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Abstract. Let K be a characteristic zero algebraic function field with a valuation ν.
Let L be a finite extension of K and ω be an extension of ν to L. We establish that
the valuation ring Vω of ω is essentially finitely generated over the valuation ring Vν of
ν if and only if the initial index ε(ω|ν) is equal to the ramification index e(ω|ν) of the
extension. This gives a positive answer, for characteristic zero algebraic function fields,
to a question posed by Hagen Knaf.

1. Introduction

Suppose that K is a field and ν is a valuation of K. Let Vν be the valuation ring of
ν with maximal ideal mν and Γν be the value group of ν. Suppose that K → L is a
finite field extension and ω is an extension of ν to L. We have associated ramification and
inertia indices of the extension ω over ν

e(ω|ν) = [Γω : Γν ] and f(ω|ν) = [Vω/mω : Vν/mν ].

The defect of the extension of ω over ν is

d(ω|ν) =
[Lh : Kh]

e(ω|ν)f(ω|ν)

where Kh and Lh are henselizations of the valued fields K and L. This is a positive integer
(as shown in [12]) which is 1 if Vν/mν has characteristic zero and is a power of p if Vν/mν

has positive characteristic p.
Let H be an ordered subgroup of an ordered abelian group G. The initial index ε(G|H)

of H in G is defined ([11, page 138]) as

ε(G|H) = |{g ∈ G≥0 | g < H>0}|,

where

G≥0 = {g ∈ G | g ≥ 0} and H>0 = {h ∈ H | h > 0}.
We define the initial index ε(ω|ν) of the extension as ε(Γω|Γν).

We always have that ε(ω|ν) ≤ e(ω|ν) ([11, (18.3)]).
If S is a subsemigroup of an abelian semigroup T , we say that T is a finitely generated

S-module if there exists a finite number of elements g1, . . . , gt ∈ T such that

T = ∪ti=1(gi + S).

It is shown in [8, Proposition 3.3] that ε(ω|ν) = e(ω|ν) if and only if (Γω)≥0 is a finitely
generated (Γν)≥0-module. We remark that (Γν)≥0 is the semigroup of values of elements
of the valuation ring Vν .
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Let D(ν, L) be the integral closure of Vν in L. The localizations of D(ν, L) at its maximal
ideals are the valuation rings Vωi of the extensions ωi of ν to L. We have the following
remarkable theorem.

Theorem 1.1. ([11, Theorem 18.6]) The ring D(ν, L) is a finite Vν-module if and only if

d(ωi|ν) = 1 and ε(ωi|ν) = e(ωi|ν)

for all extensions ωi of ν to L.

An equivalent formulation is given in [1, Théorème 2, page 143].
Suppose that A is a subring of a ring B. We will say that B is essentially finitely

generated over A (or that B is essentially of finite type over A) if B is a localization of a
finitely generated A-algebra.

Hagen Knaf proposed the following interesting question, asking for a local form of the
above theorem.

Question 1.2. (Knaf) Suppose that ω is an extension of ν to L. Is Vω essentially finitely
generated over Vν if and only if

d(ω|ν) = 1 and ε(ω|ν) = e(ω|ν)?

Knaf’s question is related to the condition of “normalization finiteness” of algebras
and schemes over Non-Noetherian valuation rings, which appears in the paper [19], where
inseparable local uniformization is established.

Knaf proved the implies direction of his question; his proof is reproduced in [8, Theorem
4.1].

If e(ω|ν) = 1, d(ω|ν) = 1 and Vω/mω is separable over Vν/mν , then the only if direction
of the question is true, as is proven in [15]. Also, the only if direction of the question is
true if L/K is normal or ω is the unique extension of ν to L by [8, Corollary 2.2].

The only if direction of the question is proven when K is the quotient field of an excellent
two-dimensional excellent local domain and ν dominates R in [8, Theorem 1.4]. The only
if direction is proven when K is an algebraic function field over a field k, ν is an Abhyankar
valuation of K and Vω/mω is separable over k in [8, Theorem 1.5].

The proof of [8, Theorem 1.4] uses the existence of a resolution of excellent surface
singularities ([16] or [2]) and local monomialization of defectless extensions of two dimen-
sional excellent local domains ([3, Theorem 3.7] and [9, Theorem 7.3]). The proof of [8,
Theorem 1.5] uses the local uniformization theorem for Abhyankar valuations in algebraic
function fields of Knaf and Kuhlmann in [14].

In this paper, we give a positive answer to the question for characteristic zero algebraic
function fields, as stated in the following theorem.

Theorem 1.3. Let K be an algebraic function field over a field k of characteristic zero
and let ν be a valuation of K/k (ν is trivial on k). Assume that L is a finite extension
of K and ω is an extension of ν to L. Then Vω is essentially finitely generated over Vν if
and only if e(ω|ν) = ε(ω|ν).

Recall that the defect d(ω|ν) must be 1 under an extension of equicharacteristic zero
valuation rings, as occurs in Theorem 1.3.

The proof of Theorem 1.3 uses an explicit form of embedded local resolution of singu-
larities along a valuation in characteristic zero algebraic function fields, by Zariski [20] for
rank 1 valuations and as extended to higher rank valuations by ElHitti in [10]. It also
uses the existence of a local monomialization of regular algebraic local rings R→ S of K
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and L respectively which are dominated by ω as shown in [5]. Algebraic local rings are
defined at the beginning of Section 2. Local monomialization is defined at the beginning
of Section 5.

It is shown in the proof of Theorem 1.3, that if e(ω|ν) = ε(ω|ν), then there exists a
locally monomial extension R → S along ω such that if S is a localization of a finitely
generated R-algebra F [z1, . . . , zn], then Vω is a localization of the finitely generated Vν-
algebra Vν [z1, . . . , zr].

It is shown in [4] that local monomialization is false in positive characteristic, even
in dimension two. However, local monomialization is true for defectless extensions in
dimension two ([3, Theorem 3.7] and [9, Theorem 7.3]).

I thank the referee for their careful reading of the paper. I also thank the referee for
pointing out that Knaf’s question 1.2 and our Theorem 1.3 are related to the condition of
“normalization finiteness” of algebras and schemes over Non-Noetherian valuation rings,
which appears in the paper [19] establishing inseparable local uniformization.

While this article was in press, Rankeya Datta [18] gave a positive answer to Knaf’s
question 1.2 for general valued field extensions. His proof uses descent in the Henselization
of a valued field extension, and the fact that Knaf’s question has a positive answer in a
Henselian field extension by Theorem 1.1.

2. Preliminaries and Notation

We will denote the non-negative integers by N and Z>0 will denote the positive integers.
We will denote the maximal ideal of a local ring R by mR. If R and S are local rings such
that R is a subring of S and mS ∩ R = mR then we say that S dominates R. If A is a
domain then QF(A) will denote the quotient field of A.

Suppose that A is a subring of a ring B. We will say that B is essentially finitely
generated over A (or that B is essentially of finite type over A) if B is a localization of a
finitely generated A-algebra.

We refer to [21] and [11] for basic facts about valuations.
Suppose that k is a field and K/k is an algebraic function field over k. An algebraic local

ring of K is a local domain which is essentially of finite type over k and whose quotient
field is K. A birational extension R→ R1 of an algebraic local ring R of K is an algebraic
local ring R1 of K such that R1 dominates R.

Suppose that ν is a valuation of K/k (a valuation of K which is trivial on k). Let Vν
be the valuation ring of ν, with maximal ideal mν . If A is a subring of Vν . then we write
Aν = Amν∩A. If A is a local ring which is a subring of Vν and mν ∩A = mA then we say
that ν dominates A.

Let u = rank ν and let

0 = Pν,u+1 ⊂ · · · ⊂ Pν,1 = mν

be the chain of prime ideals in Vν . Let Γν be the valuation group of ν with chain of convex
subgroups

0 = Γν,0 ⊂ Γν,1 ⊂ · · · ⊂ Γν,u = Γν .

Let si be the rational rank of Γν,i/Γν,i−1 for 1 ≤ i ≤ u. For 1 ≤ i ≤ u, let νi be the
valuation ring VPν,i obtained by specialization of ν. In particular, ν1 = ν. The value
group of νi is Γν/Γν,i−1.

Suppose that T is an algebraic local ring of K which is dominated by ν. Define prime
ideals PT,i = Pν,i ∩ T in T for 1 ≤ i ≤ u.
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Lemma 2.1. Suppose that char(k) = 0. Then there exists an algebraic regular local ring T
of K which is dominated by ν and such that trdegQF(T/PT,i)QF(Vν/Pν,i) = 0 for 1 ≤ i ≤ u.

Further, if T → T1 is a birational extension along ν then T1 satisfies this condition.

Proof. Let A be an algebraic local ring of K which is dominated by ν. Let zij ∈ Vν be such
that {zij + Pν,i}j for 1 ≤ i ≤ u is a transcendence basis of QF(Vν/Pν,i) over QF(A/PA,i).
This is a finite set. Let B = A[zij ]ν . Then B satisfies 1) and if B → R is a birational
extension along ν then R satisfies 1).

�

Suppose that T satisfies the conclusions of Lemma 2.1. Suppose that

(1) x1,1, . . . , x1,s1 , x1,s1+1, . . . , x1,t1 , x2,1, . . . , x2,s2 , x2,s2+1, . . . , x2,t2 , x3,1, . . . , xu,tu

are regular parameters in T . The regular parameters (1) are called good parameters if
xi,1, . . . , xi,ti ∈ PT,i\PT,i+1 and ν(xi,1), . . . , ν(xi,si) form a rational basis of (Γν,i/Γν,i−1)⊗Q
for 1 ≤ i ≤ u. If S is a subset of {1, . . . , u} then the regular parameters (1) are called
S-good parameters if they are good parameters and PT,i = (xi,1, . . . , xi,ti , . . .) for i ∈ S. We
will say that the parameters (1) are very good if they are {1, 2, . . . , u}-good. We remark
that good parameters are always {1}-good.

Suppose that (1) are good parameters and

(2) x1,1, . . . , x1,s1 , x1,s1+1, . . . , x1,t1 , x2,1, . . . , x2,s2 , x2,s2+1, . . . , x2,t2 , x3,1, . . . , xu,tu

is another system of parameters in T . It is not required that the numbers ti and ti are
the same. The system of regular parameters (2) is called an S-good change of parameters
if the parameters (2) are S-good and xi,j = xi,j for 1 ≤ i ≤ u and 1 ≤ j ≤ si.

3. Perron Transforms

3.1. Perron transforms of types (1,m), (2,m) and (3,m). The basic Perron trans-
forms of types (1,1) and (2,1) are defined by Zariski in [20] for rank 1 valuations. They are
used in [5] and [6] to prove local monomialization of morphisms. The Perron transforms
of types (1,m), (2,m) and (3,m), for use in higher rank, are defined by ElHitti in [10]. The
notation (1,m-1), (1,m-1,r) and (2,m-1) used in [10] is a little different from our notation.

We use the notation of Section 2 and assume that k has characteristic zero.
Suppose that T is an algebraic local ring of K which is dominated by ν and that T

satisfies the conclusions of Lemma 2.1. Suppose that (1) are S-good parameters in T and
1 ≤ m ≤ u. We define a Perron Transform T → T1 of type (1,m) along ν. We first define
Nj by

xm,j = N
aj,1
1 · · ·Naj,sm

sm for 1 ≤ j ≤ sm
where ai,j ∈ N are defined by Perron’s algorithm, as explained in Sections B I and B II of
[20]. We have that Det(ai,j) = ±1 and ν(Nj) > 0 for all j.

We define T1 = T [N1, . . . , Nsm ]ν , which is a regular local ring. We define regular
parameters {x(1)i,j} in T1 by

x(1)i,j =

{
Nj if i = m and 1 ≤ j ≤ sm
xi,j otherwise

The regular parameters {x(1)i,j} are S-good parameters in T1.
We now define a Perron Transform T → T1 of type (2,m) along ν. This is a general-

ization of the Perron transform constructed in Section B III of [20]. Let r be such that
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sm < r ≤ tm. We first define Nj by

xm,j =

{
N
aj,1
1 · · ·Naj,sm

sm N
aj,sm+1
r if 1 ≤ j ≤ sm

N
asm+1,1

1 · · ·Nasm+1,sm
sm N

asm+1,sm+1
r if j = r

where ai,j ∈ N, Det(ai,j) = ±1 and ν(N1), . . . , ν(Nsm) > 0 and νm(Nr) = 0, ν(Nr) ≥ 0.
N1, . . . , Nsm , Nr satisfying the above conditions always exists, as follows from a small

variation in Zariski’s algorithm in [20]. We construct the Perron transform of Zariski from
xm,1, . . . , xm,sm and xm,r for νm, as contructed in Section B III of [20]. In this algorithm,
the next to last step constructs M1, . . . ,Msm ,Mr and a (sm + 1)× (sm + 1)-matrix (bi,j)
such that

xm,j =

{
M

bj,1
1 · · ·M bj,sm

sm M
bj,sm+1
r if 1 ≤ j ≤ sm

M
bsm+1,1

1 · · ·M bsm+1,sm
sm M

bsm+1,sm+1
r if j = r

where bi,j ∈ N, Det(bi,j) = ±1, νm(M1), . . . , νm(Msm), νm(Mr) > 0 and νm(Mr) =
νm(M1) > 0. We then have that

νm

(
Mr

M1

)
= νm

(
M1

Mr

)
= 0.

If ν(Mr
M1

) ≥ 0, define N1, . . . , Nsm , Nr by

Mi =

{
Ni if i 6= r
NrN1 if i = r

If ν(M1
Mr

) > 0, define N1, . . . , Nsm , Nr by

Mi =

 N1Nr if i = 1
Mi = Ni if i 6= 1 and i 6= r
N1 if i = r

We define T1 = T [N1, . . . , Nsm , Nr]ν , which is a regular local ring. Let m = mν ∩
T [N1, . . . , Nsm , Nr]. Choose y ∈ T1 such that y is the lift to T1 of a generator of the
maximal ideal of

T1/(x1,1, . . . , x1,t1 , . . . , xm−1,tm−1 , N1, . . . , Nsm , xm,sm+1, . . . , xm,r−1, xm,r+1, . . .)
∼= (T/mT )[Nr]m(T/mT )[Nr].

Then

y, x1,1, . . . , x1,t1 , . . . , xm−1,tm−1 , N1, . . . , Nsm , xm,sm+1, . . . , xm,r−1, xm,r+1, . . .

is a system of regular parameters in T1. There is a smallest natural number λ such that
y ∈ PT1,λ \ PT1,λ+1. We define regular parameters {x(1)i,j} in T1 by

x(1)i,j =

 Nj if i = m and 1 ≤ j ≤ sm
y if i = m and j = r
xi,j otherwise

if λ = m, and

x(1)i,j =


Nj if i = m and 1 ≤ j ≤ sm
y if i = λ and j = tλ + 1
xi,j−1 if i = m and j ≥ r + 1
xi,j otherwise

if λ 6= m.
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If i ∈ S and i > m, then PT,iT1 = (xi,1, . . . , xi,2, . . .)T1 is a regular prime of T1 which
has the same height as PT1,i since T1 satisfies 1) of Lemma 2.1. Since this prime ideal is
contained in PT1,i we have that PT1,i = PT,iT1. Thus if m+ 1 ∈ S, then λ ≤ m.

We have that {x(1)i,j} are S′-good parameters in T1, where

S′ = {j ∈ S|j > m}.

We now define a Perron transformation of type (3,m). Suppose that d1, . . . , dsm ∈ N,
k > m and 1 ≤ l ≤ tk. Let

N =
xk,l

xd1m,1 · · ·x
dsm
m,sm

.

Then νk(N) > 0. Let T1 = T [N ]ν , which is a regular local ring. Let

x(1)i,j =

{
N if i = k and j = l
xi,j otherwise.

Then {x(1)i,j} are S-good parameters in T1.
We will find the following proposition useful.

Proposition 3.1. Suppose that R is an algebraic regular local ring of K which is domi-
nated by ν and {xi,j} are good parameters in R. Suppose that

M1 = x
a1,1
1,1 · · ·x

a1,s1
1,s1

x
a2,1
2,1 · · ·x

a2,s2
2,s2

x
a3,1
3,1 · · ·x

au,su
u,su

and

M2 = x
b1,1
1,1 · · ·x

b1,s1
1,s1

x
b2,1
2,1 · · ·x

b2,s2
2,s2

x
b3,1
3,1 · · ·x

bu,su
u,su

are monomials such that ν(M1) ≤ ν(M2). Then there exists a sequence of Perron tran-
forms of types (1,m) and (3,m) along ν,

R→ R1 → · · · → Rs,

such that M1 divides M2 in Rs.
If ν(M1) = ν(M2), then M1 = M2 since the members of

{ν(xi,j)|1 ≤ i ≤ u, 1 ≤ j ≤ si}

are rationally independent.

Proof. Suppose that ν(M1) < ν(M2). There exists a largest index l such that
∏
j x

al,j
l,j 6=∏

j x
bl,j
l,j . Then ν(

∏
j x

al,j
l,j ) < ν(

∏
j x

bl,j
l,j ). By [20, Theorem 2], there exists a sequence of

Perron transforms of type (1,l) R→ R1 along ν such that
∏
j x

al,j
l,j divides

∏
j x

bl,j
l,j in R1.

Writing M1 and M2 in the regular parameters {z(1)i,j} of R1 as

M1 =
∏

x(1)
a(1)i,j
i,j and M2 =

∏
x(1)

b(1)i,j
i,j ,

where the product is over 1 ≤ i ≤ u amd 1 ≤ j ≤ si, we have that

M2 =

∏
i<l,j

x(1)
b(1)i,j
i,j

∏
j

x(1)
b(1)l,j
l,j

∏
i>l,j

x(1)
a(1)i,j
i,j


with b(1)l,j − a(1)l,j ≥ 0 for all j and for some j, b(1)l,j − a(1)l,j > 0. Without loss of
generality, this occurs for j = 1. (If b(1)l,j = a(1)l,j for all j, then al,j = bl,j for all j in
contradiction to our choice of l.)
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Now perform a sequence of Perron transforms of type (3,n) for 1 ≤ n < l, R1 → Rm
along ν defined by x(t)l,1 = x(t+ 1)l,1x(t+ 1)i,j for i < l and j such that b(t)i,j < a(t)i,j
where

M1 =
∏

x(t)
a(t)i,j
i,j and M2 =

∏
x(t)

b(t)i,j
i,j

to achieve that M1 divides M2 in Rm. �

3.2. Sequences of good monoidal transform sequences. We now define a good
monoidal transform sequence along ν, which will be abbreviated as a GMTS. Suppose
that T satisfies the conditions of Lemma 2.1 and {xi,j} are good parameters in T . Let
{xi,j} be a good change of parameters in T . Let T → T1 be a Perron transform of one
of the types (1,m), (2,m) or (3,m) of the previous subsection, giving good parameters
{x(1)i,j} in T1. Then we call T → T1, with the parameters {xi,j} and good change of
parameters {xi,j} in T and good parameters {x(1)i,j} in T1 a good monoidal transform
sequence.

Suppose that T (0) satisfies the conditions of Lemma 2.1 and {x(0)i,j} are good param-
eters in T . A sequence of GMTSs is a sequence

T (0)→ T (1)→ · · · → T (n)

of GMTS. The good parameters of T (i) are {x(i)k,l} as determined by the preceding
GMTS T (i− 1)→ T (i), and a good change of parameters {x(i)k,l}.

3.3. A refinement of the results of [10]. In this paper we will make use of some results
from Chapters 4 and 5 of [10]. There is a technical condition in the hypotheses of [10]
which is not necessary. We will show in this subsection how this assumption (Condition A
of [10, Definition 4.1]) can be eliminated. We first develop some necessary material, and
then give the definition of Condition A. We then show how it is not necessary in Chapter
4 and Chapter 5 of [10]. This condition can also be eliminated from the final Chapter 6
of [10], but since we do not require results from Chapter 6, we will not address this.

Suppose that T is a normal algebraic ring. Let P (ω)T be a prime ideal of T and ω be
a rank one valuation of the quotient field of T/P (ω)T which dominates T/P (ω)T . The
valuation ω induces a “pseudo-valuation” of T , where we define ω(f) = ω(f) if the class
f of f in T/P (ω)T is nonzero, and define ω(f) = ∞ if f ∈ P (ω)T . We further suppose
that Vω/mω is an algebraic field extension of T/mT . Let

Q(T ) =

{
Cauchy sequences {fn} in T such that for all l ∈ Z>0,
there exists nl ∈ Z>0 such that ω(fn) ≥ lω(mT ) if n ≥ nl

}
.

We have that Q(T ) is a prime ideal in T̂ and Q(T ) ∩ T = P (ω)T . There is a unique

extension of ω to a valuation of the quotient field of T̂ /Q(T ) which dominates T̂ /Q(T ).
It is an immediate extension (there is no extension of the value group or the residue fields
of the valuation rings). We define

σ(T ) = dim T̂ /Q(T̂ ).

The objects Q(T ) and σ(T ) are defined in [6], [7] and [10]. Concepts of this type are
studied in [13].

The following Lemma is proven in the case that ω is a valuation dominating T (and
not just a pseudo valuation) in [6, Lemma 6.3]. The proof is essentially the same here,
although a little more notation is required.

Lemma 3.2. Let notation be as above in this subsection.
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1) Let T̃ be a normal algebraic local ring such that T ⊂ T̃ ⊂ T̂ and T̂ dominates

T̃ , so that T̃ is a localization of a finite étale extension of T . Then there exists a
unique extension of ω to a valuation dominating T̃ /Q(T ) ∩ T̃ , and thus a unique

extension of ω to a pseudo valuation dominating T̃ which has P (ω)T̃ = Q(T )∩ T̃ .

2) Let I be a nonzero ideal in T̃ such that I 6⊂ P (ω)T̃ . Let f ∈ I be such that
ω(f) = ω(I). Let

J = ∪∞j=1

(
P (ω)T̃ T̃ [

I

f
] : Ij T̃ [

I

f
]

)
,

which is the strict transform of the ideal P (ω)T̃ in T̃ [ If ]. Then J is a prime ideal

in T̃ [ If ], the map T̃ /P (ω)T̃ → T̃ [ If ]/J is birational (T̃ [ If ]/J is of finite type over

T̃ /P (ω)T̃ and both rings have the same quotient field) and there exists a maximal

ideal n of T̃ [ If ] containing J such that ω dominates (T̃ [ If ]/J)n and so ω is a pseudo

valuation on T1 = T̃ [ If ]n with P (ω)T1 = Jn.

3) Suppose that T1 is normal. Then σ(T1) ≤ σ(T̃ ) = σ(T ).

Proof. Identify ω with its unique extension to T̂ /Q(T ) which dominates the maximal ideal.

Statement 1) then follows directly from restricting this extension to T̃ /Q(T ) ∩ T̃ .

We now consider Statement 2). Let f be the class of f in T̃ /P (ω)T̃ . Since I 6⊂ P (ω)T̃
we have that f 6= 0 and

T̃

[
I

f

]
/J = (T̃ /P (ω)T̃ )

[
I(T̃ /P (ω)T̃ )

f

]
is a birational extension of T̃ /P (ω)T̃ and all its elements have nonnegative ω-value. Let n

be the prime ideal in T̃ [ If ] of elements of positive ω-value. T̃ /mT̃ ⊂ T̃ [ If ]/n ⊂ Vω/mω and

Vω/mω is assumed to be algebraic over T̃ /mT̃ . Thus T̃ [ If ]/n is finite over the field T̃ /mT .

The domain T̃ [ If ]/n is then a field, so that n is a maximal ideal of T̃ [ If ].

We now establish statement 3). The completion of T1 at it’s maximal ideal is T̂1 =
̂̂
T [ IT̂f ]ñ where ñ = mT̂1

∩ T̂ [ IT̂ ]f ]. Let

Q̃ = ∪∞j=1

(
Q(T )T̂

[
IT̂

f

]
ñ

: Ij T̂

[
IT̂

f

]
ñ

)
,

the strict transform of Q(T ) in T̂ [ IT̂f ]ñ. Since I 6⊂ P (ω)T̃ we have that ω(f) =∞ if f ∈ Q̃.

Thus Q̃ ⊂ Q(T1). Now T̂ /Q(T̂ )→ T̂ [ IT̂f ]ñ/Q̃ is birational and the residue field extension

is finite, so by the dimension formula [17, Theorem 15.6],

σ(T̂ ) = dim T̂ [
IT̂

f
]ñ/Q̃ = dim T̂1/Q̃T1

since completion is flat. Thus σ(T̃ ) ≥ dim T̂1/Q(T1) = σ(T1). �

In [10, Chapter 4], sequences of étale Perron transforms are constructed. A sequence of
étale Perron transforms along ω is a sequence

(3) T → T1 → · · · → Tn
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of algebraic regular local rings where each Ti → Ti+1 is one of the following three types,
generalizing the Perron transforms defined in Subsection 3.1.

1) A transform Ti → Ti+1 of the type of a Perron transform of type (1, 1).

2) First construct Ti → T̃i as in 1) of Lemma 3.2. Then perform a transformation

T̃i → Ti+1 of the type of a Perron transform of type (2,1).
3) A transform Ti → Ti+1 of the type of a Perron transform of type (3,1).

In defining these transforms, we blow up an ideal generated by monomials in a regular
system of parameters in T̃ such that not all of these monomials are in P (ω)T̃i . By 2) of

Lemma 3.2, the pseudo valuation ω dominates Ti+1 and by 3) of Lemma 3.2, we have that

(4) σ(Ti+1) ≤ σ(Ti)

for all i. In [10, Chapter 4], it is assumed that “Condition A” holds (Definition [10,
Definition 4.1]). This condition is assumed in [10, Chapter 4]. The condition A is that
σ(Ti) is constant in all sequences of étale Perron transforms 3. However, this assumption
is not necessary to obtain the conclusions of [10, Chapters 4 and 5].

We now show how to eliminate the Condition A assumption from [10]. We run the
algorithms of [10, Chapter 4] without this assumption. If at some point in the construction
of a sequence of étale Perron transforms (3) in [10, Chapter 4] we have a change in σ(Ti)
then we have a decrease in this invariant by (4). We then just start the algorithm again in
the Ti where there was a drop. Since σ(Ti) is always a positive integer, we will eventually
be able to complete the algorithm without a drop in σ(Tj) along the way. [10, Theorem
4.3] which constructs a sequence of Perron transforms along ν from a sequence of étale
Perron transforms along ω does not require that σ(Ti) be constant.

The results from [10, Chapter 5] now do not require the condition A. Thus this condition
is not necessary for the results from [10, Chapters 4 and 5] which we will use.

4. Embedded resolution by Perron transforms

We continue to use the notation of Section 2, and to assume that char(k) = 0. We will
use our refinement of the results of [10] given in Subsection 3.3 above, where we show that
the conclusions of [10, Chapters 4 and 5] hold without assuming “Condition A”.

In the following proof we use the fact that the sequences of monoidal transforms con-
structed in the algorithms of [10] are GMTSs. This fact follows from the proofs in these
papers. We have that [10, Theorem 4.3], explaining the construction of a sequence of
monodial transforms (with m=1) from a given UTS (a uniformizing transformation se-
quence) is a special case of the proof of Theorem 4.8 [5]. On line -6 from the bottom of
page 79, in Step 3 of [5], it is explicitely stated and shown that the sequence of monoidal
transforms is a GMTS.

Theorem 4.1. Suppose that T satisfies the conditions of Lemma 2.1 and that T has a
very good system of parameters {xi,j}. Suppose that f ∈ T . Then there exists a sequence
of GMTSs

T = T0 → T1 → · · · → Tm

along ν such that

f = x1,1(m)d1,1 · · ·x(m)
d1,s1
1,s1

x(m)
d2,1
2,1 · · ·x(m)

d2,s2
2,s2

x(m)
d3,1
3,1 · · ·x(m)

du,su
u,su γ

where γ is a unit in Tm and dij ∈ N for all i, j.
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Proof. Let k = min{i | νi(f) < ∞}. By [10, Theorem 4.14] (which is applicable when ν
has arbitrary rank and ν1(f) <∞, using some Perron transforms of type (3,m)) and [10,
Theorem 5.6], there exists a sequence of GMTSs along νk

Rk = TPT,k → Rk(1)→ · · ·Rk(nk,1)

such that Rk(nk,1) has a very good change of parameters

xk(nk,1)1,1, . . . , xk(nk,1)1,sk , . . .

such that f = xk(nk,1)
dk,1
1,1 · · ·xk(nk,1)

dk,sk
1,sk

γk where dk,1, . . . , dk,sk ∈ N and γk ∈ Rk(nk,1) is
a unit.

Now by [10, Lemma 5.3] (on line 11 of the statement of the lemma it should be
“(T1)P 1

T1
= R1”), [10, Remark 5.4] and [10, Lemma 5.5], there exists a sequence of GMTSs

along νk−1,

Rk−1 = TPT,k−1
→ Rk−1(1)→ · · · → Rk−1(nk−1,1)

such that Rk−1(nk−1,1)PRk−1(nk−1,1),k
= Rk(nk,i) and Rk−1(nk−1,1) has a very good change

of parameters

xk−1(nk−1,1)1,1, . . . , xk−1(nk−1,1)1,sk−1
, xk−1(nk−1,1)2,1, . . . , xk−1(nk−1,1)2,sk , . . .

such that

f = xk−1(nk−1,1)
dk,1
2,1 · · ·xk−1(nk−1,1)

dk,sk
2,sk

γk

where γk ∈ Rk−1(nk−1,1) satisfies νk(γk) = 0.
By descending induction on k, successively applying [10, Theorem 4.14], [10, Theorem

5.6] and then [10, Lemma 5.3], [10, Remark 5.4] and [10, Lemma 5.5], we obtain the
conclusions of the theorem.

�

5. Monomial extensions

Suppose that K → L is a finite extension of algebraic function fields over a field k of
characteristic zero, ν is a valuation of K/k and ω is an extension of ν to L. Let

e = e(ω|ν) = [Γω : Γν ], f = f(ω|ν) = [Vω/mω : Vν/mν ].

Suppose that R → S is an extension of algebraic regular local rings of K and L re-
spectively such that ω dominates S and S dominates R. Suppose that {zi} are regular
parameters in R and {wj} are regular parameters in S. We will say that R→ S is locally
monomial (with respect to these systems of parameters) if there exists an n × n matrix
C = (ci,j) with coefficients in N, where n = dimR = dimS with Det(C) 6= 0, and units
αi ∈ S such that

(5) zi =

n∏
j=1

w
ci,j
j αi for 1 ≤ i ≤ n.

The existence of a local monomialization in Theorem 5.1 follows from [5, Theorem 1.1].
The fact that the regular parameters can be taken to be very good parameters follows
from [9, Theorem 4.8].

Theorem 5.1. Suppose that R∗ → S∗ is an extension of algebraic regular local rings of K
and L respectively such that ω dominates S∗ and S∗ dominates R∗. There exist sequences
of monoidal transforms R∗ → R and S∗ → S along ω such that S dominates R and R→ S
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is locally monomial. We can further construct R→ S so that the regular parameters zi in
R and wj in S giving the monomial form are very good parameters in R and S respectively.

With the notation of the conclusion of Theorem 5.1, we have by [9, Theorem 4.2] that
there exists a birational extension R→ R such that R is normal, S dominates R and S is
a localization of the integral closure of R in L.

The following proposition is Theorem 6.1 [9].

Proposition 5.2. Let g1, . . . , gf be a basis of Vω/mω over Vν/mν . Then there exist an
algebraic local ring R′ of K which is dominated by Vν such that whenever R → S is
an extension such that R is an algebraic regular local ring of K and S is an algebraic
regular local ring of L which is dominated by ω and dominates R such that R → S is
locally monomial with regular parameters satisfying (5) and R dominates R′, then [S/mS :

R/mR] = f , |Det(C)| = e, [QF(Ŝ) : QF(R̂)] = ef and g1, . . . , gf is a basis of S/mS over
R/mR.

Lemma 5.3. Suppose that R and S satisfy the conclusions of Lemma 2.1 for ν and ω
respectively, R → S is a locally monomial extension and f ∈ S. Then there exists g ∈ R
such that f divides g in S.

Proof. Let F be a Galois closure of L over K and let S be the integral closure of R in L
and T be the integral closure of R in F . There exists γ ∈ S such that γ is a unit in S
and γf ∈ S. Let f = γf . Let G = Gal(F/K) and g =

∏
σ∈G σ(f). Then σ(g) = g for all

σ ∈ G so that g ∈ K. Further, σ(f) ∈ T for all σ ∈ G so g is integral over R. Thus g ∈ R
since R is normal. Let h = g

f
. Then h ∈ L and h ∈ T so h is integral over S. Thus h ∈ S

since S is normal, and so γh ∈ S ⊂ S. Thus f divides g in S. �

6. Analysis when ε(ω|ν) = e(ω|ν)

In this section, let K be an algebraic function field over a field k of characteristic zero
and let ν be a valuation of K/k (ν is trivial on k). Assume that L is a finite extension of
K and ω is an extension of ν to L. The ramification index e(ω|ν) and initial index ε(ω|ν)
are defined in Section 1. Let

e = e(ω|ν) and ε = ε(ω|ν).

The following proposition is Proposition 7.1 [8]. It holds very generally for finite exten-
sions of valued fields (K, ν)→ (L, ω).

Proposition 6.1. Suppose that K is a field, ν is a valuation of K, L is a finite extension
field of K and ω is an extension of ν to L such that

1 < ε(ω|ν) = e(ω|ν).

Let Γν,1 be the first convex subgroup of Γν and Γω,1 be the first convex subgroup of Γω.
Then Γω,1 ∼= Z and in the short exact sequence of groups

(6) 0→ Γω,1/Γν,1 → Γω/Γν → (Γω/Γω,1)/(Γν/Γν,1)→ 0

we have that

(Γω/Γω,1)/(Γν/Γν,1) = 0

and

Γω/Γν ∼= Γω,1/Γν,1 ∼= Ze.
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The following proposition generalizes Proposition 7.4 of [8] from Abhyankar valuations
on algebraic function fields to arbitrary valuations on characteristic zero algebraic function
fields.

Proposition 6.2. Suppose that e(ω|ν) = ε(ω|ν). Then there exist algebraic regular local
rings R of K and S of L which are dominated by ω and ν respectively such that S dominates
R, R dominates the ring R′ of Proposition 5.2 and R has good regular parameters {xi,j}
and S has good regular parameters {yi,j} such that there is an expression

x1,1 = γye1,1 and xi,j = yi,j if i > 1 or j ≥ 2

where γ is a unit in S. Further, if e > 1, then ν(x1,1) is a generator of Γν,1 and ω(y1,1) is
a generator of Γω,1. If e = 1, then γ = 1.

Remark 6.3. We can assume that the parameters {xij} and {yij} are very good param-
eters in the conclusions of Proposition 6.2.

Proof. By Theorem 5.1 and Proposition 5.2 there exist algebraic regular local rings R0 of
K and S0 of L such that ω dominates S0, S0 dominates R0, R0 has very good parameters
{xi,j} and S0 has very good parameters {yi,j} satisfying the conclusions of Proposition
5.2.

We reindex the very good parameters {xi,j} and {yi,j} by

xj =

{
x1,j if j ≤ t1
xl,i if j = t1 + · · ·+ tl + i with 1 ≤ i ≤ tl+1

and

yj =

{
y1,j if j ≤ t1
yl,i if j = t1 + · · ·+ tl + i with 1 ≤ i ≤ tl+1.

We point out that the above parameters are a reindexing of the parameters of [9, Theorem
4.8]. The parameters of [9, Theorem 4.8] have values in monotonically decreasing convex
(isolated) subgroups of Γω and Γν while the parameters defined above have values in
monotonically increasing convex subgroups of Γω and Γν .

These parameters have a monomial form

(7) xj = γjy
cj,1
1 · · · ycj,nn for 1 ≤ j ≤ n

where C = (ci,j) is an n× n matrix with Det(C) 6= 0 and γj are units in S0. By the proof
of [9, Theorem 4.10] (the following statements are not effected by reindexing the regular
systems of parameters {xi} and {yj}), we can assume that

(8)
Γω/Γν ∼= (

∑
ω(yi)Z)/(

∑
ν(xi)Z)

∼= Zn/CtZn

so that

(9) |Det(C)| = e.

First suppose that ε(ω|ν) = e(ω|ν) > 1. Then Γω,1 ∼= Z and

(10) Γω,1/Γν,1 ∼= Ze

by Proposition 6.1. In particular, s1 = 1.
12



Recall that our choice of regular parameters is a reindexing of the one of [9, Theorem
4.8]. In equation (13) of [9], we have that Mr is the t1 × t1 matrix(

c1,1 0
0 It1−1

)
so that by [9, Theorem 4.8], we may assume that

x1 = γy
c1,1
1 , x2 = y2, . . . , xt1 = yt1

where γ is a unit in S0. Then from (9) and (10), we have that c1,1 = e and |Det(C)| = 1
where

C =

 ct1+1,t1+1 · · · ct1+1,n
...

cn,t1+1 · · · cn,n

 .

We define a birational extension along ν, R0 → R1 = R0[x(1)1, . . . , x(1)n]ν by

xj =

{
x(1)j for 1 ≤ j ≤ t1
x(1)jx(1)

cj,2
2 · · ·x(1)

cj,t1
t1

for t1 < j ≤ n
to get that S0 dominates R1 and R1 → S0 is locally monomial with

x(1)j =


γye1 if j = 1
yj if 1 < j ≤ t1
y
cj,1
1 y

cj,t1+1

t1+1 · · · y
cj,n
n αj if t1 + 1 ≤ j ≤ n

where αj ∈ S0 are units.

Since Det(C) = ±1, there exist rt1+1, . . . , rn ∈ Z such that

C

 rt1+1
...
rn

 = −

 ct1+1,1
...
cn,1

 .

Define dt1+1, . . . , dn ∈ N by  dt1+1
...
dn

 = C

 1
...
1

 .

There exists v ∈ Z>0 such that ri + ve > 0 for all i. Perform the sequence of GMTSs of
type (3,1) S0 → S1 along ω where S1 has good parameters {y(1)i} defined by

yi =

{
y(1)i if 1 ≤ i ≤ t1
y(1)iy(1)ri+ve1 if t1 < i ≤ n.

We have that S1 = S0[y1(1), . . . , yn(1)]ω dominates R1 and R1 → S1 is locally monomial.
There exist units γ′i ∈ S1 such that

(11) x(1)i =


γy(1)e1 if i = 1
y(1)i if 1 < i ≤ t1
γ′iy(1)evdi1 y(1)

ci,t1+1

t1+1 · · · y(1)
ci,n
n if t1 < i ≤ n.

Now perform the sequence of GMTSs R1 → R2 of type (3,1) along ν defined by

x(1)i =

{
x(2)1 if 1 ≤ i ≤ t1
x(2)vdi1 x(2)i if t1 < i ≤ n.
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Then S1 dominates R2 and there exist units γ(1)i ∈ S1 such that

(12) x(2)i =


γy(1)e1 if i = 1
y(1)i if 1 < i ≤ t1
γ(1)iy(1)

ci,t1+1

t1+1 · · · y(1)
ci,n
n if t1 < i ≤ n.

Let B = C
−1

. Write

B =

 bt1+1,t1+1 · · · bt1+1,n
...

bn,t1+1 · · · bn,n


with bi,j ∈ Z. We now replace the y(1)i with the product of the unit γ(1)

−bi,t1+1

t1+1 · · · γ(1)
−bi,n
n

and y(1)i for t1 + 1 ≤ i ≤ n to get γi(1) = 1 for t1 + 1 ≤ i ≤ n in (12).
Now define a birational transformation R2 → R3 along ν byR3 = R2[x(3)t1+1, . . . , x(3)n]ν

where R3 has regular parameters {x(3)i} defined by

x(2)i =

{
x(3)i if 1 ≤ i ≤ t1
x(3)

ci,t1+1

t1+1 · · ·x(3)
ci,n
n for t1 + 1 ≤ i ≤ n.

The ring R3 is a regular local ring with regular parameters x(3)1, . . . , x(3)n. We have that
S1 dominates R3 and

x(3)i =

{
γy(1)e1 if i = 1
y(1)i if 2 ≤ i ≤ n

where γ is a unit in S1. Going back to (8), we see that ω(y(1)1) is a generator of Γω,1 and
ν(x(3)1) is a generator of Γν,1. We thus have the conclusions of the proposition.

Now suppose that e = 1. This case is much simpler. In (9) we then have that Det(C) =
±1. Taking B = C−1 = (bi,j), we can then make the change of variables in S0 replacing

the yi with the product of the unit γ
−bi,1
1 · · · γ−bi,nn times yi for 1 ≤ i ≤ n to get γi = 1 for

1 ≤ i ≤ n in (7).
Now define a birational transformation R0 → R1 along ν by R1 = R0[x(1)1, . . . , x(1)n]ν

where
xi = x(1)

ci,1
1 · · ·x(1)

ci,n
n for 1 ≤ i ≤ n.

The ring R1 is a regular local ring with regular parameters x(1)1, . . . , x(1)n. We have that
R1 is dominated by S, and

x(1)i = y(1)i for 1 ≤ i ≤ n,
giving the conclusions of the proposition. �

Proposition 6.4. Suppose that e(ω|ν) = ε(ω|ν) and R0 → S0 has the form of the conclu-
sions of Proposition 6.2 for good parameters {x(0)i,j} in R0 and good parameters {y(0)i,j}
in S0. Then there exist z1, . . . , zm ∈ Vω such that S0 = R0[z1, . . . , zm]ω.

Let R0 → R1 be a GMTS along ν, constructed from a good change of parameters
{x(0)i,j} in R0, and giving good parameters {x(1)i,j} in R1.

We then have a good change of parameters {y(0)i,j} in S0 defined by

y(0)i,j =

{
y(0)i,j if i = 1 and j = 1
x(0)i,j otherwise.

The good parameters {x(0)i,j} and {y(0)i,j} continue to have the form of the conclusions
of Proposition 6.2.

There exists a GMTS S0 → S1 along ω, constructed from the above good parameters
{y(0)i,j} in S0, and giving good parameters {y(1)i,j} in S1, such that there is a good change
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of parameters {y′i,j} in S1 such that {x(1)i,j} and {y′i,j} are related by an expression of the

form of the conclusions of Proposition 6.2 and we have that S1 = R1[z1, . . . , zm]ω.

Proof. The expression S0 = R0[z1, . . . , zm]ω follows since S0 is essentially of finite type
over k.

Suppose that the GMTS R0 → R1 is of type (1,m). Then R1 = R[N1, . . . , Nsm ]ν where

x(0)m,j = N
aj,1
1 · · ·Naj,sm

sm for 1 ≤ j ≤ sm

and the good regular parameters x(1)i,j in R1 are defined by

x(1)i,j =

{
Nj if i = m and 1 ≤ j ≤ sm
x(0)i,j otherwise

If e > 1 then Γν,1 has rational rank 1 (s1 = 1), and we then cannot perform a GMTS
of type (1,1). In particular, we have e = 1 if m = 1.

We define the Perron transform S0 → S1[N1, . . . , Nsm ]ω of type (1,m), giving good
regular parameters y(1)i,j such that

y(1)i,j =

{
Nj = x(1)i,j if i = m and 1 ≤ j ≤ sm
y(1)i,j otherwise.

We then have that the good parameters {x(1)i,j} and {y(1)i,j} are related by an expression
of the form of Proposition 6.2 and we have that S1 = R1[z1, . . . , zm]ω.

Suppose that the GMTS R0 → R1 is of type (2,m). Then R1 = R0[N1, . . . Nsm , Nr]ν
where sm < r ≤ tm,

x(0)m,j =

{
N
aj,1
1 · · ·Naj,sm

sm N
aj,sm+1
r if 1 ≤ j ≤ sm

N
asm+1,1

1 · · ·Nasm+1,sm
sm N

asm+1,sm+1
r if j = r

where ai,j ∈ N, Det(ai,j) = ±1 and ν(N1), . . . , ν(Nsm) > 0 and νm(Nr) = 0, ν(Nr) ≥ 0.
Let m = mν ∩ R0[N1, . . . , Nsm , Nr]. Choose y ∈ R1 such that y is the lift to R1 of a

generator of the maximal ideal of
(13)

R1/(x(0)1,1, . . . , x(0)m−1,tm−1 , N1, . . . , Nsm , x(0)m,sm+1, . . . , x(0)m,r−1, x(0)m,r+1, . . .)
∼= (R0/mR0)[Nr]m(R0/mR0

)[Nr].

Let λ be the smallest natural number such that y ∈ PR1,λ \ PR1,λ+1. Then the regular
parameters {x(1)i,j} in R1 are defined by

x(1)i,j =

 Nj if i = m and 1 ≤ j ≤ sm
y if i = m and j = r
x(0)i,j otherwise

if λ = m, and

x(1)i,j =


Nj if i = m and 1 ≤ j ≤ sm
y if i = λ and j = tλ + 1
x(0)i,j−1 if i = m and j ≥ r + 1
x(0)i,j otherwise

if λ 6= m.
First suppose that m > 1 or m = e = 1.
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We define the Perron transform S0 → S1 = S0[N1, . . . , Nsm , Nr]ω of type (2,m). Let
n = mω ∩ S0[N1, . . . , Nsm , Nr]. We have
(14)

S1/(y(0)1,1, . . . , y(0)m−1,tm−1 , N1, . . . , Nsm , y(0)m,sm+1, . . . , y(0)m,r−1, y(0)m,r+1, . . .)
∼= (S0/mS0)[Nr]n(S0/mS0 )[Nr]

.

By (13) and (14), the dominant homomorphism R1 → S1, induces a dominant homomor-
phism

(R0/mR0)[Nr]m(R0/mR0
)[Nr] → (S0/mS0)[Nr]n(S0/mS0 )[Nr]

.

Suppose that y is the lift of y ∈ (R0/mR0)[Nr]m(R0/mR0
)[Nr]. We can assume that

y ∈ (R0/mR0)[Nr] is irreducible. Then y is a separable polynomial in the polynomial
ring (R0/mR0)[Nr] since R0/mR0 has characteristic zero. Thus y ∈ n(S0/mS0)[Nr] ⊂
(S0/mS0)[Nr] is separable and hence y is a generator of the maximal ideal of

(S0/mS0)[Nr]n(S0/mS0 )[Nr]
.

We may thus define our good parameters y(1)i,j in S1 by

y(1)i,j =

 Nj if i = m and 1 ≤ j ≤ sm
y if i = m and j = r
y(0)i,j otherwise

if λ = m, and

y(1)i,j =


Nj if i = m and 1 ≤ j ≤ sm
y if i = λ and j = tλ + 1
y(0)i,j−1 if i = m and j ≥ r + 1
y(0)i,j otherwise

if λ 6= m.
We have that the good parameters {x(1)i,j} in R1 and {y(1)i,j} in S1 are related by an

expression of the form of Proposition 6.2 and we have that S1 = R1[z1, . . . , zm]ω.
Now suppose that m = 1 and e > 1. Then x(0)1,1 = γy(0)e1,1 and x(0)1,r = y(0)1,1. We

then have that s1 = 1, ν(x(0)1,1 is a generator of Γν,1 ∼= Z and ν(y(0)1,r) is a generator of
Γω,1 ∼= Z. Thus there exists a ∈ Z+ such that ν(x(0)1,r) = aν(x(0)1,1) and so the equations
defining R0 → R1 are x(0)1,1 = N1 and x(0)1,r = Na

1Nr. We have that ω(y(0)1,r) =
eaω(y(0)1,1). Define a GMTS along ω, S0 → S1, by S1 = S0[M1,Mr]ω where y(0)1,1 =
M1, y(0)1,r = M ea

1 Mr. We have that Mr = γaNr so S1 = R1[z1, . . . , zm]ω. As in the case
m > 1 or m = e = 1, we may define our good parameters {y(1)i,j} in S1 so that the
good parameters {x(1)i,j} in R1 and the good parameters {y(1)i,j} in S1 are related by
an expression of the form of Proposition 6.2.

Suppose that the MTS R0 → R1 is of the type (3,m). Then R1 = R[N ]ν where

N =
x(0)k,l

x(0)d1m,1 · · ·x(0)
dsm
m,s1

.

for some d1, . . . , dsm ∈ N, k > m and 1 ≤ l ≤ tk. The good parameters {x(1)1,1} in R1 are
defined by

x(1)i,j =

{
N if i = k and j = l
x(0)i,j otherwise.
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If m > 1 or e = m = 1, then

N =
y(0)k,l

y(0)d1m,1 · · · y(0)
dsm
m,sm

and if m = 1 and e > 1, then

N = γ−d1
y(0)k,l

y(0)ed11,1

.

We may thus define a GMTS along ω, S0 → S1, of type (3,m) by S1 = S0[N ]ω.
The good parameters {y(1)i,j} in S1 defined by the GMTS are such that after making

a good change of parameters, replacing y(1)k,l with x(1)k,l, the good parameters {x(1)i,j}
in R1 and the good parameters {y(1)ij} in S1 are related by an expression of the form of
Proposition 6.2. We have that S1 = R1[z1, . . . , zm]ω. �

We now prove Theorem 1.3 from Section 1, which we restate in Theorem 6.5.

Theorem 6.5. Let K be an algebraic function field over a field k of characteristic zero
and let ν be a valuation of K/k (ν is trivial on k). Assume that L is a finite extension
of K and ω is an extension of ν to L. Then Vω is essentially finitely generated over Vν if
and only if e(ω|ν) = ε(ω|ν).

Proof. If Vω is essentially finitely generated over Vν then e(ω|ν) = ε(ω|ν) by Theorem 4.1
[8].

Suppose that e(ω|ν) = ε(ω|ν). We will show that Vω is essentially finitely generated
over Vν . Let R0 → S0 be such that R0 satisfies the conclusions of Lemma 2.1 and the
conclusions of Proposition 6.2 with respect to very good parameters in R0 and very good
parameters in S0. Write S0 = R0[z1, . . . , zm]ω. We will show that Vω = Vν [z1, . . . , zn]ω.

Suppose that f ∈ Vω. Write f = g
h with g, h ∈ S0. By Lemma 5.3, and since with the

conclusions of Proposition 6.2 S0 is a localization of the integral closure of R0 in L, there
exists c ∈ R0 = R0 such that gh divides c in S0. By Theorem 4.1, there exists a sequence
of GMTSs R0 → R1 → · · · → Rm such that

c = x(m)
d1,1
1,1 · · ·x(m)

d1,s1
1,s1

x(m)
d2,1
2,1 · · ·x(m)

d2,s2
2,s2

x(m)
d3,1
3,1 · · ·x(m)

du,su
u,su γ

where γ is a unit in Rm and dij ∈ N for all i, j.
By Proposition 6.4, there exists a sequence of GMTSs S0 → S1 → · · · → Sm such

that Sm = Rm[z1, . . . , zn]ω and there are good parameters {yi,j(m)} in Sm such that
x(m)i,j = y(m)i,j if 1 < i ≤ u and 1 ≤ j ≤ si or if i = 1 and j > 1. We further have that

x(m)1,1 =

{
τy(m)e1,1 where τ ∈ Sm is a unit if e > 1
y(m)1,1 if e = 1.

Thus in Sm, c has an expression

c = y(m)
ed1,1
1,1 y(m)

d1,2
1,2 · · · y(m)

d1,s1
1,s1

y(m)
d2,1
2,1 · · · y(m)

d2,s2
2,s2

x(m)
d3,1
3,1 · · · y(m)

du,su
u,su γ

′

where γ′ is a unit in Sm (γ′ = γ if e = 1).
Since gh divides c in Sm, we have expressions

g = y(m)
a1,1
1,1 · · · y(m)

a1,s1
1,s1

y(m)
a2,1
2,1 · · · y(m)

a2,s2
2,s2

x(m)
a3,1
3,1 · · · y(m)

au,su
u,su α

where α is a unit in Sm and aij ∈ N for all i, j, and

h = y(m)
b1,1
1,1 · · · y(m)

b1,s1
1,s1

y(m)
b2,1
2,1 · · · y(m)

b2,s2
2,s2

x(m)
b3,1
3,1 · · · y(m)

bu,su
u,su β
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where β is a unit in Sm and bij ∈ N for all i, j. Let

W1 = x(m)
a1,1
1,1 x(m)

ea1,2
1,2 · · ·x(m)

ea1,s1
1,s1

x(m)
ea2,1
2,1 · · ·x(m)

ea2,s2
2,s2

x(m)
ea3,1
3,1 · · ·x(m)

eau,su
u,su

and

W2 = x(m)
b1,1
1,1 x(m)

eb1,2
1,2 · · ·x(m)

eb1,s1
1,s1

x(m)
eb2,1
2,1 · · ·x(m)

eb2,s2
2,s2

x(m)
eb3,1
3,1 · · ·x(m)

ebu,su
u,su .

We have that ν(W1) = eω(g) ≥ eω(h) = ν(W2).
By Proposition 3.1, there exists a sequence of GMTSs

Rm → Rm+1 → · · · → Rv

of types (1,m) and (3,m) such that W2 divides W1 in Rv.
By Proposition 6.4, there exists a sequence of GMTSs Sm → Sm+1 → · · · → Sv such

that Sv = Rv[z1, . . . , zn]ω and there exists a good change of parameters {y(v)i,j} in Sv
such that the good parameters {x(v)i,j} of Rv have the good form of the conclusions of

Proposition 6.4. Thus W2 divides W1 in Sv. Now W1 = geα−eτa1,1 and W2 = heβ−eτ b1,1 .
Thus he divides ge in Sv. Now g and h are monomials in the good parameters of Sv times
units. Thus h divides g in Sv and so f = g

h ∈ Sv. Thus f ∈ Vν [z1, . . . , zm]ω. Since this is
true for all f ∈ Vω, we have that Vω = Vν [z1, . . . , zm]ω is essentially finitely generated over
Vν .

�
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