symmetry |B−m|
2 = |Bm|

2 (since B is real).
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field-line tracings of these nonaxisymmetric structures tend to
be quite difficult to interpret, and it remains unclear exactly
what topology (linked wreaths, tilted wreaths, or even open
field lines) is leading to the two-dimensional projections shown
in Figure 2.

To quantify the nonaxisymmetry in our dynamos more
precisely, we partition the magnetic energy according to m-
value. We define the m-component of B through

º á ñf f
-B Be 10am
im ( )

åº fB B eor . 10b
m

m
im ( )

Note that since á ñf is computed by averaging over the
uniformly spaced f-grid, Equation (10a) represents the forward
and inverse discrete Fourier transforms (DFTs) in f. For the
chosen normalization, Parseval’s theorem takes the form

åá ñ =fB B . 11
m

m
2 2∣ ∣ ( )

Note that by definition = á ñfB B0 . Different components of the
magnetic energy can thus be attributed to different m-
components of B.

Table 2 shows some basic simulation properties (Prm,
regime, total run time tmax, and equilibration time teq), as well
as the partitions of kinetic and magnetic energy for each
simulation.5 We define the magnetic energy in the “small-scale
fields” by ME�3 ≡ (1/2)∑|m|�3|Bm|

2. With increasing Prm, the
fraction of magnetic energy in the small-scale fields
(ME�3/ME) increases, as might be expected from the more
prominent small-scale structures seen in Figure 2 at higher Prm.
The deficit, i.e., the fraction of energy in the large-scale fields
(m= 0, 1, 2), decreases, but the partition between each m-
component is complex.

For the weak-field cases, in both the CZ and RZ, the power
in the axisymmetric field dominates over the power in the

m= 1, 2 components. But for the medium- and strong-field
cases, there seems to be no general rule for whether m= 0, 1,
or 2 dominates. One robust feature is that in all regimes the
magnetic energy in the RZ is stored primarily in the large-scale
fields. Even for the strongest-field Case 8.00, the small-scale
(|m|� 3) field components account for only ∼30% of the
magnetic energy in the RZ. These results strengthen the earlier
idea that the RZ acts as a low-pass filter, letting in only the
lowest-m components of the field. Such behavior is expected if
the field evolution in the RZ is primarily governed by diffusion,
an idea we return to in Section 6, where we discuss the skin-
effect behavior of the poloidal field.

4. Tachocline Confinement

4.1. Tachocline Appearance

All dynamos in the medium- and strong-field regimes sustain
steady-state tachoclines. To describe them, we define the
rotation rate Ω (as measured in the rotating frame):

q
l

W º
á ñf f

r
u

, . 12
t,( ) ( )

Figure 3 shows Ω for a weak-, medium-, and strong-field case,
as well as the Sun. The weak-field case does not have a
tachocline and has a rotation rate nearly identical to that of
Case H, that is, there is strong latitudinal rotation contrast in the
CZ (ΔΩCZ∼ 0.2, similar to the solar value), which imprints
throughout the entire RZ (for Case H’s rotation profile, see
Paper I).
By contrast, the medium- and strong-field cases all have

tachoclines, that is, there is (weak) differential rotation in the
CZ but nearly solid-body rotation in the RZ. The radial
transition from differential to solid-body rotation appears to be
quite abrupt at most latitudes from the color plots in
Figures 3(b) and (c), suggesting thin simulated tachoclines.
However, this visual abruptness is at least partly due to our
choice of bilinear colormap for the asymmetric values of Ω
about 0. This colormap deepens the blue tones in the CZ at high

Figure 1. Averaged KEDR and ME as functions of time and Prm. (a) á ñKEDR full (solid curves) and á ñME full (dashed curves) with respect to time for three values of Prm
(indicated by three different line colors and legend headings). (b) á ñKE tDR full, and á ñME tfull, with respect to Prm for all magnetic simulations. Vertical black lines denote
tentative regime boundaries, and the horizontal orange line marks á ñKE tDR full, for Case H.

5 For completeness and reproducibility, we also give the Reynolds, Rossby,
and magnetic Reynolds numbers for each case in Appendix C.
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Figure 2. Mollweide projections of the toroidal magnetic field Bf on spherical surfaces for four chosen values of Prm at time t = 3500Prot. Each Prm corresponds to a
different row (pair) of Mollweides, and Prm increases downward. The spherical surfaces are at two radii, one near the base of the CZ (left column) and one in the
middle of the RZ (right column). The color bar (shown for the bottom row only) is the same for all figures, and we give its saturation values next to the alphabetical
labels.
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latitudes. As we now demonstrate, the simulated tachoclines
(after they are fit systematically) are in fact about twice as thick
as the solar one.

We define the radially varying latitudinal differential rotation
contrast ΔΩ(r):

p p pDW º W - W + Wr r r r, 2
1

2
, 6 , 5 6 , 13( ) ( ) [ ( ) ( )] ( )

i.e., the difference in rotation rate between the equator and the
average rate of 60° latitude north and south. We define the
rotation contrasts in the CZ and RZ and their ratio:

DW º áDWñ , 14aCZ CZ ( )

DW º áDWñ , 14bRZ RZ ( )

º
DW
DW

fand , 14cRZ

CZ
( )

respectively. Because the medium- and strong-field RZs often
rotate like solid bodies, we define the (volume-averaged)
constant rotation rate of the RZ:

W º áWñ . 15RZ RZ ( )

Figure 4 shows line plots of the rotation rate along radial
lines for the Sun and Case 4.00. Clearly in the solar case, the
tachocline is confined to a relatively narrow radial layer, with
strong differential rotation in most of the CZ and very little in
the RZ, indicating a large ΔΩCZ, a small ΔΩRZ, and therefore
small f for the true solar case. By contrast, in Case 4.00, while
ΔΩRZ is severely diminished, thus indicating that the RZ

rotates nearly as a solid body, ΔΩCZ is also significantly
diminished.
A further deviation from the solar case is that our simulated

rotation profiles have most of the differential rotation contrast
confined to a low-latitude band between about ±30°. The result
is relatively strong radial shear distributed far more evenly
throughout the CZ in the simulations than in the Sun.
Equivalently, each simulated tachocline is not thin but basically
occupies the whole convective layer and is centered near mid-
CZ, well above r0.
In order to define the location and width of the simulated

tachoclines, we define

y º
DW - DW

DW - DW
-r

r min

max min

1

2
. 16( ) ( ) ( )

( ) ( )
( )

The shape function ψ(r) is normalized to vary between −1/2,
where ΔΩ obtains its minimum value (always in the RZ), and
+1/2, where ΔΩ obtains its maximum value (always in the
CZ). We define a given tachocline’s centroid rt and thickness Γ
as the parameters in the function - Gr r1 2 tanh 2 t( ) [ ( ) ],
which is the best fit to ψ(r).6

Figure 5 shows the ψ profiles for the Sun and some medium-
and strong-field cases, along with the corresponding best-fit
tanh functions. As we would expect, the solar ψ (or best-fit
tanh) profile has a centroid near r= r0 and a relatively narrow

Figure 3. Relative rotation rate Ω for (a–c) simulations in each of the three dynamo regimes and (d) the Sun, plotted in color in the meridional plane. Each colormap is
bilinear: positive values (red tones) are normalized separately from negative values (blue tones). The minimum and maximum saturation ticks are labeled on the color
bar, while the zero tick is unlabeled. Overplotted, there are three equally spaced positive and negative solid contours. The zero contour is dashed. The dashed black
curves show the location of r0, and for panels (b)–(d), the dashed–dotted magenta curves show the boundaries of the tachocline, rt ± Γ/2. The solar rotation rate is
from a helioseismic inversion of GONG data averaged from 1995 to 2009 (Howe et al. 2005; Howe 2023). To arrive at the nondimensional, relative rotation rate Ω for
the Sun, we define Ωe ≡ 2.70 × 10−6 rad s−1 (or Ωe/2π = 430 nHz), which is roughly the solid-body rotation rate of the solar RZ. We then subtract Ωe from the
inverted rotation rate (which is given dimensionally, in the nonrotating frame) and divide by Ωe.

6 This fitting procedure is similar to (though not as involved as) conventional
tachocline fitting methods (e.g., Charbonneau et al. 1999; Basu & Antia 2003).
We do not feel that our simulated rotation profiles are sufficiently solar-like to
warrant more complex fitting.
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width. For each simulated tachocline, the distributed radial
shear in the CZ both widens the ψ (or tanh) profile and pushes
its centroid close to the middle of the CZ.

Table 3 shows the tachocline parameters, as well as ΔΩCZ,
ΔΩRZ, f, and ΩRZ for our simulations and the Sun. Clearly
stronger fields reduce rotation contrast everywhere, but
significantly more so in the RZ. Interestingly, the “tachocline
contrast ratio” f is a nonmonotonic function of regime and
appears to be minimized (to a value of roughly 0.11) near
Prm= 4. The nominal solar value is quite a bit higher: fe∼ 0.3
from Table 3. However, this is mostly due to the uncertain
tachocline width. The solar “ΔΩRZ” thus contains substantial
contrast from the lower half of the tachocline. Deeper in the RZ
(r/Re 0.6) the helioseismic inversion gives ΔΩ∼ 0.014 or
fe∼ 0.07, which is probably closer to the value simulations
should tend toward to be considered sufficiently solar-like.

In contrast to the Sun, all the simulated tachoclines have
centroids well within the CZ and are roughly twice as thick.
There is no clear scaling of the tachocline centroid with regime.
However, the tachoclines in the strong-field regime are very
slightly thinner than the tachoclines in the medium-field
regime. Overall, it seems unlikely that further increasing the
magnetic field strength will push the tachoclines to be more
solar-like. Furthermore, there does not appear to be a solar-like
“sweet spot” (say, in between the medium- and weak-field
regimes), wherein the RZ rotates like a solid body, but strong
rotation contrast is sustained in the CZ.

4.2. Torque Balance

In Paper I, we explicitly showed that the magnetic torque
from the cycling, nonaxisymmetric dynamo field was respon-
sible for confining the tachocline in Case 4.00. This remains
true for all the medium- and strong-field cases here. In the
equilibrated state, the zonally and temporally averaged f-
component of the momentum Equation (6) yields

r q r

rn q q

q

- á ¢ ¢ ñ - áá ñ  ñ +

+  W +  á ¢ ¢ ñ

+  áá ñ á ñ ñ =

f f

t

f

t

t

f f

t

f f f

t

     

     

  
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B

B
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t
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angular momentum density

( ) ( )

where for a vector field A we define its poloidal component
º + q qA e eA Ar rpol ˆ ˆ . The torques can be attributed to the

physical processes labeled underneath each term (see Miesch &
Hindman 2011; Matilsky et al. 2019).
Figure 6 shows the full steady-state torque balance (in the CZ

and RZ separately) for Case 1.06 (the strongest weak-field case)
and the strong-field Case 4.00. The CZ of Case 1.06

Figure 4. Relative rotation rate Ω, plotted along radial lines for (a) the Sun and (b) the strong-field Case 4.00. Six radial cuts of Ω are plotted, equally spaced in latitude
by 15° between 0° and 75°. In panel (a), the x-axis is extended slightly, since the simulations only extend to rout = 0.947Re. In both panels, the vertical arrows
represent the values of ΔΩRZ and ΔΩCZ. In this figure (and in all radial plots in subsequent figures), the thin vertical lines denote the locations of r0 and rout.

Figure 5. Scatter plots showing the ψ profiles (Equation (16)) for a weak-,
medium-, and strong-field case, as well as the Sun. Corresponding line plots
show the function - Gr r1 2 tanh 2 t( ) [ ( ) ], which is the best fit to ψ. Various
lines and arrows indicate the values of rt and Γ for Case 4.00 and the Sun.
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(Figure 6(a)) is effectively hydrodynamic in its torque balance. It
represents the “standard” by which current global models (e.g.,
Hotta et al. 2015; Guerrero et al. 2016; Matilsky et al. 2019)
maintain a solar-like differential rotation with fast equator and
slow pole. That is, the rotational influence on the convection
leads to Taylor columns with correlations in the components of
¢u (i.e., Reynolds stresses), which transport angular momentum

away from the rotation axis and produce mostly positive torques
at low latitudes (45°; farther from the rotation axis) and
negative torques at high latitudes (45°; closer to the rotation
axis). Meridional circulation also plays a role (a complicated one
due to the presence of multiple circulation cells), especially at
low latitudes. Viscosity always tries to eliminate gradients in Ω,
in this case the latitudinal gradients, by spinning the equator
down and the polar regions up. Note that this downward viscous
spread of differential rotation is distinct from spread along
poloidal field lines according to Ferraro’s law (e.g., Strugarek
et al. 2011a, 2011b) and, in general, the RZ’s isorotation
contours in the weak-field cases do not fall along poloidal field
lines. The RZ of Case 1.06 (Figure 6(b)) has a torque balance
that is roughly an imprint of the balance in the CZ, but it is
overall much weaker and concentrated at high latitudes (and the
magnetic torques are negligible).

The torque balance in the CZ of Case 4.00 (Figure 6(c)) still
has a positive Reynolds-stress torque, but this positive torque is
confined to significantly lower latitudes (15°). Consequently,
most differential rotation is confined to a narrow prograde jet at
the equator. The Maxwell-stress torque opposes the Reynolds-
stress torque and effectively acts as an additional source of
viscous torque. The meridional-circulation torque is significantly
altered from its weak-field counterpart as well. Evidently, strong-
field magnetism not only provides an additional torque but also
changes the structure of the convection and circulation so as to
alter the hydrodynamic torques from their weak-field forms.

Finally, the torque balance in the RZ of Case 4.00
(Figure 6(d)) was studied in Paper I, and clearly this is the
balance responsible for tachocline confinement. The profile of
viscous torque has changed sign compared to the torque
profiles in the other panels: it is now positive at low latitudes
(15°) and negative at high latitudes (15°), thus trying to
imprint the equatorial jet and weak high-latitude retrograde
differential rotation downward.7 The viscous torque is
countered by the magnetic torque, which must come from the

large-scale, nonaxisymmetric (m= 1, 2) field components
shown in Figure 2 (that this is true, at least for Case 4.00,
was shown explicitly in Paper I).
All our weak- and strong-field cases have torque balances

like those in Figure 6. The medium-field cases have balances
essentially similar to the strong-field cases, but the torques
become more complicated owing to the intermittent changes in
field strength and differential rotation that were noted in
connection with Figure 1. Regardless, the answer to how our
simulated tachoclines are confined reduces to explaining the
maintenance of large-scale, nonaxisymmetric magnetism in the
RZ. The following sections show how this maintenance can be
understood in terms of the cycling dynamo and skin effect.

5. Cycling Behavior

5.1. Dynamo Cycles in the Regimes of Weak and Strong Field

Figure 7 (left panels) shows time−latitude diagrams of á ñf fB
for the weak-field Case 1.00 and real(Bf,1) for the strong-field
Case 4.00 at two depths, one in the CZ and one in the RZ. Both
cases cycle, although the polarity reversals in the weak-field
case occur significantly more regularly than the reversals in the
strong-field case. In each case, the cycle “imprints” from the
base of the CZ onto the RZ with a phase lag (i.e., for every
reversal in the CZ, there is a corresponding reversal in the RZ
some time later). There is also significantly more rapid
variation in the large-scale field in the CZ (seen as graininess
in the time-latitude plots) than in the RZ. This again suggests
that the RZ acts as a low-pass filter, in time as well as in space.
To describe these cycles more precisely, we define the

frequency components of each Bm:

º á ñ = á ñw
w f w

f
- -B B Be W t e W t , 18m m

i t
t

i m t
t,( ) ( ) ( )( )

where W(t) is the Hanning window function and ω is the
discrete angular frequency. From the convention in the
exponential (for nonzero m only), the Bmω components with
positive ω/m move prograde in longitude and the components
with negative ω/m move retrograde.
We sample the spherical-slice magnetic-field data during the

equilibrated state (teq to tmax). The sampling intervals are not
uniform within a given simulation, but they are typically close
to the mean interval δt∼ (3–4)Prot, with a typical standard
deviation of σt∼ (0.1–0.4)Prot (see Table 4). We thus
interpolate the nonuniform time series onto a uniform time
series spaced by δt before computing the (windowed) DFT
represented by Equation (18).
Figure 7 (right panels) shows the power in the large-scale

toroidal field (|Bf,0ω|
2 for the weak-field case and |Bf,1ω|

2 for the

Table 3
Properties of the Rotation Rate for Our Simulations and the Sun

Case H 1.08 1.33 1.67 2.00 3.00 4.00 6.00 8.00 Sun
Regime L M M M M S S S S L

ΔΩCZ 0.192 0.057 0.045 0.041 0.041 0.030 0.027 0.024 0.022 0.199
ΔΩRZ 0.116 0.016 0.011 9.13e-3 9.34e-3 3.34e-3 2.56e-3 2.57e-3 2.36e-3 0.046
f ≡ ΔΩRZ/ΔΩCZ 0.603 0.287 0.239 0.221 0.227 0.112 0.094 0.106 0.108 0.232
ΩRZ −0.025 −4.33e-3 −2.91e-3 −2.55e-3 −2.55e-3 −1.42e-3 −1.26e-3 −1.19e-3 −1.11e-3 −3.85e-3
rt/Re L 0.735 0.737 0.738 0.738 0.739 0.739 0.737 0.736 0.717
Γ/Re L 0.247 0.234 0.226 0.229 0.209 0.203 0.199 0.201 0.111

Note. Properties for the weak-field cases are not shown, since they are almost identical to Case H. Note that for the Sun we have rt,e/Re = 0.72 and Γe/Re = 0.11, in
reasonable agreement with the helioseismic estimates given in Section 1.

7 Note that the viscous torque always attempts to eliminate gradients in Ω;
however, in the presence of other torques, it cannot eliminate the gradient in all
directions. In the case of a radial shear layer like the tachocline, viscosity will
reduce |∂Ω/∂r| at the expense of imprinting the latitudinal differential rotation
downward, which of course increases |∂Ω/∂θ|.
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strong-field case) corresponding to the time−latitude diagrams.
The regularity of the weak-field cycle causes most of the power to
be concentrated in the primary central frequency. By contrast, for
the irregular strong-field cycle, there is a wide dispersion of power
around a negative central frequency. This preference for negative
frequencies suggests retrograde propagation of B1, broadly
consistent with transport by the negative background rotation rate
in the RZ. Furthermore, the high-|ω| “tail” in the strong-field case
is significantly less pronounced in the RZ than in the CZ, again
reinforcing the idea that the RZ acts as a low-pass filter in time.

Figure 7 (right panels) shows that in each case there is a
central frequency (the “primary” cycle frequency ωcyc) and a
dispersion (of width σω) in power about this central frequency.
More precisely, for a given power spectrum P(ω), we define
ωcyc as the median frequency associated with P(ω) and σω as P
(ω)ʼs half-integral width:

å å åw w w= º
w w w w s

w s

w= -

+

w

w


P P P

1

2
. 19

2

2

cyc cyc

cyc

( ) ( ) ( ) ( )

The cycle period is Pcyc ≡ 2π/ωcyc (since Prot= 2π, note that
Pcyc/Prot= 1/ωcyc). The quantity q ≡ ωcyc/σω defines the
regularity of the cycle, with higher q indicating a more regular
cycle.
Table 4 contains values of ωcyc, Pcyc, σω, and q, along with

the sampling parameters δt, Nyquist frequency ωnyq, and
frequency resolution δω. For the weak-field cases, we take

w = á ñwBP 0
2

full( ) ∣ ∣ (considering positive ω only, since
= á ñfB B0 is real), and for the non-weak-field cases, we take
w = á ñwBP 1

2
full( ) ∣ ∣ (considering both positive and negative ω).

The weak-field solutions all have similar cycle periods
[Pcyc∼ (1400–2000)Prot], with relatively high values of q.
This confirms the visual appearance of regular cycles in the
weak-field cases (Figure 7).
The medium- and strong-field cases have more irregular

cycles (with q 1), and the cycle period (with the exception
of either Case 1.67 or Case 2.00) monotonically increases
with increasing field strength. Since field strength increases
with Prm and therefore with magnetic diffusion time Pη (see

Figure 6. Torque densities, temporally averaged over the equilibrated state. The torques are also radially averaged, separately for the CZ (left column) and RZ (right
column), and the equatorially symmetric parts are plotted as functions of latitude for the weak-field Case 1.06 (top row) and strong-field Case 4.00 (bottom row). The
abbreviations in the legend show which torque density from Equation (17a) is plotted: Reynolds stress (RS), meridional circulation (MC), viscous (visc), Maxwell
stress (MS), mean magnetic (MM), and total (tot).
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Table A1), this suggests that the cycle period for the
nonweak cases is at least partly determined by the level of
diffusion (i.e., Pcyc scales more or less monotonically with
Pη).

6. Skin-depth Interpretation

As mentioned at the conclusion of Section 4.2, explaining
the presence (or not) of tachoclines in these simulations boils
down to the maintenance of large-scale, nonaxisymmetric

Figure 7. Time−latitude diagrams of the large-scale (m = 0 or 1) toroidal field over the interval (1500, 5500)Prot for a weak-field, axisymmetric dynamo (Case 1.00;
upper four panels) and a strong-field, nonaxisymmetric dynamo (Case 4.00; lower four panels). For each case, we sample the same two depths as in Figure 2. In each
time−latitude diagram, the horizontal solid line marks the equator and the vertical dashed line marks t = 3500Prot, the instant sampled by Figure 2. To the right of
each time−latitude diagram, we show (for the same depth and m-value as the time−latitude plot) the latitudinally averaged toroidal-field power spectrum

w = á ñf wP B m,
2

sph( ) ∣ ∣ (see Equation (18); here m is 0 or 1). Since = á ñfB B0 is real, we consider P(ω) a function of positive ω only when m = 0. The red “T” marks the
location of the primary cycle frequency ωcyc and the dispersion σω for P(ω) (see Equation (19)). For Case 4.00 (panels (f) and (h)), ω = 0 is marked by a vertical
dashed line.
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(m= 1,2) Bpol in the RZ.8 In Paper I, we showed that two
effects were responsible for this maintenance: induction
(possibly from inertial oscillations; see also Blume et al.
2023), and diffusion of CZ-produced field to roughly a (then
ill-defined) skin depth below the CZ. In this section, we
precisely define the relevant skin effect and show how the
amplitude of Bpol in the RZ can be extremely well predicted
considering only diffusive skin effects.

As a first approximation, we assume that fluid motions
produce no electromotive force (e.m.f.) below r0 (or a radius

slightly below r0 for the weak-field cases; see the caption to
Figure 8). Then, the evolution of Bpol in the RZ is governed by
diffusion alone, with the upper boundary condition (at r= r0)
that Bpol matches what the CZ produces and the lower
boundary condition (at r= rin) that the field decays with depth
instead of grows. For axisymmetric weak-field dynamos, the
regular polarity reversals provide an oscillating boundary
condition at a single frequency. This is the classic form of
Stokes’s problem of an oscillating boundary. In its solution, the
field amplitude is contained in an envelope that decays
exponentially downward with a scale height (in this context,
called the skin depth) that depends on the frequency of
oscillation. This is the formalism expounded in the original fast
magnetic confinement scenario of Forgács-Dajka & Petrovay
(2001). Note that in this axisymmetric case the rotation rate of
the frame in which the equations are solved does not matter.
However, for the nonaxisymmetric medium- and strong-field

dynamos, the choice of rotating frame does matter. Since
advection in f of a nonaxisymmetric Bpol constitutes an e.m.f.,
diffusion-only evolution is possible only if the RZ rotates
approximately like a solid body. Then, to examine purely
diffusive solutions, the induction equation must be written in
the frame rotating at the solid-body rate ΩRZ (see Table 3 for
the simulated and solar values of ΩRZ). Because the field at
r= r0 is cycling with multiple frequencies (see Section 5), this
setup still corresponds to Stokes’s problem, but there is now a
different skin depth for each component Bpol,mω. Furthermore,
since the equations must be solved in the frame of the RZ, the
frequency determining the skin depth is not ω but the Doppler-
shifted value ω−mΩRZ.

9

Assuming that the spatial variation of Bpol is predominantly
radial, Equation (8) leads to separate boundary-value problems
for each Bpol,mω:

w h- - W »
¶

¶
w

wB
B

i m r
r

Ek

Pr
20m

m
RZ pol,

m

2
pol,

2
( ) ¯ ( ) ( )

for r� r0. Rapid variation in r allows us to neglect the terms in
∇2 other than (∂/∂r)2, sphericity terms, and the term from h .
Note that Equation (20) is valid for all m.

Table 4
Dynamo Cycle Properties for Each Magnetic Case (ωcyc, σω, Pcyc, and q), as Defined in Equation (19)

Case 1.00 1.05 1.06 1.08 1.33 1.67 2.00 3.00 4.00 6.00 8.00
Regime W W W M W M M M S S S

ωcyc 6.07e-4 5.80e-4 5.20e-4 −5.21e-3 1.56e-3 −4.65e-3 −5.13e-3 −2.52e-3 −1.74e-3 −1.45e-3 −1.52e-3
Pcyc/Prot 1648 1724 1923 191.9 642.2 215.1 194.9 396.1 574.1 692.0 656.9
σω 9.97e-5 1.62e-4 2.89e-4 3.52e-3 2.47e-3 7.35e-3 0.011 3.71e-3 1.74e-3 1.86e-3 9.51e-4
q ≡ ωcyc/σω 6.09 3.57 1.80 1.48 0.63 0.63 0.46 0.68 1.00 0.78 1.60

δt/Prot 3.76 3.79 3.76 4.10 4.08 4.03 3.95 3.53 3.18 2.87 2.65
σt/Prot 0.40 0.37 0.37 0.08 0.08 0.14 0.21 0.30 0.25 0.17 0.14
ωnyq 0.133 0.132 0.133 0.122 0.122 0.124 0.127 0.141 0.157 0.174 0.189
δω 1.21e-4 1.93e-4 1.73e-4 1.41e-4 1.73e-4 1.50e-4 1.25e-4 1.49e-4 6.97e-5 2.06e-4 1.90e-4

Note. Here δt and σt are the mean and standard deviation in the sample rate for the spherical-slice magnetic-field data, ωnyq ≡ 2π/(2δt) is the (angular) Nyquist
frequency, and dw pº -t t2 max eq( ) is the (angular) frequency resolution.

Figure 8. Amplitude (in the RZ) of “large-scale á ñB tpol
2

sph,∣ ∣ ,” defined here as
å á ñB rm m tpol,

2
sph,∣ ∣ ( ), where the sum is over m = 0 for weak-field cases and

m ä {0, 1, 2} for medium- and strong-field cases. We show both the actual
amplitude (solid dots) and the amplitude predicted by the skin-depth
Equation (23a) (solid curves) for Cases 1.00, 1.08, and 8.00. For Case 1.00,
we replace r0 in Equation (23a) with a value rc slightly below the CZ:
rc/Re = 0.707. Each profile is normalized such that its value at r = r0
(or r = rc for Case 1.00) is unity.

8 Maintenance of large-scale Bf is also important of course. However, if Bpol
is present, Bf is always created by mean shear. In Paper I, we argued that this
effect—similar in essence to Ferraro’s law (Ferraro 1937)—is in fact
responsible for the magnetic torque and hence tachocline confinement. In this
work, we thus only consider the maintenance of Bpol.

9 Note that the relative signs of ω and ΩRZ matter here, but the sign of
ω − mΩRZ does not; see Equation (23b).
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Because h r( ) varies with radius, we follow Garaud (1999)
and define
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Note that rη is a monotonically increasing function of r and is
equal to r at r= rin and r= r0.

10 Again assuming rapid radial
variation, Equation (20) becomes
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is an intermediate value of h r( ) in the RZ. For our chosen
reference state, h = 0.292const , and h r( ) achieves this value at
r/Re= 0.599.

Equation (22a) is of course Stokes’s problem again, and its
exact solution yields
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is the m- and ω-dependent skin depth.
The “skin-predicted” amplitude of large-scale á ñB tpol

2
sph,∣ ∣ is

then found by summing Equation (23a) over all ω and low m.
We choose m= 0 for the weak-field cases and mä {0, 1, 2} for
the medium- and strong-field cases. Figure 8 shows large-scale
á ñB tpol

2
sph,∣ ∣ (both the skin-predicted and actually realized

values) for a weak-, medium-, and strong-field case.
Equation (23a) does an extremely good job of predicting the
field strength for the weak- and strong-field cases and a
reasonable job for the medium-field case. Overall, it thus seems
highly likely that the magnetization of the RZ is determined
primarily by the dynamo cycle of the CZ imprinting diffusively
downward.

In Paper I, the strong Bpol in the RZ of Case 4.00 was
attributed partially to deep dynamo action. For all the magnetic
cases considered here, we have verified that the deep dynamo is
still present, that is, the production of |Bpol|

2 by diffusion (Dpol)
is negative in the RZ, while the production by e.m.f. (Ipol) is
positive.11 It was emphasized in Paper I that this implies (by
definition; e.g., Moffatt & Dormy 2019, p. 146) the presence of
dynamo action deep in the RZ, and we argued in Paper I that
this deep dynamo (possibly driven by Rossby waves) may have
been responsible for tachocline confinement in Case 4.00.
However, the results of this section indicate that the strength of
Bpol in the medium- and strong-field cases can be almost fully
accounted for by diffusive skin effects. It thus seems likely that
we would have tachocline confinement (in the simulations

considered here) regardless of whether there was a deep
dynamo or not. How the deep dynamo is driven—and whether
it can confine the tachocline in the absence of large diffusion—
remains an intriguing open question.

7. Polarity Reversals for Nonaxisymmetric Magnetic Fields

Polarity reversals in nonaxisymmetric magnetic fields (e.g.,
Figures 7(e) and (g)) can be accomplished in two distinct ways.
For definiteness, consider Bf,1 (i.e., the colatitudinal field
associated with a single partial-wreath pair). At a given radius
and latitude, we have

å= =f
w

f w
w j-W t B t B e A t e . 24i t i t

,1 ,1( ) ( ) ( ) ( )( )

The first equality comes directly from Equation (18), and the
second equality is simply the mathematical statement that any
complex number can be written as an amplitude (here A(t)) and
a complex phase (here e ij( t)). Note that the presence or not of
the window function W(t) is immaterial to the following
arguments.
The first type of nonaxisymmetric polarity reversal is due to

modulation of the amplitude A(t). These reversals contain cycle
minima (for which A(t)= 0) and are analogous to the reversals
of full-wreath (i.e., axisymmetric) polarity in the weak-field
cases (e.g., Figures 7(a) and (c)), or equivalently to what we
believe happens to the solar interior magnetic field to cause the
observed butterfly diagram (e.g., Hathaway 2015). The second
type of nonaxisymmetric polarity reversal is due to changes in
the phase j(t), which simply occur from advection of the whole
structure in longitude (there are no cycle minima in this case).
Equation (24) shows that in general there is no straightforward
way to separate which frequency components Bf,1ω are due to
each type of reversal. Indeed, in Matilsky & Toomre (2020a;
see their Figures 11 and 12), we showed that both types of
reversal occur simultaneously in the CZ-only partial-wreath
cycles, with the frequency of amplitude modulation similar to
that of longitudinal advection.
Postponing for now the important investigation of how

amplitude modulation occurs (it must be caused by nonax-
isymmetric dynamo processes; e.g., Stix 1971; Ivanova &
Ruzmaikin 1985; Moss et al. 2002; Bigazzi & Ruzmaikin
2004), we discuss in this section which frequencies are
consistent with longitudinal advection. Figure 9 shows Case
4.00ʼs poloidal power spectra as functions of latitude and
frequency for both m= 1 and m= 2 at the CZ–RZ interface
r= r0. For m= 1 (panel (a)), the shape of the power spectrum
is nearly latitude independent, with roughly constant values of
the latitudinally dependent cycle frequency ωcyc(θ) and
dispersion σω(θ). The central frequency ωcyc(θ) overlaps with
mΩ(r0, θ) at low latitudes (about 15° north and south), which
correspond to the retrograde (Ω< 0) jet of Figure 3(c). For
m= 2 (panel (b)), ωcyc(θ)=mΩ(r0, θ) at a slightly lower
latitude (about 10° north and south) and the dispersion of
power σω(θ) is “stretched” by roughly a factor of two compared
to the dispersion for m= 1. This stretching factor is consistent
with the advective rate being proportional to m-value.
One valid interpretation of Figure 9 is that the large-scale

(m= 1, 2) structures move as a cohesive structure (i.e., with
rotation rates more or less independent of latitude), but at a
time-varying rotation rate, which corresponds to a range of
frequencies ωcyc± σω/2 centered about the advective rate
mΩ(r0, θ) at low latitudes. Since these low latitudes are also the

10 We believe that the rη given in Garaud (1999), which had h ¢ +r 1 2( ) in the
integrand in the analog of Equation (21), was mistakenly defined.
11 Explicitly, we define hº á  ´  ´ ñB BD r tpol pol pol sph,( ) · [ ( )] and

º á  ´ ´ ñB u BI r tpol pol pol sph,( ) · [ ( )] . We have verified that in all magnetic
cases, at all radii in the RZ, Dpol(r) < 0, while Ipol(r) > 0.
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location of the retrograde jet, we may interpret the partial
wreaths as being “anchored” to the jet. Another valid
interpretation is that the partial wreaths have an intrinsic rate
of rotation caused by the dynamo mechanism, which is
apparently independent of latitude. This dynamo-intrinsic
rotation rate then determines the rotation rate of the retrograde
jet via the magnetic torques (since the magnetic torque should
force the fluid to move with Bpol).

For the skin depth (Equation (23b)), it does not matter which
physical process produces a given value of ω. As long as ω is
different from mΩRZ (see the orange lines in Figure 9), the
amplitude of Bpol should decay downward with a finite skin
depth. Considering the first interpretation of Figure 9, we thus
argue for the relevance of an important new type of skin effect
that could operate in stars with both rigidly rotating RZs and
nonaxisymmetric magnetic fields. This skin effect would arise
from a nonaxisymmetric field at the CZ–RZ interface being
advected by a background rotation rate that is different from the
rotation rate of the RZ.

One particularly interesting consideration are the latitudes at
the base of the CZ that corotate with the RZ. At those latitudes,
ω−mΩRZ= 0 and the skin depth in Equation (23b) becomes
infinite. What this really means is that any frozen-in nonaxisym-
metric field appears completely stationary to the RZ and spreads
downward indefinitely on a diffusive timescale. We explore this
idea in the solar context in the following section.

8. Discussion: Dynamo Confinement of the Solar
Tachocline through Nonaxisymmetric Magnetic Fields

These results suggest that the fast magnetic confinement
scenario—which was originally proposed, in 1D only, for
axisymmetric Bpol cycling at a single frequency (Forgács-Dajka
& Petrovay 2001, 2002; Forgács-Dajka 2004; Barnabé et al.
2017)—should be expanded (into 3D) to include both
nonaxisymmetric Bpol and a spread in cycle frequencies.
Whether this more general scenario is actually capable of
confining the solar tachocline depends on several major
differences between simulations and the Sun, which we briefly
discuss here. Note that for this section (which is concerned with
a real astrophysical object, namely, the Sun) we regard all
physical quantities as dimensional.

Prior work on the fast magnetic confinement scenario has
always assumed a turbulently enhanced magnetic diffusivity.
For example, Barnabé et al. (2017, see their Figure 5) nicely
show that for dynamo poloidal field strengths of ∼103 G (and a
cycle period of ∼22 yr) the magnetic diffusivity must be larger
than its molecular value by a factor of at least 105–106.
However, as discussed in Section 1, how much turbulent
enhancement of the viscosity occurs in the hydrodynamic
scenario (and if the enhancement is primarily horizontal or
vertical) is a subject of ongoing research, with no firm
conclusions at present. For magnetic diffusive enhancement,
even less is known. Thus, for simplicity, we assume here that
the magnetic diffusion is not turbulently enhanced. We also
leave aside for now Paper Iʼs proposition that deep dynamo
action may generate significant Bpol.

8.1. Diffusive Equilibration in Simulations

In the Sun, all diffusive timescales are significantly greater
than the current solar age (te= 4.6 Gyr; see Table B1). By
contrast, simulations that seek to address the tachocline
confinement problem do so by evolving the MHD equations
over significant fractions of the relevant diffusion times. If a
statistically steady state is achieved, it thus likely contains
significant diffusive effects in the dynamical balances.
We believe that this may be one of the main reasons our

tachocline cases have most of the differential rotation confined
to a narrow equatorial jet near the outer boundary. The viscous
and magnetic diffusion timescales are similar (we have order-
unity Prm values), and in most cases we run for several of either
timescale. The steady state thus necessarily has similar
magnitudes for the viscous and magnetic torques in the CZ
and RZ (compare the left and right columns of Figure 6). This
means that any magnetic torque strong enough to prevent
viscous tachocline spread is also strong enough to eliminate
much of the differential rotation in the CZ.

8.2. Viscous versus Radiative Spread: General Torque Balance

Even barring the open question of whether circulation
burrowing is hyperdiffusive in the Sun, it seems likely that
radiative spread dominates viscous spread. This dominance is

Figure 9. Power spectra P(θ, ω) of the poloidal field at r = r0 in Case 4.00 (viewed as functions of latitude and frequency) for (a) m = 1 and (b) m = 2. Power is
shown in gray scale in arbitrary units (a linear color scaling is used, with white corresponding to the zero-point). Overplotted is the local advective rotation rate mΩ(r0,
θ), the location of most of the power (i.e., the θ-dependent values ωcyc(θ) and ωcyc(θ) ± σω(θ)/2; see Equation (19)), and the advective rotation rate of field in the
RZ, mΩRZ.
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expressed via the “σ-parameter” (e.g., Garaud & Brummell
2008; Garaud & Acevedo-Arreguin 2009; Wood & Brummell
2012; Acevedo-Arreguin et al. 2013; Wood & Brummell 2018):

s º =
n

P
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PrBu

2
. 25ES

,RZ
( )

For the Sun, σe= 0.17= 1 (see Table B1). Since the Reynolds
number in the solar CZ is extremely high, the viscous torque
should drop out of the torque balance in the CZ as well. Global
simulations seem to indicate that large-scale magnetic field (when
strong enough) significantly reduces the differential rotation in
the CZ (e.g., Brown et al. 2010; Racine et al. 2011; Passos &
Charbonneau 2014; Augustson et al. 2015; Yadav et al. 2015;
Guerrero et al. 2019; Matilsky & Toomre 2020a, 2020b; Bice &
Toomre 2020). For a fast magnetic confinement scenario to work
(i.e., a scenario in which the dynamo-produced magnetic field
diffusively penetrates into the upper RZ), we thus might require
that the total magnetic torque (τmag ≡ τms+ τmm) be both large
enough in the RZ to counter radiative spread and small enough to
drop out of the torque balance in the CZ. In that case,
Equation 17(a) (its dimensional counterpart) becomes
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where the form of τrad is derived in Spiegel & Zahn (1992, their
Equation (4.9)) and we have assumed a thin tachocline (so that
we retain only highest derivatives in r). We estimate
¶ á ñ ¶ ~ DW G r r 2t
4 4

0
2

CZ
4( ) . If we take Γe= 0.05Re;

take the Model S values in Table B1 (averaged over the upper
solar RZ) for r, k, and N 2; and take ΔΩCZ= 0.20Ωe from
Table 3, we find

t t~ ~ -0.84 dyn cm in the RZ. 27mag rad
2 ( )

Meanwhile, in the CZ, the Reynolds-stress torque has not
been measured helioseismically (although it could be in the
future via ring analysis; e.g., Greer et al. 2015, 2016;
Nagashima et al. 2020). Nonetheless, the meridional flow’s
amplitude |upol|∼ 10 m s−1 is fairly well known, at least in the
upper half of the CZ (e.g., Zhao et al. 2012; Chen &
Zhao 2017; Braun et al. 2021), and so we estimate
t p r~ DWu R3 2mc pol CZ( ) ˜∣ ∣ , or

t t~ ~ ´ -1.2 10 dyn cm in the CZ. 28rs mc
6 2 ( )

Equations (27) and (28) suggest that a diffusively coupled solar
CZ and RZ (in which the magnitude of τmag is similar in both
zones) can support the fast magnetic confinement scenario, i.e.,
τrad∼ τmag= τrs∼ τmc. We can further express τmag from the
large-scale nonaxisymmetric field in terms of field strength:
t p~ fB1 2 2mag

2 2[ ( )]∣ ∣ . Here we have (crudely) assumed

that |Bpol|∼ |Bf|, that q ~r rsin 2 , and that the typical
length scale for large-scale field variation is ∼πr/2.
Equations (27) and (28) then yield

f  B4.8 G 5800 G. 29∣ ∣ ( )

Equation (29) states that if the fast magnetic confinement
scenario operates in the Sun, we expect the zonal field strength
to be significantly less than 5800 G in the CZ (so as not to
disturb the torque balance there) and to diffusively decay to a
lower bound of at least 4.8 G in the tachocline region (to
counter radiative spread). The value of the lower bound
depends strongly on the actual value of Γe and the value of the
upper bound on the reliability of the simulations’ prediction
that strong field quenches differential rotation.12

8.3. Small Skin Depths and Spread of a Permanent Dynamo
Field

Equation (23b) shows that, except for ω=mΩRZ, any
oscillatory component of the solar dynamo has a very small
skin depth and thus cannot significantly penetrate into the RZ.
This is the reason why prior 1D models like Barnabé et al.
(2017) required an h greatly enhanced from its molecular value.
Explicitly, we rewrite Equation (23b) in dimensional form as

d
h

w
=

á ñ
- W

=w ⎜ ⎟
⎛
⎝

⎞
⎠m

R P
2

0.027 , 30m
RZ

RZ

1 2

cyc
1 2

∣ ∣
( ) ( )

where Pcyc ≡ 2π/|ω−mΩRZ| and is measured in Gyr. If we
require diffusive spread over (say) Γe= 0.05Re, we need
Pcyc∼ 1.4 Gyr. With the solar age at te= 4.6 Gyr, such a high
Pcyc cannot unambiguously constitute a “cycle” and instead
better corresponds to the permanent component of Bpol (as
viewed in the frame rotating with the RZ), here denoted by
Bpol,perm.

13 There are few, if any, constraints on the solar
|Bpol,perm|, only that it is significantly less than |Bpol| (e.g.,
Usoskin 2013). It is not obvious, however, how much less than
|Bpol| it really is, and thus whether we can rule out a dynamo
confinement scenario entirely if h is not turbulently enhanced.
For example, even if the solar dynamo were purely

axisymmetric and perfectly cyclic with a period of 22 yr, we
would expect at most Ncyc= (4.6 Gyr)/(22 yr)= 2.1× 108

cycles since the dynamo turned on. If we assume that there
have always been random modulations of the cycle amplitude
(as are observed throughout recorded history), then we estimate
á ñ = á ñ = ´ á ñf f f

-B B BN 6.9 10pol,perm pol cyc
5

pol∣ ∣ ∣ ∣ ∣ ∣. Given
Equation (29), this reduced field strength would only be a
factor of ∼10 too small to confine the tachocline.14

As noted at the end of Section 7, any nonaxisymmetric Bpol

that corotates with the RZ is effectively nonoscillatory and thus
contributes to Bpol,perm. If the fast magnetic confinement
scenario is generalized to include nonaxisymmetric fields, it
thus seems possible that Bpol,perm (including all m values) could
be significantly larger and more topologically complex than
prior estimates like Garaud (1999). It is also worth noting that
many prior simulations using a variety of codes (e.g., Browning
et al. 2006; Lawson et al. 2015; Beaudoin et al. 2018;

12 If the large-scale solar magnetic field does not quench differential rotation
when strong enough, we would have no reason to expect τmag = τmc. In fact,
the CZ torque balance could be τrs + τmag = 0, in which case τmag ∼ τrs, which
would be unconstrained until the Reynolds-stress torque is measured.
13 The discussion here implies that the term “fast” magnetic confinement
scenario may be something of an oxymoron; probably “dynamo” confinement
scenario would be a more inclusive term.
14 In other words, from Equation (29), we compute 4.8/5800 = 8.3 × 10−4,
which is only ∼10 times smaller than 6.9 × 10−5. This estimate also coheres
with Garaud (1999), who found an amplitude of á ñ ~fB 0.1pol∣ ∣ G in the
tachocline region due to “random-walk” diffusive spread.
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Bice & Toomre 2020) have all suggested that large-scale
magnetic field accumulates preferentially in the tachocline
region. Furthermore, the presence of a tachocline was argued to
significantly stabilize the large-scale magnetic fields, some-
times lengthening the dynamo cycle period or even producing
time-steady dynamos.

Active longitudes (preferential solar longitudes at which
sunspots emerge; e.g., Maunder 1905; Svalgaard & Wilcox
1975; Bogart 1982; Ivanov 2007) are particularly striking as a
possible contributor to nonaxisymmetric Bpol,perm. Although it
would be a major leap to claim that active longitudes imply a
permanent interior partial-wreath structure corotating with the
RZ (authors have done so nonetheless; e.g., Olemskoy &
Kitchatinov 2009), it is intriguing that (1) they often come in
opposite-polarity pairs separated in longitude by 180° (e.g.,
Bai 2003; Mordvinov & Kitchatinov 2004) and (2) they seem
to persist, in a properly chosen rotating frame (or in a frame
with time-dependent rotation rate), for long timescales: 20 yr
(Henney & Harvey 2002) or even ∼100 yr (Berdyugina &
Usoskin 2003).
Whatever the source of Bpol,perm, it should penetrate into the

RZ much deeper than any skin depth. Considering the Rayleigh
problem (i.e., Stokes’s first problem, of a boundary plate
suddenly jerked from rest), we estimate (for r� r0)

d
=

-
⎜ ⎟
⎛
⎝

⎞
⎠

B Br r
r r

erfc , 31apol,perm pol,perm 0
0

perm
∣ ∣( ) ∣ ∣( ) ( )

d h= á ñ = t Rwhere 4 0.21 . 31bperm RZ ( )

For r0− r= Γe= 0.05Re, we find =erfc 0.05 0.21 0.73( ) ,
i.e., there should be only a ∼27% reduction in |Bpol,perm| over
the depth of the tachocline.

8.4. Conclusion

In summary, we have performed a suite of dynamo
simulations in which tachocline confinement is achieved if
the large-scale nonaxisymmetric fields (partial wreaths) are
strong enough. These partial-wreath structures cycle with
frequencies consistent with advection by a low-latitude retro-
grade jet. The structures thus appear to cycle from the
perspective of the rigidly rotating RZ and penetrate diffusively
downward, with the amplitude of the confining Bpol very well
predicted by the skin-depth Equation (23a).

As a whole, the simulations presented here effectively
achieve a fast magnetic confinement scenario (Forgács-Dajka
& Petrovay 2001), which is now generalized to include
nonaxisymmetric fields and a spread in cycle frequencies. Our
work thus offers a significantly wider range of applicability to
the fast magnetic confinement scenario. To further constrain
whether such a scenario is consistent with observations, we
might recommend that future work explore in greater detail the
processes giving rise to nonaxisymmetric magnetic field (such
as active longitudes) and determine observationally how fast
active-longitude pairs rotate with respect to the RZ.

In this section, we have argued that if the magnetic
diffusivity is not enhanced, then only an effectively permanent
component of the solar dynamo can play a role in tachocline
confinement. This component can include both the axisym-
metric dynamo field (averaged in time since the birth of the
Sun) and, possibly more importantly, any nonaxisymmetric
field that corotates with the RZ. In addition to the fast magnetic

confinement scenario, we thus might also recommend explor-
ing a more general (possibly slow) “dynamo confinement
scenario.” This would be similar to the model of Gough &
McIntyre (1998), but with the permanent dynamo field taking
the place of the primordial field. lt would differ from Gough &
McIntyre (1998) mainly in that no primordial field would need
to be confined to the RZ.
Finally, in order to make further progress on the numerical

side, future simulations need to accomplish several computa-
tionally challenging tasks. First, they need to achieve
equilibrium that is not diffusively controlled.15 Second, they
must be run in the σ 1 regime (see Equation (25)); only then
can we assess whether a dynamo confinement scenario can
operate in the solar regime of little viscous torque. Finally,
simulations must be run with small skin depths δmω (i.e., low
Ek or high Prm). Skin depths as small as in the Sun would not
be possible, but we may at least achieve δmω< Γ, which would
help confirm whether the permanent dynamo field could
penetrate deeply enough (possibly according to Equation (31a))
to confine the tachocline.
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Appendix A
Background State

Note that in this appendix we discuss both the nondimen-
sional and dimensional versions of various quantities. To
explicitly distinguish, we denote the dimensional version of a
quantity with a “dim” subscript (quantities like cp and ñ , which
are always dimensional, do not require a subscript).

In terms of the dimensional background state, the perfect-gas
law is

g
g

r=
-⎡
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⎤
⎦⎥

P
c

T
1

, A1dim
p

dim dim¯ ( )
¯ ¯ ( )

hydrostatic balance is

r= -
dP

dr
g , A2dim

dim
dim dim ( )

and the first law of thermodynamics is
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After nondimensionalizing, Equations (A1)–(A3) take the
form

r=P T , A4( )
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where ºS S cdim p¯ ¯ and we recall that º gH c TDi p˜ ( ˜ ). We
combine Equations (A4)–(A6) to yield

- = -⎜ ⎟
⎛
⎝

⎞
⎠

dT

dr

dS
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T gDi , A7( )

which has the exact solution (after choosing, without loss of
generality, =S r 00( ) )
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We then eliminate P from Equations (A4) and (A5) to yield
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There are three equations relating r r0( ), T r0( ), Di, γ, β,
and Nρ: two from our choice of nondimensionalization
— / òp r =V r r dr4 1

r

r
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2

0

out( ) ( ) and / òp =V T r r dr4
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and one from the definition /r rºrN r rln 0 out[ ( ) ( )]. Thus,
r r0( ), T r0( ), and Di may be regarded as functions ofγ, β, and
Nρ. For the values given in Table 1 (and our choices for g and

/dS dr given below), we explicitly find r =r 2.670( ) ,
=T r 2.040( ) , and Di= 1.72.

For /µg r r1 2( ) and the condition / òp =V g r r dr4 1
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To model the transition from convective stability to instability
at the base of the CZ, we choose /dS dr to be zero in the CZ, a
constant positive (near-unity) value in the RZ, and continu-
ously matched in between:

d
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where Σ= 0.453 (note that Σ is not really a free parameter,
since it can always be absorbed into the fluid control parameter
Bu). The choice of quartic matching ensures that the ultimate
stability transition (determined by the total entropy gradient

/ /+ á ñdS dr d S drsph in the equilibrated state) is never too
far from r0. By contrast, for a tanh matching
( / / /d= S - -dS dr r r2 1 tanh ;0¯ ( )( [( ) ]) e.g., Korre & Feath-
erstone 2021), the stability transition can occur significantly
above r0. In our cases, it could occur as high up as r0+ 5δ,
since /á ñd S drsph is generally 104–105 times smaller than

/dS dr and / - » ´ -1 2 1 tanh 5 5 10 5( )[ ( )] .
With /dS dr and g chosen, we numerically integrate

Equations (A8) and (A9) to find r and T . This approach to
defining the background state (also used by Korre &
Featherstone 2021) has the main advantage that hydrostatic
balance is satisfied everywhere, even in the transition region.
This stands in contrast to polytropic matching (e.g., Racine
et al. 2011; Guerrero et al. 2016).
Note that Equation (A11) also defines the buoyancy

frequency through

/

/
=

á ñ
N

g

dS dr

gdS dr
, A12

2

RZ
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where /á ñ =gdS dr 0.597RZ .
We choose Q r( ) to occupy primarily the CZ:
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where c= 0.944. This value of c is required because =Q
/
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Q H Fdim nr . The definition / òºF Hr Q x x dx1
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then yields / / /ò òp=c V r f x x dxdr1 2 1
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r
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where /dº + -f x x r1 tanh 0 heat( ) [( ) ].
Table A1 gives some additional (derivative) input para-

meters that can be computed from the parameters of Table 1
and the form of the reference state just described.
We compare this reference state to the standard solar Model

S (Christensen-Dalsgaard et al. 1996) in Figure A1. Note that
Model S profiles (denoted by an “S” subscript) are originally in
dimensional form.
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For the dimensional molecular diffusivities associated with
Model S, we define
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where σSB ≡ 5.67× 10−5erg cm−2 s−1 K−4 is the Stefan–
Boltzmann constant and cS is the opacity from Model S. The
forms of the molecular viscosity nS and the radiative thermal
diffusivity kS¯ are given in, e.g., Parker (1979) via Miesch
(2005). The form of hS is given in, e.g., Spitzer (1962). The

Coulomb logarithm Lln
¯
is tabulated by, e.g., Stix (2002), and

we approximate /L » + r rln 2.5 0 (see Garaud 1999).
To nondimensionalize Model S, we take =R dim( )

´6.96 1010 cm and set = r R0.491in dim dim( ) ( ) , =r0 dim( )
R0.719 dim( ) , and = r R0.947out dim dim( ) ( ) (and thus =H
R0.228 dim( ) ). This choice means that we compare to the

bottom three density scale heights of Model S’s CZ, i.e.,
r r =r rln 3S S0 dim out dim{ [( ) ] [( ) ]} . For a given reference-state

quantity ψ, we then define yá ñCZ (or ỹ) as a volume average of
ψ over r r,0 dim out dim(( ) ( ) ) and yá ñRZ as a volume average of ψ
over r r,in dim 0 dim[( ) ( ) ]. We then scale rS, TS, and gS by rS˜ , TS̃,
and gS̃ (respectively); QS by

~
F HSnr( ) ; and N S

2( ) by á ñN S
2

RZ( ) .
Then, for the rest of this appendix, the Model S profiles denote
their nondimensional forms.
Figure A1 shows that Rayleighʼs nondimensional refer-

ence state is fairly solar-like, being equivalent to the adiabatic
polytrope from our prior work (e.g., Featherstone & Hindman
2016; Orvedahl et al. 2018; Matilsky et al. 2019; Hindman
et al. 2020). The biggest discrepancies occur near r= r0, where
our reference state has relatively wide and smooth transitions in
N 2 and Q compared to the narrow and sharp transitions from
Model S.
Note that the background diffusivities from the simulations’

reference state, n , k, and h, are specified independently from
the thermodynamic profiles. We choose all simulation
diffusivities to increase with radius like /r1 1 2¯ (and, of course,
they are normalized to have a volume average over the CZ of
1). Note that this choice does not in any sense correspond to the
nondimensional Model S profiles, nS, kS, and hS.

Appendix B
Dimensional Solar Analog

Here we “redimensionalize” the models considered in the
current paper to match the presentation of Cases H and 4.00 in
Paper I. A nondimensional simulation can be redimensiona-
lized by assuming dimensional values for quantities like H and
Ω0 and then computing the associated scales for the fluid
variables (e.g., [S] and [u]) and reference-state profiles (e.g., r̃
and T̃ ), as described in Section 2. To list the input dimensional

Figure A1. (a–c) Nondimensional reference state (solid black curves) compared to Model S (dashed red curves). (d) Relative errors (compared to Model S) in our
reference state for r r( ) and T r( ), with the error defined as, e.g., r r r- S S( ) . In all panels, the vertical line denotes the CZ–RZ interface r = r0.

Table A1
Derived Nondimensional Parameters and Timescales for Our Simulations,
Which Can Be Obtained from Table 1 and the Form of the Reference State

Parameter Definition Value

rin (2β − 1)/(1 − β) 2.15
r0 β/(1 − β) 3.15
rout 1/(1 − β) 4.15
Nρ,RZ r rr rln in 0[ ( ) ( )] 2.08
Di gH c Tp˜ ˜ 1.72

Ta Ek−2 8.80 × 105

RaF *Ra Pr EkF
2 5.62 × 105

Roc *Ra 2F 0.400

EkRZ ná ñ EkRZ 3.47 × 10−4

σ PrBu 2 79.6

Prot rotation period 2π
Pν = Pκ ná ñ4 Ekfull( ) 779Prot

Pη há ñ4 Pr Ekfull m( ¯ ) 779Prot to 6240Prot

=n kP P,CZ ,CZ 1/Ek 149Prot

hP ,CZ Prm/Ek 149Prot to 1190Prot

=n kP P,RZ ,RZ 1/EkRZ 459Prot

hP ,RZ Prm/EkRZ 459Prot to 3670Prot

PES kP Bu 4,RZ (2.91 × 106)Prot

Note. These derived parameters include the Taylor number Ta, the Rayleigh
number RaF, and the convective Rossby number Roc. In the lower part of the
table, all timescales are nondimensional (i.e., scaled by W-

0
1). The diffusion

times (Pν, Pη, etc.) estimate the time for different diffusive processes across
different subdomains (CZ, RZ, or full shell) of the simulation.
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quantities in the conventional way, we define the luminosity
ºL QVdim˜ , where pº -V H r r4 3dim

3
out
3

in
3( )( ). L is typi-

cally the control parameter that sets
~
Fnr . We also define the

stellar mass b bº - -M H G g1 3 13 3 2[( ) ( ) ]( ) ˜, so =gdim
GM H r2 2. M is typically the parameter that sets g̃. The full set

of dimensional input parameters is then H, Ω0, L,M, cp, r̃, T̃ , ñ ,
k̃, h̃, and 〈N2〉RZ.

Some of the input dimensional parameters are obviously
redundant, so there are infinitely many ways to redimensiona-
lize. The only requirement is that the chosen dimensional
values be consistent with the input nondimensional numbers.
Historically, we in the solar and stellar communities have
chosen stellar-like dimensional values for as many parameters
as possible except for the diffusivities, which are chosen to be
unrealistically high. This choice is exemplified in Table B1,
which contains the scaling employed in Paper I. Most of the
chosen parameters are solar-like, except for the diffusivities.
The rotation rate Ω0 is chosen to be about three times higher
than the solar Carrington value.
The inherent nonuniqueness associated with dimensional

simulations is one of the main reasons we report only the
nondimensional versions of the simulations in this work. For
example, comparing the simulated Bdim (measured in G) to an
observed B at the solar surface (also measured in G) is
fundamentally ambiguous. For the models discussed in the
present work, this ambiguity arises because we could (for
instance) redimensionalize by choosing Ω0→Ωe, L→ Le/27,
〈N2〉RZ→ 〈N2〉RZ/3, n n 3˜ ˜ , k k 3˜ ˜ , and h h 3˜ ˜ , while
choosing the rest of the dimensional parameters directly from
Table B1. This would yield dynamically identical simulations,
but with all values of Bdim three times smaller.

Appendix C
Output Nondimensional Numbers

We define the Reynolds (Re), Rossby (Ro), and magnetic
Reynolds (Rem) numbers, separately for the mean and
fluctuating flows:

º
á ñ
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w w
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Table C1
Output Nondimensional Numbers, Defined in Equations (C1)–(C3), for All Simulations

Case H 1.00 1.05 1.06 1.08 1.33 1.67 2.00 3.00 4.00 6.00 8.00
Regime L W W W M M M M S S S S

CZ Nondimensional Numbers

Remean 173.9 174.1 173.8 173.1 85.56 71.06 66.36 65.93 45.51 40.63 34.69 30.28
Refluc 68.74 68.76 68.47 68.58 58.05 57.81 57.65 57.57 57.25 56.77 56.33 55.95
Romean 0.144 0.145 0.144 0.144 0.097 0.085 0.081 0.079 0.063 0.057 0.050 0.045
Rofluc 0.438 0.438 0.437 0.438 0.436 0.435 0.433 0.432 0.428 0.423 0.423 0.423
Rem,mean L 174.1 183.2 184.3 92.09 94.75 110.6 131.9 136.5 162.5 208.2 242.2
Rem,fluc L 68.76 72.15 73.03 62.49 77.08 96.09 115.1 171.8 227.1 338.0 447.6

RZ Nondimensional Numbers

Remean 219.1 219.8 219.1 216.9 61.86 57.08 51.85 53.40 13.42 10.84 10.06 8.757
Refluc 45.19 45.15 44.48 44.86 16.15 13.05 12.26 11.97 10.43 10.21 9.850 9.534
Romean 0.070 0.070 0.070 0.069 0.025 0.021 0.020 0.020 9.3e-3 8.0e-3 7.1e-3 6.4e-3
Rofluc 0.076 0.076 0.075 0.075 0.043 0.040 0.039 0.039 0.036 0.035 0.035 0.034
Rem,mean L 219.8 230.9 231.0 66.58 76.11 86.42 106.8 40.27 43.35 60.37 70.06
Rem,fluc L 45.15 46.88 47.78 17.39 17.40 20.43 23.95 31.30 40.83 59.10 76.28

Note. The values for the nondimensional numbers are given separately for the CZ and RZ.

Table B1
Paper Iʼs Redimensionalization of Our Models

Quantity Model S Value Dimensional Analog Value

H 1.59 × 1010 cm 1.59 × 1010 cm
Ω0 2.70 × 10−6 rad s−1 8.61 × 10−6 rad s−1

Prot 26.9 days 8.45 days
L 3.40 × 1033 erg s−1 Le ≡ 3.85 × 1033erg s−1

~
Fnr 7.12 × 1010 erg cm−2 s−1 6.79 × 1010 erg cm−2 s−1

M 1.97 × 1033 g Me ≡ 1.99 × 1033 g
g̃ ´ -3.90 10 cmsec4 2 ´ -3.93 10 cmsec4 2

r̃ 6.79 × 10−2 gcm−3 6.75 × 10−2 gcm−3

rá ñRZ 0.523 gcm−3 0.520 gcm−3

T̃ 1.06 × 106 K 1.03 × 106 K
cp 3.54 × 108 erg g−1 K−1 3.50 × 108 erg g−1 K−1

á ñN 2
RZ ´ - -2.03 10 rad s6 1 2( ) ´ - -1.88 10 rad s6 1 2( )

ñ 2.21 cm2 s−1 2.31 × 1012 cm2 s−1

k̃ 3.90 × 106 cm2 s−1 2.31 × 1012 cm2 s−1

h̃ 3.09 × 103 cm2 s−1 (0.289–2.31) × 1012 cm2 s−1

ná ñRZ 4.15 cm2 s−1 7.51 × 1011 cm2 s−1

ká ñRZ 9.70 × 106 cm2 s−1 7.51 × 1011 cm2 s−1

há ñRZ 3.61 × 102 cm2 s−1 (0.939–7.51) × 1011 cm2 s−1

nP ,RZ dim( ) 1.92 × 1012 yr 10.6 yr

hP ,RZ dim( ) 2.21 × 1010 yr (10.6–84.9) yr

PES dim( ) 5.72 × 1010 yr 6.73 × 104 yr

[S] 4.04 × 109 erg g−1 K−1 6.69 × 103 erg g−1 K−1

[P] 1.24 × 108 erg cm−3 2.01 × 1010 erg cm−3

[u] 4.28 × 104 m s−1 1.40 × 103 m s−1

[B] 3.95 × 104 G 1.26 × 105 G

Note. Recall that r k= D º
~

S S F H Tnr[ ] ˜ ˜ ˜ , r= WP H2 0
2[ ] ˜( ) , [u] = Ω0H,

mr= WB H0[ ] ˜ ( ), and μ = 4π are in Gaussian units.
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where ω ≡ ∇× u is the vorticity and the mean in the rms is
taken in volume (over the CZ or RZ) and in time over the
equilibrated state. Table C1 contains the values of these
numbers for each simulation considered in this work.
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