SysXCHG: Refining Privilege with Adaptive System Call Filters

Alexander J. Gaidis
Brown University
Providence, RI, USA
agaidis@cs.brown.edu

ABSTRACT

We present the design, implementation, and evaluation of SysXCHG:
a system call (syscall) filtering enforcement mechanism that enables
programs to run in accordance with the principle of least privilege.
In contrast to the current, hierarchical design of seccomp-BPF,
which does not allow a program to run with a different set of allowed
syscalls than its descendants, SysXCHG enables applications to run
with “tight” syscall filters, uninfluenced by any future-executed
(sub-)programs, by allowing filters to be dynamically exchanged at
runtime during execve[at]. As a part of SysXCHG, we also present
xfilter: a mechanism for fast filtering using a process-specific
view of the kernel’s syscall table where filtering is performed. In
our evaluation of SysXCHG, we found that our filter exchanging
design is performant, incurring < 1.71% slowdown on real-world
programs in the PaSH benchmark suite, as well as effective, blocking
vast amounts of extraneous functionality, including security-critical
syscalls, which the current design of seccomp-BPF is unable to.

CCS CONCEPTS

« Security and privacy — Systems security; Operating systems
security; Software security engineering,.

KEYWORDS
Attack surface reduction, system call filtering, adaptive filtering

ACM Reference Format:

Alexander J. Gaidis, Vaggelis Atlidakis, and Vasileios P. Kemerlis. 2023. Sys-
XCHG: Refining Privilege with Adaptive System Call Filters. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS °23), November 26-30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3576915.3623137

1 INTRODUCTION

Software has been progressively increasing in size and complexity.
This trend can be attributed to several factors, including main-
taining backwards compatibility with legacy code bases [82] and
supporting a diverse set of features for growing, heterogeneous
user-bases [39, 77, 81, 95]. The ramifications of this software bloat
are twofold: (1) applications require an abundant set of OS services,
delivered via the system call (syscall) AP, to allocate memory, per-
form inter-process communication, make network connections,
interact with the file system, etc., and (2) attackers are provided
with additional avenues for abusing applications [2, 80].

® This work is licensed under a Creative Commons Attribution
By International 4.0 License.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623137

Vaggelis Atlidakis
Brown University
Providence, RI, USA
eatlidak@cs.brown.edu

Vasileios P. Kemerlis
Brown University
Providence, RI, USA
vpk@cs.brown.edu

Due to (1) and (2) above, the attack surface of an application (and
the kernel) is enlarged [2], and hence an adversary has greater po-
tential to exploit applications [18], after which they can also request
a variety of kernel services to further elevate their privileges [61].

Moreover, userland programs have access to the entire syscall
API by default, despite only requiring a fraction—across =30k bina-
ries in Debian, the median syscall count per binary is 90 (~26% of the
total syscall API) and the 90th percentile is 145 (=42%) [18]—, result-
ing in over-privilege, or the expansion of a program’s functionality
or abilities beyond what it requires for benign (i.e., non-adversarial)
execution. This over-privilege exacerbates point (2) above, and it
also allows an attacker to take full advantage of (1) by providing
a rich post-exploitation arsenal, including privilege-escalation, by
means of exploiting vulnerabilities in less-stressed syscalls [14, 15].

To limit the over-privilege of programs with respect to the syscall
API, Linux introduced Seccomp BPF (seccomp-BPF) [99] to mediate
access to syscalls at runtime. seccomp-BPF enables users to push
BPF [69] programs into the kernel, which specify an action to take
(e.g., “allow”, “block”, “log”) for a given syscall based on its number
and arguments. The majority of works regarding syscall filtering [8,
10, 18, 28, 29, 31, 51, 59, 76, 103, 104, 108] employ seccomp-BPF.
Problem #1: seccomp-BPF’s hierarchical design. seccomp-BPF
suffers from a hierarchical design inherently over-privileging pro-
cesses by allowing access to syscalls not required for their execution.
Specifically, seccomp-BPF filters cannot be removed once installed,
and they are inherited across process creation and program exe-
cution. As a result, the set of syscalls allowed by a process must
include those required for the current program’s execution in ad-
dition to those required by descendant programs executed in the
future via execve[at]. In general, this leads to over-privilege.
Solution #1: SysXCHG. To improve upon the aforementioned limita-
tion(s) of seccomp-BPF, we present SysXCHG: a policy enforcement
mechanism that allows dynamic switching of syscall filters at run-
time in accordance with the principle of least privilege (PoLP) [88].
SysXCHG centers around a new concept called exec filters that are
syscall filters, including, but not limited to, seccomp-BPF filters,
which are embedded in binaries and installed automatically when
the OS loads/executes the corresponding program. Using this prim-
itive, SysXCHG introduces a new exchange model that differs from
seccomp-BPF’s default, over-privileged inheritance model, by ex-
changing any previously installed exec filters with the exec fil-
ters embedded in the soon-to-be-executed program. SysXCHG’s ex-
change model allows a program to run with a syscall set specific to
its own functionality, uninfluenced by any programs executed in
the future. SysXCHG also accounts for developer-intended semantics
and compatibility with legacy code bases by preventing any manual
filters—i.e., those installed by a developer—from being removed,
maintaining compatibility with the default inheritance model.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0004-6234-6514
https://orcid.org/0000-0001-5490-9648
https://orcid.org/0000-0002-6528-437X
https://doi.org/10.1145/3576915.3623137
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623137

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

This allows for refinement of an application’s syscall set beyond
what is imposed by any exec filters. Additionally, to ensure that
an attacker cannot tamper with exec filters, potentially increasing
their privilege, SysXCHG binds exec filters to binaries with crypto-
graphic signatures, guaranteeing immutability.

Problem #2: seccomp-BPF’s filter-install time. Recent work in
syscall filtering [8, 10, 18, 28, 29, 31, 51, 59, 103, 104] primarily
uses syscall numbers while filtering, which largely eliminates the
need for most of seccomp-BPF’s argument-filtering infrastructure.
To address this problem, kernel developers introduced a bitmap
cache positioned at the entry-point of seccomp-BPF, which, in the
best case, can quickly allow a syscall, preventing all installed filter
programs from running in order to reach a decision. Alas, to update
the bitmap cache when a filter is installed, the execution of the
filter is emulated for each necessary syscall, resulting in a large
increase to cold-start (i.e., no previous filters are installed) install
times: ~42% to ~363% (§6.1.3).

Solution #2: xfilter. SysXCHG introduces an optimized installa-
tion and filtering mechanism called express filter, or xfilter for
short, which addresses the weaknesses in seccomp-BPF’s filter in-
stallation procedure. Rather than relying on emulation, xfilter
determines the “allow/deny” information statically and encodes
it in a new type of filter that, when installed, removes the need
for seccomp-BPF entirely when conducting syscall-number-based
filtering. At a high-level, this new enforcement mechanism works
by creating separate, process-specific views of the global syscall ta-
ble, where filtering is performed by replacing syscall handlers with
error stubs. Thus, in addition to reducing the filter installation time,
when compared with seccomp-BPF, it also offers a filtering shortcut,
removing the need for additional function calls in the hot-path of
syscall entry that are required for filtering with seccomp-BPF.
Performance. We conducted a performance evaluation of SysXCHG
to measure the overhead associated with: (1) using exec filters ver-
sus manual filters, (2) installing seccomp-BPF filters versus xfilter
filters (xfilters), (3) using seccomp-BPF versus xfilter to filter,
and finally, (4) exchanging both seccomp-BPF filters and xfilters
at runtime. Regarding (1), the difference between the two filter
types was negligible across SPEC CPU 2017 being < 0.44% for exec
and manual seccomp-BPF filters, and < 0.36% for exec and man-
ual xfilters. We evaluated (2) with a small microbenchmark that
measured the time it takes for a filter-installing syscall to complete.
This revealed that xfilter can reduce filter installation time, when
compared with seccomp-BPF, between ~76% and ~97% over SPEC
CPU 2017 and a set of real-world applications. We also used these
benchmark programs to evaluate (3), where we found the overhead
associated with xfilter (=0% to 1.11%) was on par with, or bet-
ter than, the overhead of seccomp-BPF (x0% to 1.08%). Finally, to
evaluate (4), we used the PaSH [46] benchmark suite, where we
found that filter exchanging is performant regardless of whether
seccomp-BPF or xfilter is employed. PaSH macrobenchmarks
showed seccomp-BPF overheads ranging from ~0% to 2.74%, and
xfilter overheads ranging from ~0% to 1.71%. Notably, xfilter
outperformed seccomp-BPF in nearly all benchmarks.
Effectiveness. Finally, we examined the effectiveness of filter ex-
changing from a security standpoint, in both a quantitative and
qualitative way, using the PaSH benchmark suite.

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

Our quantitative approach calculated the magnitude of addi-
tional syscalls a program must run with to support its execution, as
well as any future executed programs, under the inheritance model.
These additional syscalls we deem over-privilege, which SysXCHG’s
exchange model completely removes from a given program’s al-
lowed syscall set. Notably, we found that the common, real-world
programs found in the PaSH benchmarking suite can be grossly
over-privileged under the currently employed inheritance model,
in some cases allowing up to 113.73% more syscalls than what is
needed. Our qualitative approach examines the functionality ob-
tained by an attacker that has access to this additional set of syscalls,
as well as whether any syscalls in the set are security-critical. We
found that the majority of programs that execute others contain
security-critical syscalls and a large body of functionality—both of
which are the sole result of the inheritance model. Switching to
SysXCHG’s exchange model remedies this problem, and importantly,
it does so efficiently, with negligible performance overhead.

2 BACKGROUND AND RELATED WORK
2.1 Syscalls and Syscall Filtering

In contemporary OSes, when an application requires a service from
the underlying kernel—such as spawning additional processes, al-
locating memory, accessing the filesystem, or making network
connections—it makes a request through the syscall APL On the
x86-64 architecture, syscalls are software interrupts that trap to ker-
nel mode to perform some privileged operation before returning
the result to userland. Importantly, Linux kernel v6.0.8 provides
361 syscalls—396 if legacy x86-32 sycalls are included—without any
default restrictions on what syscalls a process can make.

Syscall interposition takes advantage of the well-defined interface

boundary between the OS kernel and userland to attach additional
functionality to the entry or exit path of syscalls. As meaning-
ful changes to the system are performed via syscalls, interposing
on this boundary provides visibility into how a process interacts
with the system, which can inform modifications of the requested
services. For example, syscalls can be intercepted and extended
to provide new filesystem facilities [3], portable execution envi-
ronments [37, 50], record-replay debuggers [87], multi-variant ex-
ecution systems [53], intrusion detection systems [38, 60], and
more [4, 30, 45, 52, 56, 91]. Importantly, syscall interposition can
be used to filter syscalls according to a given policy, reducing a
process’ privilege by confining its set of allowed functionality (with
regards to the syscall API) to what is necessary for its operation.
Syscall filtering designs can be classified according to where/ how
policy decisions are made and enforced, and fall into three main
categories. Namely, decision and enforcement either: (1) both occur
in user mode; (2) both occur in kernel mode; or (3) are split between
the domains in (1) and (2).
User Mode. A standard way both policy decisions and enforcement
are carried-out in userland is with process tracing utilities provided
by the kernel: namely, the /proc pseudo file system [64] or the
ptrace syscall. These allow one user process (the tracer) to control
the execution of one or more other processes (the tracees), provid-
ing a mechanism to filter syscalls. Prior work [34, 42] used these
utilities to hook syscall entry and exit, examine syscall numbers
and arguments, and modify/block syscalls.

SysXCHG

This approach: (1) provides a solution that is easy to test and
deploy (i.e., no superuser privilege or kernel recompilation is re-
quired); and (2) incurs no additional code (that is executed) in kernel
mode, where vulnerabilities can have greater repercussions [49, 61].
Nonetheless, this approach has not achieved widespread adoption
due to poor performance and security: syscall entry and exit hooks
in the kernel trampoline execution to the tracer process requiring
four additional context switches (two for both the entry and exit
hooks); while both the tracer and the tracees execute at the same
privilege level, thus making bypassing policy enforcement easier.

Dune [5] provides a unique approach to filtering syscalls in user-
land. By exposing privileged hardware features to user processes,
Dune is able to divide a program’s address space into two halves
operating at different privilege levels. When the main program
running in the lesser privileged half invokes a syscall, control flow
is trampolined to a syscall handler in the more privileged half (by
manipulating page tables to map the custom syscall handler on
demand) where an appropriate action can be taken. The main disad-
vantage of Dune is its reliance on hardware-assisted virtualization.
Kernel Mode. Moving policy decision-making and enforcement
into the kernel allows for optimal performance as well as greater
visibility and control over the system. Several implementations [11,
23, 48, 70, 104] use kernel modules to extend the kernel’s syscall
handling functionality, while others [6, 31, 59, 62, 76, 83, 93] modify
the kernel’s source code directly. Most kernel-based syscall filtering
approaches [8, 10, 18, 28, 29, 31, 51, 59, 76, 103, 104, 108] rely on
Linux’s Seccomp BPF infrastructure [99].

Hybrid. The final category splits policy decision-making and en-
forcement across different domains. Systrace [79] and Janus [25]
are two influential hybrid schemes that extend the kernel to query a
user-mode policy daemon to inform how the kernel should handle
a given syscall. A related design, Ostia [26], uses a kernel module
to prevent a given application from performing syscalls that access
sensitive resources, instead trampolining control flow back to user-
land where a daemon process safely performs the syscall on the
application’s behalf. This “delegating” hybrid architecture has also
been used to perform syscall filtering in PKU-based memory isola-
tion systems, such as Jenny [89]. Finally, Onoue et al. [74] proposed
a hybrid scheme that conducts policy enforcement in a hypervisor
and policy deliberation in an isolated, purpose-specific virtual ma-
chine. Overall, while hybrid designs can minimize the amount of
code added to sensitive areas, their designs often require multiple
context switches, resulting in suboptimal performance [25, 26, 79].

2.2 Seccomp BPF

Seccomp (SECure COMPuting) [44] was added to Linux in v2.6.12 to
restrict the syscalls available to a process to only read, write, exit,
and sigreturn; thus confining a process to pure computation and
basic I/O (with pre-existing file descriptors). Subsequently, Linux
v3.5 introduced seccomp-BPF [99], substantially broadening sec-
comp’s abilities by allowing BPF programs [69] to define arbitrary
syscall filtering policies. After a process installs a seccomp-BPF
filter, with the seccomp or prctl syscalls, a hook-point in the ker-
nel’s syscall entry path subjects all further syscalls made by the
process, and its children, to the policy set by the filter.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

For each syscall made, the kernel passes the syscall’s context
(i.e., syscall number, architecture, instruction pointer at the time
of the syscall, and register arguments) to the BPF program, which
determines the appropriate action (e.g., kill the process making the
syscall, return an error value, log the syscall, or allow the syscall).

Multiple BPF programs can be installed simultaneously, forming
a stack, where the most recently-installed program is executed first.
To determine the action for a given syscall when multiple filter pro-
grams are installed, the syscall is filtered through every program
and the least permissive action is used. Since filter programs are
typically large sequences of conditionals—seccomp-BPF uses cBPF
(classic BPF), which only allows forward-directed branches [43]—,
executing every BPF program for every syscall can result in sub-par
performance [93]. However, programs can be optimized by employ-
ing a skip list [18], and recently, Linux v5.11 added a bitmap cache to
seccomp-BPF’s architecture, where syscalls that are allowed based
solely on (syscall) number are added to a bitmap, which is queried
to determine if the BPF program(s) need(s) to run [106]. Recent
work [8, 10, 18, 28, 29, 31, 51, 59, 103, 104] generates filters mostly
using syscall numbers, greatly benefiting from the bitmap cache.

Unfortunately, seccomp-BPF suffers from over-privilege due to
its hierarchical and append-only design: a process inherits filters
across [v]fork and clone, and retains filters when the process’
image is replaced with another via execve[at]. More specifically,
a field in the Linux kernel’s struct task_struct maintains a set
of seccomp-BPF programs, which remains unchanged when a new
program is executed or is copied to a new struct task_struct
when a new process is forked. Given this inheritance model, addi-
tional filters can only be installed to further constrain the allowed
syscall set; thus, to prevent breaking an application, processes must
initially allow all of the syscalls required throughout their (and their
children’s) lifetime. This set may contain syscalls the current pro-
gram does not require, but are included for a succeeding program,
resulting in over-privilege of the current program [18, §3.2].

2.3 Syscall Filtering Policies

execve Semantics. The execve and execveat syscalls are used to
execute a program, replacing the current, calling program with a
new one (in addition to initializing new stack, heap, and data seg-
ments). Importantly, execve[at] does not create a new process—
the job of clone and [v]fork—, rather, it only changes the process’
image, retaining the “shell” of the process, which includes, in part,
its PID, open file descriptors, and any installed seccomp-BPF filters
(§2.2). In terms of syscall filtering, execve[at] poses a design chal-
lenge as policies of the current and new programs may differ with
respect to the functionality they are blocking. Some syscall filtering
schemes, such as seccomp-BPF [99], only allow for privilege reduc-
tion, creating a situation where a program’s installed policy must be
a superset of all subsequently-executed programs—which can later
refine the policy—, potentially resulting in over-privilege of any
program that calls execve[at]. Other schemes [11, 42, 74, 79] allow
a new policy to replace the current policy when a new program
is executed, possibly expanding the privilege of the new program.
Nevertheless, these designs do not verify the integrity of installed
policies, allowing an adversary to tamper with policies and mali-
ciously give a program additional privileges.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Policy Storage. Storage and integrity of syscall policies are funda-
mental security considerations for the enforcement mechanisms
discussed in Section 2.1. In general, policies are stored in one of
three ways: (1) as separate files, or modules, from the binary they
enforce [6, 11, 18, 23, 25, 26, 34, 42, 59, 70, 74, 79], (2) encoded in
the binary as an implicit policy [48, 83], or (3) attached to the bi-
nary [10, 62], creating a policy-bearing executable in the spirit of
DuVarney et al. [20]. While there is more book-keeping involved
in schemes that use separate policy files, neither approach is inher-
ently more secure—both suffer from the inability to detect policy
tampering. Currently, there has been no scheme that incorporates
integrity checking of policies before they are applied at runtime.

2.4 Integrity Measurement Architecture

The Linux Integrity Measurement Architecture (IMA) was first
added to the kernel as a part of the integrity subsystem, in v2.6.30,
to detect file corruption [47]. The initial components, largely based
on the work of Sailer et al. [86], allow a remote host to verify file
integrity using a hardware (e.g., TPM-based) root of trust. Linux
v3.3 added the extended verification module (EVM) to IMA, which
detects modifications to a file’s metadata (e.g., inode number; file
owner, group, and mode; and LSM-related extended attributes), of-
fering enhanced protection. EVM computes an HMAC, or signed
hash, over a given file’s metadata and stores it in the security.evm
extended attribute. security.evm can then later be used to ver-
ify the integrity of the file’s extended attributes. IMA was again
extended in Linux v3.7 with an enforcement mechanism known
as appraisal that provides integrity checks for (local) file systems.
Offline, file hashes are signed and stored in a security.ima ex-
tended attribute of the corresponding file. After rebooting the sys-
tem into appraisal’s enforcement mode, opening a file that matches
the installed IMA policy will be subject to verification of the digital
signature in security.ima. Attempting to open a file that was un-
intentionally or maliciously altered after measurement (i.e., hashing
and signing) will result in a failed integrity check and access denial.

3 THREAT MODEL

Adversarial Capabilities. We assume an adversary targeting user-
land applications (primarily, but not exclusively, written in C/C++
and/or ASM) that possess the ability to issue system calls. The at-
tacker is able to exercise vulnerabilities in an application’s main
executable or dependent, shared libraries, modules, add-ons, etc.,
to consequently exploit the victim program and make arbitrary
syscalls. Importantly, we do not constrain (1) the types of vulner-
abilities (ab)used by the attacker—e.g., spatial/temporal memory
errors [71, 72, 98]; logic errors, such as missing authorization/-
authentication checks [16, 94]; or discarded returned (error) val-
ues [35, 105]—, nor (2) the applied exploitation technique—e.g., code
injection, code reuse, {data, block}-oriented programming, data-
only attacks [12, 19, 33, 40, 41, 90, 92, 107]. Ultimately, we assume
an attacker that can achieve arbitrary code execution and/or issue
arbitrary syscalls with the intent to increase their privilege [61]
or request services from the OS [18]. More formally, an attacker is
able to repeatedly (if required) invoke any syscall, with arbitrary

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

r Proc X r Proc X
r Prog Allowed Syscalls = Prog Allowed Syscalls =
a Sp + Sg + Sc a Sa
execve (B) execve (B)
\4 A4
r Proc X r Proc X
Prog Allowed Syscalls — Prog r Allowed Syscalls —
B Sg + Sc B Sg
execve (C) execve (C)
r Proc X v r Proc X v
rProg Allowed Syscalls — Prog r Allowed Syscalls —
C Sc C Sc
(a) Inheritance Model (b) Exchange Model

Figure 1: Syscall filtering models (inheritance vs. exchange).
Sp represents the syscall set required for a program P’s benign
execution. Over privilege is highlighted in red.

arguments of their choosing, at arbitrary times. Overall, the adver-
sarial capabilities we consider are on par with the state-of-the-{art,
practice} regarding syscall filtering [9, 13, 18, 27-29, 59, 75].
Hardening Assumptions. We require a Linux kernel with support
for seccomp-BPF [99] and a digital signature mechanism to sign
binaries, such as IMA [47], and we assume the two can not be dis-
abled. Further, we assume that target applications contain benign
code. Standard userland hardening schemes—e.g., non-executable
memory [65], stack/heap canaries [17], ASLR [22], code diversi-
fication [54, 58, 101], CFI [1, 24, 100, 109], CPI [57], and protec-
tion against data-only attacks [78]—are orthogonal to our scheme:
we neither preclude nor depend on them. Finally, we deem side-
channel [36] and microarchitectural attacks [9, 21] out of scope.
Given the above, an attacker is still able to take full control of a user-
land process to execute arbitrary syscalls in an attempt to either:
(1) elevate their privileges by finding and exercising vulnerabili-
ties in syscalls [61], or (2) maliciously request unintended services
from the OS under the guise of a benign process [18] (e.g., use the
setxattr syscall to set a file’s extended attributes).

4 DESIGN

The goal of SysXCHG is to reduce a program’s allowed set of syscalls
to those required for operation, in accordance with the PoLP [88].
The effect of this is twofold: (1) it reduces the potential of an at-
tacker escalating their privileges by exploiting vulnerabilities in
less-stressed syscalls [61], and (2) it reduces the functionality avail-
able to an attacker after they have taken control of a process [18].
Modern approaches to filtering syscalls [8, 10, 18, 28, 29, 31, 51,
59, 76, 103, 104, 108] typically rely on seccomp-BPF, despite its
inherent hierarchical design, leading to over-privilege (§2.2). The
over-privilege of this inheritance model is exemplified in Figure 1a:
program A must allow all syscalls in its syscall set, Sp, as well as
those for programs B and C which are executed subsequently. This
results in A allowing Sa, Sg, and Sc, despite only needing Sa for
its own execution—a gross violation of PoLP. When program B is
executed, it can refine the set of allowed syscalls, getting rid of Sa,
but it must keep Sc, resulting in another violation.

SysXCHG

In this example, only C runs with the least amount of syscalls re-
quired for benign execution. Notably, we assume that Sy 2 {Sg, Sc}
and Sg 2 Sc; i.e., a program’s syscall set is not a superset of its
descendants’. We found this to predominantly be the case in prac-
tice (§6.2.1). Hence, the scenario presented in Figure 1a holds true
regardless of the exact means used for extracting/specifying Sp,
Sg, and Sc; that is, irrespective of how “strict” or “loose” these
sets are (due to the specifics of the underlying techniques used
for extracting/specifying them), seccomp-BPF always results in
over-privilege when execve is involved [18].

Our design of SysXCHG offers an alternative to the strict inher-
itance model of seccomp-BPF: the exchange model. Under the ex-
change model, programs are associated with one or more exec
filters, which are installed during execve[at], replacing any exec
filters the old program (i.e., the one that invoked execve[at]) pre-
viously installed, as shown in Figure 1b. To maintain developer-
intended semantics, any installed manual filters—i.e., those a devel-
oper installed with seccomp or prctl—adhere to the inheritance
model and are never exchanged throughout the lifetime of the pro-
cess. This allows for the exec filters to reduce the set of allowed
syscalls down to a safe/better approximation for each individual
program, while the manual filters define filtering rules that last the
lifetime of the process, potentially spanning the execution of mul-
tiple programs. Therefore, with SysXCHG, a program that requires
fewer syscalls than its predecessors does not need to allow a union
of its syscall set and the syscall sets of all programs it executes in the
future, as would be the case with seccomp-BPF’s inheritance model.
Finally, to prevent an attacker from tampering with exec filters, we
embed them in their respective (ELF) binaries and sign/appraise
these binaries using the Linux IMA subsystem (§2.4).

4.1 Exec Filters

SysXCHG defines two types of filters: (1) manual filters which are
intentionally installed by a developer with prctl or seccomp, and
(2) exec filters which are installed automatically when a program
is executed with execve[at]. We associate a given exec filter with
a corresponding binary by embedding the filter in the latter. Later,
when the binary is executed, the kernel extracts the exec filter
and applies it, enabling enforcement. The exec filter is central to
the design of SysXCHG as it enables its filter exchanging paradigm
(§4.2). The remainder of this subsection details the design of exec
filters according to the standard inheritance model of seccomp-BPF.
Subsequently, in Section 4.2, we elaborate on the usefulness of exec
filters and how they empower filter exchanging.

Extraction and Embedding. In an initial, offline phase of SysXCHG
shown in steps (1) and (2) of Figure 2, a syscall policy for a given
ELF binary is extracted, formatted into a seccomp-BPF program,
and embedded in the binary. Since our design focuses on syscall
filtering enforcement, it is agnostic to the technique(s) used for
extracting a program’s syscall set (step (1)). Although, preferably,
the method of choice should derive complete syscall sets, with few
false positives (i.e., syscalls the program does not use) to prevent
program breakage and reduce over-privilege. The policy that re-
sults from syscall extraction is then fed to a program that crafts a
corresponding seccomp-BPF program and embeds it in the target
binary (step (2)). Specifically, the length and contents of the BPF

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

~ELF —_
@ extract
le
(§4.1) .text
.dynamic sign
g ©®
: .data (§4.2)
@ _ » .filter
(§4.1) ; _ »
i security.ima = <file sig>

| security.evm = <xattr sig>

Figure 2: Offline components of SysXCHG’s design: syscall
filter extraction and embedding, as well as binary signing.

program (i.e., struct sock_fprog) are stored in a new ELF section,
dubbed . filter, which is marked read-only and non-allocatable.
In the case that multiple policies should be applied to a binary,
either: (1) the policies can be merged into a single seccomp-BPF
program, or (2) multiple seccomp-BPF programs (and their lengths)
can be generated and stored in the . filter section consecutively.
Additionally, we do not place any requirements on the type (fil-
tering based on syscall number, arguments, etc.) of seccomp-BPF
programs stored in the . filter section and used as exec filters.
Ideally, all of a system’s binaries would carry exec filters that au-
tomatically constrain their privilege when executed. Consequently,
our embedding design is largely motivated by compatibility with
commercial off-the-shelf (COTS) binaries: we use binary (ELF)
rewriting [102] to add the . filter section, avoiding any require-
ment on source code or toolchain modifications, and we do not
require the enforced binary to load or run any additional code to
install filters and attain protection, as is the case with most modern
enforcement schemes [10, 18]. Our design can be employed by ven-
dors distributing software or end users, with the latter protecting
individual binaries or integrating our design into package managers
to protect binaries as a step in their install process [54].
Inheritance Model Enforcement. Once filter extraction and em-
bedding are complete, the system can enter an online phase where
enforcement occurs. During this phase, a SysXCHG-aware kernel
searches all executed ELF binaries for a . filter section while pars-
ing the program and setting up its address space. If the section
is found, its contents are extracted and installed normally using
the standard seccomp-BPF install pathway. Namely, when the in-
heritance model is used, there is no difference in the installation
procedure between exec and manual filters: they both act to only
further restrict the set of allowed syscalls. Additionally, syscalls that
are allowed based solely on number (and architecture) are added
to a bitmap cache (§2.2) and filter programs are just-in-time (JIT)
compiled (if specified by the kernel’s configuration) [18].

4.2 Filter Exchanging

The main component of SysXCHG’s design is the ability to dynami-
cally switch syscall filters, at runtime, in a secure manner. In con-
trast to the inheritance model (§2.2, §4.1), this exchange model
authorizes a process’ allowed syscall set to grow or shrink accord-
ing to the requirements of the currently executing program.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

At a high-level, the filter exchanging design handles exec and
manual filters differently, using exec filters to specify the maximum
privilege of a program and manual filters to further refine the priv-
ileges based on developer intention (if needed). Notably, the design
decisions that enable filter exchanging mainly apply to the kernel
(with the exception of binary signing); the description of exec ex-
traction and embedding in Section 4.1 remains unchanged. Given
that, the remainder of this subsection details filter exchanging en-
forcement before moving on to discuss the security ramifications of
allowing a process to potentially (but safely) increase its privileges.
Exchange Model Enforcement. Unlike the inheritance model,
where both exec and manual filters are considered equal and are
installed to the same filter list in the kernel’s seccomp-BPF infras-
tructure, the exchange model segregates the two filter types, main-
taining two distinct filter lists. The list of manual filters is inherited
by child processes, preserved across execve[at], and append-only.
In contrast, the list of exec filters is inherited by child processes,
but it is reset (i.e., cleared) and repopulated on every invocation of
execve[at]. Thus, manual filters can be thought of as working on a
process-level granularity, while exec filters work on a program-level
granularity. Preserving seccomp-BPF’s current inheritance model
with manual filters is important as it allows for compatibility with
legacy software and the intentions of developers.

When the system is in “steady state,” after syscall filter extraction
and embedding, a given binary can either carry an exec filter (in a
.filter section) or not. We consider the latter case equivalent to
the binary carrying an exec filter that allows all syscalls—i.e., no
filtering should be performed. When a program is executed, the
kernel first extracts any exec filters embedded in the binary. Next,
the kernel removes all exec filters the previous program installed
from the process’ exec filter list, and installs the new exec filters.
In the case of a binary carrying no .filter, the previous exec
filters are removed and none are installed in their place.

After installation, when a syscall is made, it is first filtered
through the bitmap cache of the manual filters, followed by the
bitmap cache of the exec filters, exiting early if both of the bitmap
caches allowed the syscall. If the filtering result is still undecided,
all of the manual filters are executed followed by all of the exec
filter programs, and the most restrictive action is taken. Despite
being maintained and administered separately, the execution of
the two filter types is largely transparent to userland, appearing
as a single list of filters, with one caveat: seccomp-BPF executes
multiple filters in the reverse order that they are installed, so the
presence of exec filters may alter this ordering.

In summary, the exchange model improves upon the inheritance
model by giving each program only the syscalls they need to run
correctly without consideration of process and program hierar-
chies. Ideally, a program’s exec filters would define a set of syscalls
required for (benign) execution. Additional filtering, via manual
filters, can further constrain the allowed set of syscalls; e.g., using
configuration files to guide additional syscall set refinement [29].
Security Considerations. Exchanging filters when new programs
are executed could allow an adversary to increase their privileges
(i-e., the syscalls they can invoke). Namely, an adversary could do
one of two things after exploiting the current program (assuming
no manual filters are installed): (1) create a new, arbitrary program
with no exec filter and execute it, or (2) modify or strip an existing

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

kernel space
exec man

rELF—————— X~

I—.text
seccomp (filter);

execve (Y) ;

A

Error

.filter

i security.ima = <file sig>

i security.evm = <xattr sig>

L XALLL commmmmcmmcmeceeeaeea
r ELF Y A

ima = <file sig>

y.evm = <xattr sig>

""""""""""""" o

Figure 3: SysXCHG enforcement under the exchange model.

binary’s embedded exec filter before executing it. Both cases result
in an attacker-controlled process with an attacker-controlled syscall
set, potentially allowing full access to the syscall API. SysXCHG
addresses this privilege escalation by cryptographically binding
policies to binaries with digital signatures, as shown in step (3) of
Figure 2. We designed our system to be compatible with IMA/EVM,
as this is a particularly convenient means for robust signature
checking and readily available in the Linux kernel. However, our
design is not restricted to only IMA/EVM.; SysXCHG is agnostic to
the underlying method used for binary signing and verification.
Offline, binaries are measured (i.e., hashed) and the measure-
ments are signed with a private key and stored in the file’s securi-
ty.ima extended attribute. Further, a signature of the file’s extended
attributes is stored in security.evm. When the system is booted
into appraisal mode (§2.4), opening an integrity-protected file trig-
gers verification of the signatures in security.{ima, evm} using
a public key from the system’s keyring. If a file or its extended
attributes have been tampered with, or lack a signature, verification
will fail, and opening the file will be prohibited.
Recap. We now provide a summary of SysXCHG’s filter exchanging
model using Figure 3 as reference. When a program X issues an
execve syscall to run program Y (step (1)), the system traps to the
kernel where the seccomp-BPF infrastructure checks whether the
syscall (i.e., execve) is allowed, using the installed exec and manual
filters (step (2)). If the execve is blocked, the appropriate blocked
action is taken, as specified by the installed filters. If execve is
allowed, the kernel’s IMA subsystem checks whether the requested
program (i.e., Y) is signed (step (3)). Given a valid set of signatures
in the file’s security.{ima, evm} extended attributes, the kernel
can perform the filter exchange, extracting Y’s exec filter(s) from
its . filter section and replacing the list of previously installed
exec filter(s) with new one(s) (step (4)). Finally, the execution of Y
can commence. Importantly, all manual filters previously installed
(e.g., by X) are preserved across the call to execve.

SysXCHG

4.3 Performance Considerations

Recent work in syscall filtering with seccomp-BPF [10, 18, 28, 29,
103] has focused on extracting and applying policies based solely
on syscall numbers. Number-based filters are able to take advantage
of seccomp-BPF’s recent bitmap cache optimization (§2.2), avoid-
ing the overhead of executing (potentially many) BPF programs
with each syscall. That being said, the bitmap cache has two main
performance shortcomings. First, when installing a seccomp-BPF
program, the program must be emulated for all syscalls that were
previously allowed (i.e., their number-index corresponds to a 1
in the bitmap) to determine if the resulting action is cacheable
(i.e., SECCOMP_RET_ALLOW). Second, while the bitmap cache may
prevent seccomp-BPF programs from running, multiple function
calls are required to reach the seccomp kernel infrastructure and
test the cache. Any additional code executed on such a hot path will
result in performance degradation. To address these shortcomings,
SysXCHG includes a feature called express filter (xfilter).

Initially, we designed xfilter as a “fast path” for enforcing
number-based syscall policies with minimal kernel additions (when
compared with the size and complexity of seccomp-BPF). While do-
ing so, we realized that xfilter does not incur additional overhead
while filtering and it benefits other settings performance-wise, such
as filter install time. Thus, xfilter offers three benefits: (1) it re-
duces the syscall filtering footprint in the kernel, (2) it combats the
aforementioned deficiencies in seccomp-BPF, and (3) it optimizes
number-based syscall filtering.

xfilter facilitates process-level filtering by providing each pro-
cess with a different view of the kernel’s syscall table, where han-
dlers are replaced to provide filtering functionality. More specif-
ically, every execution thread maintains a different view of the
syscall table, which is used in place of the global syscall table when
a syscall is invoked by the process. If no filter is installed, all han-
dlers in the process’ (i.e., struct task_struct’s) syscall table will
be set to their default value, as defined by the global syscall table.
In contrast, when a filter is applied to a process’/thread’s syscall
table, the handlers of filter-specified syscalls will be replaced with
pointers to functions that perform filtering functionality.

xfilters are specified by a bit vector that can be computed prior
to running a program, and they are installed with prctl or as an
exec filter, embedded in an ELF binary’s . filter section. In both
cases, xfilter offers an optimization of filter installation time over
seccomp-BPF: xfilter can determine the allowed set of syscalls
prior to a program running, whereas seccomp-BPF must resort to
emulating filters at runtime to enable/populate its bitmap cache
optimization. In brief, xfilter facilitates applying filters quickly.
xfilter & Inheritance Model. xfilter strives to have similar de-
fault behavior as seccomp-BPF. Specifically, xfilter allows for the
“stacking” of multiple filters, always choosing the most restrictive
action for a given syscall; e.g., if one filter allows a syscall and an-
other blocks it, the syscall’s handler will correspond to the blocked
syscall handler. Additionally, installed filters are inherited by a pro-
cess’ children across invocations of [v]fork and clone. Filters are
also preserved across execve[at] by default, implementing the
inheritance model that only allows privileges to shrink.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

xfilter & Exchange Model. To provide filter exchanging sup-
port, xfilter marks which syscalls were blocked by exec filters in-
stalled automatically during execve[at], and which were blocked
by manual filters installed with prctl.

Compatibility with Seccomp-BPF. Our design of xfilter does
not preclude the use of seccomp-BPF; a process can use both simul-
taneously. This allows for both filter interoperability and a sepa-
ration of concerns, where filtering performance can be optimized:
seccomp-BPF can be used to perform argument-based filtering and
xfilter can perform number-based filtering, removing the need
for seccomp-BPF’s bitmap cache.

Since seccomp-BPF filters currently provide more filtering func-
tionality than xfilter, we do not anticipate that xfilter will
entirely replace seccomp-BPF. Rather, we expect xfilter and sec-
comp-BPF to operate in tandem, adapting to certain environments
and developer needs. In addition, future iterations of xfilter could
support argument filtering via attaching small, targeted BPF pro-
grams to individual syscalls by adding a new dispatching handler at
their slot in the per-process syscall table view that would run spe-
cific BPF program(s), validating arguments. This would stay in-line
with the design philosophy of xfilter and provide an optimiza-
tion to argument filtering—i.e., only small, packed BPF programs
specifically associated with the currently invoked syscall are run
instead of a generic seccomp-BPF program (or multiple) that apply
to all syscalls. We plan on investigating this in the future.

An example of the interplay between seccomp-BPF and xfilter
is given in Figure 4. In transition (1) a seccomp-BPF exec filter
is installed when program B is executed. Subsequently (2)), a
seccomp-BPF-based manual filter is installed with the seccomp
syscall; once this manual filter is installed, it persists throughout
the lifetime of the process. When another program is executed that
contains a seccomp-BPF exec filter (3)) all currently installed exec
filters are removed, and the new one is installed in their stead. The
same is true of exec xfilters, as in (4): the previously installed
seccomp-BPF exec filter is removed, and the new exec xfilter is
installed. Transitions (4) - (6) perform the same task as (1) - (3)
with xfilters instead of seccomp-BPF filters, illustrating that we
maintain identical semantics across the two designs.

5 IMPLEMENTATION

System Support. We implemented SysXCHG atop the Linux kernel
v6.0.8, which has support for syscall filtering with seccomp-BPF
(including its bitmap cache optimization) and file integrity checking
with IMA measurement and appraisal.

Syscall Policies. While our design of SysXCHG is agnostic to the
method used to extract a syscall policy from a binary, our implemen-
tation uses sysfilter [18]. sysfilter is a binary analysis frame-
work that statically extracts a complete set of syscalls a program
requires for benign execution. We chose this framework because
it is: (1) able to work on commercial off-the-shelf (COTS) binaries
(i-e., no source code is required); (2) complete, preventing program
breakage by forming a safe over-approximation of the allowed set
of syscalls; and (3) scalable, as policies can be extracted on the order
of seconds. Abhaya [75], Confine [27], Chestnut [10], efc., can easily
be used in lieu of sysfilter, if necessary.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

r Proc X

rProg Seccomp-BPF — r Syscall Table =
(I T TTIT11]
0
execve (B)
r Proc X -
- Prog Seccomp-BPF — r Syscall Table —
A || (II1TTT11]
®
seccomp (1) oroc ¥
-p|r Prog Seccomp-BPF — Syscall Table —— 3
A |EE || T
®
execve (C) _proc X f
-p{[Prog Seccomp-BPF = r Syscall Table = '
- E] 111 1T
@ - '
execve (D) | " proc x
_p{[Prog Seccomp-BPF = r Syscall Table =
o
pretl (m) r Proc X
_»| rProg Seccomp-BPF = F Syscall Table
® :
execve (E) | proc x b
-] r Prog Seccomp-BPF — rF Syscall Table — —

Figure 4: Installation semantics of exec and manual filters for
both seccomp-BPF and xfilter (multi. program executions).

IMA Policy. To ensure the integrity of binaries prior to their exe-
cution, we validate the signatures stored in their security.{ima,
evm} with IMA appraisal. Signature checking is performed with
public keys (signed by the kernel’s builtin, trusted keys) loaded
onto the system’s .{ima, evm} keyrings at boot.

To enable IMA appraisal, the system is rebooted with the kernel
command-line option ima_appraise=enforce, and a policy is writ-
ten to ima/policy in the securityf's pseudo file system. SysXCHG
uses the following minimal policy: appraise func=BPRM_CHECK
fgroup=997 appraise_type=imasig. This policy mandates that
appraisal occurs for files that are about to be executed (BPRM_CHECK
stands for “binary program check”) and are owned by a group ID
(GID) equal to 997. Further, appraise_type=imasig specifies that
the file must have a digital signature in its security. ima extended
attribute, not just a hash of the file. This policy removes the obliga-
tion to measure and appraise all files on a given system—files that
are not executed or do not match the specified GID are not sub-
ject to appraisal—improving performance and flexibility without
hampering SysXCHG’s security guarantees. An approach similar to
this is how we envision SysXCHG to be used in practice: it will be
applied selectively in critical program-execution “chains.”

We additionally enable EVM by writing to the evm pseudo file in
securityf's; unlike IMA, EVM requires no command-line options
to activate. Thus, the net result of this is that any program that is
executed is ensured to be tamper-free having been approved during
a trusted, offline phase.

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

5.1 Offline Tooling

We created a tool called sysembed to generate exec filters and
add them to ELF binaries as a new section: . filter. It consists of
~ 330 LOC (Python, Bash, and C). The inputs to the tool include
the binary file to be protected, a JSON file specifying the syscall
numbers to include in the filter (e.g., the output of sysfilter [18]),
and the type of filter to generate: either seccomp-BPF or xfilter.
For seccomp-BPF, sysembed: (1) extracts the syscall numbers from
the JSON file, (2) constructs a seccomp-BPF program using a skip
list-based approach (as in sysfilter), (3) writes the BPF program
asa struct sock_fprog to a temporary file, before (4) using obj-
copy to embed the filter as an additional section in the input binary.
We use the —set-section-flags option of objcopy to specify that
the section should be read-only and not mapped into the program’s
address space. The process of embedding an xfilter is similar,
only differing in the filter generation stage, creating a bit vector of
allowed/blocked syscalls rather than a BPF program. After a filter is
embedded in a binary, we use the command-line tool evmctl [63]
to add IMA and EVM signatures to the binary’s extended attributes.
We automated the steps of the offline tooling process above, in
addition to generating syscall sets with sysfilter,in~ 100 LOC of
Bash. Thus, (with or without our script) minimal developer effort is
required to enable SysXCHG protection for a given binary. The offline
process is typically performed once for a given binary; although if
the binary is subsequently modified, enforcement will need to be
performed again. In the best case, where modifications do not affect
the binary’s syscall set, nor its embedded filter(s), only updating
the binary’s signature is required. In the worst case, all offline
steps must be performed again. While enforcing the benchmark
applications (§6.1), we observed that embedding filters and signing
binaries are performant while extracting syscall sets is a bottleneck.
However, since SysXCHG’s design makes no assumptions about the
syscall extraction method, different tools can be substituted with
sysfilter to further optimize performance if necessary.

5.2 Kernel Modifications

Our prototype of SysXCHG extends Linux kernel v6.0.8 with ~ 600
LOC in C, added mainly to its seccomp-BPF infrastructure, ELF
execution/loading, prctl syscall, and syscall handling pathway.
Roughly half of the additions (= 300 LOC) went towards imple-
menting xfilter, while the other half went towards extending
seccomp-BPF with SysXCHG.

Handling exec Filters. We modified the kernel’s binary loading
code to search for the existence of a . filter section in ELF files
while setting up a new program’s address space. If the kernel finds
a .filter section, it extracts it, formats it according to the filter
type (e.g., seccomp-BPF versus xfilter), and installs it as speci-
fied by the enabled install model (i.e., inheritance versus exchange).
Although our explanation of exec filters describes a single ELF
filter section called .filter, in practice we use separate section
names to signify different exec filter types to simplify our imple-
mentation. To implement the former, a small header of one byte can
be prepended to filters in the . filter section denoting up to 256
unique filter types and flags (e.g., a seccomp-BPF filter with flag
SECCOMP_FILTER_FLAG_SPEC_ALLOW to disable speculative store
bypass mitigations for the filter program).

SysXCHG

seccomp-BPF. The changes we made to the seccomp-BPF infras-
tructure to handle exec filters and both the inheritance and ex-
change models are minimal, resulting in ~ 150 lines of additional
code. For the inheritance model, after the kernel extracts a sec-
comp-BPF exec filter from an ELF binary, it installs it using the
standard seccomp-BPF installation pathway. This simplicity is the
result of the inheritance model making no distinction between exec
and manual filters once they are in the kernel’s internal representa-
tion. In contrast, to support the exchange model, SysXCHG creates
separate lists of installed filters for exec and manual filters, as well
as separate bitmap caches. When a new exec filter is installed,
SysXCHG first clears the exec filter list and corresponding bitmap
cache before repopulating them with the new program’s filter.
xfilter. We represent xfilters in our implementation as a bit
vector. As with seccomp-BPF filters, xfilters can be installed ei-
ther manually with prctl, or automatically, as exec filters.

Every process in the kernel is represented by a struct task_-
struct, which we modify to include an additional struct that
contains a pointer to a view of a task-specific syscall table as well
as a reference count. In the case that no xfilters are installed,
the syscall table pointer refers to the global syscall table. When an
xfilter is installed for the first time, a copy of the global syscall
table is created, and the task’s syscall table pointer is made to
point to the copy, where filter installation will occur. If the task’s
syscall table pointer does not refer to the global syscall table (i.e.,
an xfilter was previously installed), then its reference count is
checked. If the count is one—i.e., only this process uses this syscall
table—, filtering can proceed on the current syscall table without
copying. If the count is greater than one—i.e., multiple processes
share this syscall table as a result of [v]fork or clone—, the current
syscall table is copied, and filter installation is done on the copy.

In the inheritance model, when a filter is installed on a syscall
table, the function pointers in it (that correspond to blocked syscalls)
are replaced with a pointer to a function that handles the illegal
syscall. Similar to seccomp-BPF, exec and manual filters are treated
equally in the inheritance model: they both can only reduce the
set of allowed syscalls. Our implementation achieves this by never
allowing a process to restore syscall handlers in its syscall table
once they have been replaced with the illegal syscall handler.

In the exchange model, exec and manual filters are treated
differently. To differentiate which entries in a given syscall ta-
ble are blocked by exec and manual filters, we employ different
illegal syscall handlers for each, called exec_blocked_syscall
and man_blocked_syscall, respectively. When a manual filter is
installed, we replace the handlers of any blocked syscalls with
the man_blocked_syscall handler. In contrast, when an exec
filter is installed, for each blocked syscall, we check whether it
was previously blocked by a manual filter using pointer equal-
ity to compare the given syscall’s handler with the address of
man_blocked_syscall. No action is taken in the event that the
syscall was previously blocked by an manual filter. In all other cases,
the illegal syscall handler for exec filters, exec_blocked_syscall,
can replace the current handler. Likewise, when a given syscall
is allowed by an exec filter, we can restore the syscall’s original
handler (if it was previously blocked) iff a manual filter did not
block it. Thus, this mechanism allows differentiation of filter types
and ultimately enables filter exchanging for filters of type xfilter.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 1: Performance results for SPEC CPU 2017 using the
inheritance model.

Seccomp-BPF xfilter

Benchmark _ —_—
Manual Exec | Manual Exec
600.perlbench_s ~0% ~0% ~0%
602.gcc_s 0.44% ~0% 0.33%
605.mcf_s 0.37% ~0% 0.29%

0.34% ~=0% ~0%
~0% 0.11% 0.36%

620.omnetpp_s
623.xalancbmk_s

625.x264_s 0.12% ~0% 0.09%
631.deepsjeng_s 0.02% | 0.38% 0.02%
641.1leela_s 0.02% ~0% 0.05%
657.xz_s ~0% ~0% ~0%
619.1bm_s ~0% 0.05% ~0%
638.imagick_s 0.04% | 0.04% ~0%
644.nab_s 0.07% ~0% ~0%

6 EVALUATION

Testbed. We evaluated SysXCHG on a host equipped with an Intel
Xeon W-2145 8-core (16-thread) processor and 64GB of DDR4 mem-
ory, running Debian v11 (bullseye) Linux with kernel v6.0.8. In
order to reduce benchmarking noise and assist with reproducibility,
the CPU was configured to run at a fixed frequency of 3.7GHz in
the C0 C-state, with dynamic voltage and frequency scaling (Intel
Turbo Boost, Intel SpeedStep) disabled. To match common, real-
world settings, we enabled both simultaneous multithreading and
ASLR, and we built all binaries as position-independent (-f{PIC,
PIE}, -pie). Finally, when installing seccomp-BPF filters (via prctl,
seccomp, or as an exec filter) the SECCOMP_FILTER_FLAG_SPEC-
_ALLOW flag was always set to disable speculative store bypass miti-
gations (i.e., SysXCHG filters are considered to be non-adversarial).

6.1 Performance

6.1.1 Inheritance Model. We first evaluated the performance of
SysXCHG under the inheritance model (i.e., no filter exchanging) by
running a set of real-world and synthetic benchmarks. Regarding
the latter, we chose the SPEC CPU 2017 benchmark suite to mea-
sure the performance impact of the two different filter installation
methods (for both seccomp-BPF filters and xfilters): (1) manual
filter installation via invoking prctl/seccomp in the constructor
of a dynamic shared object (DSO), which the main binary loads (as
in sysfilter [18]); and (2) exec filter installation, which uses the
kernel to extract and install embedded filters (§4.1). Notably, under
the inheritance model, manual and exec filters are treated equally
after installation: seccomp-BPF maintains both manual and exec
filters in the same append-only, kernel-resident list of filters, and
xfilter only allows syscalls to be removed from a process’ view
of the syscall table. The results of this experiment are reported in
Table 1 (0% corresponds to < 0.01%). In general, the SPEC CPU
2017 benchmark programs only invoke execve[at] once at the be-
ginning of the benchmark, resulting in ~1 filter installation. Hence,
the contribution of filter installation to the overall performance
impact in these benchmarks is minimal; we examine installation
more thoroughly in Section 6.1.3.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 2: Performance results for real-world applications us-
ing the inheritance model (exec filters only).

Benchmark Seccomp-BPF xfilter
Nginx (1KB) 1.08% 0.07%
Nginx (100KB) 0.54% 1.10%
Nginx (1MB) 1.07% 1.11%
Redis (GET) 0.53% 0.26%
Redis (SET) 0.53% 0.26%
MariaDB 0.80% 0.50%
SQLite ~0% ~0%

Similarly, for the real-world application benchmark results (Ta-

ble 2), start-up time (incl. filter installation) is not measured at
all, and thus we omit manual filter installation and default to
exec filters only. Overall, our results regarding the inheritance
model demonstrate that xfilter performs equal to (or better than)
seccomp-BPF when filtering is being performed. For SPEC CPU
2017 (Table 1), overheads range from ~0% to 0.36% for xfilter, and
~0% to 0.44% for seccomp-BPF. The real-world applications (Ta-
ble 2) exhibit a slightly higher overhead, ranging from ~0% to 1.11%
for xfilter and ~0% to 1.08% for seccomp-BPF. Table 1 shows that
there is a negligible difference between manual and exec installa-
tion times, suggesting a performant exec filter implementation.
SPEC CPU 2017. We use the 12 C/C++ benchmarks from the
SPEC CPU 2017 SPECspeed Integer and Floating Point suites [7]
to evaluate the runtime slowdown of SysXCHG for both xfilter
and seccomp-BPF filter types. For each enforcement variant in
Table 1 (col. 2-5), we averaged the results of 10 iterations of the
ref workload, and report the performance impact as a percentage
atop a baseline that performs no syscall filtering. The results show
negligible performance degradation in the range of 0%-0.14%, and
0%-0.44%, for seccomp-BPF manual, and exec filter installation
methods, respectively; and 0%-0.38%, and 0%—-0.36%, for xfilter
manual, and exec filter installation methods, respectively. This
demonstrates the performance improvement that can indeed be
achieved with xfilter acting as a filtering shortcut.
Real-world Applications. To understand SysXCHG’s performance
impact in a realistic setting, we benchmarked four popular real-
world applications: Nginx (v1.22.1) [73], Redis (v6.0.16) [85], Mari-
aDB (v10.5.18) [68], and SQLite (v3.34.1) [97]. Results, averaged over
20 runs, are shown as a percentage atop a baseline that performs
no syscall filtering in Table 2.

o Nginx: We measured the effects of xfilter and seccomp-BPF
filters on the throughput of Nginx using the wrk [32] benchmark-
ing tool to generate simultaneous, continuous HTTP requests to
Nginx over a 1-minute period for three different file sizes (filled
with random data): 1KB, 100KB, and 1MB. To ensure I/O did not
mask SysXCHG’s overhead, we ran Nginx and wrk on the same host
and connected them over the loopback (1o) virtual network inter-
face. We also tuned the benchmark for each file size to maximize
CPU utilization. For all of the file sizes, wrk ran with 8 threads of
execution, and with each thread making 64 simultaneous HT TP
requests. For the 1KB and 100KB file sizes, Nginx ran with 8 worker
threads, while for the 1MB file size it ran with 4.

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

The overhead of seccomp-BPF filtering ranges from 0.54%-1.08%,
while the overhead of xfilter ranges from 0.07%-1.11%. Notably,
our results show the worst-case. If the CPU is not saturated, I/O
will mask any performance degradation resulting from SysXCHG.

e Redis: We used the memtier_benchmark [84] to generate a
realistic workload for Redis consisting of a 1-minute stream of
SET and GET requests (1 : 10 ratio) on a 32-byte object. Both mem-
tier_benchmark and Redis ran on the same host and performed I/O
over lo. We ran memtier_benchmark with 3 threads, each simulat-
ing 16 clients making simultaneous requests to drive the execution
of a single redis-server thread, and we verified that these settings
maximized the CPU utilization of the redis-server thread. The
throughput degradation of xfilter and seccomp-BPF is negligible
at 0.26% and 0.53%, respectively; xfilter is (slightly) better.

e MariaDB: We evaluated the throughput reduction in MariaDB
using a simulated OLTP workload (oltp_read_write) generated
by sysbench [55]. Similar to the other networked benchmarks,
MariaDB and sysbench ran on the same host and communicated
over lo. Each benchmark run lasted 5 minutes, wherein sysbench
made simultaneous requests using 6 threads on a database consist-
ing of a single table of 2M rows. We largely followed MariaDB’s
recommended settings for benchmarking with sysbench [67], with
a small number of modifications to ensure CPU utilization was high
and I/0 was not shadowing results. Specifically, we used 75% of our
machine’s RAM (48GB) for the buffer pool, 512MB for the log buffer
(*11MB per GB of the buffer pool), and 12GB for the log file size
(25% of the buffer pool). The impact of xfilter and seccomp-BPF
on MariaDB’s throughput is inconsequential at 0.50% and 0.80%,
respectively. Again, xfilter is (slightly) better than seccomp-BPF.

o SQLite: We used SQLite’s Speedtest benchmark [96] to measure
the runtime increase of xfilter and seccomp-BPF across a series
of standard database operations. We used an in-memory database
for our evaluation, and the benchmark’s default options. Our results
show the performance overhead of SysXCHG is unnoticeable.

6.1.2 Exchange Model. We next evaluated the performance of
SysXCHG’s exchange model (§4.2) using the suite of benchmarks
from PaSH [46], and both seccomp-BPF and xfilter. Specifically,
we used nearly the entire suite of PaSH benchmarks, excluding only
correctness tests (i.e., the POSIX test suite) and PaSH-specific micro-
benchmarks. The included benchmarks represent real-world use-
cases of processes that invoke execve[at] multiple times through-
out their lifetime and that of their children, providing insights about
the performance overhead contributed by filter exchanging and sig-
nature verification. In other words, while the PaSH benchmark suite
was originally created to measure shell script performance, the
programs within execute other programs in a hierarchical manner
that is conducive to evaluating filter exchanging. In terms of sig-
nature verification, prior to running the benchmarks, we signed
all executed (filter-carrying) binary programs with IMA and EVM
signatures, and during benchmarking, we appraised the binaries
before their execution using trusted X.509 public key certificates
to verify both the IMA and EVM signatures. Further, we chose the
smallest dataset for all benchmarks to reduce the chance of I/O
masking any performance overhead. The results of 20 runs of this
experiment are shown in Table 3 as a percentage increase atop a
vanilla baseline (~0% corresponds to < 0.01%).

SysXCHG

Table 3: Performance results for PaSH (exchange model).

Benchmark Seccomp-BPF xfilter
Common Unix One-liners
bi-grams 6.02% 3.30%
diff 6.57% 0.84%
nfa-regex 7.21% 0.90%
set-diff 7.81% 0.69%
shortest-scripts 1.42% 0.34%
sort-sort 7.11% 0.36%
sort 6.38% 1.08%
spell 1.77% 0.37%
top-n 2.41% ~0%
wf 2.54% 0.82%
Bell Labs Unix50 0.40% 0.39%
COVID-19 Transit Analytics 0.87% 0.78%
Natural-Language Processing 0.95% 0.51%
NOAA Weather Analysis 0.96% 0.88%
Wikipedia Web Indexing 0.34% 0.16%
Video Processing 0.43% 0.40%
Audio Processing 0.03% 0.05%
Program Inference 0.29% 0.12%
Traffic Log Analysis 1.11% 0.30%
PCAP Log Analysis 0.25% 0.31%
Genomics Computation ~0% 0.18%
Encryption 0.29% 0.10%
Compression ~0% ~0%
AUR Package Compilation 2.74% 1.71%

Overall, our results demonstrate that performing filter exchang-
ing (including verifying signed binaries) using seccomp-BPF fil-
ters and xfilters results in marginal runtime overhead for the
programs we consider macrobenchmarks (i.e., every benchmark
except Common Unix One-liners), ranging from ~0% to 2.74% for
seccomp-BPF and ~0% to 1.71% for xfilter (col. 2-3; Table 3).
Exchanging using xfilter is, on average, more performant than
seccomp-BPF, which is clearly highlighted by the microbenchmark
Common Unix One-liners, where seccomp-BPF overheads get as
high as 7.81%, while xfilter only gets as high as 3.39%.

e Common Unix One-liners: This PaSH microbenchmark consists
of a set of popular shell scripts that contain common Unix idioms,
which can be run with a small dataset of ~x1MB. The programs
all spawn multiple children that subsequently execve[at] to set
up pipelines to process the input data, all of which run on the or-
der of milliseconds. We consider these workloads informative of
the time it takes to exchange filters during execvel[at] in addi-
tion to filtering syscalls. Rows 2—11 in Table 3 detail the results of
each individual one-liner for xfilter and seccomp-BPF filter ex-
changing. Overall, xfilter consistently outperforms seccomp-BPF;
overheads associated with xfilter range from ~0% to 3.30%, while
those of seccomp-BPF are greater, ranging from 1.42% to 7.81%.

o Others: The remainder of the PaSH benchmarks (rows 12-25 in
Table 3) provides insights about the overhead associated with other
common, real-world programs that are subject to multiple filter
exchanges. While the overhead of exchanging seccomp-BPF filters

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

200 —
xfilter I
Linear s
Linear+Cache NS
150 — Skiplist M=
Skiplist+Cache IS

100 —

Filter Install Time (us)

%
o
|

%"1;90‘01'7):@‘713&911‘ Sy %> Sos Org Gop 02 5 O3 %y Sy, Ogp O
%

le Og, 9o Mop b, O te, 1o Oy Uny e fos e
e, Cs As Rs %5'2‘ e, 5% 05 -%91' % B Ns
S 0 s, NS g, g X
/7% o\s é% (N s s
NS NS Q:

Figure 5: xfilter and seccomp-BPF filter installation times
across real-world applications and SPEC CPU 2017.

and xfilters is small in both cases, being < 2.84% and < 1.71%,
respectively, xfilter generally performs better than seccomp-BPF.
In all but 3 cases, xfilter outperforms seccomp-BPF, and in those
3 cases, the difference between the two is negligible (< 0.19%).

6.1.3 Installation Time. To determine the installation speedup we
achieve with xfilter over seccomp-BPF—both with and without
the bitmap cache optimization—we constructed a microbenchmark
to measure filter installation time of SPEC CPU 2017 and the real-
world applications. The microbenchmark uses rdtscp to measure
the time it takes to complete a manual filter installation. In order
to reduce benchmarking noise, we pin the microbenchmark to a
“quiet” CPU thread before timing its critical section.

Figure 5 shows the results of our microbenchmark across 10,000
installation iterations of xfilter as well as seccomp-BPF with
and without the bitmap cache optimization, and with linear and
skiplist-based filtering approaches [18]. Knowing the set of allowed
and blocked syscalls prior to installing a filter, as is the case with
xfilter, can greatly reduce filter installation time, ranging from
x76% to ~97%. Additionally, disabling seccomp-BPF’s bitmap cache
significantly decreases installation time ranging from ~29% to ~36%
for skiplist-based filters and ~73% to ~78% for linear-based filters.
This reduction is the result of removing the BPF program emulation
for every syscall that is required to populate the bitmap cache.

6.2 Effectiveness

The primary objective of SysXCHG, as described in Section 4, is to
provide a syscall filtering enforcement mechanism that reduces both
the attack surface of the kernel and access to unnecessary OS func-
tionality (from the userland). The main component of SysXCHG’s de-
sign that enables this is filter exchanging, which performs syscall fil-
tering in accordance to the PoLP. The remainder of this section eval-
uates how effective SysXCHG is at realizing these two claims using
the PaSH [46] benchmark suite, as shown in Table 4 (that describes
the execve[at] relationships in the PaSH benchmarks). For exam-
ple, the Common Unix One-liners benchmark shortest-scripts
(row 6) initially runs bash (depth = 1; col. 2) which spawns mul-
tiple child processes that execve other programs, contributing to
over-privilege described in col. 7 (§6.2.1) and col. 8-9 (§6.2.2).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

Table 4: Over-privilege of programs executed in the PaSH benchmark suite. Over-privilege percentage (col. 7) is calculated via

y—x _ ~ :
5~ - 100 where x = Exchange (col. 6) and y = Inheritance (col. 5).

Benchmark Depth Root No. Desc. w . . M
Inheritance Exchange ‘ Pct. Critical ~ Functionality
Common Unix One-liners
bi-grams 1 bash 11 122 84 45.24% v stdio {c,d,r}path chown fattr id proc
diff 1 bash 6 109 84 29.76% v stdio {c,d, r}path fattr id proc
nfa-regex 1 bash 3 100 84 19.05% v stdio rpath id proc
set-diff 1 bash 7 109 84 29.76% v stdio {c,d,r}path fattr id proc
shortest-scripts 1 bash 8 108 84 28.57% v stdio rpath fattr id proc
— 2 xargs 1 52 51 1.96% X stdio
— 2 xargs 1 60 51 17.65% v stdio {c, tmp}path fattr proc
sort-sort 1 bash 3 102 84 21.43% v stdio id proc
sort 1 bash 2 102 84 21.43% v stdio id proc
spell 1 bash 7 106 84 26.19% v stdio id proc
top-n 1 bash 5 115 84 36.90% v stdio chown fattr id proc
wf 1 bash 4 103 84 22.62% v stdio id proc
Bell Labs Unix50 1 bash 12 124 84 47.62% 4 stdio rpath chown fattr id proc vminfo unix inet
COVID-19 Transit Analytics 1 bash 6 119 84 41.67% v stdio chown fattr id proc vminfo unix inet
Natural-Language Processing 1 bash 14 128 84 52.38% 4 stdio {c,r,w, tmp}path chown fattr id proc vminfo
unix inet
NOAA Weather Analysis 1 bash 13 142 84 69.05% v stdio chown {c,r}path fattr flock id proc
protexec vminfo unix inet
— 2 xargs 1 109 51 113.73% v stdio {c,r, tmp}path fattr flock id proc protexec
unix inet
— 2 sh 1 77 68 13.24% X stdio {c, tmp}path chown fattr
Wikipedia Web Indexing 1 bash 16 146 84 73.81% v stdio {c,d,r,w,tmp}path chown fattr id proc
protexec
Video Processing 1 bash 3 137 84 63.10% v stdio {c, r}path chown fattr id proc protexec unix
inet
Audio Processing 1 bash 3 173 84 105.95% v stdio {c,r,w}path chown fattr flock id proc
protexec unix inet
Program Inference 1 bash 2 129 84 53.57% v stdio {r,w, tmp}path chown fattr id proc protexec
Traffic Log Analysis 1 bash 8 120 84 42.86% v stdio rpath chown fattr id proc vminfo unix inet
PCAP Log Analysis 1 bash 6 135 84 60.71% v stdio rpath chown fattr id proc protexec
— 2 sh 1 83 68 22.06% v rpath id proc stdio
Genomics Computation 1 bash 8 127 84 51.19% v stdio rpath chown fattr id proc protexec
Encryption 1 bash 3 124 84 47.62% v stdio{c,r}path chown fattr id proc protexec unix
inet
Compression 1 bash 3 112 84 33.33% v stdio {c,r}path chown fattr id proc
AUR Package Compilation 1 bash 69 176 84 109.52% v stdio {c,d,r,w,tmp}path chown fattr id proc
protexec vminfo unix inet settime
— 2 sh 2 138 68 102.94% v stdio {c,d,r,w,tmp}path chown fattr id proc
protexec unix inet
— 10 make 3 123 74 66.22% v stdio {c,d,r,w}path chown fattr id proc
— 11 collect2 1 58 46 26.09% v stdio {c, tmp}path fattr

Two of the children the initial bash process spawns execute
xargs (depth = 2; rows 7-8), which further execute other programs,
justifying their place in the table. Col. 4 corresponds to the number
of different programs execve[at]’d from each “root” (col. 3) pro-
gram. At a high-level, any program that executes another has the
potential to violate the PoLP in the inheritance model.

Overall, SysXCHG’s exchange model is extremely effective, offer-
ing a huge improvement over the currently deployed inheritance
model. For the PaSH benchmark suite, the inheritance model can
result in up to 109.54% additional syscalls for a program atop what
the program needs for isolated execution (i.e., no consideration
for subsequently executed programs). This huge increase, which
includes a plethora of functionality as well as critical syscalls, drops
to 0% when employing the exchange model.

6.2.1 Kernel Attack Surface Reduction. An adversary (§3) that has
taken control of a userland process—and thus has the ability to
make arbitrary syscalls with arbitrary arguments—may seek to
escalate their privileges by attacking the kernel, exploiting vulnera-
bilities in less-stressed syscalls [61]. Since it is infeasible to deduce
a priori whether a given syscall and set of arguments can result
in a vulnerability, we consider the magnitude of the reduction in
a process’ set of allowed syscalls a viable metric for determining
SysXCHG’s ability to reduce the attack surface of the kernel.

We applied this metric to PaSH and detail our findings in col. 7
of Table 4. For a given root program (col. 3), we calculated the total
number of syscalls that must be allowed by filtering mechanisms
under the inheritance model to provide correct, non-adversarial
execution of itself and any descendant programs it executes (col. 5).

SysXCHG

In addition to the number of syscalls allowed, we also show the
corresponding percentage increase of syscalls (col. 7) atop what the
exchange model requires (col. 6)—in this case, the exchange model
represents the minimum number of syscalls the given root program
requires for benign execution when run in isolation (i.e., without
considering any descendant programs).

To calculate the percentage increase, we use the formula: ? -
100 where x = Exchange (col. 6) and y = Inheritance (col. 5). As an
example, consider the root of Audio Processing (i.e., bash). When
run under the currently-employed inheritance model, the root must
allow 173 syscalls to accommodate its descendants, despite only
requiring 84 for its own execution.

The exchange model enables the root to securely run with its
minimum required set of 84 allowed syscalls, while the inheritance
model mandates the root allow 173 syscalls, a 105.95% increase in
over-privilege, which is significant.

6.2.2 Privilege Reduction. In addition to our quantitative approach
to evaluate SysXCHG’s effect on the kernel’s attack surface, we also
take a qualitative approach to evaluate the ability of SysXCHG’s
exchange model to limit dangerous functionality that is normally
available to an attacker when the inheritance model is employed.

Given the set of syscalls that the inheritance model allows, and
which the exchange model blocks (i.e., the syscall set allowed by the
inheritance model minus the set allowed by the exchange model),
we determine the additional abilities the attacker has at their dis-
posal as well as whether any of these syscalls are security critical.
To determine the former, we use the classifications (i.e., “promises”)
established by OpenBSD’s pledge [66], which restricts the syscalls
a process can make based on OS functionality. To determine the
latter, we use the definition of critical syscalls (and their functional
equivalents; e.g., open~»openat) by Ghavamnia et al. [28], which
considers a given syscall as critical if it shows up in real-world
exploits. Together, these two metrics provide a qualitative view of
the danger of the inheritance model, which is abated by SysXCHG.
Attacker Abilities. There are 165 unique syscalls across all PaSH
benchmarks that are available to an attacker as a result of the
inheritance model. Out of these, 82 map directly to a syscall in
OpenBSD that is classified in a pledge promise. For the remaining
83 syscalls, we manually classified them according to similar se-
mantics (e.g., fsync is classified as stdio, so we manually classified
fdatasync as stdio as well).

Using this classification of syscalls to abilities, we categorized

the type(s) of functionality available to an attacker under the in-
heritance model, as shown in column 9 of Table 4. In other words,
by using SysXCHG’s exchange model in place of the inheritance
model, an attacker’s capabilities would be limited in the areas of
functionality described in column 9.
Critical Syscalls. We examined each row of Table 4 to determine
whether any syscalls that are available to a process due to the
inheritance model are security critical according to the classification
of Ghavamnia et al. [28]. Our results are shown in column 8 of
Table 4. The vast majority of programs run under the inheritance
model in the PaSH benchmark suite include security critical syscalls,
providing an adversary with dangerous abilities, and motivating
the necessity of the exchange model.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

7 CONCLUSION

We presented the design and implementation of SysXCHG: a syscall
filtering enforcement mechanism that enables programs to run in
accordance with the PoLP. We introduced a new primitive, the exec
filter, which is embedded in the binary it applies to and is automat-
ically installed upon execvel[at]. Using exec filters we detailed
the main thrust of the paper: the exchange model, which contrasts
with seccomp-BPF’s currently employed inheritance model, by al-
lowing a program to exchange a previously installed exec filter
with its current one. We still maintained developer-intended se-
mantics with manual filters, which do not have the ability to be
uninstalled or exchanged. To combat security concerns of an adver-
sary tampering with exec filters and increasing their privilege, we
sign filter-carrying binaries using Linux’s IMA subsystem. Addi-
tionally, we identified a shortcoming of seccomp-BPF’s filter instal-
lation procedure, which we remedied with the design of xfilter:
a process-specific view of the kernel’s syscall table.

In our evaluation of SysXCHG we: (1) measured the performance
overhead of exec filters, filter exchanging, and xfilter; and (2) as-
sessed the effectiveness of our design from a security standpoint.
Our performance evaluation demonstrated the effects of filter ex-
changing are negligible, resulting in < 2.74% and < 1.71% for
seccomp-BPF and xfilter, respectively, for the PaSH macrobench-
marks. However, the PaSH microbenchmark revealed that xfilter
performs significantly better (< 3.30%) than seccomp-BPF (< 7.81%).
Further, we showed that xfilter offers a substantial speedup for
filter installation, ranging from x~76% to ~96%. Lastly, our effec-
tiveness evaluation determined that programs that execute others
are grossly over-privileged under the inheritance model. In con-
trast, the design of SysXCHG’s exchange model removes all of the
over-privilege associated with the inheritance model, providing a
performant and effective scheme.

Availability

Our prototype implementation of SysXCHG is available at:
https://gitlab.com/brown-ssl/sysxchg

ACKNOWLEDGMENTS

We thank our shepherd, Alexios Voulimeneas, and the anonymous
reviewers for their valuable feedback. This work was supported
in part by the CIFellows 2020 program, through award CIF2020-
BU-04, and the National Science Foundation (NSF), through award
CNS-2238467. Any opinions, findings, and conclusions or recom-
mendations expressed herein are those of the authors and do not
necessarily reflect the views of the US government, NSF, or CRA.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In ACM Conference on Computer and Communications Security (CCS).
340-353.

[2] Toannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Annual
Computer Security Applications Conference (ACSAC). 70—-83.

[3] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman.
1998. UFO: A Personal Global File System Based on User-Level Extensions to
the Operating System. ACM Transactions on Computer Systems (TOCS) 16, 3
(1998), 207-233.

[4] Paul-Antoine Arras, Anastasios Andronidis, Luis Pina, Karolis Mituzas, Qianyi
Shu, Daniel Grumberg, and Cristian Cadar. 2022. SaBRe: load-time selective

https://gitlab.com/brown-ssl/sysxchg

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

binary rewriting. International Journal on Software Tools for Technology Transfer
(STTT) 24, 2 (2022), 205-223.

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maziéres,
and Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU
Features. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 335-348.

Massimo Bernaschi, Emanuele Gabrielli, and Luigi V. Mancini. 2000. Operating
System Enhancements to Prevent the Misuse of System Calls. In ACM Conference
on Computer and Communications Security (CCS). 174-183.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation Compute Benchmark. In ACM/SPEC International Conference
on Performance Engineering (ICPE). 41-42.

Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele. 2021. Saphire: Sand-
boxing PHP Applications with Tailored System Call Allowlists. In USENIX
Security Symposium (SEC). 2881-2898.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
USENIX Security Symposium (SEC). 249-266.

Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. 2021. Au-
tomating Seccomp Filter Generation for Linux Applications. In ACM Cloud
Computing Security Workshop (CCSW). 139-151.

Suresh N. Chari and Pau-Chen Cheng. 2003. BlueBoX: A Policy-Driven, Host-
Based Intrusion Detection System. ACM Transactions on Information and System
Security (TISSEC) 6, 2 (2003), 173-200.

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming
without Returns. In ACM Conference on Computer and Communications Security
(CCS). 559-572.

Microsoft Corporation. 2016. Seccomp security profiles for Docker.
//github.com/microsoft/docker/blob/master/docs/security/seccomp.md
The MITRE Corporation. 2014. CVE-2014-0038. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0038

The MITRE Corporation. 2017. CVE-2017-8824. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-8824

The MITRE Corporation. 2021. CVE-2021-44228. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2021-44228

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In USENIX Security Symposium (SEC), Vol. 98. 63-78.

Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and
Vasileios P. Kemerlis. 2020. sysfilter: Automated System Call Filtering for Com-
modity Software. In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). 459-474.

Solar Designer. 1997. Getting around non-executable stack (and fix). https:
//seclists.org/bugtraq/1997/Aug/63.

Daniel C. DuVarney, V. N. Venkatakrishnan, and Sandeep Bhatkar. 2003. SELF:
A Transparent Security Extension for ELF Binaries. In ACM New Security
Paradigms Workshop (NSPW). 29-38.

Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel Gruss. 2022.
Rapid Prototyping for Microarchitectural Attacks. In USENIX Security Sympo-
sium (SEC). 3861-3877.

Stephanie Forrest, Anil Somayaji, and David H. Ackley. 1997. Building Diverse
Computer Systems. In Workshop on Hot Topics in Operating Systems (HotOS).
67-72.

Timothy Fraser, Lee Badger, and Mark Feldman. 2000. Hardening COTS Software
with Generic Software Wrappers. In IEEE DARPA Information Survivability
Conference and Exposition (DISCEX), Vol. 2. 323-337.

Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis Atlidakis,
and Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow Enforce-
ment with Indirect Branch Tracking. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID).

Tal Garfinkel. 2003. Traps and Pitfalls: Practical Problems in System Call In-
terposition Based Security Tools. In Network and Distributed System Security
Symposium (NDSS).

Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. 2004. Ostia: A Delegating
Architecture for Secure System Call Interposition. In Network and Distributed
System Security Symposium (NDSS).

Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated System Call Policy Generation for Con-
tainer Attack Surface Reduction. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID). 443-458.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychron-
akis. 2020. Temporal System Call Specialization for Attack Surface Reduction.
In USENIX Security Symposium (SEC). 1749-1766.

Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis. 2022. C2C:
Fine-Grained Configuration-Driven System Call Filtering. In ACM Conference

https:

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41]

[42

[43
[44

[45

[46

[47

[48

[49

[50

[51

[52

[53

[54

[55
[56

[57

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

on Computer and Communications Security (CCS). 1243-1257.

Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and Thomas E. An-
derson. 1998. SLIC: An Extensibility System for Commodity Operating Systems.
In USENIX Annual Technical Conference (ATC).

Adrien Ghosn, Marios Kogias, Mathias Payer, James R Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Libraries.
In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 255-267.

Will Glozer. 2021. wrk — a HTTP benchmarking tool. https://github.com/wg/
wrk.

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out Of Control: Overcoming Control-Flow Integrity. In IEEE Symposium
on Security and Privacy (S&P). 575-589.

Tan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996. A Secure
Environment for Untrusted Helper Applications Confining the Wily Hacker. In
USENIX Security Symposium (SEC).

Ivan Gotovchits, Rijnard Van Tonder, and David Brumley. 2018. Saluki: Finding
Taint-style Vulnerabilities with Static Property Checking. In Workshop on Binary
Analysis Research (BAR).

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In USENIX Security
Symposium (SEC). 897-912.

Philip J. Guo and Dawson Engler. 2011. CDE: Using System Call Interposition to
Automatically Create Portable Software Packages. In USENIX Annual Technical
Conference (ATC).

Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. 1998. Intrusion
Detection Using Sequences of System Calls. Journal of Computer Security 6, 3
(1998), 151-180.

Gerard J. Holzmann. 2015. Code Inflation. https://spinroot.com/gerard/pdf/Co
de_Inflation.pdf

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In IEEE Symposium on Security and Privacy (S&P).
969-986.

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In ACM Confer-
ence on Computer and Communications Security (CCS). 1868-1882.

Kapil Jain and R. Sekar. 2000. User-Level Infrastructure for System Call Inter-
position: A Platform for Intrusion Detection and Confinement. In Network and
Distributed System Security Symposium (NDSS).

Jake Edge. 2015. A seccomp overview. https://lwn.net/Articles/656307/.
Jonathan Corbet. 2005. Securely renting out your CPU with Linux. https:
//lwn.net/Articles/120647/.

Michael B. Jones. 1993. Interposition Agents: Transparently Interposing User
Code at the System Interface. ACM Special Interest Group in Operating Systems
(SIGOPS) 27, 5 (1993), 80-93.

Konstantinos Kallas, Tammam Mustafa, Jan Bielak, Dimitris Karnikis,
Thurston H.Y. Dang, Michael Greenberg, and Nikos Vasilakis. 2022. Practi-
cally Correct, Just-in-Time Shell Script Parallelization. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 769-785.

Dmitry Kasatkin, David Safford, and Mimi Zohar. 2010. An Overview of The
Linux Integrity Subsystem.

Guarav S. Kc and Angelos D. Keromytis. 2005. e-NeXSh: Achieving an Effectively
Non-Executable Stack and Heap via System-Call Policing. In Annual Computer
Security Applications Conference (ACSAC).

Vasileios P. Kemerlis. 2015. Protecting Commodity Operating Systems through
Strong Kernel Isolation. Ph. D. Dissertation. Columbia University.

The Linux Kernel. 2023. Syscall User Dispatch. https://docs.kernel.org/admin-
guide/syscall-user-dispatch.html.

Sungjin Kim, Byung Joon Kim, and Dong Hoon Lee. 2021. Prof-gen: Practical
Study on System Call Whitelist Generation for Container Attack Surface Reduc-
tion. In IEEE International Conference on Cloud Computing (CLOUD). 278-287.
Taesoo Kim and Nickolai Zeldovich. 2013. Practical and Effective Sandboxing
for Non-root Users. In USENIX Annual Technical Conference (ATC). 139-144.
Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Efficient
Multi-variant Execution Using Hardware-assisted Process Virtualization. In
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
431-442.

Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis Poly-
chronakis. 2018. Compiler-assisted Code Randomization. In IEEE Symposium
on Security and Privacy (S&P). 461-477.

Alexey Kopytov. 2021. sysbench. https://github.com/akopytov/sysbench.
Eduardo Krell and Balachander Krishnamurthy. 1992. COLA: Customized Over-
laying. In USENIX Winter Technical Conference. 3-7.

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea nd
R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). 147-163.

https://github.com/microsoft/docker/blob/master/docs/security/seccomp.md
https://github.com/microsoft/docker/blob/master/docs/security/seccomp.md
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8824
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8824
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://github.com/wg/wrk
https://github.com/wg/wrk
https://spinroot.com/gerard/pdf/Code_Inflation.pdf
https://spinroot.com/gerard/pdf/Code_Inflation.pdf
https://lwn.net/Articles/656307/
https://lwn.net/Articles/120647/
https://lwn.net/Articles/120647/
https://docs.kernel.org/admin-guide/syscall-user-dispatch.html
https://docs.kernel.org/admin-guide/syscall-user-dispatch.html
https://github.com/akopytov/sysbench

SysXCHG

(58]

[59

o
&

=
—

[76

[77

(78

=
2,

(80

(81]

(82]

(83

[84

(85]

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In IEEE Symposium on Security and Privacy (S&P).
276-291.

Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,
and Qi Li. 2017. SPEAKER: Split-Phase Execution of Application Containers. In
International Conference of Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). 230-251.

Bo Li, Jianxin Li, Tainyu Wo, Chunming Hu, and Liang Zhong. 2010. A VMM-
Based System Call Interposition Framework for Program Monitoring. In IEEE
International Conference on Parallel and Distributed Systems (ICPADS). 706-711.
Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos. 2017. Lock-in-
Pop: Securing Privileged Operating System Kernels by Keeping on the Beaten
Path. In USENIX Annual Technical Conference (ATC). 1-13.

Cullen Linn, Mohan Rajagopalan, Scott Baker, Christian S. Collberg, Saumya K.
Debray, and John H. Hartman. 2005. Protecting Against Unexpected System
Calls. In USENIX Security Symposium (SEC). 239-254.

Linux Integrity Project. 2020. evmctl - IMA/EVM signing utility. https://manp
ages.debian.org/bullseye/ima-evm-utils/evmctl.1.en.html.

Linux Programmer’s Manual. 2021. proc - process information pseudo-
filesystem. https://man7.org/linux/man-pages/man5/proc.5.html.
LWN.net. 2004. x86 NX support. https://lwn.net/Articles/87814/.
System Calls Manual. 2022. pledge — restrict system operations.
//man.openbsd.org/pledge.2

MariaDB. 2011. MariaDB Tools. https://github.com/MariaDB/mariadb.org-
tools/blob/master/sysbench/run-sysbench.sh.

MariaDB. 2023. MariaDB. https://mariadb.com.

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In USENIX Winter Conference.

Terrence Mitchem, Raymond Lu, and Richard O’Brien. 1997. Using Kernel
Hypervisors to Secure Applications. In Annual Computer Security Applications
Conference (ACSAC). 175-181.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for
C. In ACM Conference on Programming Language Design and Implementation
(PLDI). 245-258.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In ACM International
Symposium on Memory Management (ISMM). 31-40.

Nginx. 2023. Nginx. https://nginx.org.

Koichi Onoue, Yoshihiro Oyama, and Akinori Yonezawa. 2008. Control of
System Calls from Outside of Virtual Machines. In ACM Symposium on Applied
Computing (SAC). 2116-1221.

Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Automated
Policy Synthesis for System Call Sandboxing. In ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA).
Dinglan Peng, Congyu Liu, Tapti Palit, Pedro Fonseca, Anjo Vahldiek-
Oberwagner, and Mona Vij. 2023. uSWITCH: Fast Kernel Context Isolation with
Implicit Context Switches. In IEEE Symposium on Security and Privacy (S&P).
2956-2973.

Rob Pike and Brian Kernighan. 1984. Program Design in the UNIX Environment.
AT&T Bell Laboratories Technical Journal 63, 8 (1984), 1595-1605.

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In IEEE Symposium on Security and Privacy (S&P). 563-577.
Niels Provos. 2003. Improving Host Security with System Call Policies. In
USENIX Security Symposium (SEC). 257-272.

Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In USENIX Security Symposium (SEC). 1733-1750.

Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash. 2017. A
Multi-OS Cross-Layer Study of Bloating in User Programs, Kernel and Managed
Execution Environments. In ACM Workshop on Forming an Ecosystem Around
Software Transformation (FEAST). 65-70.

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In USENIX Security Symposium (SEC).
869-886.

Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and Richard D. Schlicht-
ing. 2006. System Call Monitoring Using Authenticated System Calls. IEEE
Transactions on Dependable and Secure Computing (TDSC) 3, 3 (2006), 216-229.
Redis. 2023. memtier_benchmark. https://github.com/RedisLabs/memtier{_}ben
chmark.

Redis. 2023. Redis. https://redis.io.

https:

[86]

[87]

[88]

[89]

[90

[o1

[92

[93

[94

[95

[96
[97
[98

[99

[100

[101

[102

[103

[104

[105

[106

[107]

[108

[109]

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004.
Design and Implementation of a TCG-based Integrity Measurement Architecture.
In USENIX Security Symposium (SEC). 223-238.

Yasushi Saito. 2005. Jockey: A User-Space Library for Record-Replay Debugging.
In ACM International Symposium on Automated Analysis-Driven Debugging
(AADEBUG). 69-76.

Jerome H. Saltzer and Michael D. Schroeder. 1975. The Protection of Information
in Computer Systems. Proc. [EEE 63, 9 (1975), 1278-1308.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium (SEC). 936-952.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In IEEE Symposium on Security and Privacy (S&P). 745-762.

Albert Serra, Nacho Navarro, and Toni Cortes. 2000. DITools: Application-level
Support for Dynamic Extension and Flexible Composition. In USENIX Annual
Technical Conference (ATC). 225-238.

Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In ACM Conference on Computer
and Communications Security (CCS). 552-561.

Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and Josep Tor-
rellas. 2020. Draco: Architectural and Operating System Support for System Call
Security. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
42-57.

Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: Finding
Missing Security Checks When You Do Not Know What Checks Are. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA). 1069-1084.

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry.
2021. A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem.
Empirical Software Engineering (EMSE) 26, 3 (2021), 45.

SQLite. 2023. Database Speed Comparison. https://www.sqlite.com/speed.html.
SQLite. 2023. SQLite. https://www.sqlite.org.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal
War in Memory. In IEEE Symposium on Security and Privacy (IEEE S&P). 48-62.
The Linux Kernel. 2023. Seccomp BPF (SECure COMPuting with filters). https:
/Iwww.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html.
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium (SEC). 941-955.
David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code
Re-Randomization. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 367-382.

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patter-
son, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 133-147.

Yunlong Xing, Jiahao Cao, Kun Sun, Fei Yan, and Shengye Wan. 2022. The devil
is in the detail: Generating system call whitelist for Linux seccomp. Future
Generation Computer Systems (FGCS) 135 (2022), 105-113.

Yunlong Xing, Xinda Wang, Sadegh Torabi, Zeyu Zhang, Lingguang Lei, and Kun
Sun. 2023. A Hybrid System Call Profiling Approach for Container Protection.
IEEE Transactions on Dependable and Secure Computing (TDSC) (2023).

Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck.
2013. Chucky: Exposing Missing Checks in Source Code for Vulnerability
Discovery. In ACM Conference on Computer and Communications Security (CCS).
499-510.

YiFei Zhu. 2020. seccomp: Add bitmap cache of constant allow filter results.
https://lwn.net/Articles/834056/.

Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime Countermea-
sures for Code Injection Attacks against C and C++ Programs. ACM Computing
Surveys (CSUR) 44, 3 (2012), 1-28.

Dongyang Zhan, Zhaofeng Yu, Xiangzhan Yu, Hongli Zhang, Lin Ye, and Likun
Liu. 2022. Securing Operating Systems Through Fine-Grained Kernel Access
Limitation for IoT Systems. IEEE Internet of Things Journal (IoT-J) 10, 6 (2022),
5378-5392.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity
and Randomization for Binary Executables. In IEEE Symposium on Security and
Privacy (S&P). 559-573.

https://manpages.debian.org/bullseye/ima-evm-utils/evmctl.1.en.html
https://manpages.debian.org/bullseye/ima-evm-utils/evmctl.1.en.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://lwn.net/Articles/87814/
https://man.openbsd.org/pledge.2
https://man.openbsd.org/pledge.2
https://github.com/MariaDB/mariadb.org-tools/blob/master/sysbench/run-sysbench.sh
https://github.com/MariaDB/mariadb.org-tools/blob/master/sysbench/run-sysbench.sh
https://mariadb.com
https://nginx.org
https://github.com/RedisLabs/memtier%7B_%7Dbenchmark
https://github.com/RedisLabs/memtier%7B_%7Dbenchmark
https://redis.io
https://www.sqlite.com/speed.html
https://www.sqlite.org
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://lwn.net/Articles/834056/

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

A ARTIFACT APPENDIX

A.1 Abstract

This is the artifact appendix for SysXCHG: a system call (syscall)
enforcement mechanism for refining privilege through adaptive
syscall filters. This document describes the environment used to
evaluate SysXCHG as well as how to setup, run, and reproduce the
major claims of SysXCHG.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns. SysXCHG is imple-
mented as a set of modifications to the Linux kernel. In order to
facilitate safe and portable reproducibility, we provide scripts to
virtualize the custom kernels and evaluation environment.

A.2.2 How to Access. SysXCHG is available on GitLab at: https:
//gitlab.com/brown-ssl/sysxchg/-/tree/65f1193d0a4763c5419629
dd3d0820a16493d236 (stable reference).

A.2.3 Hardware Dependencies. Our prototype of SysXCHG requires
a machine equipped with an x86-64 CPU with at least 83GB of RAM
and approximately 35GB of storage space. We further assume that
the CPU has at least 4 threads, however this number can be smaller.
If it is, the -smp flag of the gemu-system-x86_64 command in
tools/common. sh should be updated accordingly.

A.2.4 Software Dependencies. To virtualize the custom SysXCHG
kernels, an installation of QEMU/KVM is required. We additionally
provide automation scripts that require basic Linux command-line
tools for building the kernels, running the VMs, and performing
experiments. We tested the scripts on Debian v12, but they are rela-
tively simple and should work on any Linux distribution, provided
the corresponding package dependencies are available. On Debian
v12, the scripts require the following packages: build-essential,
libncurses-dev,bison, flex, bc,libssl-dev, libelf-dev, zstd,
gemu-system-x86, debootstrap, wget, and openssh-client.

A.2.5 Benchmarks. We provide all data required to run the SQLite
benchmark and a representative set of PaSH benchmarks. Addition-
ally, we provide support (i.e., automation and configuration files)
for SPEC CPU 2017, however we cannot provide its source code
due to licensing restrictions (see §A.5).

A.3 Set-up

A.3.1 Installation. The evaluation environment mainly consists
of: (1) three kernels (vanilla, inheritance, and exchange) that
implement the different filtering models provided by SysXCHG; and
(2) aroot filesystem that is shared by all three kernels and contains
benchmark binaries, tests, IMA/EVM keys, and utility scripts. We
provide both a pre-built evaluation environment as well as the
scripts to build the environment from scratch.

Use Pre-built Environment. The pre-built evaluation environ-
ment can be found at prebuilt. tar.gz in the root of the repository.
To use it, simply download the file and unpack it into the root of
SysXCHG’s repository (ensuring the new directory’s name is build),
for example:

$ tar -xzf prebuilt.tar.gz

Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

Build Environment from Scratch. To build the evaluation envi-
ronment from scratch, simply navigate to the tools directory and
run:

$./sysxchg build all

Building everything from scratch can require upwards of ~1.5 hours
on a 16-core host with 64GB of RAM.

A.3.2 Functionality Test. To determine whether the installation
was successful, and to test the functionality of SysXCHG’s compo-
nents under both the inheritance and exchange models, we provide
two respective test suites. To run the inheritance test suite, assum-
ing the necessary components are already built (§A.3.1), run:

$./sysxchg run tests inheritance
Likewise, to run the exchange test suite, run:
$./sysxchg run tests exchange

These commands output a description of each test program run and
whether the individual tests that make it up passed (denoted with
[PASS]) or failed (denoted with [FAIL]). For the inheritance test
suite, there are 14 individual tests spread across 8 test programs
(i.e., one should expect to see 14 [PASS] labels upon completion).
The exchange test suite is comprised of 30 individual tests spread
across 5 test programs. For complete descriptions of the test suites
and example output, please refer to tests/README.md.

A.4 Evaluation Workflow

A.4.1 Major Claims.

(C1): Performance. xfilter (using exec filters) performs equal to
or better than seccomp-BPF (also using exec filters) under
the inheritance model. This is proven by the experiment (E1)
illustrated in Secion 6.1.1 and Tables 1-2 of the paper.

(C2): Performance. xfilter (using exec filters) performs equal to
or better than seccomp-BPF (also using exec filters) under
the exchange model (i.e., dynamic filter switching) where
overheads for both mechanisms are low, averaging < 3%
for the PaSH macrobenchmarks. This is proven by the ex-
periment (E2) described in Section 6.1.2 of the paper, whose
results are further illustrated in Table 3.

(C3): Effectiveness. SysXCHG can reduce both the kernel’s attack
surface and an attacker’s capabilities post-exploitation by
employing the exchange model. This is proven by the ex-
periment (E3) described in Section 6.2 of the paper, whose
results are reported in Table 4.

A.4.2 Experiments.
(E1): [Performance: Inheritance Model] [5 human-minutes + 2.5 compute-
hours + 20GB disk]: Benchmark the performance of SPEC

CPU 2017 and SQLite under the inheritance model (kernel)

for xfilter and seccomp-BPF enforcement types (using exec

filters).

Preparation: Ensure the steps from A.3.1 completed suc-

cessfully. Both 1inux-6.0.8-{vanilla, inheritance}should

https://gitlab.com/brown-ssl/sysxchg/-/tree/65f1193d0a4763c5419629dd3d0820a16493d236
https://gitlab.com/brown-ssl/sysxchg/-/tree/65f1193d0a4763c5419629dd3d0820a16493d236
https://gitlab.com/brown-ssl/sysxchg/-/tree/65f1193d0a4763c5419629dd3d0820a16493d236

SysXCHG

be present in the build directory along with the root filesys-
tem image (rootfs/bullseye.img). Further, the SPEC CPU
2017 and SQLite benchmarks should be built and enforced
for the xfilter and seccomp-BPF variants.

Execution: To perform 10 iterations of SPEC CPU 2017’s
test data set across the vanilla (baseline), xfilter, and
seccomp-BPF variants, navigate to the tools directory and
run:

$./sysxchg run performance spec

To do the same for 10 iterations of SQLite’s speedtest1
benchmark, run:

$./sysxchg run performance sqlite

Results: Upon completion of each command, the bench-
mark results will be copied to the results directory in the

root of the repository: cpu2017-*. log and speedtest1-*. log

for SPEC CPU 2017’s and SQLite’s results, respectively. We
provide scripts located in tools/analysis to analyze the
benchmark results and print summary tables. They can be
run as follows for SPEC CPU 2017 and SQLite, respectively:

$./tools/analysis/analyze-spec.sh
$./tools/analysis/analyze-sqlite.sh

(E2): [Performance: Exchange Model] [5 human-minutes + 5 compute-
hours + 15GB disk]: Benchmark the performance of PaSH under
the exchange model (kernel) for xfilter and seccomp-BPF
enforcement types (using exec filters).

Preparation: Ensure the steps from A.3.1 completed suc-
cessfully. Both 1inux-6.0.8-{vanilla, exchange} should
be present in the build directory along with the root filesys-
tem image (rootfs/bullseye. img). Further, the PaSH bench-
marks should be built, enforced, and signed for the xfilter
and seccomp-BPF variants.

Execution: To run 10 iterations of a representative selec-

tion of PaSH’s benchmarks using the vanilla (baseline), xfilter,

and seccomp-BPF variants, navigate to the tools directory
and run:

$./sysxchg run performance pash

Results: Upon completion of each benchmark, the results
will be copied to the results/pash-* directories (relative
to the root of the repository) where the results are separated
according to the enforcement mechanism they correspond
to. To analyze the benchmark results and print summary
tables, run:

$./tools/analysis/analyze-pash.sh
(E3): [Effectiveness] [20 human-minutes + 1.5 compute-hours + 15GB

disk]: Perform an analysis of PaSH benchmark programs’
syscall capabilities under the inheritance and exchange models.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Preparation: Ensure the steps from A.3.1 completed suc-
cessfully. The 1inux-6.0.8-vanillakernel should be present
in the build directory along with the root filesystem im-
age (rootfs/bullseye.img). Further, the PaSH benchmarks
should be built for the vanilla (baseline) variant (no enforce-
ment or signing is needed for this experiment).

Execution: To generate information regarding a PaSH bench-
mark’s over-privilege, navigate to the tools directory and
run:

$./sysxchg run effectiveness

Results: Upon completion of the command, a directory,
results/effectiveness, will be created and filled with the
results of the experiment. Each results file has a collection
of information that describes the hierarchical relationship
between processes and programs and their corresponding
syscall sets at each stage. High-level descriptions of each
output section are given below; for full descriptions and
expected output, please see the README . md file.

e strace output: debug trace output.

o execve relationships: information about what programs

execute what other programs.

Program list: programs executed by the benchmark.

Syscall sets: the syscall sets for each program.

Descendant program analysis: tables describing the changes

in syscall sets between programs.

e Root program analysis: a table that presents the root pro-
gram’s syscall set compared against all descendant pro-
grams.

e Table summaries: summaries of the previous sections.
These results can be used to compare with Table 4 in
the paper. The first section is plain-text and the second
section is KIEX.

A.5 Notes on Reusability

Due to licensing restrictions we do not provide the source code for
SPEC CPU 2017. However, we do provide automation for building
and enforcing it when it is available. If building the benchmark
environment from scratch, the SPEC CPU 2017 source code sim-
ply needs to be placed in the bmk-src directory under the name
cpu2017. Once this is done, the build command (i.e., sysxchg build
all) will automatically detect and integrate SPEC CPU 2017 into
the build process. If instead the pre-built benchmark environment
is being used, the SPEC CPU 2017 source code must be copied into
the rootfs image and then built and enforced. To do the copying,
we provide a script that can be invoked from the tools directory
as follows:

$./rootfs-cp.sh <src> "bmk-src/cpu2017"

After this, the remaining steps can be completed by calling the
following:

$./sysxchg build benchmark spec

CCS ’23, November 26-30, 2023, Copenhagen, Denmark Alexander J. Gaidis, Vaggelis Atlidakis, & Vasileios P. Kemerlis

A.6 Acknowledgements A.7 Version
We thank Shukai Ni, Di Jin, and Neophytos Christou for their help Based on the LaTeX template for Artifact Evaluation V20231005.
in creating and testing this artifact. Submission, reviewing and badging methodology followed for the

evaluation of this artifact can be found at https://secartifacts.githu
b.io/acmecs2023/.

https://secartifacts.github.io/acmccs2023/
https://secartifacts.github.io/acmccs2023/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Syscalls and Syscall Filtering
	2.2 Seccomp BPF
	2.3 Syscall Filtering Policies
	2.4 Integrity Measurement Architecture

	3 Threat Model
	4 Design
	4.1 Exec Filters
	4.2 Filter Exchanging
	4.3 Performance Considerations

	5 Implementation
	5.1 Offline Tooling
	5.2 Kernel Modifications

	6 Evaluation
	6.1 Performance
	6.2 Effectiveness

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow
	A.5 Notes on Reusability
	A.6 Acknowledgements
	A.7 Version

