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ABSTRACT

Modern applications, written in high-level programming languages,
enjoy the security benefits of memory and type safety. Unfortu-
nately, even a single memory-unsafe library can wreak havoc on
the rest of an otherwise safe application, nullifying all the security
guarantees offered by the high-level language and its managed
runtime. We perform a study across the Node.js ecosystem to un-
derstand the use patterns of binary add-ons. Taking the identified
trends into account, we propose a new hybrid permission model
aimed at protecting both a binary add-on and its language-specific
wrapper. The permission model is applied all around a native add-
on and is enforced through a hybrid language-binary scheme that
interposes on accesses to sensitive resources from all parts of the
native library. We infer the add-on’s permission set automatically
over both its binary and JavaScript sides, via a set of novel program
analyses. Applied to a wide variety of native add-ons, we show that
our framework, BINWRAP, reduces access to sensitive resources,
defends against real-world exploits, and imposes an overhead that
ranges between 0.71%-10.4%.
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« Security and privacy — Web application security; Software
security engineering; « Information systems — Web interfaces.
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1 INTRODUCTION

Modern software development relies heavily on third-party libraries.
Third-party libraries refer to software components, or modules,
which are usually put together by developers that are external
to a particular software system’s development team. Third-party
libraries can be integrated into a software system to add function-
ality, improve performance, or simplify the development process.
The vast majority of the libraries imported in a Node.js application
are implemented in JS, and thus enjoy the memory safety guar-
antees provided by a high-level programming language, enforced
by its managed, runtime environment—at times, augmented with
language-based protection techniques [1, 17, 40, 67, 70-72].

Often, however, Node.js applications import libraries that are
written in low-level languages or provided in binary-only form.
These libraries, termed native add-ons, implement either function-
ality not available yet in the pure-JS ecosystem or components that
need to be in low-level languages for performance and compatibil-
ity reasons. Native add-ons interact with the rest of the program
through a thin JS layer wrapping the library enough to expose
Node.js-specific naming and calling conventions.

Unfortunately, native add-ons are particularly dangerous to the
rest of a JS (or, in general, a memory-safe) application—for example,
over 20 CVEs are reported for a single string-interpolation add-
on [65]. The complete lack of memory safety means that even a
single line of memory-unsafe code may completely compromise an
application’s safety and security. Native add-ons can additionally
bypass the security guarantees provided by the aforementioned
language-based hardening and protection techniques [41]. The
exploitation risks of native add-ons compound, as these components
are more likely to be targeted by malicious actors—exactly because
of their vastly higher insecurity and potential impact.

In this work, we develop BINWRAP: a hybrid language-binary
framework for protecting against native add-ons present in mod-
ern Node.js applications. We develop a fine-grained read-write
permission model, applied at the boundaries of native add-ons,
offering a unified view and isolation of privilege, cutting across
the barrier between the language wrapper and the corresponding
binary code. Two components enforce these permissions across
the language-binary barrier, during the execution of the program,
protecting both sides of a native add-on: (1) language-level interpo-
sition protects against unauthorized use of the language-level bind-
ings (BINWRAPy ), and (2) binary-level indirection wraps the entire
library and checks permissions to outside interfaces (BINWRAPp).
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To aid developers, a pair of program analysis components infer
permissions automatically, over both the binary and JS sides of
a native add-on. Combined, the permission model and associated
analyses aim at reducing the risk of native add-ons, while main-
taining practical performance and automation characteristics to
enable adoption. The evaluation of our framework demonstrates
that BINWRAP can effectively protect real-world applications, when
vulnerabilities are exploited within the loaded native modules. BIN-
WRAP is an efficient solution, imposing a performance overhead
that ranges between 0.71%-10.40%. It is also scalable and practi-
cal, since our design choices were directly influenced by the NPM
ecosystem norms.

2 BACKGROUND
2.1 Node.js, V8, and NAN

Node.js is a runtime environment for executing JS code, which
primarily targets server-side applications [52]. Internally, Node.js
leverages the V8 JS engine [28]. V8 parses JS code and converts it to
an AST (abstract syntax tree), which can later be “lowered” to V8-
specific bytecode that, in turn, can be interpreted with the Ignition
interpreter [25]; moreover, JS code (in AST or bytecode form) can
be compiled to machine code using the (optimizing) TurboFan or
(non-optimizing) SparkPlug compiler [26].

Node.js is built around V8 (both are implemented in C/C++) and
provides a rich set of APIs (i.e., the Node-API [47], but also, among
others, the NAN [46] and V8 [27] APIs) to JS applications. Most
importantly, Node.js allows JS programs to load native add-ons
(i.e., modules written in C, C++, or ASM). Typically, JS applications
leverage add-ons to: (1) perform compute-intensive tasks using
highly-optimized C, C++, or even handwritten-ASM code [35];
(2) have access to other (dynamically-loaded) system libraries [55];
(3) interact freely with the underlying OS kernel via the system
call interface, and utilize system services for which JS abstractions
are not available [48]; or even (4) perform computations on special-
ized hardware (e.g., GPUs [33]). (Interested readers are referred to
Appendix A for more information about Node.js and V8.)

2.2 Restricting Memory Accesses

Intel MPK/PKU [32] offers userspace processes the ability to change
access permissions on groups of memory pages without invoking
the underlying OS. Each page group is associated with a unique
key. An application can have up to 16-page groups. The access
rights for each page group are mapped in a thread-local and user-
accessible register, called %pkru. Since %pkru is thread-specific, MPK
supports different per-thread view(s) of the process’s memory. For
example, different application threads can have different access
rights configured for each key in their %pkru register.

Data accesses on memory pages, associated with protection keys,
are checked both against the (RW) access rights defined in the %pkru
register, as well as the permissions in page tables. In contrast, in-
struction fetching is checked only against page table permissions.

If a memory page is executable (in the respective page tables),
but configured with ‘no access’ in %pkru, the memory page is
treated as execute-only [54]. This occurs since any data access will
result in a mismatch between the rights defined in the page table
and the %pkru register. Linux supports execute-only memory pages
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by leveraging MPK/PKU. A call to mprotect with only PROT_EXEC
specified as permissions will result in the allocation of a new protec-
tion key, which will be associated with the corresponding memory
pages; next, the %pkru register will be set to DISABLE_ACCESS for
the newly-allocated protection key, while the page table rights will
be set to executable and readable (R-X).

For associating a memory page (or range of memory pages) with
a protection key, the Linux kernel implements the pkey_mprotect
system call. The access rights in the %pkru register can be modi-
fied with the wrpkru x86 instruction. Since %pkru register is user-
accessible, modifying the access rights does not impose significant
latency, and it is much faster than invoking memory management
system calls (e.g., mprotect). (Refer to Appendix B for more infor-
mation about protection keys and Intel MPK/PKU.)

2.3 Restricting System Calls

seccomp is a kernel mechanism for restricting the system calls
(syscalls) that an application can execute. Since v3.5, the Linux
kernel supports SECure COMPuting with filters (seccomp-BPF),
thereby allowing/denying syscalls based on system call numbers
and arguments (pointer dereferences are not supported). The ap-
plied filter can only be supplemented by a more restrictive filter
and cannot be removed. The filters applied are per-thread, and thus
syscall restrictions can be applied on a specific native thread only.

3 BINWRAP OVERVIEW

We use an image processing library (§3.1) to illustrate the issues of
a Node.js “module” containing vulnerabilities both on the JS and
the native (i.e., add-on) part(s) of its code, and then outline how
BINWRAP addresses the respective problems (§3.2).

3.1 png-img: A Node.js Graphics Library
Consider a Node.js application that creates PNG image objects from
a supplied input buffer. More specifically, the developer provides
a buffer to a Node.js library (png-img), implemented (partially) in
native, add-on code, which contains raw image data. In addition,
assume that the size of the input data is not checked to ensure they
fit into the buffer in question, and hence a memory error can occur.
Such errors are a common attack vector when code written
in memory- and type-unsafe languages, like C, C++, Objective-C,
and assembly (ASM) [69], is involved, and they typically manifest
by exploiting missing sanitization logic, pointer arithmetic bugs,
invalid type casts, etc.—i.e., bugs in code that trigger spatial [44]
or temporal [45] memory safety violations, enabling attackers to
corrupt or leak contents inside the (virtual) address space of victim
programs. The code snippet below corresponds to the relevant
application fragment of our example.
const fs = require('fs');

const PngImg = require('png-img');

1
2
3
4 let buf = fs.readFileSync('./img.png');
5 let img = new PngImg(buf);

First, the developer loads the library png-img (In. 2) to add image
processing capabilities in their application. Consequently, they load
raw (image) data into buf, using the fs module (In. 4). Finally, the
buf object is passed to the PngImg constructor for generating img,

i.e., the PNG image object.
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const PngImgImpl =
require('./build/Release/png_img"').PngImg;

module.exports = class PngImg {
constructor(rawImg) {

6 this.img_ = new PngImgImpl(rawImg);

coy

In the snippet above, we zoom into the step(s) performed by
png-img, after the developer imports the library to the application.
png-img uses NAN [46] to link a native function (written in C, C++,
etc.) with the PngImgImpl object (In. 1-2). Every time the png-img
constructor is invoked, the buffer object, which contains the raw
(image) data, is passed to the native function (In. 4-7).

Since the add-on is written in a memory- and type-unsafe lan-
guage, it may contain bugs (e.g., a buffer overflow, In. 6) that trigger
memory errors [69]. More importantly, given that the raw image
data are of unknown provenance, attackers may provide special
crafted inputs that exploit the underlying memory errors, poten-
tially resulting in arbitrary memory read (disclosure, leak) and arbi-
trary memory write (“write-what-where”) primitives [56].

In real-world settings, attackers primarily aim for tampering-
with control data (e.g., return addresses, function pointers, dynamic
dispatch tables) [37], as these facilitate hijacking the control flow of
the program and performing arbitrary code execution [50]—typically
via means of code reuse [10]: i.e., the attacker executes benign pro-
gram code, in an “out-of-context” manner, by tampering-with con-
trol data; a wide range of code-reuse attack techniques has been
developed thus far [6, 12], enabling access control and policy en-
forcement bypasses, privilege elevation, and sensitive data leak-
age [66]. Considering these facts, we found a relevant vulnerability
of png-img documented in National Vulnerability Database [42].
void PngImg::InitStorage () {

rowPtrs_.resize(info.height, nullptr);
data_ = new png_byte[info.height * info.rowbytes];

rowPtrs_[i] = data_ + i * info.rowbytes;

}

1
2
3
4
5 for(size_t i = 0; i < .height; ++1) {
6
7
8

}

The vulnerability is that height and rowbytes are 32-bit integers,
and thus can be overflowed. An attacker could trigger this overflow
in order to cause an inadequately-sized memory allocation (In. 3).
Subsequently, image data will overwrite memory near rowPtrs_[]
(In. 6). As we discuss in Section 8, this arbitrary memory write can
be used by an attacker to take over the control of the application.

3.2 Node.js Module Confinement with BINWRAP

To harden Node.js applications against vulnerabilities in png-img,
we apply BINWRAP both at the JS and the native part(s) of the library.
More specifically, BINWRAP comes bundled with a set of tools for
performing static and dynamic policy enforcement, at the level of
native, binary code (BINWRAPg), as well on JS code (BINWRAP]).
(The latter typically wraps the add-on code and provides a high-
level API for interfacing with Node.js-based application code.)
BINWRAPE consists of a set of memory isolation and code confine-
ment techniques, tailored to the runtime environment of Node.js,
which aim at restringing the execution, and side effects, of unsafe
add-on code in part(s) of the virtual address space (VAS).
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Specifically, the execution of native add-on code is dispatched to
a special (Node.js) execution thread, which has a restricted mem-
ory view of the virtual address space, by leveraging Intel’s MPK/-
PKU technology [32]. The benefits of this intra-VAS isolation are
twofold: first, memory errors in png-img’s native code cannot be
used to tamper-with data of the Node.js runtime—i.e., BINWRAPR
provides data confidentiality/integrity against (arbitrary) memory
disclosure/corruption vulnerabilities in unsafe library code; and,
second, any potential reuse of code is limited to re-using function-
ality that exists in png-img only—i.e., BINWRAPpR prevents code-
reuse-based, control-flow hijacking attacks (which originate from
the native library) from re-using code that exists in Node.js or in
other libraries in the same VAS.

In addition to the above, a seccomp-BPF filter is installed in the
special execution thread to further restrict the interactions of the
latter with the OS, in case the control-flow of the native (library)
code is tampered-with (despite being sandboxed). BINWRAPR auto-
matically extracts the set of syscalls required by the native code,
and complements that set with syscalls that may result from the
invocation of Node.js functionality via NAN (i.e., the native code
invokes Node.js code via the NAN API), as well as the invocation
of V8 or libc (and other system libraries) APIs.

At runtime, if JS code needs to invoke a native function that
belongs to png-img, via NAN, BINWRAPp dispatches the execution
of that function to the special thread, which executes the unsafe
code under a restricted memory view that is HW-enforced by Intel
MPK/PKU. The unsafe code may in turn invoke APIs that belong
to Node.js, V8, libc, or any other system library. In such cases, the
control flows to the target (API) entry points (and back) via special
gateways, which alter the memory view(s) of the code accordingly.

The required analyses for all the above (i.e., gateway generation,

syscall extraction) are performed statically during the installation
of a Node.js library/module that contains native code, and need
only to be repeated if the respective code is updated.
BINWRAP], consists of both a static and a dynamic enforcement
part. We use a state-of-the-art static analyzer, MIR [72], which
hits a sweet spot between soundness and completeness. By run-
ning the MIR static analyzer on the JS wrapper code of png-img
(i.e., index. js), at load-time, we get the following JSON report that
summarizes the developer-intended access permissions regarding
the various JS objects involved.

"/node_modules/png_img/index.js": {

1

2 “module": "r",

3 "module.exports": "w",

4 "require": "rx",

5 "require('./build/Release/png_img')": "ir"

6 “require('./build/Release/png_img').PngImg": "rx"
7}

Armed with the above, BINWRAP], traces object accesses at run-
time, and blocks any attempt to access an object in a way that
is not compatible with the extracted policy, thereby policing the
interaction of png-img with the Node.js application that uses it.

4 THREAT MODEL

We consider the exploitation of memory errors in benign native mod-
ules. An attacker can leverage memory-safety-based vulnerabilities
in order to develop arbitrary memory read and write primitives [56].
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The exploitation of these vulnerabilities can be used to access sen-
sitive data or perform code-reuse attacks [66]. We do not consider
malicious native modules that will actively try to evade our hard-
ening mechanisms. Moreover, we also assume that the high-level
language part of the library is confined through existing language-
based mechanisms [72]. The Node.js runtime, as well as any system
libraries, are considered to be trusted. Finally, we assume that side-
channel attacks [38] and hardware faults [11, 43] are out of scope.

In order for BINWRAP to protect the Node.js runtime environ-
ment from the above, the following OS and hardware features are
required. The OS must allow seccomp-BPF [34] in order to enable
syscall filtering. We also consider that the W"X [51] policy is en-
forced, and that the native module does not include self-modifying
code. Moreover, Node.js, system libraries, and the native module
leverage Address Space Layout Randomization (ASLR) [22]. Our
framework does not interfere with any other possibly deployed se-
curity mechanisms, like stack-smashing protection [15], RELRO [58],
FORTIFY_SOURCE [57], etc. Rather, these mechanisms can further
enhance the protection offered by BINWRAP. The hardware must
include MPK/PKU [32] or a mechanism that offers equivalent capa-
bilities. While our required hardware feature(s) cannot be consid-
ered “standard”, MPK/PKU is available in modern Intel server CPUs.
Moreover, MPK functionality can be emulated through memory
tagging, which is available in ARM v8.5-A [4].

Our techniques aim to address three challenges: (i) prevent the na-
tive module thread from accessing memory outside of the module’s
loaded address range and its heap-allocated memory; (ii) prevent
the native module thread from executing code-reuse-based gadgets
outside of the native module’s code area(s); and (iii) prevent the
native thread from misusing syscalls. We consider the Node.js run-
time environment, and our customized native module layer (NAN),
as the trusted part of the application, and the native module(s) as
the untrusted part(s). Our techniques ensure that any attack that
targets the native module will be confined within its bounds, and
will not affect the whole application.

5 LANGUAGE-SAFETY TRENDS IN NODE.JS

The NPM ecosystem contains more than 1.5 million packages, down-
loaded more than 151 billion times during the last month. This
quantity and popularity of packages makes NPM ideal for abuse. As
we focus on native libraries found in the entire NPM ecosystem, we
begin with investigating the following research questions (RQs):

e RQ1 What is the ratio of packages that use one or more
native modules on NPM? (§5.1)

e RQ2 What is the ratio of native modules that are imported
from libraries on NPM? (§5.2)

e RQ3 What are the most popular native modules used by
NPM packages? (§5.3)

We downloaded the entire NPM registry on a local host to
perform our analysis. We also cloned the NPM database to per-
form the essential queries and data extraction—the NPM registry
uses CouchDB [2] for storing information (on JSON format) about
Node.js packages. We used the replication mechanism of CouchDB
to download the entire registry locally, and made the necessary
configuration(s) to access it. Finally, we used a proxy registry, Ver-
daccio [73], to access our local repository of packages.
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Figure 1: Number of dependents in the top 50 NPM packages.

At the time of the registry replication, NPM contained 1,508,366
libraries. We used this number as the starting point of our study
and analyzed all the packages that had at least one dependency
with a native module. We chose the most popular native modules,
used by packages, which leverage NAN or Node-API (NAPI).

5.1 Number of Native Modules (RQ1)

We found that of the 1,508,366 libraries, 63,381 of them had at least
one dependency related to NAN or NAPI. A library is dependent
on a native module when it includes the NAN or NAPI module
directly, or indirectly via its dependency list. (In the direct case,
the package imports any of the two native modules itself; in the
indirect case, some of its dependencies import NAN or NAPI in-
stead.) From the respective packages, 45,708 packages depended
on NAN, 23,239 packages depended on NAPI, and 5,548 packages
depended on both. From those 63,381 libraries, more than 76.7% had
a single native dependency. For the remaining 23.3%, we found that
13.7% of libraries had two native dependencies, 4.2% of libraries
had three native dependencies, and 2.3% of libraries had four native
dependencies. The last 3.1% of libraries had five to ten native de-
pendencies. Finally, only 99 libraries used ten native dependencies.
We conclude that there is only one native package per module in
most of NPM packages.

5.2 Ratio of Native Modules (RQ2)

Third-party libraries, usually include a combination of native li-
brary dependencies and ordinary JS dependencies. The packages
that use either NAN or NAPI as native modules had an average of
11 total dependencies. Among those dependencies, 0.95% on aver-
age were NAN dependencies, and 0.65% were NAPI dependencies.
The average ratio of NAN dependencies against the total set of
dependencies was 24.22%. The average ratio of NAPI dependencies
against the total set of dependencies was 11.27%.

5.3 Popularity of Native Modules (RQ3)

Packages that use native modules comprise 4.2% of the total NPM
ecosystem. This percentage is a significant part of the NPM ecosys-
tem and results in multiple daily downloads. In this section of the
paper we will answer how popular this 4.2% of native packages is
by measuring their total dependents. For a package to depend on
another, it must be included in its dependency list.
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By studying the number of dependents, we can assess the impact
of a vulnerability on a native package. For the NAN-based native
modules, 8,148 packages had dependents. The average number of
dependents per package was 7.2. The minimum number of depen-
dents on a package was one, and the maximum was 8,457. A total
number of 58,778 packages were dependent on the NAN native
module. When we conducted our analysis, the package with the
most dependencies was node-sass, with over 8k dependents. The
least popular package (in the top-50 list) was ledgerhq with ~90
dependents. Meanwhile, only the top 11 packages had more than
500 dependents. Figure 1 presents the number of dependents of the
top-50 (most popular) packages. We surmise that our evaluation
set is an ample representation of third-party libraries in NPM.

For the NAPI native modules, 5,762 packages had dependents.
The average number of dependents per package was 6.6. The mini-
mum number of dependents on a package was one, and the maxi-
mum was 2,322. A total number of 38,383 packages were dependent
on the NAPI native module. Hence, 97,161 packages are dependent
on native modules, and any security incidence will therefore affect
a significant part of the NPM ecosystem.

6 DESIGN

The key idea behind BINWRAP is to separate the runtime execution
of the untrusted component from the rest of the application. Run-
time separation is achieved using different execution threads for
the two domains of trust, while isolating the thread responsible
for executing the untrusted component involves limiting its mem-
ory visibility and syscall execution capabilities. More specifically,
BINWRAP limits the memory visibility of the untrusted component
by creating a dedicated memory view for the untrusted thread.
It also limits access to the syscall API available to the untrusted
component, by wrapping and filtering syscalls.

Figure 2 presents BINWRAP’s approach to hardening Node.js.
First, BINWRAP compiles the untrusted component and then stati-
cally analyzes the resulting ELF binary—i.e., a .so dynamic shared
object (DSO). We prefer analyzing binary over source code, as we
can discover more easily the complete set of external symbols re-
quired (e.g., calling printf will also execute other libc functions,
like write). This analysis aims at extracting (1) the full set of syscalls
necessary for the execution of the native component, and (2) the
set of Node.js-internal API calls used by the native component—
e.g., v8::External::New(v8::Isolatex, voidx), v8::0bject::-
SetInternalField(int, v8::Local<v8::Value>), etc. Next, BIN-
WRAP creates a custom instance of a Node.js API layering library,
which is loaded during the initialization of the native component.

This BINWRaP-infused library sets up appropriate seccomp-BPF
filters for the set of syscalls extracted in the previous step. BIN-
WRaP (re)links the native component against this library instance,
effectively “injecting” the filter into the native component.

6.1 Isolation Components

Native-code execution. Native modules utilize the NAN package
to wrap unmanaged code. Native code is invoked through callback
objects. BINWRAP dispatches these callback objects to a restricted
thread, which is initialized during the first time a native function
is executed. The Node.js (main) process thread that dispatched the
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Figure 2: Hardening Node.js with BINWRaP.

callback object to the restricted thread will block until the native
function returns, after which the main thread will be unblocked.
We used a shared lock as the synchronisation primitive between the
two threads. This “split thread” design enables BINWRAP to leverage
thread-specific mechanisms (i.e., MPK/PKU and seccomp-BPF) to
isolate the execution of native code. A separate thread is created
for each native module loaded, since seccomp-BPF filters are per-
module and can be only modified to deny more syscalls—thus native
modules with different syscall sets cannot share the same thread.
Data-access filtering. Since BINWRAP decouples the execution
of untrusted code, by dispatching it to a restricted thread, we can
prohibit arbitrary accesses to sensitive data stored in the memory
(part of the VAS) of Node.js by leveraging Intel’s MPK/PKU [32].
During the initialization of the native module thread, we associate a
protection key with the pages that may contain sensitive data; these
include all the memory regions allocated and managed by the V8
JS engine. The native module thread will initially change the rights
associated to no access, on the protection key assigned to the
allocated pages of Node.js. The native module address range(s), and
allocated memory, are excluded from this set. Subsequent memory
allocations for expanding V8 memory pool(s) are also associated
with the protection key of Node.js. Finally, through analyzing the
symbol tables of the top-500 popular native modules, we found no
occurrences of explicit data sharing between Node.js and native
modules (e.g., via globally-scoped symbols).

A limitation of MPK/PKU is that only 16 keys are available,
and thus only 16 different memory views can be supported. As
we mention in Section 5, we encountered at most 10 imported
native modules, by a single library, in the entire NPM ecosystem.
Moreover, this issue can be address by solutions like 1ibmpk [53],
which virtualize protection keys. Another solution is to group sets of
native add-ons under the same protection key; in this case, however,
a vulnerable module can affect everything else in the same set.

Node.js and V8 export a large API in order to allow native mod-
ules to perform various tasks (object allocation and management,
type conversions, etc.). Since Node.js is part of the trusted domain,
when the native thread executes Node.js API functions, the access
rights on Node.js data should be re-enabled. In our framework, we
modified the API functions to change the rights for the correspond-
ing protection key to allow memory operations.
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Figure 3: Compilation order of native modules in BINWRAP.

(We reimpose restrictions before an API function returns back to
the native module.) During every API call we spill the %pkru register
on the call stack; during returns, %pkru will be modified only if the
previous rights stored in the stack restrict memory accesses further
(i-e., the execution “returns” to the native module). This design
choice stems from the fact that API calls may be nested.

During the execution of the trusted part, the thread can access
any data, and Node.js API functions may copy data in the stack
(e.g., as function arguments). An attacker could access sensitive
data by harvesting stale data in deallocated stack frames after API
functions return. To prevent this, the native execution thread zeroes
out the deallocated stack frames, before returning back to the native
module, effectively deleting any residual data.

Code-reuse prevention. An attacker could launch a code-reuse
attack, in the untrusted domain, targeting instruction snippets like
wrpkru, which remove restrictions and allow accessing data from
memory areas that are inaccessible by the native module. These
instruction sequences are present in the trusted (Node.js) code

since the data access restrictions are lifted during its execution.

They can also be implicitly present in the untrusted part, since
x86 instructions are variable-length and the architecture allows for
overlapping instructions [63]. Moreover, the xrstor instruction can
be leveraged to tamper-with %pkru, effectively allowing access on
restricted memory. In order to prevent an attacker from using the
“unlocking” code, we again utilize MPK and also rely on information
hiding [39] to hide the location of the trusted code (Node.js) from
the untrusted part (i.e., the native module). The key idea of this
technique is that the native module can call Node.js API functions
without ever knowing their address. We designed a custom linking
procedure to hide Node.js, and library locations, from the untrusted
part, which operates as follows.

Initially, we extract all the API and library functions, needed by
the native module, from the respective DSO’s .plt section, along
with the corresponding offset(s) in the . got section. Then, we create
a new wrapper DSO, which contains a wrapper function for every

Node.js API and library function required by the native module.

We link the wrapper DSO to the native module, and resolve the
native module’s dynamic symbols to point at the wrapper’s (at load
time). Next, we utilize the capability from MPK to mark the wrapper
functions as execute-only. Thus, arbitrary reads will fail to reveal
API and library locations. Additionally, information hiding ensures
that the addresses of Node.js, and the linked libraries, are different
on separate executions.
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Figure 3 presents a high-level overview of BINWRAP’s compila-
tion and linking procedure. Finally, the wrapper library implements
dynamic symbol interposition to filter syscalls that can bypass the
native module sandbox, if misused [13, 61, 74]. To prevent attacks
targeting implicit xrstor and wrpkru instructions, we scan the bi-
nary with the ROPgadget tool [59]. We vet any occurrence of these
instructions in a similar manner as G-Free [49]. Since we can also
operate on the source level of the native module, we do not strictly
rely on static binary rewriting [75] to vet unsafe instructions; we
rather transform the source code to prevent unsafe instructions
from being emitted in the final binary. Our analysis of the top-500
native modules with ROPgadget found no implicit occurrences of
xrstor and wrpkru instructions. The chances of implicit occurrence
are low, since both these instructions are larger than 3-bytes. We do
not need to vet unsafe instructions in Node.js or the linked libraries
(e.g., libc), since we wrap all the dynamically linked symbols with
execute-only wrappers in order to hide their actual location in the
memory. This process can be further improved with the adoption
of fine-grain, leakage-resilient code diversification [9, 16, 54].

6.2 System-call Set Extraction

Native modules often depend on syscalls for key functionality avail-
able by the underlying OS. There are two avenues native modules
issue syscalls: (a) by directly invoking the respective syscall or libc
wrapper; and (b) by indirectly invoking syscalls through the use of
Node.js APIs—e.g., the add-on calls v8: :External: :New(v8::Iso-
latex, voidx), which internally calls brk.

Since native components make extensive use of Node.js-internal
APIs, the resulting combined set of syscalls used by the native
component may be large. This set can be used as a means for an
attacker to cross the protection boundary, effectively bypassing
BINWRAP’s enforcement mechanism [13, 74]. To extract the full set
of system calls a native module requires, we use an intra-procedural,
precise binary analysis [18].

Direct syscalls. The analysis first receives as input the native com-
ponent: i.e., a .node (ELF) file. It proceeds to resolve dependencies
to shared libraries, and then (over-)approximates the function-call
graph (FCG) of the native component. This approximation is con-
structed over all objects in the scope of the component and its
dependencies. We then use-def analysis atop the FCG to extract a
tight (but safe) set of developer-intended syscalls [18].

Inherited syscalls. To identify the Node.js-internal API functions
used by the native component, we first analyse the native module’s
symbol table. We then use each function symbol as the entry point
for analyzing the Node.js executable and identify the reachable
syscalls. The analysis trades soundness for completeness, in that
system calls performed by the native component will exist in the
extracted set—however, not all extracted syscalls are expected to
be used in every execution of the native component.

6.3 System Call Filtering

BINWRAP uses the extracted system-call set to create a filter con-
taining the complete set of syscalls that may be executed by the re-
stricted thread. Given a set of allowed syscall numbers, BINWRAP’s
enforcement tool uses seccomp-BPF to perform syscall filtering
during the execution of add-on code on the restricted thread.
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To inject the filter into the add-on, BINWRAP uses a set of specific
Node.js API templates. BINWRAP provides custom templates of
Node.js API libraries that contain placeholder segments instantiated
with custom filter instances. Different Node.js API wrappers—NAN,
NAPI, etc.—correspond to different templates. Furthermore, syscalls
requiring pointer argument filtering (see Section 7.2) are interposed
in the wrapper DSO through their respective libc function.

BINWRAP then instantiates each template (still as source code) us-
ing (1) information extracted from the earlier static-analysis phase
(§6.2), and (2) additional hard-coded policies for syscalls than can be
potentially abused. It then compiles the native component, linking
against the Node.js API instance, which contains the seccomp-BPF
filter corresponding to this native component and the Node.js, V8,
and wrapper DSO. Loading the compiled native component at run-
time will result in the untrusted thread executing the appropriate
seccomp-BPF filter upon initialization.

7 IMPLEMENTATION

Our framework applies across the whole stack of Node.js (§3). The
JS code of the third-party library is analyzed with BINWRAP] to
extract the permission model that will be enforced at runtime (§3.2).
Our NAN modifications add =200 LOC (C++) for initializing the
restricted execution thread, the synchronization primitives, and
seccomp-BPF (§6). We chose NAN (for BINWRAP] ) due to compati-
bility reasons; our implementation is applicable to NAPI as well.

7.1 Memory Isolation

Node.js and V8 API modifications. We modified any V8 and
Node.js API function reachable through the NAN API. We identified
the full set of these functions by analyzing the test suite of the NAN
package. Our analysis discovered 122 dynamic symbols that point to
V8 and Node.js code. We additionally analysed the native modules
that consist our evaluation set and found that they link less than
half of these functions—i.e., 50 symbols. Our modifications remove
memory restrictions upon entry (to Node.js/V8 code) and reimpose
them before the API function returns to the native module (§6.1).
Wrapper code. Wrapper libraries are generated using shell scripts
and range between 240 — 600 LOC (Bash), depending on how many
V8 and Node.js symbols are dynamically linked to the native add-on.
The wrapper functions are pure (i.e., no stack frame) and consist of
two instructions implementing a computed branch.

1 __attribute__ ((aligned(4096), pure))

2 void

3 wrap_node_api_func(void)

4 { asm ("movq Oxdeadcafe, %rax; jmpq *%rax"); }

Syscalls with pointer arguments that can be potentially misused
are intercepted by preloading their libc wrapper. The wrapper
includes a constructor method that will be the first function executed
when the native add-on is loaded. Each pure wrapper is patched
by the constructor in order to store the wrapped symbol’s address
(e.g., Oxdeadcafe) in the auxiliary register (%rax), which will be
dereferenced during the computed branch. The native module’s
.got is configured to point at the wrapper functions. Finally, the
constructor maps the wrappers as execute-only. The net effect of the
above is the effective “hiding” (in a leakage-resilient manner) of the
wrapped symbols. (Refer to Appendix C and D for more information
about symbol wrapping and Node.js and V8 API modifications.)
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7.2 Memory-sandbox Hardening

Several studies have shown that certain syscalls can be leveraged
to bypass MPK/PKU-based restrictions [61, 74].

Memory management. Syscalls that are used for memory man-
agement, like mmap, mprotect, mremap, etc., can be used to allocate
executable memory, execute instructions that mangle protection
keys, and access data in normally-inaccessible memory locations.
Protection keys can also be wiped by de-allocating and re-allocating
the target memory region(s). In BINWRAP, we hook these system
calls and disallow them to target the protected domains as well as
allocating executable memory. We also disallow remapping exe-
cutable pages, since it is possible to form unsafe instructions on
page boundaries. Using personality() with READ_IMPLIES_EXEC
an attacker can render any subsequent allocated pages executable.
None of the native modules required this system call, and thus we
safely deny its execution. We finally disallow userfaultfd, since it
can enable arbitrary writes on MPK-protected pages [61].
Process/thread control. Another family of dangerous system calls
is related to process creation (fork, execve, clone). In clone, the
MPXK configuration is inherited to the new thread, and is thus safe;
fork, however, can be combined with kill to force the child process
produce a core dump, which can then be read by the untrusted do-
main. We found that fork and execve are not really required by na-
tive add-ons and deny their execution. We also disable core dumps
by configuring the application process with PR_SET_DUMPABLE and
SUID_DUMP_DISABLE. This also prohibits access to procfs and thus
prevents the misuse of file-related syscalls. We also deny prctl and
set_thread_area, which can remap thread-local storage.

Signal handling. During signal delivery, the kernel stores the
register state (including %pkru) on the call stack. When the signal
handler finishes its execution, the register state is restored through
rt_sigreturn. An attacker can craft a register state where the
sspkru register allows full memory access and execute a sigreturn
gadget in order to obtain universal access [8]. There is no wrapper
for rt_sigreturn in libc, since it is not supposed to be called by
applications. However, an attacker can call rt_sigreturn through
reusing syscall/sysenter instructions. In BINWRAP, we treat such
instructions as unsafe, and we prohibit them in the executable sec-
tion(s) of the add-on. Thus, an attacker cannot invoke rt_sigreturn.

8 EVALUATION

To assess BINWRAP, we use a set of real-world, native NPM pack-
ages, investigating the following evaluation questions (EQs):

e EQ1 How effective is BINWRAP at defending against attacks
that exploit real-world vulnerabilities? (§8.1)

¢ EQ2 How much BINWRAP reduces the set of syscall in the
context of native modules, what is the set breakdown? (§8.2)

e EQ3 How efficient and scalable are each of BINWRAP com-
ponents (BINWRAP], BINWRAPR)? (§8.3)

Add-ons and workloads. We evaluated each of BINWRAP compo-
nents, assessing their security guarantees and the runtime overhead
imposed. To address EQ1, we evaluate BINWRAP against exploits
targeting vulnerabilities (pulled from the Snyk [64] database) in
popular third-party libraries. We found that BINWRAP successfully
prevents the exploitation of the selected vulnerable packages.
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Figure 4: Overview of the analysis for our evaluation set.

To address EQ2 and EQ3, we evaluated the overhead of BINWRAP
using real-world applications that stress individual components
and provide insights about the micro- and macro-aspects of the
performance impact. Our results indicate that BINWRAP can offer
strong security guarantees to JS applications that utilize third-party
native add-ons, while imposing an overhead between 0.71%-10.40%.

To benchmark each package and application, we tried to execute
its corresponding test suite. If the application developer(s) did not
provide any test suite, we used the example code provided in the re-
spective repository. We used two sets of benchmarks: the first, and
major set, consists of benchmarks that implement the behaviour
of an actual application, which uses third-party libraries—i.e., exe-
cuting mostly JS code and offloading heavy computations on the
native add-on(s); the second set consists of benchmarks that execute
native functions in tight loops, thereby stressing the cross-domain
transitions of our framework.

Testbed. We used a host armed with an Intel Core 19-10900 CPU
and 32GB of RAM, running Linux v5.4. We implemented our modi-
fications on Node.js v8.9.4. BINWRAP does not require any kernel
modifications to run and only needs support for MPK/PKU and
seccomp-BPF. We run our benchmarks in the latest Ubuntu distri-
bution, and so we had to recompile each library that Node.js loads
dynamically to remove (Intel) CET/IBT instrumentation [14], which
is added by default in most packages. (Intel IBT uses a customized
.plt section that is not supported by sysfilter [18].) Note that
removing IBT instrumentation does not affect the analyses, or code
transformations, of BINWRAP. Finally, we disabled C-states and
Turbo Boost, and locked the clock frequency at 2.8GHz.

Evaluation set. To find a representative set of libraries to evaluate
BINWRAP, we analysed the entire NPM ecosystem. The goal of this
analysis was to find applications covering the following criteria:
(i) large number of dependents; (ii) compatibility with our tool; and
(iii) security exigency. In addition, the respective NPM packages
should run successfully in the unmodified baseline. To analyze the
applications on NPM, we used the local registry from our study (§5).

We took multiple steps to get from the 1,508,366 libraries to
the 20 in the evaluation set (Table 1). All these steps are displayed
on Figure 4. First, we found all the libraries that have NAN as a
dependency (5,073 packages). We only consider packages that can
be installed without manual effort (4,201 packages), while we also
removed duplicates (3,508 packages). Next, we selected packages
shipped with test cases that could run out of the box (400 packages).
Finally, we reduced our set to 20 based on the criteria outlined in
Figure 4. The evaluation set includes packages that do not have
large number of dependents.
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For example uriparser and node-hll-native have under 5 de-
pendents. However, these libraries are shipped with tests that are
suitable for benchmarking the micro-aspects of BINWRAP. On the
other hand, statvfs and picha are required by Manta Minnow and
Video Thump Grid respectively, which are complete Node.js appli-
cations and offer insights about performance in real-world settings.
node-fs-ext, syncrunner, node-delta and mtrace where chosen
to diversify the types of libraries in our set. Finally, png-img is also
used in our security evaluation, since it contained known vulner-
abilities. The packages in the selected evaluation set contain one
native library, which is the most common scenario (§5.2).

8.1 Security Evaluation (EQ1)

To assess the security of BINWRAP we implemented exploits for four
distinct CVEs, by analyzing vulnerabilities reported in Snyk [64]
for NPM packages. These vulnerabilities occur due to memory
errors in the DSO(s) that ship(s) with various NPM packages. To
evaluate the security of BINWRAP, we exploit these vulnerabilities,
and bypass the boundaries of the untrusted part, by mimicking
similar, publicly-available exploits [19-21].

CVE-2018-11499 is an information disclosure vulnerability that
manifests via a use-after-free. The vulnerability is present in the
node-sass package until v3.5.5, and occurs due to lack of proper
exception handling. Our exploit manages to leak pointers to heap
addresses, which can be used to construct arbitrary memory read
primitives. With BINWRAP, any attempt to read beyond the memory
allocated to libsass fails due to the restrictions (memory sand-
boxing) imposed through MPK/PKU (§6.1).

CVE-2018-18577 is a heap-based buffer overflow vulnerability en-
abling the construction of arbitrary write primitives. The vulner-
ability is present in libtiff, which the picha package loads for
processing image files. The bug stems from libtiff ignoring the
size of a destination buffer when decompressing JBIG-compressed
images. With BINWRAP, this exploit fails in corrupting data that do
not belong to the native module’s benign memory pages (§6.1).
CVE-2019-3822 is a stack-based buffer overflow that can lead to the
execution of a ROP gadget chain. The node-libcurl NPM package
links with libcurl, which contains the stack-based buffer overflow
vulnerability from v7.36 to v7.64. The vulnerability is due to the fact
that during an NTLM negotiation, libcurl sends a message to the
server containing the server’s original response. If that response is
large enough, it overflows a buffer in the call stack.

We used Ropper [60] to create a ROP chain that loads the com-
mand we want to pass to the system function of libc, and executes
it. This exploit is unsuccessful when BINWRAP is deployed, since
the system function ends-up executing the execve syscall, which
is not part of libcurl’s benign syscall set (§6.3).
CVE-2020-28248 leads to an under-allocated buffer due to an in-
teger overflow in a memory initialization function. The exploit is
present in the png-img NPM package in all versions up to v3.1.
This condition introduces a heap-based buffer overflow that can
be exploited using a specially-crafted PNG file. libpng registers a
callback function in a struct for reporting errors; the inadequately-
sized buffer is in the lower addressed region of the struct contain-
ing the error callback function.
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Table 1: Third-party libraries in our evaluation set.

Name Description Dependents CLOC syscalls Test Type
node-sass Style sheet preprocessor 8457 37365 93 Macro

bip32 Bitcoin wallet client 632 5559 82 Macro
xml.js XML and SAX parser 344 170K 93 Macro

iconv Text recoding 329 96967 91 Micro
zeroMQ Networking library 323 8131 114 Macro/Micro
node-ref Memory buffer utilities 289 6900 91 Macro
tiny-secp256kl Optimised library for ECDA 187 24511 82 Macro
heap-dump V8 heap dump 173 6395 91 Macro
ttf2woff2 TTF to WOFF2 converter 155 28185 91 Macro
pty.js Pseudo terminal for Node.js 128 6999 93 Macro
blake2 Hash function library 19 26207 91 Macro
pngImg PNG image processing library 6 66244 93 Macro

picha JPEG encoder/decoder 4 7522 92 Macro
statvfs File-system information 3 6463 93 Micro
mtrace Native memory tracing and logging 3 6263 91 Micro
node-uriparser Native library for URI parsing 3 8111 90 Macro/Micro
node-hll-native  Hyper log log algorithm 2 6663 91 Macro/Micro
syncrunner Return output from binary execution 2 10363 91 Micro

node- fs-ext File system utilities 0 6863 95 Micro
node-delta Delta compression algorithm 0 6680 82 Macro

Video Thumb Grid Video thumb grid generation (uses picha) na 7522 92 Application
Manta Minnow Storage utilization agent for Manta project (uses statvfs) na 6463 91 Application
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Figure 5: Syscall-set size for the 20 native add-ons (combined
with syscalls inherited due to Node.js APIs).

This vulnerability can be used to overwrite the callback (function
pointer), with an address of our choosing; we chose to overwrite
the error callback with the address of system in libc. Similarly
to CVE-2019-3822, this exploit is unsuccessful when BINWRAP is
deployed, due to syscall filtering (§6.3).

8.2 System-call Set Analysis (EQ2)

We analysed the 20 native modules with sysfilter to extract the set
of syscalls: (i) required by the native module itself; and (ii) required
through Node.js API functions. We found that Node.js API functions
require the same 62 system calls in all the 20 (native) add-ons. We
also found that the native module DSOs require roughly the same
syscalls as the Node.js API functions. The number of system calls

inherited from Node.js range from 2 (zeromq) to 35 (node-delta).
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Figure 6: Runtime overhead when deploying BINWRAP on
the 20 native add-ons in our evaluation set.

As shown in Figure 5, we can safely block more than ~ % of the
available syscalls in most cases, except in zeromg, which requires
114 system calls due to utilizing network sockets.

8.3 Performance Evaluation (EQ3)

To assess the performance impact of BINWRAP, when enabled on
third-party libraries, we compare its runtime performance against
the vanilla Node.js. We break BINWRAP down to three different parts
(to measure their contributing overhead): (i) the native function
sandbox; (ii) the dynamic analysis privilege checks; and (iii) the
combined impact of (i) and (ii) on runtime performance. Figure 6
summarizes the results of our evaluation.
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Macro benchmarks. We evaluated BINWRAP by running the test
suite provided by each NPM package. We run the npm test com-
mand 100 times and measured the average execution time for the
unmodified NPM package and with BINWRAP enabled.

The results indicate that BINWRAP imposes moderate overhead(s),

ranging between 0.71%-10.40%. The typical workload is the execu-
tion of JS code with sporadic invocation of native functions. The
overhead of the dynamic enforcer of BINWRAP is bound to the size
of the access rights extracted during the analysis phase (§3). The
overhead originating from the modifications in the native mod-
ule’s DSO is related to the synchronisation between Node.js and
the restricted thread. Since pkey_set instructions are executed in
userland, changing the rights during domain switches imposes
negligible overhead. Interposing syscalls system and Node.js API
functions is also lightweight since the number of extra instructions
executed due to interposition is small (§7).
Micro benchmarks. During domain transitions, the restricted
thread is unlocked and executes the native function. The main
thread, in turn, waits for the native module thread to finish the call-
back execution. We evaluated several synchronisation algorithms
to measure the performance in this scenario. Our baseline micro
benchmark is a function that increments a global variable, called
100M times. Next, we implemented the same scenario but this time
the process spawns a thread that will be responsible to increment
the variable. The new thread increments the variable once and then
locks until the main thread unlocks it. In a similar manner, the
main thread will lock until the thread responsible to increment
the variable unlocks the synchronization variable. When utilising
futex the overhead compared to the benchmark without threads is
240x. When using inline ASM memory operations to spin on the
synchronization variable the overhead was reduced to 80x.

We also evaluated BINWRAP with test cases included in NPM
packages that stress various security mechanisms; we present our
results in Figure 7. In the case of uriparser, the benchmark code
consists of only two loops that parse a URL 2M times. The first loop
uses the JS implementation of the parser, while the latter uses the
natively-implemented parser. The majority of the code executed
triggers the synchronization mechanism between Node.js and the
restricted thread. A similar scenario appears in node-hll-native.
The benchmark implements a tight loop that executes a native
hyperloglog function 50M times, which only executes ~300 in-
structions. Finally, zeromq consists of two instances (sender and re-
ceiver) communicating with small (1KB) TCP packets. The receiver
expects 1M packets from the sender. In this case, both the synchro-
nization and the system call filtering components are stressed.

9 RELATED WORK

OSes rely on process isolation (e.g., via means of virtual memory) to
prevent processes from arbitrarily interfering with each other. Intra-
process isolation, is required in applications that need to isolate
components within the same VAS. For example, web browsers
isolate the execution of different pages in order to prevent malicious
JS code from accessing sensitive data. A notable family of intra-
process isolation techniques is SFI (Software Fault Isolation); SFI
instruments memory operations in order restrict memory access
beyond a designated area.
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Figure 7: Micro-benchmarking results.

Other instrumentation approaches ensure that out-of-bound
pointers are transformed to in-bound. Research efforts focus on
in-process techniques, offering isolation guarantees with minimum
cost [5]. Beyond software-only solutions for intra-process isolation,
there are different mechanisms in widely used architectures that
can be leveraged for that purpose.

BINWRAP utilizes Intel MPK/PKU [32] to differentiate access
rights on memory when accessed from the trusted and untrusted
parts of Node.js applications. A comparison with various related
systems is displayed on Table 2. Several other research efforts, also
leverage MPK for intra-process isolation: ERIM [68] and Hodor [29]
introduce security domains in applications, and protect sensitive
data from being accessed by untrusted components. The access
rights are modified through call gates (ERIM) and trampolines
(Hodor). Moreover, binary inspection is used in order to vet oc-
currences of MPK-mangling instructions. Regarding system calls,
ERIM only intercepts memory management system calls, while
Hodor denies any system call originating from untrusted domains
by modifying the underlying OS. Recent studies [13, 74], however,
have demonstrated bypasses on both ERIM and Hodor; extended
system call filtering with ptrace in ERIM solves some issues, but
incurs substantial overhead [61].

Donky [62] modifies a RISC-V processor, enabling protection
keys and user-level interrupts. Domain transitions and memory
management syscalls are managed by a per-process monitor; only
the monitor has access to the protection key registers. Jenny [61]
resolves several limitations of Donky, effectively implementing
more complete system call filtering. However, Jenny and Donky
cannot be directly applied in x86 and require custom hardware.

PKRU-Safe[36] shepherds inter-domain data flows in MPK-based
sandboxes, but does not address the security issues presented by
Connor et al. and Voulimeneas et al. [13, 74] (i.e., syscall misuse,
stray MPK instructions). PKRU-Safe is orthogonal to BINWRAP and
could be deployed in order to enhance our memory restriction poli-
cies (i.e., what can be shared between Node.js and native add-ons).
Cerberus [74] aims to address the issues of MPK-based sandboxes
presented by Connor et al. [13], and also presents novel attacks.
Cerberus is an API, offering primitives for protecting other MPK
sandboxes, like Hodor and ERIM. System calls are handled through
a kernel-side monitor, but as the monitor is implemented in the OS,
it is not able to thwart sigreturn-based attacks.
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Table 2: Comparison of MPK sandboxes. 1Only addresses system call issues and is based on Donky. 2Is an API for MPK-based
sand boxes. 3PKRU-safe does not address MPK-based sandbox issues (i.e., system calls, stray unsafe instructions). *Cerberus

does not prevent exploitation through sigreturn.

Erim Hodor  Donky Jenny Cerberus PKRU-Safe BinWrap
In-Process Isolation v v v e /? v v
No Kernel Modifications X X X X X V3 v
System Call Restrictions Partial ~ Partial Partial Complete Partial No Complete
Unsafe Instruction vetting Partial ~ Partial NA Partial Partial No Complete
PKU Pitfalls Protection [13] X X X v /4 X v
New PKU Pitfalls Protection [74] X X X v v X v
Performance Overhead Low  Moderate Low Moderate Low Low Low
10 CONCLUSION [6] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-

We presented BINWRAP: a framework that applies across the whole
stack of Node.js applications in order to isolate the execution of
potentially-vulnerable, third-party native add-ons. We studied the
Node.js ecosystem and presented insights about how native add-ons
are used. By identifying certain trends, we implemented a hybrid
protection scheme that wraps both the native and high-level lan-
guage components of a native library. We evaluated the security of
our framework against exploits in real-world applications, and we
assessed the runtime performance overhead of BINWRAP, which
ranges between 0.71%-10.4%. We believe that BINWRAP is a practi-
cal framework that can protect Node.js applications in the presence
of native add-ons that are vulnerable to memory errors.

Availability

The prototype implementation of BINWRAP is available at:
https://github.com/atlas-brown/binwrap
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NODE.JS AND V8

Memory organization. V8 follows a hierarchical (virtual) mem-
ory organization scheme that is primarily geared towards garbage
collection (GC). Irrespective of how JS code is executed atop V38
(interpreted vs. compiled), JS programs are represented by a so-
called resident set, which is the collection of memory pages that V8
allocates to facilitate the execution of the respective program. The
resident set is further divided to memory (sub)regions that corre-
spond to the runtime (execution) stack of the JS program, as well as
the heap. The latter is designed with aggressive GC in mind, and, to
this end, is partitioned to multiple (semi-)spaces, which are object
allocation arenas that host short- and long-lived objects, in a way
that makes GC performant and effective [23]. The heap region also
includes special SLAB-like [7] areas (or spaces), to support the fast
allocation of special, typed objects, “large” (nmap-ed) objects, as well
as jitted code [24]. Lastly, V8 uses pointer tagging to differentiate be-
tween plain data and pointer values, while (dynamically-allocated)
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BINWRAP

JS objects are represented by opaque handles and accessed/modified
via specific accessor functions.

Native modules. JS applications can load native modules by using
the require function—i.e., the same mechanism that is used to load
JS-only libraries. In Linux, such add-ons are implemented as dy-
namic shared objects (DSOs), using the .node file extension, which
are essentially ELF DSOs mapped in the (virtual) address space of
the Node.js process via means of dlopen—the dynamic linker/loader
(1d.so) will first relocate the ELF object accordingly, then recur-
sively load all its . so dependencies (represented by DT_NEEDED en-
tries in the . dynamic section), perform symbol resolution (fill the re-
spective entries in the GOT sections), and, finally, invoke the module
constructors (functions annotated with __attribute__((construc-
tor)), _init, etc.). Add-ons may export functions, and objects, to
JS code, directly invoke JS functions passed as callbacks, and even
wrap C++ objects/classes in a way that enables their instantiation
directly from JS code (e.g., using the new operator).

The interoperability between JS and native, C/C++ code is di-
rectly facilitated by V8’s native code bindings. More specifically,
by leveraging the Node API (NAPI), or even the more esoteric V8
API [27], add-ons can (un)marshal function arguments and return
values to/from JS code, invoke JS code (mostly asynchronously),
raise (and handle) exceptions, access/pass objects in JS scope, per-
form JS-to-C/C++ type conversion, and more [47]. The NAN (Native
Abstractions for Node.js) API [46] is yet another Node.js AP, de-
signed as a portable, stable API for add-on development, given that
both the NAPI and the V8 API are version- and platform-dependent
(and therefore hinder the portability on add-on code).

B PROTECTION KEYS

Protection keys is a relatively common architectural feature, first
introduced in IBM System/360. (Today, IBM storage protection
keys [30] are part of the Z architecture.) A protection key is assigned
to each virtual page and represents the access authority required
for each context. An authority mask register is used for specifying
the access rights of each context. IA-64 protection keys [31] are
designed to restrict permissions on memory by tagging each virtual
page with a unique domain identifier. IBM extended the protection
keys architecture with 16 Protection Key Registers used as a cache
for the access rights on the protection domains required by a pro-
cess. During memory accesses, if a key is found during memory
translation, it is looked-up in the available protection key registers
to check the access rights. ARM memory domains [3] offer multiple
sandboxes to a process. There can be 16 memory domains in each
process, and a domain access control register (DACR) defines the
access rights on each domain. DACR is a privileged register, and
thus, domain switches are handled by the supervisor level.

Intel MPK/PKU offers the ability to userspace processes to change
access permissions on groups of pages. Each page group is asso-
ciated with a unique key. An application can have up to 16-page
groups. The access rights for each page group are mapped in a
thread-local and user-accessible register called protection keys
rights register (for user) %pkru. Since the %pkru register is thread-
specific, MPK supports per-thread views of the process’s memory.
For example, different application threads have different access
rights [56] configured for each key in their %pkru register.
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The key benefits of MPK over page table permissions are perfor-
mance and the ability to configure different memory permissions
for each thread in a process. The access rights supported by the
page groups are read/write, read-only, and no access. Data accesses
on memory pages associated with protection keys are checked both
against the access rights defined in the %pkru register, as well as
the permissions in the page table. Instruction fetching is checked
through the permissions in the page table only.

If a memory page is executable in the page table but configured
with no access in %pkru, the memory page is treated as execute-
only. This occurs since any data access will result in a mismatch
between the rights defined in the page table and the %pkru register.
Linux supports execute-only memory pages by leveraging MPK. A
call to mprotect with only PROT_EXEC specified as permissions will
result in the allocation of a protection key which will be associated
with the memory pages passed to mprotect. Next, the %pkru register
will be set to DISABLE_ACCESS for the newly allocated protection
key, while the page table rights will be set to executable and readable.
Any access to execute only pages except for instruction fetching
will result in a memory violation exception.

For associating a memory page (or range of memory pages) with
a protection key, the Linux kernel implements the pkey_mprotect
system call. Similarly to the traditional mprotect system call, it
will also set the access rights passed as an argument in the %pkru
register. The access rights in the %pkru register can be modified
with the wrpkru x86 instruction. Since %pkru is user-accessible,
modifying the access rights does not impose significant latency, and
it is much faster than invoking memory management system calls
(e.g., mprotect). Finally, rdpkru instructions returns the contents
of the executing thread’s %pkru register.

C WRAPPER LIBRARY TEMPLATE

__attribute__ ((aligned(4096), pure))

void

wrap_node_api_func(void)

{ asm ("movq Oxdeadcafe, %rax; jmpq *%rax"); }

static __attribute__((constructor)) void
init_method(void)

{

10 mprotect((void*) wrap_node_api_func, 4096, PROT_WRITE);

11 rewrite_loc = wrap_node_api_func;

12 +rewrite_loc = &node_api_function << 16 | 0xb848;

13 -

14 mprotect((void*) wrap_node_api_func, 4096, PROT_EXEC);
15 write_got = native_module_address +

16 node_api_func_got_entry;

17 *write_got = wrap_node_api_func;

18

19 }

The constructor method first finds the location of the native
module’s shared object in the process memory map. Then, the
addresses of each symbol are collected using dlsym. The wrapper
functions load an address in the auxiliary register %rax and then
indirectly jump to that address with jmpq *%rax. The constructor
then marks wrapper functions as writable and patches the mov
instructions in order to store the actual symbol’s address. Then the
native module’s GOT is patched to point at the wrapper functions.
Finally, the wrapper functions are configured as execute-only.
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D MODIFICATIONS IN NODE.JS AND V8 API

1 unsigned

2 enable_access(void)

3 {

4 unsigned previous_rights = pkey_get(node_memory_pkey);
5 if (previous_rights == PKEY_DISABLE_ACCESS)

6 pkey_set(node_memory_pkey, PKEY_ALLOW_ACCESS);

7 return previous_rights;

8

9

}
10 void
1 restrict_access(unsigned previous_rights)
12 {
13 if (previous_rights == PKEY_DISABLE_ACCESS)
14 pkey_set(node_memory_pkey, PKEY_DISABLE_ACCESS);
15 }

Each of the 122 entry points of Node.js and V8 where modified
in order to remove memory restrictions uppon entry and reinstate
them before returning to the untrusted native module. Since API
calls may be nested, we keep a copy of the previous rights in the
stack frame in order to know when the execution transfers to the
native module.
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