ESSENTIAL FINITE GENERATION OF VALUATION RINGS IN
CHARACTERISTIC ZERO ALGEBRAIC FUNCTION FIELDS

STEVEN DALE CUTKOSKY

ABSTRACT. Let K be a characteristic zero algebraic function field with a valuation v.
Let L be a finite extension of K and w be an extension of v to L. We establish that
the valuation ring V,, of w is essentially finitely generated over the valuation ring V, of
v if and only if the initial index e(w|v) is equal to the ramification index e(w|v) of the
extension. This gives a positive answer, for characteristic zero algebraic function fields,
to a question posed by Hagen Knaf.

1. INTRODUCTION

Suppose that K is a field and v is a valuation of K. Let V, be the valuation ring of
v with maximal ideal m, and I', be the value group of v. Suppose that K — L is a
finite field extension and w is an extension of v to L. We have associated ramification and
inertia indices of the extension w over v

e(wlv) = [Ty : Ty] and f(w|v) = [Vo/my : Vi, /my].
The defect of the extension of w over v is

) = [Lh:Kh]
W) = ol Falo)

where K" and L are henselizations of the valued fields K and L. This is a positive integer
(as shown in [12]) which is 1 if V},/m,, has characteristic zero and is a power of p if V,,/m,,
has positive characteristic p.

Let H be an ordered subgroup of an ordered abelian group G. The initial index £(G|H)
of H in G is defined ([11, page 138]) as

e(G|H) = |{g € G>0 | g < Hx0}l,
where
G>o={9€G|g>0}and Hso={h€ H|h > 0}.

We define the initial index (w|v) of the extension as e(T'y|T,).

We always have that e(w|v) < e(w|v) ([11, (18.3)]).

If S is a subsemigroup of an abelian semigroup 7', we say that 1" is a finitely generated
S-module if there exists a finite number of elements g1,...,g; € T such that

T =Ui_1(gi + 9).

It is shown in [8, Proposition 3.3] that e(w|v) = e(w|v) if and only if (I'y,)>0 is a finitely
generated (I',)>o-module. We remark that (I',)> is the semigroup of values of elements
of the valuation ring V,,.
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Let D(v, L) be the integral closure of V,, in L. The localizations of D(v, L) at its maximal
ideals are the valuation rings V,,, of the extensions w; of v to L. We have the following
remarkable theorem.

Theorem 1.1. ([11, Theorem 18.6]) The ring D(v, L) is a finite V,,-module if and only if
d(w;lv) =1 and e(w;|v) = e(w;|v)
for all extensions w; of v to L.

An equivalent formulation is given in [1, Théoreme 2, page 143].

Suppose that A is a subring of a ring B. We will say that B is essentially finitely
generated over A (or that B is essentially of finite type over A) if B is a localization of a
finitely generated A-algebra.

Hagen Knaf proposed the following interesting question, asking for a local form of the
above theorem.

Question 1.2. (Knaf) Suppose that w is an extension of v to L. Is 'V, essentially finitely
generated over V, if and only if

dwlv) =1 and e(w|v) = e(w|v)?

Knaf’s question is related to the condition of “normalization finiteness” of algebras
and schemes over Non-Noetherian valuation rings, which appears in the paper [19], where
inseparable local uniformization is established.

Knaf proved the implies direction of his question; his proof is reproduced in [8, Theorem
4.1].

If e(wlv) = 1, d(w|v) = 1 and V,,/m,, is separable over V,,/m,,, then the only if direction
of the question is true, as is proven in [15]. Also, the only if direction of the question is
true if L/K is normal or w is the unique extension of v to L by [8, Corollary 2.2].

The only if direction of the question is proven when K is the quotient field of an excellent
two-dimensional excellent local domain and v dominates R in [8, Theorem 1.4]. The only
if direction is proven when K is an algebraic function field over a field k, v is an Abhyankar
valuation of K and V,,/m,, is separable over k in [8, Theorem 1.5].

The proof of [8, Theorem 1.4] uses the existence of a resolution of excellent surface
singularities ([16] or [2]) and local monomialization of defectless extensions of two dimen-
sional excellent local domains ([3, Theorem 3.7] and [9, Theorem 7.3]). The proof of [8,
Theorem 1.5] uses the local uniformization theorem for Abhyankar valuations in algebraic
function fields of Knaf and Kuhlmann in [14].

In this paper, we give a positive answer to the question for characteristic zero algebraic
function fields, as stated in the following theorem.

Theorem 1.3. Let K be an algebraic function field over a field k of characteristic zero
and let v be a valuation of K/k (v is trivial on k). Assume that L is a finite extension
of K and w is an extension of v to L. Then V,, is essentially finitely generated over V, if
and only if e(w|v) = e(w|v).

Recall that the defect d(w|v) must be 1 under an extension of equicharacteristic zero
valuation rings, as occurs in Theorem 1.3.

The proof of Theorem 1.3 uses an explicit form of embedded local resolution of singu-
larities along a valuation in characteristic zero algebraic function fields, by Zariski [20] for
rank 1 valuations and as extended to higher rank valuations by ElHitti in [10]. It also
uses the existence of a local monomialization of regular algebraic local rings R — S of K
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and L respectively which are dominated by w as shown in [5]. Algebraic local rings are
defined at the beginning of Section 2. Local monomialization is defined at the beginning
of Section 5.

It is shown in the proof of Theorem 1.3, that if e(w|r) = e(w|v), then there exists a
locally monomial extension R — S along w such that if S is a localization of a finitely
generated R-algebra F[z1,...,z,], then V,, is a localization of the finitely generated V-
algebra V,[z1,..., 2]

It is shown in [4] that local monomialization is false in positive characteristic, even
in dimension two. However, local monomialization is true for defectless extensions in
dimension two ([3, Theorem 3.7] and [9, Theorem 7.3]).

I thank the referee for their careful reading of the paper. I also thank the referee for
pointing out that Knaf’s question 1.2 and our Theorem 1.3 are related to the condition of
“normalization finiteness” of algebras and schemes over Non-Noetherian valuation rings,
which appears in the paper [19] establishing inseparable local uniformization.

While this article was in press, Rankeya Datta [18] gave a positive answer to Knaf’s
question 1.2 for general valued field extensions. His proof uses descent in the Henselization
of a valued field extension, and the fact that Knaf’s question has a positive answer in a
Henselian field extension by Theorem 1.1.

2. PRELIMINARIES AND NOTATION

We will denote the non-negative integers by N and Z~ o will denote the positive integers.
We will denote the maximal ideal of a local ring R by mp. If R and S are local rings such
that R is a subring of S and mg N R = mpg then we say that S dominates R. If A is a
domain then QF(A) will denote the quotient field of A.

Suppose that A is a subring of a ring B. We will say that B is essentially finitely
generated over A (or that B is essentially of finite type over A) if B is a localization of a
finitely generated A-algebra.

We refer to [21] and [11] for basic facts about valuations.

Suppose that k is a field and K /k is an algebraic function field over k. An algebraic local
ring of K is a local domain which is essentially of finite type over k and whose quotient
field is K. A birational extension R — R; of an algebraic local ring R of K is an algebraic
local ring R; of K such that R; dominates R.

Suppose that v is a valuation of K/k (a valuation of K which is trivial on k). Let V,,
be the valuation ring of v, with maximal ideal m,. If A is a subring of V,,. then we write
Ay, = Ap,na- If Ais alocal ring which is a subring of V,, and m, N A = m 4 then we say
that v dominates A.

Let u = rank v and let

O:sz,u—i-lc"'cpl/,l:ml/

be the chain of prime ideals in V,,. Let I',, be the valuation group of v with chain of convex
subgroups

O:FM()CF,,JC"'CFV,U:F,,.

Let s; be the rational rank of I',;/I',;—; for 1 < i < u. For 1 < i < u, let v; be the
valuation ring Vp,; obtained by specialization of v. In particular, v1 = v. The value
group of v; is '), /T, ;1.
Suppose that T is an algebraic local ring of K which is dominated by v. Define prime
ideals Pr; = P,; NT in T for 1 <i < u.
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Lemma 2.1. Suppose that char(k) = 0. Then there exists an algebraic regqular local ring T
of K which is dominated by v and such that trdegqpr/p, \QF(Vo/Pyi) =0 for 1 <i <.
Further, if T — T1 is a birational extension along v then T3 satisfies this condition.

Proof. Let A be an algebraic local ring of K which is dominated by v. Let z;; € V,, be such
that {z;; + P,;}; for 1 <i < is a transcendence basis of QF(V, /P, ;) over QF(A/Pa;).
This is a finite set. Let B = A[z;;],. Then B satisfies 1) and if B — R is a birational
extension along v then R satisfies 1).

O

Suppose that T satisfies the conclusions of Lemma 2.1. Suppose that

(1) xl,lv s ’951,51:551,51+17 .. 7xl,t17x2,la o ax2782)x2782+17 s ,l’Q,tQ,fE?)’l? s 7'Tu,tu

are regular parameters in 7. The regular parameters (1) are called good parameters if

Tily---yTit; € PT7/L'\PT7i+1 and I/(Ii71), ce V(«Ti,si) form a rational basis of (1_‘,/7i/ry7i_1)®@
for 1 < i <w. IfSisasubset of {1,...,u} then the regular parameters (1) are called
S-good parameters if they are good parameters and Pr; = (2;1,...,%i4,,...) fori € S. We

will say that the parameters (1) are very good if they are {1,2,...,u}-good. We remark
that good parameters are always {1}-good.
Suppose that (1) are good parameters and

(2) j1,17 s 7f1,817T1,S1+17 s 7fl7flvf2,17 s 7f2,527§2,82+17 s 7f2,f27f3,17 s 7§u7fu

is another system of parameters in 7. It is not required that the numbers ¢; and #; are
the same. The system of regular parameters (2) is called an S-good change of parameters
if the parameters (2) are S-good and ; j = z;; for 1 <i<wand 1 <j <s,.

3. PERRON TRANSFORMS

3.1. Perron transforms of types (1,m), (2,m) and (3,m). The basic Perron trans-
forms of types (1,1) and (2,1) are defined by Zariski in [20] for rank 1 valuations. They are
used in [5] and [6] to prove local monomialization of morphisms. The Perron transforms
of types (1,m), (2,m) and (3,m), for use in higher rank, are defined by ElHitti in [10]. The
notation (1,m-1), (1,m-1,r) and (2,m-1) used in [10] is a little different from our notation.

We use the notation of Section 2 and assume that k£ has characteristic zero.

Suppose that T is an algebraic local ring of K which is dominated by v and that T
satisfies the conclusions of Lemma 2.1. Suppose that (1) are S-good parameters in T and
1 <m < u. We define a Perron Transform 7' — T} of type (1,m) along v. We first define
N; by

Tm,j = ij’l c o Ng=m for 1< j < S,

where a; ; € N are defined by Perron’s algorithm, as explained in Sections B I and B II of
[20]. We have that Det(a; ;) = =1 and v(N;) > 0 for all j.

We define Ty = T[Ny,...,Ns, ], which is a regular local ring. We define regular
parameters {Z(1); ;} in 71 by

F(1);; = N; ifi=mand1<j<sy,
7| a4y otherwise

The regular parameters {Z(1);;} are S-good parameters in 77.
We now define a Perron Transform 7" — T} of type (2,m) along v. This is a general-
ization of the Perron transform constructed in Section B III of [20]. Let r be such that
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Sm <1 < tp,. We first define IV; by

a; 1 a; a; 1 . .
N N Ny if1<5<sm
'/L‘mvj - Nla’sm"'Ll R Ns;lm"’lysm Ng3m+1,$m+1 lf] =r

where a; ; € N, Det(a; ;) = 1 and v(Ny),...,v(Ns,,) > 0 and vy, (N,) = 0,v(N,) > 0.

Ny, ..., Ns, , N, satisfying the above conditions always exists, as follows from a small
variation in Zariski’s algorithm in [20]. We construct the Perron transform of Zariski from
Tnly - - s Tms,, and T, for vy, as contructed in Section B IIT of [20]. In this algorithm,
the next to last step constructs My, ..., M, ,, M, and a (sp, + 1) X (s, + 1)-matrix (b; ;)
such that

b; b; b; . .
7‘11.771 .. r‘fsrjrfm 7\1r.773m+1 if 1 S J S Sm,
z »J bSm+171 b5m+1;5m b5m+1x5m+1 : .
L M. S Rl Vs ifj=r

where b;; € N, Det(b;;) = %1, vm(Mi),...,vm(Ms,,),vm(M,) > 0 and vy, (M,) =
U (M1) > 0. We then have that

oo (M, (Mi) g
li mMr .

If v(§7£) > 0, define Ny, ..., Ny, , N, by
M—{J\u\r1 ifi=r
If v(§7+) > 0, define Ny, ..., Ny, , N, by

NN, ifi=1
M;=4q M;=N; ifi#1landi#r
Ny ifi=r

We define T = T[Ny,..., N,

Sm

N;],, which is a regular local ring. Let m = m, N

T[Ni,...,Ns, ,N;]. Choose y € T7 such that y is the lift to 77 of a generator of the
maximal ideal of
Tl/($171, . )xl,t17 . axmfl,tm_lea e ,Nsm,$m73m+1, ey $m,r71’$m,r+1a .. )
= (T/mo)[Nelwmr)N,-
Then
y,.ﬁL‘Ll, e ,:L'Ltl, ceey xm—l,tm,le, Ceey N5m7mm,sm+17 e ,xm7r_1,:cm7r+1, e

is a system of regular parameters in 77. There is a smallest natural number A such that
y € Pryx \ Pr, a+1. We define regular parameters {z(1); ;} in 77 by

N; ifi=mand1<j<s,
Z(1)ij =< ¥ ifi=mandj=r
x;; otherwise

if A = m, and
N; ifi=mand1<j<s,
#(1), = Y ¥fz.i)\and J= ta+1
;j1 ifi=mandj>r+1
Tij otherwise
if A #m.



If i € S and ¢ > m, then Pr;Ty = (241,...,%i2,...)T1 is a regular prime of 77 which
has the same height as Pr, ; since T7 satisfies 1) of Lemma 2.1. Since this prime ideal is
contained in P, ; we have that Pr, ; = Pr;T1. Thusif m4+1 € S, then A < m.

We have that {Z(1);;} are S’-good parameters in T}, where

S'={j€eS|j>m}

We now define a Perron transformation of type (3,m). Suppose that dj,...,ds, € N,
k>mand 1< <t Let
T
N=— k,l _
od, 2,

Then v (N) > 0. Let 71 = T[N],, which is a regular local ring. Let
_ | N ifi=kandj=1I
()i = { x;; otherwise.
Then {Z(1);;} are S-good parameters in 7.
We will find the following proposition useful.

Proposition 3.1. Suppose that R is an algebraic regular local ring of K which is domi-
nated by v and {x; ;} are good parameters in R. Suppose that

_ a1 al,sq a2,1 a2,s9 A3,1 Qu,sq,
My =y a0y o Ty By P a3 Tug,
and
b1 bi,sy ba1 b2,s5 b3 1 bu, sy,
My =y oy @y By X3 Tus,

are monomials such that v(My) < v(Ms). Then there exists a sequence of Perron tran-
forms of types (1,m) and (3,m) along v,

R— Ry — - — R,

such that My divides My in Ry.
If v(My) = v(Ma), then My = My since the members of

{v(zi;)1 <i<u,1<j<s}

are rationally independent.

a

Proof. Suppose that v(M;) < v(Ms). There exists a largest index [ such that Hj , ZJJ #

I1; :U?’l]’.j. Then v(I]; CL’Zl]J) < v([]; l’?’l]’-j). By [20, Theorem 2], there exists a sequence of

Perron transforms of type (1,1) R — Ry along v such that []; m?ljj divides [; x?fj’»j in R;.
Writing My and M in the regular parameters {z(1); ;} of Ry as

M, = Hw(l)zgl)i‘j and My = Hx(l)f’(jl)i’j,

where the product is over 1 <7 <wu amd 1 < 5 < s;, we have that

bli,' bly' a1i7‘-
My = | JT =) | { TT=05" ) | TT =i
i<l,j J i>1,j
with b(1);; — a(1);; > 0 for all j and for some j, b(1);; — a(1);; > 0. Without loss of
generality, this occurs for j = 1. (If b(1);; = a(1);; for all j, then a;; = b ; for all j in
contradiction to our choice of [.)
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Now perform a sequence of Perron transforms of type (3,n) for 1 < n <, Ry — Ry,
along v defined by x(t);1 = x(t + 1);12(t + 1);; for i <1 and j such that b(t);; < a(t);;

where
My = [J2®)V" and My = [[ ()"
to achieve that M divides Ms in R,,. O

3.2. Sequences of good monoidal transform sequences. We now define a good
monoidal transform sequence along v, which will be abbreviated as a GMTS. Suppose
that T satisfies the conditions of Lemma 2.1 and {%; ;} are good parameters in 7. Let
{x;;} be a good change of parameters in 7. Let T" — T} be a Perron transform of one
of the types (1,m), (2,m) or (3,m) of the previous subsection, giving good parameters
{Z(1);;} in T1. Then we call T — Ti, with the parameters {Z;;} and good change of
parameters {z;;} in 7" and good parameters {Z(1);;} in T} a good monoidal transform
sequence.

Suppose that T'(0) satisfies the conditions of Lemma 2.1 and {Z(0); ;} are good param-
eters in T. A sequence of GMTSs is a sequence

T0) —-T(1) — - —=T(n)

of GMTS. The good parameters of T'(i) are {Z(i)y;} as determined by the preceding
GMTS T'(i — 1) — T'(i), and a good change of parameters {x (i) }.

3.3. A refinement of the results of [10]. In this paper we will make use of some results
from Chapters 4 and 5 of [10]. There is a technical condition in the hypotheses of [10]
which is not necessary. We will show in this subsection how this assumption (Condition A
of [10, Definition 4.1]) can be eliminated. We first develop some necessary material, and
then give the definition of Condition A. We then show how it is not necessary in Chapter
4 and Chapter 5 of [10]. This condition can also be eliminated from the final Chapter 6
of [10], but since we do not require results from Chapter 6, we will not address this.

Suppose that T' is a normal algebraic ring. Let P(w)r be a prime ideal of T and w be
a rank one valuation of the quotient field of T/ P(w)r which dominates T'/P(w)r. The
valuation w induces a “pseudo-valuation” of T, where we define w(f) = w(f) if the class
f of fin T/P(w)r is nonzero, and define w(f) = oo if f € P(w)y. We further suppose
that V,,/m,, is an algebraic field extension of T'/mp. Let

Q(T) = Cauchy sequences {f,} in T such that for all I € Z~y,
o there exists n; € Z¢ such that w(f,) > lw(mr) if n > ny

We have that Q(T) is a prime ideal in T' and Q(T) N T = P(w)y. There is a unique
extension of w to a valuation of the quotient field of 7/Q(T) which dominates T'/Q(T).
It is an immediate extension (there is no extension of the value group or the residue fields
of the valuation rings). We define

o(T) = dimT/Q(T).
The objects Q(T) and o(T') are defined in [6], [7] and [10]. Concepts of this type are
studied in [13].
The following Lemma is proven in the case that w is a valuation dominating 7' (and

not just a pseudo valuation) in [6, Lemma 6.3]. The proof is essentially the same here,
although a little more notation is required.

Lemma 3.2. Let notation be as above in this subsection.
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1) Let T be a normal algebraic local ring such that T C T C T and T dominates
T, so that T is a localization of a finite étale extension of T. Then there exists a
unique extension of w to a valuation dominating T/Q( )N T, and thus a unique
extension of w to a pseudo valuation dominating T which has P(w w)qp=Q(T)N T.

2) Let I be a nonzero ideal in T such that I ¢ P(w w)j. Let f € I be such that
w(f) =w(I). Let

J=U2, (P(W)TT[;} : ﬁ[]{]) ’

which is the strict tmnsform of the ideal P(w); in T[I] Then J is a prime ideal
in T[ ], the map T/P(w)s [ 1/J is birational (T[ |/J is of finite type over

T/P(w w)7 and both rings have the same quotient ﬁeld) and there exists a maximal
ideal n ofT[ | containing J such that w dominates (T [ 1/J)n and so w is a pseudo

valuation on T} = T[?]n with P(w)p, = Jy.
3) Suppose that Ty is normal. Then o(T1) < o(T) = o(T).
Proof. Tdentify w with its unique extension to 7'/Q(T") which dominates the maximal ideal.
Statement 1) then follows directly from restricting this extension to 7'/Q(T) N T.

We now consider Statement 2). Let f be the class of f in T/P(w)Tn Since I ¢ P(w)
we have that f # 0 and

I(T/P(w);)
7

is a birational extension of T'/P(w )7 and all its elements have nonnegative w-value. Let n

7(2] 7= @

be the prime ideal in T[ | of elements of positive w-value. T/mT C T[ l/n C V,/m,, and
V., /my, is assumed to be algebraic over T'/ m.. Thus T [ ]/n is finite over the field T /mq.
The domain T [ ]/m is then a field, so that n is a max1ma1 ideal of T f]

We now establish statement 3) The completion of 77 at it’s maximal ideal is Tl =
IT

o for2] of2])

T[TT] where 7. = m4 N T[

the strict transform of Q(T') in T'[ TT 7. Since I ¢ P( )7 we have that w(f) = coif f € Q.
Thus Q € Q(T1). Now T/Q(T) — [TT] /Q is birational and the residue field extension
is finite, so by the dimension formula [17, Theorem 15.6],

:IjT

o(T) = dimT[If

since completion is flat. Thus o(T) > dim 71 /Q(T}) = o (T1). O

17/Q = dim 11 /QTy

In [10, Chapter 4], sequences of étale Perron transforms are constructed. A sequence of
étale Perron transforms along w is a sequence

(3) T—T — - —1T,



of algebraic regular local rings where each T; — T;11 is one of the following three types,
generalizing the Perron transforms defined in Subsection 3.1.

1) A transform T; — T;4; of the type of a Perron transform of type (1,1).

2) First construct T; — T} as in 1) of Lemma 3.2. Then perform a transformation
T; — Tj,1 of the type of a Perron transform of type (2,1).

3) A transform T; — Tj41 of the type of a Perron transform of type (3,1).

In defining these transforms, we blow up an ideal generated by monomials in a regular
system of parameters in T" such that not all of these monomials are in P(w)z. By 2) of
Lemma 3.2, the pseudo valuation w dominates T;41 and by 3) of Lemma 3.2, we have that

(4) o(Tiy1) < o(Ty)

for all 4. In [10, Chapter 4], it is assumed that “Condition A” holds (Definition [10,
Definition 4.1]). This condition is assumed in [10, Chapter 4]. The condition A is that
o(T;) is constant in all sequences of étale Perron transforms 3. However, this assumption
is not necessary to obtain the conclusions of [10, Chapters 4 and 5].

We now show how to eliminate the Condition A assumption from [10]. We run the
algorithms of [10, Chapter 4] without this assumption. If at some point in the construction
of a sequence of étale Perron transforms (3) in [10, Chapter 4] we have a change in o(7})
then we have a decrease in this invariant by (4). We then just start the algorithm again in
the T; where there was a drop. Since o(7;) is always a positive integer, we will eventually
be able to complete the algorithm without a drop in o(7Tj) along the way. [10, Theorem
4.3] which constructs a sequence of Perron transforms along v from a sequence of étale
Perron transforms along w does not require that o(7;) be constant.

The results from [10, Chapter 5] now do not require the condition A. Thus this condition
is not necessary for the results from [10, Chapters 4 and 5] which we will use.

4. EMBEDDED RESOLUTION BY PERRON TRANSFORMS

We continue to use the notation of Section 2, and to assume that char(k) = 0. We will
use our refinement of the results of [10] given in Subsection 3.3 above, where we show that
the conclusions of [10, Chapters 4 and 5] hold without assuming “Condition A”.

In the following proof we use the fact that the sequences of monoidal transforms con-
structed in the algorithms of [10] are GMTSs. This fact follows from the proofs in these
papers. We have that [10, Theorem 4.3], explaining the construction of a sequence of
monodial transforms (with m=1) from a given UTS (a uniformizing transformation se-
quence) is a special case of the proof of Theorem 4.8 [5]. On line -6 from the bottom of
page 79, in Step 3 of [5], it is explicitely stated and shown that the sequence of monoidal
transforms is a GMTS.

Theorem 4.1. Suppose that T satisfies the conditions of Lemma 2.1 and that T has a

very good system of parameters {T; ;}. Suppose that f € T. Then there exists a sequence
of GMTSs

T'=Ty—=Ty—- =Ty

along v such that

dis d do, s d d
F=wa(m)™a(m)y Ja(m)yy - w(m)y2e(m)gh o a(m)uily

where 7y is a unit in Ty, and d;; € N for all 4, 7.
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Proof. Let k = min{i | v;(f) < oo}. By [10, Theorem 4.14] (which is applicable when v
has arbitrary rank and v (f) < oo, using some Perron transforms of type (3,m)) and [10,
Theorem 5.6], there exists a sequence of GMTSs along v,

Rk = TPT,k — Rk(l) — Rk(nkJ)
such that Ry(ny 1) has a very good change of parameters

(M 1) 1,15 -+ Tk (M1 ) 1sgs - - -

Sk

Sy where dg 1, ..., dys, € Nand yy € Ry (nk,1) is

such that f = xk(nk,l)fﬁl . -wk(nkvl)fz’
a unit.

Now by [10, Lemma 5.3] (on line 11 of the statement of the lemma it should be
“(Tl)P%1 = R1”), [10, Remark 5.4] and [10, Lemma 5.5], there exists a sequence of GMTSs
along vi_1,

Ry 1=Tpp, , = Rp1(1) = -+ = Rp_1(ng-1,1)
such that Rk—l(nk—l,l)

of parameters

Pry ytmp 110k = Ry(ng ;) and Ri_1(ng—_1,1) has a very good change

1 (Mk—11)1,15 - Tl 1 (Mh—1,1)1,85 1 Th—1(Mh—1,1)2,15 - - - » Tl 1 (N—1,1)2, 55 - - -

such that ;

d
f= Sﬂk—l(nk—l,l)zﬁl o p—1(Nk-1,1)o
where 7, € Rj_1(ng—_1,1) satisfies v(5;) = 0.
By descending induction on k, successively applying [10, Theorem 4.14], [10, Theorem
5.6] and then [10, Lemma 5.3], [10, Remark 5.4] and [10, Lemma 5.5], we obtain the
conclusions of the theorem.

k,sp —
5. Tk

0

5. MONOMIAL EXTENSIONS

Suppose that K — L is a finite extension of algebraic function fields over a field k£ of
characteristic zero, v is a valuation of K/k and w is an extension of v to L. Let

e=e(wlv)=[Ty: T, f=flwy) =[Vu/my:V,/m,)].

Suppose that R — S is an extension of algebraic regular local rings of K and L re-
spectively such that w dominates S and S dominates R. Suppose that {z;} are regular
parameters in R and {w;} are regular parameters in S. We will say that R — S is locally
monomial (with respect to these systems of parameters) if there exists an n X n matrix
C = (¢;,j) with coefficients in N, where n = dim R = dim S with Det(C) # 0, and units
a; € S such that

n
(5) zi = H w;i’jai for 1 <i<n.
j=1
The existence of a local monomialization in Theorem 5.1 follows from [5, Theorem 1.1].

The fact that the regular parameters can be taken to be very good parameters follows
from [9, Theorem 4.8].

Theorem 5.1. Suppose that R* — S* is an extension of algebraic reqular local rings of K

and L respectively such that w dominates S* and S* dominates R*. There exist sequences

of monoidal transforms R* — R and S* — S along w such that S dominates R and R — S
10



is locally monomial. We can further construct R — S so that the reqular parameters z; in
R and wj in S giving the monomial form are very good parameters in R and S respectively.

With the notation of the conclusion of Theorem 5.1, we have by [9, Theorem 4.2] that
there exists a birational extension R — R such that R is normal, S dominates R and S is
a localization of the integral closure of R in L.

The following proposition is Theorem 6.1 [9].

Proposition 5.2. Let g1,...,g5 be a basis of V,,/my, over V,,/m,. Then there exist an
algebraic local ring R’ of K which is dominated by V, such that whenever R — S is
an extension such that R is an algebraic reqular local ring of K and S is an algebraic
reqular local ring of L which is dominated by w and dominates R such that R — S is
locally monomial with reqular parameters satisfying (5) and R dominates R', then [S/myg :
R/mpg] = f, |Det(C)| = e, [QF(S) : QF(R)] = ef and gi,...,g; is a basis of S/mg over
R/mR.

Lemma 5.3. Suppose that R and S satisfy the conclusions of Lemma 2.1 for v and w

respectively, R — S is a locally monomial extension and f € S. Then there exists g € R
such that f divides g in S.

Proof. Let F be a Galois closure of L over K and let S be the integral closure of R in L
and T be the integral closure of R in F. There exists v € S such that v is a unit in S
and vf € S. Let f =~f. Let G = Gal(F/K) and g = [[,c¢ o(f). Then o(g) = g for all
o € G so that g € K. Further, o(f) € T for all o € G so g is integral over R. Thus g € R
since R is normal. Let h = %. Then h € L and h € T so h is integral over S. Thus h € S

since S is normal, and so vh € S C S. Thus f divides g in S. O

6. ANALYSIS WHEN ¢(w|v) = e(w|v)

In this section, let K be an algebraic function field over a field k of characteristic zero
and let v be a valuation of K/k (v is trivial on k). Assume that L is a finite extension of
K and w is an extension of v to L. The ramification index e(w|v) and initial index (w|v)
are defined in Section 1. Let

e = e(w|v) and € = e(w|v).

The following proposition is Proposition 7.1 [8]. It holds very generally for finite exten-
sions of valued fields (K,v) — (L,w).

Proposition 6.1. Suppose that K is a field, v is a valuation of K, L is a finite extension
field of K and w is an extension of v to L such that

1 <e(wly) = e(w|v).
Let T,y be the first convex subgroup of I'y and I'y,1 be the first convex subgroup of T',,.
Then I'y,1 = Z and in the short exact sequence of groups
(6) 0—=Tw1/Tvi1 = Tu/Ty = Tw/Tw1)/Tw/Ty1) =0

we have that
(Fw/rw,l)/<rll/ru,l) =0
and

Fw/FV = Fw,l/ru,l = Ze‘
11



The following proposition generalizes Proposition 7.4 of [8] from Abhyankar valuations
on algebraic function fields to arbitrary valuations on characteristic zero algebraic function
fields.

Proposition 6.2. Suppose that e(w|v) = e(w|v). Then there exist algebraic regular local
rings R of K and S of L which are dominated by w and v respectively such that S dominates
R, R dominates the ring R’ of Proposition 5.2 and R has good regular parameters {x; ;}
and S has good reqular parameters {y; j} such that there is an expression

11 =9Yiq and x5 =y if i>1orj>2

where 7y is a unit in S. Further, if e > 1, then v(x11) is a generator of I'y 1 and w(yi,1) is
a generator of I'y, 1. If e =1, then v = 1.

Remark 6.3. We can assume that the parameters {z;;} and {y;;} are very good param-
eters in the conclusions of Proposition 6.2.

Proof. By Theorem 5.1 and Proposition 5.2 there exist algebraic regular local rings Ry of
K and Sy of L such that w dominates Sy, Sy dominates Ry, Ro has very good parameters
{z;,;} and Sp has very good parameters {y;;} satisfying the conclusions of Proposition
5.2.

We reindex the very good parameters {z; ;} and {y; ;} by

SN BEC RN N g1
T my fi=ti+ 4+t +iwithl <i<tyy

and

oy i<t
Yi yi  Afj=ti 4+t +iwith 1<i <t

We point out that the above parameters are a reindexing of the parameters of [9, Theorem
4.8]. The parameters of [9, Theorem 4.8] have values in monotonically decreasing convex
(isolated) subgroups of Ty, and T', while the parameters defined above have values in
monotonically increasing convex subgroups of I',, and T',,.

These parameters have a monomial form

(7) zj =y ey for 1< <n

where C' = (¢; ;) is an n x n matrix with Det(C') # 0 and v; are units in Sy. By the proof
of [9, Theorem 4.10] (the following statements are not effected by reindexing the regular
systems of parameters {z;} and {y;}), we can assume that

(8) Lo/l = (S w)2)/(S v(@)2)
o~ Zn/ctzn

so that

®) Det(C)| = e.

First suppose that ¢(w|v) = e(w|v) > 1. Then Iy, ; = Z and

(10> Fw,l/le,l = Ze

by Proposition 6.1. In particular, s; = 1.
12



Recall that our choice of regular parameters is a reindexing of the one of [9, Theorem
4.8]. In equation (13) of [9], we have that M, is the ¢; x ¢; matrix

C1,1 0
0 Iy

so that by [9, Theorem 4.8], we may assume that
T = Vyfl’l,ﬂh =Y2y-- 5Ty =Yy
where v is a unit in Sp. Then from (9) and (10), we have that c¢;; = e and |Det(C)| = 1
where
Ct1+1,t1+1 te Ct1+1,n
C = :
Cnt1+1 cee Cn.n
We define a birational extension along v, Ry — R; = Ro[z(1)1,...,2(1),], by
[ z(1); for 1 <j<t
T 2219 2 (1) forty <j<m

to get that Sy dominates R; and Ry — Sy is locally monomial with

VY ifj=1
2(1); =4 ; | ifl<j<t
y oyt it +1<j<n

where o € Sp are units.

Since Det(C) = £1, there exist r,41,...,7, € Z such that

Tt 4+1 Ct14+1,1
C ; = — :
Tn Cn,1
Define di,41,...,dn € N by
diy 41 1
: =C| :
dy, 1

There exists v € Z~q such that r; +ve > 0 for all . Perform the sequence of GMTSs of
type (3,1) Sp — S7 along w where S has good parameters {y(1);} defined by

oy if1<i<ty
YT ()7t it <i <.
We have that S1 = Sp[y1(1),...,yn(1)], dominates Ry and Ry — S; is locally monomial.
There exist units v, € S such that
yy(1)§ ifi=1
(11) 2(1); =4 y(1)i if1<i<t
; Ci i . .
YOy (DR i <i <,
Now perform the sequence of GMTSs R; — Rz of type (3,1) along v defined by
2 ifl1<i<t¢
a2, i

2(2)%%(2); ift <i<n.
13



Then S; dominates Ry and there exist units v(1); € S such that

vy(1)§ ifi=1
(12) z(2); ={ y(1); | if1<i<t
YDy y(D)n ift < < n

Let B=C . Write

bt1+1,t1+1 e bt1+1,n
B = :

bn,t1+1 T bn,n
with b; ; € Z. We now replace the y(1); with the product of the unit fy(l)t_lzf’ltﬁl (1)
and y(1); for t1 +1 <i<ntogetvy(l)=1fort; +1<i<nin (12).

Now define a birational transformation Ry — Rg along v by R3 = Ra[x(3)4,+1,- -+, Z(3)n]y
where R3 has regular parameters {z(3);} defined by
(2)'_ 1‘(3)2 f1<i<ty
TEE 2@yt @) for i +1<i <.

The ring Rj3 is a regular local ring with regular parameters x(3)1, ..., x(3),. We have that

S7 dominates R3 and
_ @) ifi=1
(3)i = { y(1); if2<i<n
where v is a unit in S;. Going back to (8), we see that w(y(1)1) is a generator of ', ; and
v(x(3)1) is a generator of I',, ;. We thus have the conclusions of the proposition.
Now suppose that e = 1. This case is much simpler. In (9) we then have that Det(C) =
+1. Taking B = C~! = (b;j), we can then make the change of variables in Sy replacing

;bi’l . .fy;b’*" times y; for 1 <7 <n to get ; =1 for

the y; with the product of the unit ~
1<i<nin (7).
Now define a birational transformation Ry — R; along v by R1 = Ro[z(1)1,...,2(1)n]y
where
z;=z(1){" 21" for 1 <i < n.
The ring R; is a regular local ring with regular parameters (1)1, ..., 2(1),. We have that
R, is dominated by S, and

z(1); =y(1); for 1 <i<mn,
giving the conclusions of the proposition. O

Proposition 6.4. Suppose that e(w|v) = e(w|v) and Ry — So has the form of the conclu-
sions of Proposition 6.2 for good parameters {Z(0); ;} in Ry and good parameters {g(0); ;}
in So. Then there exist z1,...,zm € V,, such that So = Ro[z1, .-, Zm]w-

Let Ry — Ry be a GMTS along v, constructed from a good change of parameters
{2(0)i;} in Ro, and giving good parameters {Z(1);;} in Ry.

We then have a good change of parameters {y(0); ;} in So defined by

_Jy(0) ifi=1andj=1
y(0): = { x(0);,; otherwise.

The good parameters {x(0); ;} and {y(0);;} continue to have the form of the conclusions
of Proposition 6.2.
There exists a GMTS Sog — S1 along w, constructed from the above good parameters
{y(0);;} in So, and giving good parameters {y(1); j} in Si, such that there is a good change
14



of parameters {y; ;} in S1 such that {x(1); ;} and {y; ;} are related by an expression of the

form of the conclusions of Proposition 6.2 and we have that S1 = Ri[z1, ..., Zm]w-
Proof. The expression So = Ry[z1,. .., 2m|w follows since Sy is essentially of finite type
over k.

Suppose that the GMTS Ry — R is of type (1,m). Then R; = R[Ny,..., Ns,, ], where

a

x(O)mJ = ij’l SN2 for 1< 5 < s,

m

and the good regular parameters z(1); ; in Ry are defined by

(1), =4 N fi=mand1<j<sn
iy = z(0);; otherwise

If e > 1 then I',; has rational rank 1 (s; = 1), and we then cannot perform a GMTS
of type (1,1). In particular, we have e = 1 if m = 1.

We define the Perron transform Sy — Si[Niy,..., N, ]o of type (1,m), giving good
regular parameters (1); ; such that

7(1)i; = N;=7(1);; ifi=mandl1<j<sy,
SAeg = y(1); otherwise.

We then have that the good parameters {Z(1); ;} and {7(1); ;} are related by an expression
of the form of Proposition 6.2 and we have that S1 = Ri[z1,. .., 2m]w-

Suppose that the GMTS Ry — R; is of type (2,m). Then Ry = Ro[Ni,...Ns,,, Ny
where s, <1 < t,,,

Nlc”jvl e Naj,sm NTC,"]',SWL‘FI lf 1 S ,7 S Sm,

J— Sm
$(0)m,J = { Nlasm+1,1 oo NOsmALsm ppdsmotLam +1 if j=r

m

where a; ; € N, Det(a; ;) = 1 and v(N1),...,v(Ng,,) > 0 and vy, (N,) = 0,v(N,) > 0.
Let m = m, N Ry[N1,...,Ns,,, N;]. Choose y € R; such that y is the lift to Ry of a
generator of the maximal ideal of
(13)
Rl/(x(O)Ll, oy x(O)m_Ltmfl,Nl, oeey Nsm,w(O)m’5m+1, ce 7x(0>m,r—17 [I}(O)m7T+1, .o )
= (Ro/mro) [Nrlwm(Ro /mug) N0

Let A be the smallest natural number such that y € Pg, » \ Pr, a+1. Then the regular
parameters {Z(1); ;} in R; are defined by

N; ifi=mand1<j<s,
Z(1)ij =< ¥ ifi=mandj=r
x(0);,; otherwise
if A\ =m, and
N; ifi=mand1<j<sp
F(1);; = Y ifi=MXand j=t,+1
THeg = z(0);j—1 ifi=mandj>r+1
z(0); 5 otherwise
if A #m.

First suppose that m > 1 orm =e = 1.
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We define the Perron transform Sy — S7 = So[Ni,...,Ns,,, Nylw of type (2,m). Let
n=mg N Sy[Ny,...,Ns,,, Ny]. We have
(14)
S1/W(O0)1,15 -5 Y(0)m—1tm 1> N1s -+ Nop, Y0t 15 - - 5 Y(0)mr—1, Y(0) i1 - - )
= (So/mso) [Nrln(so fmsg ) (N2

By (13) and (14), the dominant homomorphism R; — S, induces a dominant homomor-
phism
(Ro/mRo ) [Nrlw(Ro fmng)(N,) = (S0/m50) [Ne]n(So /sy ) (N2
Suppose that y is the lift of 7§ € (RO/mRo)[NT]m(Ro/mRO)[Nr}' We can assume that
y € (Ro/mpg,)|[Ny| is irreducible. Then ¥ is a separable polynomial in the polynomial
ring (Ro/mp,)[Ny] since Ry/mp, has characteristic zero. Thus § € n(Sy/ms,)[Ny| C
(So/ms,)[Nr] is separable and hence 7 is a generator of the maximal ideal of

(S0/msy) [Nrla(So /msy ) N2 -
We may thus define our good parameters %(1); ; in S; by

N; ifi=mand1<j<s,
y1)ij =4 v ifi=mandj=r
y(0);; otherwise
if A = m, and
N; ifi=mand1<j<sy,
7(1); Y ifi=Mand j=1t)\+1
Y y(0)ij1 ifi=mandj>r+1
y(0); 5 otherwise
if A #m.
We have that the good parameters {Z(1);;} in Ry and {g(1); ;} in S are related by an
expression of the form of Proposition 6.2 and we have that S1 = Ri[z1,. .., 2m]w-

Now suppose that m =1 and e > 1. Then x(0)1,1 = vy(0){; and z(0)1, = y(0)1,1. We
then have that s; = 1, v(x(0)1,1 is a generator of I', ; = Z and v(y(0);,) is a generator of
Iy = Z. Thus there exists a € Z4 such that v(x(0);,,) = av(z(0);,1) and so the equations
defining Ry — R; are x(0);1; = N; and 2(0);, = N{N,. We have that w(y(0);,) =
eaw(y(0)1,1). Define a GMTS along w, Sp — Si, by S1 = So[M1, M,],, where y(0);; =
My, y(0)1, = M{*M,. We have that M, = ~v*N, so S1 = Ri[z1,...,2m]w. As in the case
m > 1 orm = e = 1, we may define our good parameters {7(1);;} in S; so that the
good parameters {Z(1);;} in Ry and the good parameters {7(1);;} in S; are related by
an expression of the form of Proposition 6.2.

Suppose that the MTS Ry — R; is of the type (3,m). Then R; = R[N], where

x(O)kJ
2(0)% - z(0)mr,

mi1

for some dy,...,ds,, € N, k >m and 1 <[ <t;. The good parameters {Z(1); 1} in Ry are
defined by
. (N ifi=Fkandj=1I
(i = { x(0);; otherwise.
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If m>1ore=m=1, then
Y(0)k s

N =
y(0)h - y(0)m,

and if m =1 and e > 1, then
N =~ y(o)k,l .
y(0)55

We may thus define a GMTS along w, Sy — S1, of type (3,m) by S; = So[N].-

The good parameters {7(1);;} in Si defined by the GMTS are such that after making
a good change of parameters, replacing y(1);,; with x(1), the good parameters {Z(1); ;}
in Ry and the good parameters {7(1);;} in Sy are related by an expression of the form of
Proposition 6.2. We have that S1 = Ri[z1,. .., Zm]w- O

We now prove Theorem 1.3 from Section 1, which we restate in Theorem 6.5.

Theorem 6.5. Let K be an algebraic function field over a field k of characteristic zero
and let v be a valuation of K/k (v is trivial on k). Assume that L is a finite extension
of K and w is an extension of v to L. Then V,, is essentially finitely generated over V,, if
and only if e(w|v) = e(w|v).

Proof. 1If V,, is essentially finitely generated over V,, then e(w|v) = e(w|v) by Theorem 4.1

[8].

Suppose that e(w|v) = e(w|v). We will show that V,, is essentially finitely generated
over V,. Let Ry — Sy be such that Ry satisfies the conclusions of Lemma 2.1 and the
conclusions of Proposition 6.2 with respect to very good parameters in Ry and very good
parameters in So. Write So = Ro[z1, ..., 2m]w. We will show that V, = V,[z1,..., 2p]w.

Suppose that f € V,,. Write f = £ with g,h € Sp. By Lemma 5.3, and since with the
conclusions of Proposition 6.2 Sy is a localization of the integral closure of Ry in L, there
exists ¢ € Ry = Ry such that gh divides c in Sy. By Theorem 4.1, there exists a sequence
of GMTSs Ry —+ Ry — --- — R, such that

¢ = m(m)Llil - '5U(m)171§i1$(m)2721’1 - -x(m);;,?x(m)g:”l’l o (m) sy

where « is a unit in R,, and d;; € N for all 4, j.

By Proposition 6.4, there exists a sequence of GMTSs Sy — S — .-+ — S, such
that S, = Rp[z1,..., 20w and there are good parameters {y; j(m)} in Sy, such that
x(m);; =y(m);; if 1l <i<wand1<j<s;orifi=1andj> 1. We further have that

z(m)1 = {

Thus in S;;,, ¢ has an expression

edi1 di2 di,s, da,1 d2,s9 ds,1 Au,sy 1

c=y(m)y; y(m)ys - y(m)y o y(m)y - y(m)y 2 w(m)gy - y(m)uls

where 4 is a unit in S,,, (7 =~ ife=1).
Since gh divides ¢ in Sy,, we have expressions

Ty(m)i,; where 7 € Sy, isaunit  ife>1
y(m)i,1 ife=1.

g=ym)] - y(m)1 5 y(m)gy - y(m)yala(m)sy' - y(m)usr o

where « is a unit in S, and a;; € N for all 4, j, and

b by s bo, by bs, bu,su,
h = y(m)lfil "‘y(m)lislly(m);ll "‘?J(m)z?s;x(m)s?ll cy(m)usy B
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where 3 is a unit in S;,, and b;; € N for all 4, j. Let

and

Wi = a(m)ii a(m))y® - a(m) s a(m)y " a(m)y 2 a(m)g - a(m)uls™

1,51 2,82

Wo = a(m)} e (m)s? - a(m) o a(m)e2! - a(m) 22w (m)y e - a(m) e,

We have that v(W)) = ew(g) > ew(h) = v(Wa).
By Proposition 3.1, there exists a sequence of GMTSs

Ry — Ryy1 — - — Ry

of types (1,m) and (3,m) such that W5 divides W in R,,.

By Proposition 6.4, there exists a sequence of GMTSs S, — Sy4+1 — -+ — S, such
that S, = Ry[z1,...,2n]w and there exists a good change of parameters {y(v);;} in S,
such that the good parameters {z(v);;} of R, have the good form of the conclusions of
Proposition 6.4. Thus W5 divides Wy in S,. Now Wy = ¢ga™¢7%1 and Wy = heg—erbur,
Thus h° divides ¢g¢ in S,. Now g and h are monomials in the good parameters of S, times
units. Thus h divides g in S, and so f = ¢ € S,. Thus f € V,[21,..., 2p)w. Since this is

true for all f € V,,, we have that V, = V,[21, ..., 2] is essentially finitely generated over
V..
[l
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