
A Longitudinal Study of Vulnerable Client-side Resources and
Web Developers’ Updating Behaviors

Kyungchan Lim
University of Tennessee

Knoxville, USA
klim7@utk.edu

Yonghwi Kwon
University of Maryland

College Park, USA
yongkwon@umd.edu

Doowon Kim
University of Tennessee

Knoxville, USA
doowon@utk.edu

ABSTRACT

Modern Websites commonly rely on various client-side web re-

sources, such as JavaScript libraries, to provide rich and interactive

end-user web experiences. Unfortunately, anecdotal evidence shows

that improperly managed client-side resources could open up attack

surfaces. However, there is still a lack of a comprehensive under-

standing of the updating practices among web developers and the

potential impact of inaccuracies in Common Vulnerabilities and

Exposures (CVE) information on the security of the web ecosystem.

In this paper, we conduct a longitudinal (four-year) measurement

study of the security practices and implications on client-side re-

sources (e.g., JavaScript libraries and Adobe Flash) across the Web.

Speci�cally, we collect a large-scale dataset of 157.2M webpages

of Alexa Top 1M websites for four years in the wild. We �nd an

average of 41.2% of websites (in each year of the four years) carry at

least one vulnerable client-side resource (e.g., JavaScript or Adobe

Flash). Worse, we observe that vulnerable JavaScript library ver-

sions are persistently observed in the wild, even after months of

the release of their security patches. On average, we observe 531.2

days with 25,337 websites of the window of vulnerability, which

can be mitigated by simply applying the released security patches

immediately. Furthermore, we manually investigate the �delity of

CVE (Common Vulnerabilities and Exposures) reports on client-

side resources, leveraging PoC (Proof of Concept) code. We �nd that

13 CVE reports (out of 27) have incorrect vulnerable version infor-

mation, which may mislead security-related tasks such as security

updates.

CCS CONCEPTS

• Security and privacy→Web application security.

KEYWORDS

Web Security, JavaScript Library, Adobe Flash, CVE

ACM Reference Format:

Kyungchan Lim, Yonghwi Kwon, and Doowon Kim. 2023. A Longitudinal

Study of Vulnerable Client-side Resources and Web Developers’ Updating

Behaviors. In Proceedings of the 2023 ACM Internet Measurement Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00
https://doi.org/10.1145/3618257.3624804

(IMC ’23), October 24–26, 2023, Montreal, QC, Canada. ACM, New York, NY,

USA, 19 pages. https://doi.org/10.1145/3618257.3624804

1 INTRODUCTION

The Internet (especially the Web) has become an essential part

of our lives as the number of Internet users worldwide in 2021

was 4.9 billion, about two-thirds of the global population [42, 103].

Websites leverage various techniques, such as client-side scripting

(JavaScript) and Cascading Style Sheets (CSS), to provide rich con-

tent to users. In particular, since its release in 1997 [1], JavaScript has

been a core technique for implementing dynamic website features.

To improve the productivity of development, the community has

created various JavaScript libraries such as jQuery and Bootstrap,

which now have become an essential part of the websites [48].

Unfortunately, those libraries often cause security concerns. Vul-

nerabilities of the widely-used libraries have been revealed and

publicly reported. For example, CVE-2018-92061 (with a high base

score of 9.82) [91] was found in a jQuery plugin, called jQuery-

File-Upload where adversaries can upload malicious �les (e.g.,

backdoors) on servers [118]. Worse, the vulnerable jQuery plugin

was integrated into other high-pro�le Web projects (with hundreds

of millions of websites), such as WordPress, Drupal, and Joomla,

resulting in a signi�cant security impact on the Web ecosystem.

To address such security concerns, the best practice for website

developers is to update vulnerable client-side resources such as

JavaScript libraries. Speci�cally, developers may need to check the

CVE (Common Vulnerabilities and Exposures) database to identify

and patch vulnerable resources, as CVE is considered the most

reliable vulnerability information for the public (including web de-

velopers). A CVE report includes what and where a vulnerability is

found (e.g., which library version is vulnerable) and how it has been

addressed (e.g., which library version has patched the vulnerability),

including the timeline of the actions. Unfortunately, it is known

that CVE reports in practice are often inaccurate [68]. However, it is

less clear how the potential security impact and implication of the

quality of the CVE information for the security of client-side web

resources on the entire web ecosystem. This motivates us to raise a

research question, how does the accuracy of the CVE information

impact the security of the web ecosystem?

Prior work [62, 82–84, 90, 92, 98, 100, 105, 109, 117] has studied

security issues of the client-side web resources (e.g., JavaScript).

Notably, many technical reports [14, 18, 38] cursorily revealed that

1CVE (Common Vulnerabilities and Exposures) is a standardized system that assigns
unique identi�ers to known security vulnerabilities, facilitating their tracking and
management.
2CVSS (Common Vulnerability Scoring System) score, is a numerical value that quan-
ti�es the severity and potential impact of a speci�c vulnerability.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

not every website consistently maintains the latest secure client-

side resources, particularly JavaScript libraries [82]. However, the

studies provide a limited perspective as they relied on a single

snapshot of dataset collection on a certain date, not from observation

for a longer period. Without a longitudinal analysis, the scope and

depth of the studies’ �ndings are also limited. For example, a single

snapshot cannot answer the question of how promptly (e.g., how

many days) the vulnerable client-side resources have been updated

– i.e., a window of vulnerability.

In this paper, we design a systematic, longitudinal measurement

study on the Alexa Top 1M websites for four years (Mar. 2018 –

Feb. 2022) to understand the security practices and implications

of client-side resources in the Web ecosystem. Speci�cally, among

the client-side resources, we mainly focus on analyzing the two

resources (JavaScript libraries and Adobe Flash applet) because the

two resources contain more critical security vulnerabilities than

other resources (e.g., CSS, XML, Favicon, etc.) and can have a greater

impact on the security of the Web ecosystem than other resources

do. With an emphasis on two client-side resources (JavaScript li-

braries and Adobe Flash applets), we particularly measure (1) how

the two vulnerable resources impact the Web ecosystem, (2) the

updating practices of insecure websites, and (3) the accuracy of the

CVE information.

Our study reveals that numerous websites in the wild still use

outdated, discontinued, vulnerable client-side resources (see Sec-

tions 6.3, 6.5, and 8), signi�cantly impacting the security of the

Web ecosystem.3 For instance, an outdated and vulnerable jQuery

version (v1.12.4) has been dominant for four years. In other words,

even popular vulnerable libraries are not updated in a timely man-

ner (see Section 7); speci�cally, on average, it takes 531.2 days (17.4

months) to update the vulnerable version. Furthermore, we �nd

that many CVE reports contain inaccurate information (e.g., the vul-

nerable version information), potentially misinforming the public

and making it di�cult to maintain websites secure (see Section 6.4).

Our contributions are summarized as follows:

• We conduct a longitudinal study on the security implications of

client-side resources in the wild for four years (Mar. 2018 – Feb.

2022) using our collected 157.2M landing webpages of Alexa Top

1M websites.

• We study insecure websites due to the vulnerable client-side re-

sources in the wild. First, an average of 41.2% of websites have

carried at least one vulnerability for four years. Second, the vul-

nerable client-side resources in such websites are updated with

signi�cant delays to the latest versions; an average of 531.2 days

are taken to update the vulnerable versions.

• We reveal that many CVE reports contain inaccurate version

information, which may cause signi�cant delays in updates. On

average, it takes 701.2 days to update vulnerable versions of

JavaScript libraries with the understated inaccurate CVE infor-

mation, compared to 510 days estimated to take to update the

versions if the correct CVE information is given.

• We discuss recommendations to enhance the security of client-

side resources in the Web ecosystem and share our source code

and our four-year data collection of Alexa top 1M domains at

3Note that the severity and security impact of the vulnerabilities of outdated resources
can vary. Some vulnerabilities can be exploited only under speci�c conditions. Further
details will be discussed in Section 9.

157.2M

Index Pages

Collecting Alexa 1M

Webpages for 4 years

(Mar. 2018 3 Feb. 2022)

Security Analysis

Filtering out

Inaccessible domains

Overview of Client-Side Resources [Section 5]

Update of Vulnerable JS. Libraries [Section 7]

Insecure Adobe Flash [Section 8]

Landscape of JS. Lib. Usages [Section 6.1]

Known Vulnerability in CVE [Section 6.2]

Dominant & Discontinued Lib. [Section 6.3]

Accuracy of CVE Information [Section 6.4]

Potential Sec. Threats of Ext. Lib. [Section 6.5]

Vulnerable JavaScript Libraries [Section 6]

Figure 1: Overview of Our Security Analysis Study on Client-

side Resources.

“https://moa-lab.net/measurement-client-side-resources/”, in or-

der to facilitate future research in the community.

2 BACKGROUND

This section provides a brief overview of two client-side resources

of our focus (JavaScript library and Adobe Flash) that could have

vulnerabilities and lead to security issues.

2.1 JavaScript Library

Web developers often use JavaScript libraries which are essentially

a library of pre-written code, providing common functionalities.

For example, jQuery [76] is one of the most popular JavaScript

libraries that help simplify HTML DOM tree manipulation and

traversal, CSS animation, etc.

Versioning. JavaScript library projects typically use Semantic

Versioning [108] where a version consists of MAJOR. MINOR.PATCH

(e.g., 2.1.12). The patch and minor versions increase when bugs are

�xed and new features are added, respectively; these do not change

their public APIs. The major version is for signi�cant changes to

libraries (e.g., public API interface changes causing incompatibility).

The version information typically is observable in the library’s URL

(as a part of a �le name or in a URL path).

Delivery of Externally-Hosted Library. The content delivery

network (CDN) is a common technique used to e�ciently deliver

externally-hosted JavaScript libraries to clients. Essentially, it is a

geographically distributed network service that delivers content

from servers close to each end-user, speeding up web content de-

livery by reducing the physical distance between a server and an

end-user. Popular JavaScript library projects (e.g., jQuery) often

have their own CDNs, while other open source projects are hosted

on the free and public CDNs (e.g., cdnjs [65] and JSDelivr [80]).

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Vulnerability Reporting and Patching. Vulnerabilities in Java-

Script libraries are typically reported to the CVE system; each vul-

nerability is assigned a unique CVE identi�er and publicly released.

For example, CVE-2020-11022 [30] describes that jQuery versions

v1.2 – v3.5.0 (excluding v3.5.0), had a vulnerability that could exe-

cute untrusted code due to a buggy regular expression in its DOM

manipulation method. A new version of jQuery was released with

the �x of the vulnerability. Web developers are recommended to

update jQuery to the new version.

Security Best Practice for Web Developers. Web developers

are strongly advised to regularly update the JavaScript libraries

used in their websites. Outdated JavaScript libraries may contain

security loopholes that can be exploited by adversaries. Another

critical security threat can arise when externally hosted JavaScript

libraries are compromised to deliver malicious payloads. To prevent

such security threats, web developers are recommended to use

Subresource Integrity (SRI) [89]. Speci�cally, web developers specify

the hash value of JavaScript libraries in the integrity attribute

of the <script> tag. <link> tag also supports the integrity

attribute for the CSS �les. Then, the web browser checks the hash

values in the integrity attribute with the downloaded client-side

resources’ hash values, to ensure the resources are not modi�ed

(i.e., compromised).

2.2 Adobe Flash Applet

Since its introduction in 1996, Adobe Flash has become popular in

delivering dynamic multimedia web content across all browsers

and platforms [70]. Under the hood, Adobe Flash Player, a web

browser plug-in, runs Flash applet �les (.swf). Unfortunately, it

has become signi�cantly attractive to adversaries: 1,118 CVEs have

been publicly reported as of May 26, 20234 [2–6, 8, 12, 16, 19, 20].

Anecdotal evidence has shown that the Adobe Flash vulnerabili-

ties helped adversaries successfully penetrate the RSA network in

2011 [71, 81].

Adobe publicly announced that Flashwas no longer o�cially sup-

ported after Dec. 31, 2020 [56]. Adobe asked developers to replace it

with HTML5 and end-users to uninstall it for safety reasons. Accord-

ingly, all major web browsers o�cially removed the Flash Player

components in Jan. 2021 [66, 73, 88]. Windows also removed Adobe

Flash products through Windows Update in Jan. 2021 [49]. This

essentially indicates that the Web is recommended not to use Flash.

3 MOTIVATION & RESEARCH QUESTION

Modern websites intensively rely on client-side web resources such

as JavaScript libraries to provide dynamic, rich web experience and

content to clients. Unfortunately, adversaries have been able to

conduct attacks against clients by exploiting vulnerabilities of the

client-side web resources (e.g., a vulnerability, CVE-2018-9206 [91],

in jQuery enabled adversaries to install backdoors).

While there have been prior studies that analyzed the various

security issues of client-side web resources [62, 82–84, 90, 92, 98,

100, 105, 109, 117], the analysis was based on a single snapshot of

data collection (e.g., on a certain day), which limited its scope and

depth in understanding the entire client-side resource ecosystem.

4https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=adobe+�ash

Particularly, there is a lack of understanding of how web develop-

ers reactively address vulnerabilities in client-side resources; for

example, how long it has taken for web developers to update the

vulnerable versions.

Moreover, we empirically observe that somewebsites continue to

employ Adobe Flash applications and a certain platform application

actively promotes the use of Adobe Flash, despite the discontinua-

tion of o�cial support. However, the reasons behind the persistent

usage of Adobe Flash and the contributing factors in these contexts

remain relatively unexplored.

To this end, to better understand the entire ecosystem and web

developers’ security behaviors, we design a systematic, longitudinal

study of the security impact on the client-side resources with an

emphasis on the web developers’ updating behaviors, the accuracy

of CVE information, and the persistent usage of Adobe Flash.

Our Research Questions. We aim to understand the longitudinal

security issues and implications of the client-side web resource

ecosystem from various security perspectives. In particular, we aim

to answer the following research questions.

• RQ1) How prevalent are insecure websites in the wild due to

vulnerable JavaScript libraries?

• RQ2)How quickly do the insecure websites (i.e., web developers)

react to their vulnerable client-side resources and update them

upon the release of the vulnerabilities and patches?

• RQ3) How does the accuracy of the CVE report impact the secu-

rity of websites and developers’ updating behaviors of vulnerable

client-side resources as they rely on CVE information?

• RQ4) How does Adobe Flash exhibit vulnerabilities and what

factors contribute to these vulnerabilities?

Research Focus. Figure 1 provides an overview and focus of

our measurement study. Note that we focus on the two client-side

resources (JavaScript libraries and Adobe Flash applets) because

JavaScript libraries are the most used client-side resources on the

Web. Also, the two resources contain more critical security vulnera-

bilities than other resources (e.g., CSS, XML, Favicon, etc.) and can

have a greater impact on the security of the Web ecosystem than

other resources do. Note that for JavaScript libraries, we only focus

on the libraries for the client-side environment, not those for the

server-side environment such as Node.js.

4 DATASET COLLECTION

Our web crawler is written in the Go programming language. The

crawler 1) periodically accesses Alexa 1M domains, 2) downloads

the landing page (e.g., index.html) from each domain, and 3) iden-

ti�es client-side resources and their versions from the downloaded

webpages. We also collect the vulnerability information of a�ected

resources’ versions from multiple third-party websites for cross-

reference, such as the National Vulnerability Database (NVD) [45],

CVE MITRE Corporation [40], cvedetails.com [41], and SNYK Vul.

DB [50].

4.1 Landing Page Collection

We collect the webpages of Alexa Top 1M domains5 on a weekly

basis for four years (Mar. 2018 to Feb. 2022; 207 weeks); speci�cally,

5We utilize the single snapshot of the Alexa Top 1M domains of Mar. 2018.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

our Web crawler (implemented in Go using the net/http library)

visits each Alexa 1M domain over HTTPS and collects the landing

page of each domain every week. During the four-year data col-

lection, we had very few times experienced network issues (e.g.,

unavailable network connection). We prune out 6 snapshots (out of

207 snapshots) and remove inaccessible domains from the collected

dataset.

Filtering Inaccessible Domains. As expected, for four years (our

collection period), we observe a number of inaccessible domains

due to expired domains or unstable web servers. Particularly, we ob-

serve some of the lower-ranked domains are unstable in providing

their services to clients. Moreover, we occasionally observe empty

HTML pages and anti-crawling-bots blocking techniques (e.g., ‘4xx’

error code).

As such inaccessible domains may introduce bias into our analy-

sis of the collected dataset, we conservatively remove them from our

collected dataset. Speci�cally, we �lter out the domains responding

with error pages (e.g., with ‘4xx’ error status code) or empty pages

(less than 400 bytes) for the four consecutive weeks in the last month

of our data collection period. The reason why we consider 400

bytes as a threshold for the empty/error pages is that we manually

check all HTML pages with less than 400 bytes and observe that

all of them are either error or empty pages. Note that we manually

check all of such pages in our dataset and con�rm that they do not

contain content related to the website’s original purpose (i.e., ser-

vice). Instead, they present error messages (with 200 status codes)

from anti-crawling-bots blocking techniques, saying “Not allowed

to access.” To this end, we eventually collect 157,242,243 (157.2 M)

HTML �les for the 201 weeks of the four years. On average, we

consistently collect the index pages from the 782,300 domains (i.e.,

websites) every week, as shown in Figure 2(a). The proportion of

domains that we successfully collected is similar to what has been

reported in prior work [99, 104, 105].

4.2 Identifying Resources and Versions

To better understand the current Web ecosystem, we �rst need to

know what client-side resources (e.g., JavaScript libraries, Adobe

Flash applets, etc.) are used in each website from our collected

HTML �les and identify their versions from the resources. The

identi�cations of client-side resources and their versions can help

answer our research questions (RQ1, RQ2, and RQ4). We utilize a

website pro�ling tool, called Wappalyzer [51] that is widely used

in prior work [61, 67, 69, 74, 85, 96, 106] and can identify client-

side resources and their versions on webpages. Speci�cally, given a

static HTML �le, Wappalyzer uses regular expressions to identify

the client-side web resources such as JavaScript libraries, Adobe

Flash, CSS, and their versions in the given HTML �le.

4.3 Collecting Vulnerability Information

After identifying client-side resources and their versions, we at-

tempt to identify vulnerabilities in each version of the client-side

resources and collect the vulnerability information to answer RQ1,

RQ2, RQ3, and RQ4. Since there is no centralized database for vul-

nerabilities, we manually search each client-side resource with its

versions and collect information on vulnerabilities6 from National

6We focus on only vulnerabilities in conjunction with our collection period.

(a) Our Collected Websites for Four Years.

(b) Top 8 Client-side Resource Usages (%).

Figure 2: OurCollectedWebsites&Top 8Client-sideResource

Usages. (a) On average, 782,300 websites are collected every

week for four years (201 weeks). (b) On average, 94.7% of

websites (740,823 out of 782,300) include JavaScript.

Vulnerability Database (NVD) [45], CVE MITRE Corporation [40],

cvedetails.com [41], and SNYK Vul. DB [50].

5 OVERVIEW OF RESOURCES

From our collected dataset, we �rst measure various types of client-

side resources that have been used in the web ecosystem. Figure 2(b)

shows the top 8 client-side resources. JavaScript is the most used

resource in the wild; on average, 94.7% of websites have at least

more than one embedded client-side JavaScript code in their HTML

code or URLs of external client-side JavaScript �les. CSS (88.4%)

is the next most frequently used resource, followed by Favicon

(55.0%), and imported-HTML7 (31.8%). XML occupies 25.6%, and all

the remainder (i.e., SVG, Adobe Flash, and AXD) account for less

than 2.4%.

JavaScript Library. Of 94.7% (740,823 out of 782,300) websites

that use JavaScript, 97.04% (718,895 out of 740,823) websites use

JavaScript libraries, meaning that the libraries are incredibly preva-

lent in practice. We further investigate popular JavaScript libraries

in the dataset. In total, we �nd 79 distinct libraries in our dataset,

and Table 1 shows the top 15 of them. Speci�cally, 64.0% of the web-

sites (500,364 out of 782,300) use jQuery, followed by Bootstrap

(21.5%), and jQuery-Migrate (20.8%). We further discuss the lon-

gitudinal landscape of JavaScript libraries in Section 6.1.

From our observations, we raise follow-up research questions re-

garding JavaScript libraries;RQ1-1)Howmany vulnerable JavaScript

libraries are used in thewild?;RQ2-1)How the vulnerable JavaScript

libraries are patched in practice?;RQ3-1)How does the CVE report

impact the practices for securing websites? In Section 6, we aim to

answer those research questions using our dataset.

7We infer this from the �le extension (.php) in HTML tags (e.g., <script> or <link>).
Note that those PHP scripts are used to dynamically generate client-side resources
such as JavaScript and CSS.

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Inclusion Type Version

Library Avg. Usage (%) Avg. Int.1 Avg. Ext.1 Avg. CDN1,2 Found3 Total4 Avg. Dominant Latest5 # Vul.6

jQuery [76] 500,364 (64.0%) 59.2% (9.2%�) 40.8% (3.9%�) 96.1% (6.9%�) 81 81 v1.12.4 (14.7%) v3.6.0 8

Bootstrap [63] 168,088 (21.5%) 71.6% (8.2%�) 28.4% (11.8%�) 70.7% (10.3%�) 62 64 v3.3.7 (24.3%) v5.1.3 7

jQuery-Migrate [78] 163,386 (20.8%) 88.4% (18.1%�) 11.62% (44.4%�) 42.6% (60.3%�) 16 16 v1.4.1 (50.4%) v3.3.2 1

jQuery-UI [79] 95,058 (12.2%) 49.7% (8.9%�) 50.3% (18.9%�) 91.9% (21.6%�) 47 47 v1.12.1 (14.2%) v1.13.1 6

Modernizr [86] 74,129 (9.5%) 78.1% (20.1%�) 21.9% (18.9%�) 68.2% (27.9%�) 26 43 v2.6.2 (14.8%) v3.11.8 0

JS-Cookie [44] 25,601 (3.3%) 80.5% (14.2%�) 19.5% (53.3%�) 86.5% (59.2%�) 23 23 v2.1.4 (86.4%) v3.0.1 0

Underscore [107] 19,614 (2.5%) 83.2% (17.3%�) 16.8% (47.3%�) 49.7% (49.2%�) 15 75 v1.8.3 (9.5%) v1.13.2 1

Isotope [75] 13,868 (1.8%) 90.8% (6.8%�) 9.2% (35.1%�) 24.6% (21.7%�) 28 42 v3.0.4 (15.6%) v3.0.6 0

Popper [94] 13,539 (1.7%) 46.9% (79.7%�) 53.1% (80.8%�) 92.0% (80.2%�) 46 133 v1.14.3 (24.3%) v2.11.2 0

Moment.js [87] 12,827 (1.6%) 70.4% (14.2%�) 29.6% (26.8%�) 71.6% (27.3%�) 63 89 v2.18.1 (8.2%) v2.29.1 2

RequireJS [97] 12,541 (1.6%) 64.8% (1.9%�) 35.2% (82.6%�) 28.1% (21.0%�) 36 37 v2.3.6 (32.3%) v2.3.6 0

SWFObject [17]7 10,096 (1.3%) 74.2% (55.5%�) 25.8% (48.7%�) 63.3% (69.7%�) 3 3 v2.2 (46.9%) v2.2 0

Prototype [95] 7,782 (1.0%) 81.2% (54.8%�) 18.8% (37.5%�) 57.9% (47.8%�) 11 11 v1.7.1 (43.4%) v1.7.3 2

jQuery-Cookie [77]7 7,582 (1.0%) 63.3% (14.3%�) 36.7% (9.0%�) 86.5% (10.6%�) 7 7 v1.4.1 (64.4%) v1.4.1 0

Poly�ll.io [93] 6,755 (0.9%) 14.5% (69.6%�) 85.5% (40.7%�) 37.8% (56.8%�) 3 3 v3 (65.5%) v3 0

1: The number in parentheses indicates how much the usage has increased from our �rst observation date; � increase, � decrease.
2: Out of Externally-Hosted JavaScript Libraries. 3: Number of versions found in our dataset. 4: Total number of JavaScript library versions.

5: Latest version in our collected dataset. 6: Number of vulnerabilities reported during our observation period. 7: No longer maintained.

Table 1: Top 15 JavaScript Usage, Inclusion Type, Version, and Vulnerabilities.

(a) JavaScript Library Usage (Top 5) for 4 Years

(b) JavaScript Library Usage (Top 6 to 15) for 4 Years

Figure 3: Percent of JavaScript Library Usage.

Adobe Flash. As shown in Figure 2(b), on average, 0.7% (5,678

out of 782,300) websites use Adobe Flash. We ask a follow-up ques-

tion regarding Adobe Flash; speci�cally, RQ4-1): What factors

contribute to the usage of Flash even after the suspension of their

o�cial support?

6 VULNERABLE JAVASCRIPT LIBRARIES

We measure the JavaScript libraries to understand vulnerable web-

sites due to vulnerable JavaScript libraries.

6.1 Landscape of JavaScript Library Usage

We �rst understand the current statistics of the JavaScript libraries’

usage before we further investigate the security issues. We �nd an

average number of 20.9 JavaScript libraries are included in a single

website, and it is one of the dominant client-side resources in the

wild. We �rst study the current landscape of JavaScript libraries

such as usage trends, inclusion types, active/discontinued projects,

and insecure JavaScript library versions with a focus on the Top 15

JavaScript libraries. These Top 15 libraries account for 96.5%.

jQuery & Plugins. jQuery is one of the most popular JavaScript

libraries. It accounts for 64.0% (500,364 out of 782,300) of websites

as shown in Table 1. While the usage of jQuery has been steadily

decreasing over time from 67.2% (528,841) in Mar. 2018 to 63.1%

(502,185) in Feb. 2022, as shown in Figure 3, it is still the most

dominant library.

Observe that the thirdmost popular library is a jQuery-Migrate

[78] (used by 20.8% of websites on average), which is a jQuery plu-

gin. The plugin aims to seamlessly migrate deprecated APIs of

jQuery older than 1.9 so that the developers can use newer and

secure jQuery versions without having compatibility issues. The

plugin’s popularity suggests that the JavaScript library update is-

sues are critical in practice.

jQuery-Migrate Usage Drop in Aug 2020. Figure 3(a) shows

(marked in the red box) a noticeable trend: the usage of jQuery-

Migrate sharply dropping by approximately 10% for four months

(Aug. 2020 – Dec. 2020), and then getting back (i.e., went up by the

10%) in Dec. 2020.

Our investigation on this dropping trend reveals that WordPress

plays an important role. Speci�cally, WordPress versions earlier

than v5.5 have been using jQuery-Migrate to handle compati-

bility issues. Then, WordPress v5.5 disables jQuery-Migrate by

default, hoping web developers update the outdated jQuery code

themselves [113]. This results in the dropping trend. Unfortunately,

disabling the library resulted in numerous compatibility issues on

websites using plugins and themes dependent on the old version of

jQuery. As a temporary solution, WordPress introduced a new plu-

gin ‘jQuery Migrate Helper’ which essentially implements the

same functionality of jQuery-Migrate [114]. In the next version

(WordPress v5.6), WordPress o�cially re-includes jQuery-Migrate

as a default library on Dec. 8th, 2020, leading to jQuery-Migrate’s

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

usage increasing from Dec. 15th, 2020. As of May 2023, the latest

WordPress 6 still includes jQuery-Migrate. One vulnerability of

the library related to ‘CWE-79: Improper Neutralization of Input

During Web Page Generation (Cross-site Scripting)’ is reported

from snyk.io [9], the GitHub issue [11] and a blog post [101], but

no CVE ID is assigned to the vulnerability.

Popular JavaScript Libraries and Trends. Among the top 15

JavaScript libraries (in Figure 3), all libraries’ popularities have

been decreasing or steady except for four libraries, JS-Cookie,

Polyfill, Underscore, and Popper. It may suggest that the secu-

rity of a few popular JavaScript libraries can have a more signi�cant

impact than other libraries. Polyfill [93] includes poly�ll code

(e.g., implementing the text shadow e�ect) for web browsers that

do not support it. JS-Cookie [44] is a helper library for cook-

ies. Underscore [107] provides various functional programming

helpers (e.g., map and reduce). Popper is a UI helper for tooltips

and popovers [94].

Inclusion Type: Internal vs. External. Recall that there are two

inclusion types: internal and external. Table 1 lists the percentage of

the inclusion types for the JavaScript library. During our four-year

observation period, the internal inclusion type (on average, 67.7%,

681,401) is more frequently used than the external type (on average,

32.3%, 325,520). However, external inclusion is also substantially

used in popular JavaScript libraries: jQuery-UI (50.3%), Popper

(53.1%), and Polyfill (85.5%). Note that, compared to internal in-

clusion, external inclusion has an additional attack surface because

the systems delivering the libraries can be compromised, which

will be discussed more in Section 6.5.

Table 1 shows 84.8% of the external inclusions are delivered by

CDNs. In particular, over 90% of the external inclusions of jQuery,

jQuery-UI, and Popper are delivered by CDNs. The CDN usage

has also been maintained steadily during our observation period.

Table 5 presents the top 3 CDNs for libraries: ajax.googleapi.com,

code.jquery.com, and cdnjs.cloud�are.com. Note that in the jQuery-

Migrate case, wp.com is the most used one because the plugin is

provided by WordPress [113], which is discussed more in Section 7.

6.2 Known Vulnerability using CVE Report

We utilize CVE (Common Vulnerabilities and Exposures) reports to

identify vulnerable JavaScript libraries. CVE is a de-facto standard

vulnerability reporting platform. Among the top 15 JavaScript li-

braries in Table 1, we �nd 27 CVE reports on seven libraries. Most

vulnerabilities (20 out of 27) are related to XSS attacks, while others

include one prototype pollution attack, one arbitrary code injection

attack, two resource exhaustion attacks, one regular expression

denial of service (ReDOS), and one missing authorization attack.

Vulnerable Websites. We �nd an average of 41.2% of websites

have libraries including at least one reported vulnerability (i.e., CVE)

in our dataset during our four-year observation period. This shows

that even a few vulnerabilities impact many real-world websites,

suggesting the signi�cant security impact of vulnerable JavaScript

libraries. As shown in Figure 12, for four years, an average of 0.79

vulnerabilities are carried per website (median: 0.75, max: 15.6).

Updating the vulnerable versions is further discussed in Section 7.

jQuery & Plugins. jQuery has eight reported CVEs. In addition,

its two plugins, jQuery-Migrate and jQuery-UI, have one and

six vulnerabilities, respectively. On average, the vulnerable jQuery

versions account for 37.7% (281,144 out of 782,300) of websites.

CVE-2020-11023 [32] is the most impactful vulnerability that a�ects

56.2% of websites, including jQuery versions between v1.0.3 and

v3.5.0, followed by CVE-2020-11022 [31] (56.1%) and CVE-2019-

11358 [28] (54.6%). Evenworse, a vulnerability (CVE-2012-6708 [23])

still accounts for 12.5% even though the vulnerability was reported

more than a decade ago (in Jun. 2012).

Still Unpatched Library. All libraries we have analyzed in the

paper, have been �xed, and the corresponding patches have been

o�cially released, except for Prototype (CVE-2020-27511 [35],

Regular Expression Denial of Service, or ReDOS). The vulnerability

is critical as it a�ects all versions of the Prototype library. Unfor-

tunately, it seems the vulnerability does not get proper attention

from the developers. While we even �nd a discussion thread and

a pull request for a bug �x [72] initiated in 2021, but it is not yet

accepted and merged into the main repository.8 Such an unpatched

vulnerability published in a CVE report can be exploited by adver-

saries. Hence, the CVEs and their corresponding patches indicate

the security of JavaScript libraries in practice.

Takeaway:We observe a large number of websites (41.2%) in the

wild contain vulnerable JavaScript libraries, that can be exploited

by adversaries. The vulnerabilities are from high-pro�le libraries

such as jQuery.

6.3 Dominant Vulnerable Versions &
Discontinued Library

Dominant Insecure Versions. Table 1 lists the most dominant

version of each JavaScript library during our four-year observation

period. Speci�cally, jQuery version 1.12.4, released in May 2016,

is still dominant in the wild (accounting for 28.5% of websites).

Unfortunately, this version has four reported vulnerabilities: three

XSS (CVE-2020-11023 [32], CVE-2020-11022 [31], and CVE-2015-

9251 [24]) and one Prototype Pollution (CVE-2019-5428 [28]). While

the newer versions, jQuery 3.0 (patched CVE-2015-9251 [24]) and

3.5 (patched all four vulnerabilities) are released in Jun 2016 and

Apr. 2020, the old version (v1.12.4) is still dominant in the wild.

We further investigate various web developer communities and

identify that the compatibility issues caused by the upgrade are

a major concern [7, 27, 34, 47]. The compatibility issues are one

of the reasons that lead to the dominant usage of such outdated

JavaScript libraries. For example, to resolve compatibility issues,

jQuery-Migrate is developed and publicly released. This speci�c

version (v1.4.1), released in May 2016, accounts for 50.0% of the

total usage and helps resolve the compatibility issues resulting

from jQuery v3.0 major changes since v3.0 is not fully compatible

with jQuery before v1.12.3 or v2.2.3. Even though jQuery libraries

in websites are updated to v3.0, most websites still need jQuery-

Migrate v1.4.1 to use the legacy functions of jQuery before v1.12.3

or v2.2.3. This indicates that updating versions does not mean that

legacy code is no longer used because such a library helps web

developers use the legacy code of outdated libraries.

8We �nd that the project is not particularly active, and responses are slow. The last
commit on the o�cial repository of this library was in Apr. 2017.

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

CVE Vulnerable Ver. True Vulnerable Ver.

Library Ver. from CVE # of Website Ver. # of Website Patched Ver. Disclosed1 Patched2 Attack Type CVE ID

jQuery

< 1.9.0 60,956 (12.2%) < 3.6.0 291,579 (58.3%) � 1.9.0 05/19/2020 01/15/2013 XSS CVE-2020-7656

1.0.3 ∼ 3.5.0 281,144 (56.2%) 1.4.0 ∼ 3.5.0 276,956 (55.4%) � 3.5.0 04/10/2020 04/10/2020 XSS CVE-2020-11023

1.2.0 ∼ 3.5.0 280,968 (56.1%) 1.12.0 ∼ 3.5.0 131,284 (26.2%) � 3.5.0 04/29/2020 04/10/2020 XSS CVE-2020-11022

< 3.4.0 273,092 (54.6%) – – 3.4.0 03/26/2019 04/10/2019 Prototype Pol. CVE-2019-11358

1.12.0 ∼ 3.0.0 88,757 (17.7%) – – 3.0.0 06/26/2015 06/09/2016 XSS CVE-2015-9251

1.4.2 ∼ 1.6.2 10,414 (2.1%) 1.5.0 ∼ 2.2.4 214,078 (42.9%) � 1.6.2 09/01/2014 06/30/2011 XSS CVE-2014-6071

< 1.9.1 62,431 (12.5%) < 1.9.0 60,956 (12.2%) � 1.9.1 06/19/2012 02/04/2013 XSS CVE-2012-6708

< 1.6.3 16,857 (3.4%) – – 1.6.3 06/05/2011 09/01/2011 XSS CVE-2011-4969

Bootstrap

< 3.4.1, < 4.3.1 46,545 (27.7%) – – 3.4.1, 4.3.1 02/11/2019 02/13/2019 XSS CVE-2019-8331

< 3.4.0 38,827 (23.1%) 3.2.0 ∼ 3.4.0 36,019 (21.4%) � 3.4.0 08/13/2018 12/13/2018 XSS CVE-2018-20676

< 3.4.0 38,827 (23.1%) 3.2.0 ∼ 3.4.0 36,019 (21.4%) � 3.4.0 01/09/2019 12/13/2018 XSS CVE-2018-20677

< 4.1.2 46,529 (27.7%) 2.3.0 ∼ 4.1.2 46,287 (27.5%) � 4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14042

< 4.1.2 46,529 (27.7%) – – 4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14041

< 4.1.2 46,529 (27.7%) 2.3.0 ∼ 4.1.2 46,287 (27.5%) � 4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14040

< 3.4.0 38,827 (23.1%) 2.1.0 ∼ 3.4.0 38,748 (23.1%) � 3.4.0 06/27/2016 12/13/2018 XSS CVE-2016-10735

jQuery-Migrate < 1.2.1 956 (0.6%) 1.0.0 ∼ 3.0.0 95,165 (62.8%) � 1.2.1 04/18/2013 09/16/2007 N/A*

jQuery-UI

< 1.10.0 13,948 (14.7%) – – 1.10.0 09/02/2010 01/17/2013 XSS CVE-2010-5312

< 1.10.0 13,948 (14.7%) – – 1.10.0 11/26/2012 01/17/2013 XSS CVE-2012-6662

< 1.12.0 42,856 (45.1%) 1.10.0∼1.13.0 43,312 (45.6%) � 1.12.0 07/21/2016 07/08/2016 XSS CVE-2016-7103

< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41182

< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41183

< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41184

Underscore 1.3.2 ∼ 1.12.1 1,930 (9.84%) – – 1.12.1 03/02/2021 03/19/2021 Arb. Code Inj.! CVE-2021-23358

Moment.js
< 2.19.3 4,322 (33.7%) – – 2.19.3 09/05/2017 11/29/2017 Res. Exhaust.# CVE-2017-18214

< 2.11.2 2,115 (16.5%) 2.8.1∼2.15.2 2,174 (17.0%) � 2.11.2 01/26/2016 2/7/2016 Res. Exhaust.# CVE-2016-4055

Prototype
f 1.7.3 7,782 (100%) All versions 7,782 (100%) N/A∗∗ 06/21/2021 N/A∗∗ ReDOS CVE-2020-27511

< 1.6.0.1 4 (0.1%) – – N/A∗∗∗ 02/03/2020 N/A∗∗ Missing Auth.⋄ CVE-2020-7993

*: No CVE ID is assigned (vulnerability was found from snyk.io and GitHub issue.) ∗∗: No patched versions are available. ∗∗∗: A�ected version is no longer available.

1: Disclosed Date. 2: Patched Date. : Prototype Pollution. !: Arbitrary Code Injection. #: Resource Exhaustion. ⋄ : Missing Authorization.

�: More versions are vulnerable than CVE’s version (understated version). �: Fewer versions are vulnerable than CVE’s version (overstated version).

Table 2: Vulnerabilities of Top 15 JavaScript Library. Among the top 15 libraries in Table 1, seven libraries are publicly reported

to contain 28 vulnerabilities. The a�ected versions of the 12 vulnerabilities are incorrect.

Discontinued Library Projects. As shown in Table 1, we observe

two discontinued JavaScript library projects: jQuery-Cookie [77]

and SWFObject [17]. jQuery-Cookie is a jQuery plugin to help

easily manage cookies. Although this library project is no longer

maintained since 2015 (o�cially migrated and renamed to a new

project, JS-Cookie [44]9), we observe many websites (7,582 web-

sites) still use this discontinued library. We also measure how many

websites migrated to JS-Cookie as recommended. We �nd, in total,

only 7,800 websites (39% of the total 19,992 websites using jQuery-

Cookie) are migrated to JS-Cookie. Note that 61% of websites still

use the legacy library even after 7 years, meaning that updating

JavaScript libraries is extremely slow in practice. Moreover, discon-

tinued library projects typically do not address or patch the bugs if

new bugs are identi�ed. Developers are either recommended to use

a newly migrated project [77] or use it with their own risk [17].

Another discontinued project is SWFObject, a JavaScript library

to play Adobe Flash content on a webpage. As brie�y discussed

in Section 2.2, Adobe Flash is o�cially no longer supported by

Adobe, and major web browsers remove the Flash components.

While this library project has been no longer maintained since 2013,

it is still in use: an average usage of 1.3% (10,096 out of 782,300,

9As of May 2023, JS-Cookie is an active project; the recent commit was on Apr 24,
2023 [39].

ranked 12th) websites in our collected dataset. We �nd that Word-

Press plugins for SWFObject play a signi�cant role in this Flash

ecosystem; an average of 22.3% websites use WordPress plugins

out of the total number of websites using the SWFObject library.

We also observe that 12.7% of the SWFObject is delivered by the

Google CDN (ajax.googleapis.com). We informed Google that

the project is discontinued and potentially insecure and may re-

quire further actions (e.g., warning users or �nding an alternative).

We discuss the possible suggestions regarding the discontinued

projects in Section 9.

Takeaway: The dominant versions across all libraries are out-

dated and contain multiple vulnerabilities. We observe that back-

ward compatibility is a major reason for preventing the update.

Worse, 2.1% websites use discontinued libraries, exposing them

to potential vulnerabilities.

6.4 Accuracy of CVE Vulnerability Info.

CVE is critical information for understanding vulnerable programs

and websites, potentially impacting various security practices such

as updating. We aim to understand how reliable the version infor-

mation in CVE reports is. As web developers may rely on CVE

reports to measure how vulnerable the JavaScript libraries they

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

1.0.0 3.6.0

1.0.3

1.2.0

1.4.2

3.5.0

2.2.4

CVE-2020-7656

CVE-2020-11023

1.12.0

1.9.11.9.0

1.4.0

1.9.1

1.5.0

CVE-2020-11022

CVE-2014-6071

CVE-2012-6708

3.5.0

1.6.2

1.0.0

1

2

3

4

5

Disclosed Vulnerable Versions Understated Versions Overstated Versions

Figure 4: Comparison of jQuery Disclosed Vulnerable Ver-

sions (Upper line) and Understated/Overstated Versions

(Lower line). The Understated Versions (red stripes) represent

the vulnerable versions we newly revealed. The Overstated

Versions (blue stripes) indicate the versions we revealed are

not vulnerable.

use are. Incorrectly stated versions of CVE may impact subsequent

decisions.

Setting Version Validation Experiment. We manually investi-

gate each CVE to validate the described vulnerability and a�ected

versions using proof of concept (PoC) code in our controlled ex-

periment environment. We set up the controlled experiment en-

vironment with each vulnerable library version and its required

dependency. Particularly, for the jQuery vulnerabilities, in total,

we set up 85 di�erent environments for each di�erent version from

v1.0.0 to the latest version (v3.7.0, as of May 2023).

We �nd and utilize the existing seven PoC codes out of 27 CVEs

(CVE-2020-7656 [29], CVE-2014-6071 [13], CVE-2018-20677 [25],

CVE-2018-14040 [26], CVE-2016-10735 [22], CVE-2016-7103 [15],

and jQuery-Migrate vulnerability [10]) For those PoCs that we

initially failed to reproduce, we manually analyze the vulnerability

and reimplement new PoC code. Particularly, for CVE-2020-7656 of

jQuery, the existing PoC [29] described in the CVE report does not

properly reproduce the vulnerability. Therefore, we reimplement

the PoC by removing the jQuery selector from the existing PoC

code (Listing 1 and Listing 2 in Appendix).

Incorrect CVE information. The version information can be

incorrect in two ways: (1) CVEmay understate the version, meaning

more versions can be a�ected but not known to the public. (2) CVE

may overstate the version, meaning that fewer versions are a�ected

by the vulnerability than what is known to be public.

• Understated versions may cause delays in vulnerable websites’

updates, as web developers do not realize that they use vulnerable

libraries. For example, while CVE-2020-7656 mentions that it only

a�ects 40 versions (lower than 1.9.1), from our experiments we

�nd out that 79 versions (higher versions than 1.9.1, such as

1.10.1) are also a�ected by the vulnerability. This would make

developers using version 1.10.1 believe that their websites are

not vulnerable (hence less motivated to update).

• Overstated versions may cause ill-advised updates, leading to

higher maintenance and development costs.

True Vulnerable Versions (TVV) Identi�ed. True Vulnerable

Versions (TVV) means actually-a�ected versions identi�ed from

our validation experiments. From our experiments, described in Ta-

ble 2, we �nd that 13 out of the 27 CVEs contain incorrect versions.

Speci�cally, �ve of them (�) have understated versions, meaning

that the vulnerabilities a�ect more versions than reported. The

remaining eight of them (�) have overstated versions, where the

vulnerabilities a�ect fewer versions than reported. Particularly, Fig-

ure 4 illustrates the impact of incorrect versions in jQuery. For

each CVE, there are two lines where the upper line represents vul-

nerable versions disclosed by the CVE and the lower line shows

understated and overstated versions revealed by our Version Val-

idation Experiment. In this jQuery case, 5 out of 8 CVEs have

incorrect versions. Particularly, CVE-2020-7656 speci�es that the

only a�ected version is lower than 1.9.1, while we reveal that it

a�ects all versions until 3.6.0. Web developers who use a certain

version (> 1.9.1) can be misled that their version is not a�ected by

the vulnerability and do not need to update the library. We present

5 more cases (jQuery-Migrate, jQuery-UI, Bootstrap, Moment,

and Prototype) in Appendix (Figure 13).

Takeaway: We discover that 13 CVE reports (out of 27) incor-

rectly state vulnerable versions of the libraries, providing mis-

leading information. Speci�cally, 5 CVEs understate the impact

of the vulnerabilities, potentially downplaying the vulnerabili-

ties. 8 are understated versions.

of Websites A�ected by Incorrect Versions. We measure the

number of websites a�ected by these incorrect versions in CVEs.

Figure 5 shows the three cases of jQuery vulnerabilities; the red

background refers to ‘vulnerable websites not mentioned in CVEs

(i.e., websites using vulnerable libraries but were not spotted),’ and

the blue background does ‘websites using vulnerable versions men-

tioned in CVEs.’ Speci�cally, Figure 5(a) and Figure 5(b) show that a

large number of websites (296,818 in CVE-2020-7656 and 265,362 in

CVE-2014-6071) may not be known whether they are susceptible to

the vulnerabilities. Meanwhile, Figure 5(c) shows that CVE versions

unnecessarily include versions that are not vulnerable (i.e., over-

stated versions), potentially misleading and causing unnecessary

updates (and compatibility issues).

Takeaway: (337,773 websites are a�ected by incorrect version

information in CVEs. 316,809 websites are undisclosed in the

wild due to incorrect CVEs.

Re�ning Vulnerable Websites. Our previous conclusion that

41.2% are using at least one vulnerable JavaScript library in Sec-

tion 6.2 was based on the assumption that the CVEs’ versions are

correct, which we revealed that it is not true. Hence, we now measure

the number of vulnerable websites again with the true vulnerable

versions (TVV) we discover.

We �nd an average of 43.2% (+2%) websites (337,773 out of

782,300) are vulnerable as carrying at least one vulnerability; the

incorrect CVE information results in increasing the number of

vulnerable websites by 2%. Interestingly, in 2018, the average dif-

ference between them is only 0.1%, but in 2022, the gap increases

by 2.9%. We �nd that it also a�ects high-pro�le (i.e., popular) web-

sites: microsoft.com (ranked 46th) and onlinesbi.com (ranked

111th) use jQuery v3.5.1, which we reveal that it is vulnerable while

CVE does not mention (understate). Also, docusign.com (ranked

1,693rd) uses jQuery v2.2.3, which is another understated case that

we reveal it is vulnerable.

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

(a) CVE-2020-7656 (b) CVE-2014-6071 (c) CVE-2020-11022

Figure 5: The Total Number of Websites with True Vulnerable Versions of jQuery Vulnerability. (a) and (b) show that more

vulnerable versions are revealed, while (c) shows that it reveals a fewer number of versions are vulnerable.

Furthermore, we also re�ne the CDF of the average number of

vulnerabilities per website as shown in Figure 12. Compared to the

results from the CVE’s version, with the true vulnerable versions

(TVV) we reveal, the average number of vulnerabilities per website

is almost 1 (mean: 0.97 and median: 0.96), which is an alarming

result.

Takeaway: With the corrected version information in CVEs,

we observe that (337,773 websites (43.2%) are vulnerable (which

is approximately 2% more than the analysis based on existing

CVEs).

6.5 Potential Security Threats of Untrustful
External Libraries

Potential Security Threat. Section 2.1 mentions that a web-

site can include JavaScript libraries either internally (i.e., locally

hosted10) or externally (e.g., remotely hosted11). Potential security

threats could arise when a web page loads compromised external

JavaScript libraries. Compromised JavaScript libraries can obtain

full privileges on the websites unless isolated in a frame; for exam-

ple, the loaded JavaScript can modify the DOM, load other external

content, redirect the visitors to phishing websites, or deliver mal-

ware to the visitors. Particularly, if the external JavaScript libraries

are loaded from repositories of collaborative version control, such

as GitHub, GitLab, and Bitbucket, the libraries cannot be trusted

because the repositories (and the libraries) can be compromised

or malicious. In other words, we cannot fully establish trust in the

maintainers and contributors of the open-source library projects,

compared to the libraries hosted on the o�cial CDNs. For example,

a malicious contributor of a JavaScript library project could insert

malicious payloads into the library, or an adversary could make

a malicious pull request to the library project if these are public

repositories [116].

Libraries from Untrustful Sources. We measure how many

websites could be vulnerable due to the JavaScript libraries hosted

on collaborative version control platforms, such as GitHub, GitLab,

and Bitbucket. We �nd that an average of 1,670 websites load

more than one external JavaScript library externally hosted on

the 57 GitHub repositories. Particularly, the most popular GitHub

10e.g., <script src="./bar.js"></script>
11e.g., <script src="https://foo.com/bar.js"></script>

repository is wp-r.github. io12 that accounts for 11.3% of the

websites. It is an individual repository that hosts ‘adsplacer’ and

‘jquery. iframetracker’. The �rst library is a WordPress plugin

to help place advertisements, and the latter one is a jQuery plugin

that can track users’ clicks on iframes. The tracker is added on

Adguard’s Spyware Filter [54] to block trackers. Table 6 breaks

down the GitHub repositories that are used by the top 10K websites.

Mitigation against Untrustful Sources (SRI). Subresource

Integrity (SRI) [89] can be a viable security defense mechanism

against the threat of untrustful JavaScript libraries. It ensures the

unmodi�ed JavaScript �les that contain expected data are deliv-

ered, loaded, and executed. Speci�cally, web developers can specify

an expected base64-encoded cryptographic hash (such as SHA256,

SHA386, and SHA512) of a JavaScript �le in the integrity at-

tribute of the <script> tag. At runtime, if a speci�ed hash value

does not match the hash value of the downloaded JavaScript �le, it

is neither loaded nor executed.

We measure how the SRI is used on websites in the wild. Sur-

prisingly, as shown in Figure 10, 99.7% of websites have at least

one externally-hosted JavaScript library without the integrity

attribute, which cannot be trusted when external hosts are compro-

mised. Furthermore, we closely take a look at the libraries hosted

on the repositories of collaborative version control services such as

GitHub. Of 1,670 websites using the external libraries on GitHub,

only an average of 10.1 websites (0.6%) use the integrity param-

eter as the mitigation.

We further check how many o�cial websites of JavaScript li-

braries explicitly mention the SRI (or the integrity attribute) in

its code snippet; for example, they may provide a code snippet

that includes an integrity attribute and hash value, which helps

web developers simply copy and paste the secure code snippet.

We �nd that out of the top 15 JavaScript libraries, only one library

(Bootstrap) provides a code snippet that includes an integrity

attribute and its hash value. As software developers (including

web developers) are typically known to have the copy and paste

behaviors [53], we argue that we might be losing chances to se-

cure external JavaScript libraries by not having the integrity

attributes in the example code snippets on the o�cial websites of

JavaScript libraries.

Mitigation against Untrustful Sources (Crossorigin). We also

measure how properly developers use cross origin in the wild.

12https://github.com/wp-r/wp-r.github.io

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

Figure 6: Usage Trends of A�ected Versions of jQuery CVE-

2020-7656 Vulnerability (versions are ordered by popularity).

crossorigin is an attribute to provide support for Cross-Origin

Resource Sharing (CORS) and to control how to handle resources

coming from cross-origin domains [43]. The best practice for cross-

origin requests is to use the anonymous value because it prevents

sending user credentials (e.g., via cookies) to cross-origin requests

(i.e., requests from a JS library fetched from a di�erent origin).

If ‘use-credentials’ is speci�ed in the crossorigin attribute,

user credentials could be sent even for cross-origin requests [46,

112], leading to “cross-origin data leakage” [110].

We �nd 97.1% of websites use ‘anonymous’ and only 1.9% use

‘use–credentials,’ out of the total websites using crossorigin

with the integrity attribute. This indicates that while most web

developers properly follow the security best practice for this at-

tribute, a few developers miscon�gure the value for crossorigin.

The small number of such websites may potentially leak credentials

for cross-origin requests.

Takeaway: The mitigation (e.g., integrity) to potential secu-

rity threats of the externally-hosted libraries are barely used in

the wild, which indicates such websites could remain vulnerable

to potential security threats.

7 UPDATE OF VULNERABLE JAVASCRIPT
LIBRARIES

When a newly disclosed vulnerability a�ects JavaScript libraries

used in a website and there is a patched version for the vulnerability,

it is desirable to update the vulnerable libraries promptly. This

section attempts to understand how well vulnerable JavaScript

libraries are updated in practice over time. Particularly, when a

vulnerability is publicly disclosed and assigned a CVE ID, and a

patch for the vulnerability is released, we measure how long (e.g.,

howmany days) it takes to update their a�ected vulnerable versions

after the patched version’s release. Note that in this section, we rely

on the versions stated in CVEs even if they might be inaccurate

(i.e., not the True Vulnerable Versions or TVVs). As a result, we aim

to measure how the developers and administrators respond to the

CVEs for security updates.

Updating jQuery. We focus on jQuery as it is dominant in the

wild – other libraries’ updating patterns are discussed in the Appen-

dix (Figure 15). Figure 6 shows a few versions’ usage trends with

the CVE disclosed dates; CVE-2020-7656 speci�es that all versions

lower than (< v1.9.0) are a�ected, and its patched version is v1.9.0 as

described in Table 2. We observe that the usage of the patched ver-

sion (v1.9.0) has not increased, but rather slightly decreased. From

this observation, we can learn that vulnerable JavaScript libraries

are rarely updated, or worse, some websites newly start to use the

vulnerable version even after the CVEs are publicly disclosed.

Furthermore, Figure 7(a) shows the updating trends of the most

dominant version (v1.12.4), which is a�ected by two vulnerabilities

(CVE-2020-11022 and CVE-2020-11023). From the 1.12.4 version,

it is recommended to update to v3.5.0 or higher (g v3.5.0). Hence,

ideally, the usage of v1.12.4 should decrease, and the usage of the

versions higher than v3.5.0 (including v3.5.0, v3.5.1, v3.6.0, and

v3.6.1) should increase if web developers properly follow the best

practice of updating vulnerable versions.

Unfortunately, we observe di�erent usage patterns as shown

in Figure 7(a). v3.5.0 is barely (nearly 0%) used in the wild, which

means that no update operation is performed to v3.5.0; similarly,

v3.6.1 has the same pattern. Observe that the v3.5.1 usage starts

increasing one month after the CVEs are publicly disclosed (around

July 2020). However, we do not believe that this is a potential update

from v1.12.4 because v1.12.4 does not decrease when the usages

of v3.5.0, v3.5.1, v3.6.0, and v3.6.1 start increasing. Moreover, we

observe a di�erent update behavior from Dec. 2020. Speci�cally, in

Dec. 2020, the v3.5.1 usage sharply increases while v1.12.4 accord-

ingly decreases. We randomly choose 100 websites in our dataset

and manually analyze how the versions are updated. The result

shows that they are truly updated (i.e., replaced the old version

with the new version). In addition, from Aug. 2021, we observe a

sharp increase in version updates from v3.5.1 to v3.6.0.

Takeaway: We observe that it averagely takes 531.2 days (17.4

months) to update the vulnerable version. The updating trend

is also not linear, implying that there should be a particular

contributor to this radical update trend.

Main Contributor to Updating. We further investigate to un-

derstand the major actors for the updates. Speci�cally, from our

dataset, we notice a sharp increase in updating from Dec. 2020. We

aim to answer the question:Who or what events drove this radical

update behavior?

Interestingly, we �nd that WordPress has been the main con-

tributor. Figure 7(b) shows the jQuery usage of WordPress over

time. We can see the same patterns between the jQuery version

usages (Figure 7(a)) and theWordPress’ jQuery version usages (Fig-

ure 7(b)) where they have almost identical usage pattern changes

for v3.5.1, v3.6.0, and v1.12.4. We further analyze howWordPress be-

comes the main contributor, and �nd the WordPress Auto-Updating

feature [115] helps automatically update the old and vulnerable

jQuery libraries at almost the same time, which leads the Web

ecosystem to be more secure. From this observation, we can learn

that automated mechanisms (e.g., auto-updating) are e�ective in

securing websites by updating JavaScript libraries.

Takeaway:WordPress’s Auto-Updating feature contributes to

the major update of jQuery. The Web security community may

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

(a) jQuery v1.12.4 Usage & Patched Version (> v3.5.0) Usage (b) WordPress Versions Associated with jQuery Update

Figure 7: Trends of Vulnerable jQuery v1.12.4 Usage and Patched Version (> v3.5.0) Usage &WordPress Versions Associated

with the jQuery Update.

suggest a new auto-updating feature for the client-side resources

to secure the Web ecosystem.

Update Delays with True Vulnerable Versions. We measure

the updating delays with the True Vulnerable Versions we revealed

in Section 6.4.13 We �nd that the understated CVE reports lead to

more signi�cant delays; on average, it takes 701.2 days (23 months,

1.9 years), compared to 510 days calculated with the versions from

CVEs.

Takeaway: Due to the understated versions in CVEs, we �nd

that the true delay in the update of vulnerable JS libraries is

substantially more severe, +191.2 days, than our initial estimate.

8 INSECURE ADOBE FLASH

Flash Usage & Case Study. As mentioned in Section 2.2, the

support for Adobe Flash is o�cially terminated (Jan. 2021), meaning

that Adobe will not �x security vulnerabilities anymore. As a result,

all major web browsers claim that Adobe Flash components are

removed from the browsers as of Jan 2021, and Flash can no longer

be played on the browsers [21, 33, 36, 37]. Also, web developers are

strongly recommended to replace Adobe FlashwithHTML5 [58, 59];

Adobe even released a conversion tool for developers from Flash to

HTML5 [57].

We empirically observe some websites using Adobe Flash appli-

cations and a new platform application promoting the use of Adobe

Flash applications, even though Flash was o�cially no longer sup-

ported. This observation motivates us to raise the research question;

If so, how many websites still use Flash? and what websites and func-

tionalities still depend on the Flash in the wild? To answer these

research questions, we measure the usage of Adobe Flash in the

wild. Note that compared to Section 6.3 where we aimed to measure

the discontinued project, SWFObject (e.g., how many websites use

the discontinued project), in this section, we better understand how

many Flash contents (i.e., .swf �les) are embedded and played in

websites.14

135 CVEs understate a�ected versions as shown in Table 2, which means that there are
more undisclosed vulnerable versions in the wild.
14Note that .swf �le can be embedded using the embed HTML tag, without the
SWFObject JavaScript library.

As shown in Figure 8, the Flash usage has steadily decreased

during our observation period (from 9,880 websites in Feb. 2018 to

4,218 and 3,195 websites in Dec. 2020 and Feb. 2022, respectively).

However, an average of 3,553 websites still use Adobe Flash after

its end of life.

Case Study of Top 10KWebsites. We take a closer look at the top

10K websites that still use Adobe Flash after the end of life (Jan. 1st,

2021). Among the top 10K websites, we �nd thirteen websites still

use Adobe Flash as of May 2023. Six out of thirteen domains use

Flash for visible, dynamic content on the webpages (e.g., a banner,

a dynamic image application, and a media player). The remaining

seven cases include .swf �les or links in the HTML code of the web-

pages, but the Flash �les are neither visually displayed nor played on

the web browser. In invisible cases, as .swf objects are positioned

outside of the page or behind certain images, end-users cannot

recognize Adobe Flash is being played on their web browsers.

We further analyze who manages and operates the websites and

which country the websites are from. It turns out that four out of

thirteen domains are managed and operated by Chinese companies;

other countries are Hungary, Iran, Japan, Portugal, Spain, Russia,

and Taiwan. This result motivates us to raise a follow-up research

question, “why do Chinese websites still use Adobe Flash more than

other countries do even after the o�cial support is no longer available,

and all major browsers are no longer supporting Flash?”

Flash-Support Browsers & Ecosystem. To answer the follow-up

question, we manually examine the top 10 desktopWeb browsers in

the world, focusing on how they support Flash. We test them both

on macOS 12.4 and Windows 10. Our results are summarized in Ta-

ble 3. We �nd that all Web browsers no longer support Flash except

for 360 Browser [52]. This browser is based on Google Chrome

and developed by a Chinese internet security company, Qihoo 360.

The browser has two versions: Secure and Extreme. Particularly,

360 Extreme v12.2.1662.0 for macOS15 (based on Chrome v78.0.

3904.108 was released in Nov. 2019) still supports Flash as of May. 26,

2023. Moreover, when end-users access the Flash-embedded web-

pages, they are recommended to visit www. flash.cn to play the

Flash contents. This website provides its own, customized version of

the old Adobe Flash player components for end-users who still want

to use Adobe Flash contents [119]. We can learn from these two

15This version is available at https://browser.360.cn/ee/mac/index.html

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

Figure 8: Adobe Flash Usages. The left y-axis indicates the

number of domains for the top 1K and 10K domains, and

the right y-axis is the number of domains for the top 1M

domains.

cases (360 Extreme browser and flash.cn), this unique Flash

ecosystem could play an important role in maintaining a number of

Chinese websites using insecure Flash. This eventually leads users

to remain exposed to the security threats of Flash.

Takeaway: An average of 3,553 websites still use Adobe Flash

even after the end of the life of Flash. We �nd that a certain web

browser and platform (www.flash.cn) still facilitate the use of

Adobe Flash for end-users.

Insecure AllowScriptAccess Parameter. In the HTML code, the

AllowScriptAccess parameter is to control if a .swf �le (specif-

ically, ActionScript) is allowed to call/access JavaScript and HTML

DOM in the HTML page where the .swf is loaded. The param-

eter has three options; always, sameDomain, and never [55]. The

sameDomain option allows a .swf �le to call/access JavaScript and

HTML DOM only when the .swf and HTML page are from the

same domain. The never option never permits the JavaScript calls

and the HTML DOM accesses. If no value is speci�ed to this param-

eter, the sameDomain option is by default applied. However, the

always option permits a .swf �le to always call/access JavaScript

and HTML DOM even though the domain of the .swf �le is dif-

ferent from the one of the HTML page. A potential security threat

could arise when external and untrustful .swf �les are embedded

and loaded. Then, they can maliciously access, call, and manipulate

JavaScript and HTML DOM. For example, in a web forum where

anyone can include an external .swf, an adversary can upload or

link a malicious .swf to the target forum. Therefore, web devel-

opers are strongly recommended not to use the always option for

the parameter by Web Hypertext Application Technology Working

Group (WHATWG) [111].

We measure if web developers properly follow the best practice

(not to use AllowScriptAccess parameter) in the wild. We �nd

that an average of 24.7% websites (out of the total number of web-

sites using Flash) use insecure parameters. Speci�cally, the insecure

usage has increased by approximately 9% (from 21% to 30%). This

indicates that 24.7% of websites are vulnerable to malicious .swf

�les loaded from cross-origin sources.

9 DISCUSSION

Suggestions. Based on our observation, we discuss potential sug-

gestions that can help improve the Web ecosystem.

• Discontinued JavaScript library Projects.As observed in Section 6.3,

Google CDNs and WordPress plugins are believed to be one of

the main factors to facilitate the use of the outdated library for

developers. We suggest that the o�cial WordPress plugins web-

site and Google CDN website, where web developers download

plugins or utilize CDN URLs, may need to provide them with a

warning icon or indicator saying that they are potentially vul-

nerable. We believe these interventions would help reduce the

usage of discontinued libraries.

• Inaccurate CVEs Information. One of the main reasons why CVEs

have incorrect version information would be that the web se-

curity community barely has the experiment environment that

we have set up for this study. The community is in needs to

have such experiment settings to accurately know the a�ected

versions by validating each vulnerability using PoC code.

• Our Large-Scale Dataset.We publicly share our large-scale dataset

(157.2M pages) collected for four years (Mar. 2018 – Feb. 2022) at

“https://moa-lab.net/measurement-client-side-resources/”. The

security community can utilize our datasets to better understand

the Web ecosystem from another perspective. We believe future

measurement studies using our dataset can help secure the Web

ecosystem.

Limitations. We discuss the limitations of our work.

• Various Security Impacts. The severity and security impact of

vulnerabilities introduced in outdated or vulnerable JavaScript

libraries can vary. Some vulnerabilities could be exploitable only

under speci�c conditions. For example, CVE-2020-11022 [30]

and CVE-2020-11023 [32], both vulnerabilities are only triggered

under a certain condition where attackers can pass HTML to

one of jQuery’s DOM manipulation methods. Thus, using out-

dated or vulnerable JavaScript libraries in the websites does not

necessarily mean that attackers would be able to exploit the vul-

nerabilities. However, we would like to highlight that the use of

outdated or vulnerable JavaScript libraries potentially may lead

to security vulnerabilities in websites under certain conditions

unless the vulnerabilities are updated.

• Validity Concern. Our analysis may contain false positives due to

the inherent errors of Wappalyzer (e.g., we may not catch cases

where administrators manually patched vulnerabilities instead of

using the o�cially updated version’s �les). However, we empiri-

cally observe that it may happen rarely in practice. Speci�cally,

we conduct an extra experiment with a newly collected dataset

of Alexa 100K domains’ client-side resources on June 7th, 2023.

We compare all the downloaded JavaScript library �les in the

dataset with the o�cial unmodi�ed JavaScript library �les (us-

ing �le hashes) to understand whether manual modi�cations (or

patches) are prevalent. We �nd that 1,521 JavaScript libraries

do not match the original hash values of the o�cial JavaScript

libraries. We randomly select 100 samples and manually investi-

gate the mismatched libraries. We �nd that all cases are caused

by extra newlines or spaces and modi�ed comments. We do not

observe any cases that are manually patched in the dataset.

• Representativeness of the entire Web ecosystem.We utilize Alexa

top 1M domains to understand the entire Web ecosystem as we

assume that all websites in Alexa top 1M are representative of

the entire Web ecosystem. This may provide a limited viewpoint

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

and could potentially skew the results. However, it’s worth not-

ing that previous studies [64, 67, 82, 105] attempting to better

understand the Web ecosystem have predominantly examined

and measured the ecosystem using Alexa top 1M domains.

Ethics. Our work identi�ed several security issues. Accordingly,

we responsibly disclosed the issue with Google CDN that supports

the discontinued libraries.

FutureWork.Asmentioned in the limitation (Section 9), wemainly

focus on the landing pages (e.g., index.html). The future work is

needed to further explore other pages within websites, such as

interactive features, which could potentially introduce additional

vulnerabilities. Furthermore, as part of future work, it would be valu-

able to examine cases in which websites have updated to patched

versions but subsequently experienced regressions, potentially due

to compatibility concerns, and to analyze the resultant implications

for the overall security of the web ecosystem. Lastly, it would be

also highly bene�cial to evaluate the exploitability of the websites

that have potentially vulnerable library versions; in other words,

we need to measure how many websites (or JavaScript libraries)

are actually vulnerable and exploitable. This is because the known

vulnerabilities can be exploitable only under speci�c conditions as

mentioned in Section 9.

10 RELATED WORK

Client-side Resource Measurement. There have been a number

of measurement studies that attempted to better understand the

Web ecosystem, especially the security practices of client-side re-

sources [60, 67, 82, 84, 90, 92, 98, 105, 117]. Since JavaScript libraries

have held a dominant position as client-side resources, prior mea-

surement studies have focused on JavaScript libraries. Speci�cally,

Demir et al. [67] performed a longitudinal study of the updating

behaviors (e.g., JavaScript library updates) and found that (even

vulnerable) JavaScript libraries were barely updated. While this

study o�ers an overview of the general trends in JavaScript library

updates, our research delves deeper into the updating patterns of

individual JavaScript libraries (and its versions) and Adobe Flash

vulnerabilities. In particular, we identify the factor that contributes

to the sharp increase in updates, which is the auto-updating feature

provided by WordPress. Based on this �nding, we o�er a valuable

recommendation that this auto-updating feature would be provided

for JavaScript library users. Moreover, we further study the po-

tential security threats of the discontinued JavaScript libraries and

untrustful externally-hosted libraries. Finally, studying Adobe Flash

(e.g., a 3rd-party software dedicated to running Flash) and the ac-

curacy of CVE information (e.g., how inaccurate CVE information

impacts the web ecosystem) are our unique contributions.

Furthermore, Nikiforakis et al. [90] and Lauinger et al. [82]

worked on JavaScript library inclusions and identi�ed that some

JavaScript libraries used in the wild were vulnerable or could be

compromised. Particularly, while Lauinger et al. [82] is more fo-

cused on vulnerable JavaScript library usage statistics with a single

snapshot dataset of 2016 (seven years ago), our study uses a four-

year longitudinal dataset (2018 – 2022) of Alexa’s top 1M domains.

Our security insight and implication of web developers’ (or ad-

ministrators’) updating behaviors require the longitudinal dataset

and analysis; such updating behaviors cannot be measured and

observed with a single snapshot of domains. Moreover, we mea-

sure the inaccuracy of CVE reports by testing the Proof of Concept

exploit of each report, if available. We �nd that 337,773 websites

are a�ected by inaccurate CVE reports (e.g., failed to realize and

update vulnerable JavaScript libraries).

A few measurement studies, particularly on web trackers [84]

and general client-side resources [105], were conducted using a

longitudinal dataset collected from the Internet Archive’s Wayback

Machine (archive.org). Speci�cally, Lerner et al. [84] mainly focused

on the trackers, not the security issues of JavaScript libraries. Com-

pared to this study, our work presents a measurement study on

the top 15 most used JavaScript libraries and how developers have

updated the libraries over 4 years of period.

CVE Information. Ocariza et al. [92] empirically measured and

classi�ed the root causes of the vulnerabilities of JavaScript libraries

using 317 bug reports from 12 bug repositories. Compared to this

study, we measure the accuracy of CVE information and the impact

of incorrect CVE information in the wild. Moreover, a recent study

conducted by Dong et al. [68] examined the quality and consistency

of CVE. While their work was solely focused on assessing the

quality and consistency of CVE, our research takes a more holistic

approach by looking deeper into our dataset. Since we collected

a large-scale dataset of Alexa 1M domains for four years (157.2M

webpages) that can provide a longitudinal, comprehensive view

of the entire Web ecosystem and a general trend of Web security

practices. Speci�cally, for each client-side resource (such as each

JavaScript library), we longitudinally provide the trend of each

library usage, updating behaviors of web developers for each library,

how incorrect CVE descriptions of each library a�ected the Web

ecosystem, and new security threats.

11 CONCLUSION

We conduct a longitudinal, large-scale study of the security prac-

tice and implications on client-side resources using our collected

157.2M webpages of Alexa Top 1M websites. From our �ndings,

we answered each research question we developed: RQ1) 41.2%

websites carry at least one vulnerability during our four-year obser-

vation period;RQ2) The dominant versions of vulnerable JavaScript

libraries lag behind in updating to the latest versions: on average

531.2 days with 25,337 websites have delays; RQ3) Our CVE val-

idation experiments reveal that 13 CVEs contain incorrect version

information, resulting in updating delays or ill-advised updates;

RQ4) We also identify security issues with outdated techniques,

Flash. Our results highlight the importance of necessity on system-

atic understanding of security on client-side resources.

ACKNOWLEDGMENTS

We thank the anonymous referees and our shepherd, Michael Siri-

vianos, for their constructive feedback. The authors gratefully ac-

knowledge the support of NSF (2210137, 2335798, 1908021, 1916499,

and 2145616). This research was also supported by Science Al-

liance’s StART program and gifts from Google exploreCSR and

TensorFlow. Any opinions, �ndings, and conclusions or recommen-

dations expressed in this material are those of the authors and do

not necessarily re�ect the views of the sponsors.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

REFERENCES
[1] 1997. ECMA-262, 1st edition, June 1997. https://www.ecma-international.org/

wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf. (Accessed on
05/26/2023).

[2] 2008. CVE-2008-4401 : ActionScript in Adobe Flash Player 9.0.124.0 and ear-
lier does not require user interaction in conjunction with (1) the F. https:
//www.cvedetails.com/cve/CVE-2008-4401/. (Accessed on 05/26/2023).

[3] 2011. CVE-2011-0577 : Unspeci�ed vulnerability in Adobe Flash Player be-
fore 10.2.152.26 allows remote attackers to execute arbitrary code. https:
//www.cvedetails.com/cve/CVE-2011-0577/. (Accessed on 05/26/2023).

[4] 2011. CVE-2011-0578 : Adobe Flash Player before 10.2.152.26 allows attackers
to execute arbitrary code or cause a denial of service (memory co. https://
www.cvedetails.com/cve/CVE-2011-0578/. (Accessed on 05/26/2023).

[5] 2011. CVE-2011-0607 : Adobe Flash Player before 10.2.152.26 allows attackers to
execute arbitrary code or cause a denial of service. https://www.cvedetails.com/
cve/CVE-2011-0607/. (Accessed on 05/26/2023).

[6] 2011. CVE-2011-0608 : Adobe Flash Player before 10.2.152.26 allows attackers to
execute arbitrary code or cause a denial of service. https://www.cvedetails.com/
cve/CVE-2011-0608/. (Accessed on 05/26/2023).

[7] 2011. jQuery 1.2 Released | O�cial jQuery Blog. https://blog.jquery.com/2007/
09/10/jquery-1-2-released/#jQuery_1.1_Compatibility_Plugin. (Accessed on
05/26/2023).

[8] 2012. CVE-2012-5054 : Integer over�ow in the copyRawDataTo method in
the Matrix3D class in Adobe Flash Player before 11.4.402.265 allows remo.
https://www.cvedetails.com/cve/CVE-2012-5054/. (Accessed on 05/26/2023).

[9] 2013. Cross-site Scripting (XSS) in jquery-migrate | Snyk. https://
security.snyk.io/vuln/npm:jquery-migrate:20130419. (Accessed on 05/26/2023).

[10] 2013. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/UQEgAsO/
3/edit?html,output. (Accessed on 05/26/2023).

[11] 2013. XSS · Issue #36 · jquery/jquery-migrate. https://github.com/jquery/jquery-
migrate/issues/36. (Accessed on 05/26/2023).

[12] 2014. CVE-2014-0510 : Heap-based bu�er over�ow in Adobe Flash Player
12.0.0.77 allows remote attackers to execute arbitrary code and bypass. https:
//www.cvedetails.com/cve/CVE-2014-0510/. (Accessed on 05/26/2023).

[13] 2014. Full Disclosure: XSS Re�ected JQuery 1.4.2 - Create object option in
runtime client-side. https://seclists.org/fulldisclosure/2014/Sep/10. (Accessed
on 05/26/2023).

[14] 2014. Scanning Alexa Top 100,000 for JavaScript libraries with known vulerabil-
ities. https://erlend.oftedal.no/blog/static-142.html. (Accessed on 05/26/2023).

[15] 2015. XSS Vulnerability on closeText option of Dialog jQuery UI · Issue #281 ·
jquery/api.jqueryui.com. https://github.com/jquery/api.jqueryui.com/issues/
281. (Accessed on 05/26/2023).

[16] 2016. CVE-2016-1019 : Adobe Flash Player 21.0.0.197 and earlier allows re-
mote attackers to cause a denial of service (application crash) or po. https:
//www.cvedetails.com/cve/CVE-2016-1019/. (Accessed on 05/26/2023).

[17] 2016. swfobject/swfobject: An open source Javascript framework for detect-
ing the Adobe Flash Player plugin and embedding Flash (swf) �les. https:
//github.com/swfobject/swfobject. (Accessed on 05/26/2023).

[18] 2017. 77% of 433,000 Sites Use Vulnerable JavaScript Libraries. https://snyk.io/
blog/77-percent-of-sites-still-vulnerable/. (Accessed on 05/26/2023).

[19] 2017. CVE-2017-3083 : Adobe Flash Player versions 25.0.0.171 and earlier
have an exploitable use after free vulnerability in the Primetime SDK. https:
//www.cvedetails.com/cve/CVE-2017-3083/. (Accessed on 05/26/2023).

[20] 2017. CVE-2017-3084 : Adobe Flash Player versions 25.0.0.171 and earlier
have an exploitable use after free vulnerability in the advertising m. https:
//www.cvedetails.com/cve/CVE-2017-3084/. (Accessed on 05/26/2023).

[21] 2017. Flash Player is no longer available - Google Chrome Help. https://
support.google.com/chrome/answer/6258784?hl=en. (Accessed on 05/26/2023).

[22] 2017. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/qalekeroke/
edit?html,output. (Accessed on 05/26/2023).

[23] 2018. CVE-2012-6708 : jQuery before 1.9.0 is vulnerable to Cross-site Script-
ing (XSS) attacks. The jQuery(strInput) function does not di�eren. https:
//www.cvedetails.com/cve/CVE-2012-6708/?q=CVE-2012-6708. (Accessed
on 05/26/2023).

[24] 2018. CVE-2015-9251 : jQuery before 3.0.0 is vulnerable to Cross-site Scripting
(XSS) attacks when a cross-domain Ajax request is performed wi. https://
www.cvedetails.com/cve/CVE-2015-9251/. (Accessed on 05/26/2023).

[25] 2018. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/palokaxina/
edit?html,output. (Accessed on 05/26/2023).

[26] 2018. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/
xeminoniku/edit?html,output. (Accessed on 05/26/2023).

[27] 2019. Compatibility Issue with JQuery 3.4.x | WebDataRocks.
https://www.webdatarocks.com/question/compatibility-issue-with-jquery-3-
4-x-2/. (Accessed on 05/26/2023).

[28] 2019. CVE-2019-11358 : jQuery before 3.4.0, as used in Drupal, Backdrop
CMS, and other products, mishandles jQuery.extend(true, {}, ...) becaus. https:
//www.cvedetails.com/cve/CVE-2019-11358/. (Accessed on 05/26/2023).

[29] 2020. Cross-site Scripting (XSS) in jquery | CVE-2020-7656 | Snyk. https:
//security.snyk.io/vuln/SNYK-JS-JQUERY-569619. (Accessed on 05/26/2023).

[30] 2020. CVE-2020-11022 : In jQuery versions greater than or equal to 1.2 and
before 3.5.0, passing HTML from untrusted sources - even after sanit. https:
//www.cvedetails.com/cve/CVE-2020-11022/. (Accessed on 05/26/2023).

[31] 2020. CVE-2020-11022 : In jQuery versions greater than or equal to 1.2 and
before 3.5.0, passing HTML from untrusted sources - even after sanit. https:
//www.cvedetails.com/cve/CVE-2020-11022/. (Accessed on 05/26/2023).

[32] 2020. CVE-2020-11023 : In jQuery versions greater than or equal to 1.0.3
and before 3.5.0, passing HTML containing <option> elements from. https:
//www.cvedetails.com/cve/CVE-2020-11023/. (Accessed on 05/26/2023).

[33] 2020. Safari 14 and �ash player - Apple Community. https://
discussions.apple.com/thread/251900220. (Accessed on 05/26/2023).

[34] 2021. Compatibility issues with latest jQuery 3.5.1. https://datatables.net/
forums/discussion/67375/compatibility-issues-with-latest-jquery-3-5-1. (Ac-
cessed on 05/26/2023).

[35] 2021. CVE-2020-27511 : An issue was discovered in the stripTags and un-
escapeHTML components in Prototype 1.7.3 where an attacker can cause a
Re. https://www.cvedetails.com/cve/CVE-2020-27511/?q=CVE-2020-27511.
(Accessed on 05/26/2023).

[36] 2021. End of support for Adobe Flash | Firefox Help. https://support.mozilla.org/
en-US/kb/end-support-adobe-�ash. (Accessed on 05/26/2023).

[37] 2021. Update on Adobe Flash Player End of Support - Microsoft Edge
Blog. https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-�ash-
end-support/. (Accessed on 05/26/2023).

[38] 2021. Vulnerable Javascript Library. https://beaglesecurity.com/blog/
vulnerability/vulnerable-javascript-library.html. (Accessed on 05/26/2023).

[39] 2022. Commits · js-cookie/js-cookie. https://github.com/js-cookie/js-cookie/
commits/main. (Accessed on 05/26/2023).

[40] 2022. CVE - CVE. https://cve.mitre.org/index.html. (Accessed on 05/26/2023).
[41] 2022. CVE security vulnerability database. Security vulnerabilities, exploits,

references and more. https://www.cvedetails.com/index.php. (Accessed on
05/26/2023).

[42] 2022. Digital 2022: Global Overview Report - DataReportal - Global Digital
Insights. https://datareportal.com/reports/digital-2022-global-overview-report.
(Accessed on 05/26/2023).

[43] 2022. HTML attribute: crossorigin - HTML: HyperText Markup Language
| MDN. https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/
crossorigin. (Accessed on 05/26/2023).

[44] 2022. js-cookie/js-cookie: A simple, lightweight JavaScript API for handling
browser cookies. https://github.com/js-cookie/js-cookie. (Accessed on
05/26/2023).

[45] 2022. NVD - Vulnerabilities. https://nvd.nist.gov/vuln. (Accessed on
05/26/2023).

[46] 2022. Request.credentials - Web APIs | MDN. https://developer.mozilla.org/en-
US/docs/Web/API/Request/credentials. (Accessed on 05/26/2023).

[47] 2023. Browser Support | jQuery. https://jquery.com/browser-support/. (Ac-
cessed on 05/26/2023).

[48] 2023. jQuery vs Bootstrap – What Is The Di�erence? – Remarkable Coder.
https://remarkablecoder.com/jquery-vs-bootstrap. (Accessed on 05/26/2023).

[49] 2023. UPDATE: Adobe Flash Player end of support on December 31, 2020 - Mi-
crosoft Lifecycle | Microsoft Learn. https://learn.microsoft.com/en-us/lifecycle/
announcements/update-adobe-�ash-support. (Accessed on 05/26/2023).

[50] 2023. Vulnerability DB | Snyk. https://security.snyk.io/vuln. (Accessed on
05/26/2023).

[51] 2023. wappalyzer/wappalyzer: Identify technology on websites. (Accessed on
05/26/2023).

[52] 360. 2023. 360 Browser. https://browser.360.cn/ee/mac/index.html. (Accessed
on 05/26/2023).

[53] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289–305.

[54] Adguard. 2023. AdguardFilters/speci�c.txt at master · AdguardTeam/Ad-
guardFilters. https://github.com/AdguardTeam/AdguardFilters/blob/master/
SpywareFilter/sections/speci�c.txt. (Accessed on 05/26/2023).

[55] Adobe. 2017. Control access to scripts | Host web page. https://helpx.adobe.com/
�ash/kb/control-access-scripts-host-web.html. (Accessed on 05/26/2023).

[56] Adobe. 2021. Adobe Flash Player End of Life. https://www.adobe.com/products/
�ashplayer/end-of-life.html. (Accessed on 05/26/2023).

[57] Adobe. 2021. Create HTML5 Canvas documents in Animate.
https://helpx.adobe.com/animate/using/creating-publishing-html5-canvas-
document.html. (Accessed on 05/26/2023).

[58] Adobe. 2022. Best practices to convert/publish existing Flash-based projects
to HTML5 in Captivate. https://helpx.adobe.com/captivate/kb/best-practices-
convert-�ash-html5-captivate.html. (Accessed on 05/26/2023).

[59] National Security Agency. 2019. CSA - CONTINUED USE OF ADOBE
FLASH INVITES COMPROMISE.PDF. https://media.defense.gov/2019/Sep/25/
2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

20FLASH%20INVITES%20COMPROMISE.PDF. (Accessed on 05/26/2023).
[60] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven

Desmet, and Frank Piessens. 2012. JSand: Complete Client-Side Sandboxing
of Third-Party JavaScript without Browser Modi�cations. In Proceedings of the
28th Annual Computer Security Applications Conference (Orlando, Florida, USA)
(ACSAC ’12). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2420950.2420952

[61] Danny E. Alvarez, Daniel B. Correa, and Fernando I. Arango. 2016. An analysis of
XSS, CSRF and SQL injection in colombian software and web site development.
In 2016 8th Euro American Conference on Telematics and Information Systems
(EATIS). 1–5. https://doi.org/10.1109/EATIS.2016.7520140

[62] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75–88.

[63] Bootstrap. 2023. Bootstrap · The most popular HTML, CSS, and JS library in
the world. https://getbootstrap.com/. (Accessed on 05/26/2023).

[64] William J Buchanan, Scott Helme, and Alan Woodward. 2018. Analysis of the
adoption of security headers in HTTP. IET Information Security 12, 2 (2018),
118–126.

[65] cdnjs. 2023. cdnjs - The #1 free and open source CDN built to make life easier
for developers. https://cdnjs.com/. (Accessed on 05/26/2023).

[66] Chromium. 2021. Flash Roadmap. https://www.chromium.org/�ash-
roadmap/#TOC-Flash-Support-Removed-from-Chromium-Target:-Chrome-
87---Dec-2020-. (Accessed on 05/26/2023).

[67] Nurullah Demir, Tobias Urban, Kevin Wittek, and Norbert Pohlmann. 2021. Our
(in)Secure Web: Understanding Update Behavior of Websites and Its Impact on
Security. In Passive and Active Measurement. Springer International Publishing,
Cham, 76–92.

[68] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang
Wang. 2019. Towards the Detection of Inconsistencies in Public Security Vul-
nerability Reports.. In USENIX Security Symposium. 869–885.

[69] Carlos Duarte, Inês Matos, João Vicente, Ana Salvado, Carlos M. Duarte, and
Luís Carriço. 2016. Development Technologies Impact in Web Accessibility. In
Proceedings of the 13th International Web for All Conference (Montreal, Canada)
(W4A ’16). Association for Computing Machinery, New York, NY, USA, Article
6, 4 pages. https://doi.org/10.1145/2899475.2899498

[70] J. Emigh. 2006. New Flash player rises in the Web-video market. Computer 39,
2 (2006), 14–16. https://doi.org/10.1109/MC.2006.66

[71] F-Secure. 2011. News from the Lab Archive : January 2004 to September 2015.
https://archive.f-secure.com/weblog/archives/00002226.html. (Accessed on
05/26/2023).

[72] GitHub. 2021. Update regex for striptags method to prevent regex dos by
jwestbrook · Pull Request #349 · prototypejs/prototype. https://github.com/
prototypejs/prototype/pull/349. (Accessed on 05/26/2023).

[73] Google. 2017. Saying goodbye to Flash in Chrome. https://www.blog.google/
products/chrome/saying-goodbye-�ash-chrome/. (Accessed on 05/26/2023).

[74] Hao He, Lulu Chen, and Wenpu Guo. 2017/03. Research on Web Applica-
tion Vulnerability Scanning System based on Fingerprint Feature. In Proceed-
ings of the 2017 International Conference on Mechanical, Electronic, Control
and Automation Engineering (MECAE 2017). Atlantis Press, 150–155. https:
//doi.org/10.2991/mecae-17.2017.27

[75] Isotope. 2023. Isotope - Filter & sort magical layouts. https://
isotope.meta�zzy.co/. (Accessed on 05/26/2023).

[76] jQuery. 2023. jQuery. https://jquery.com/. (Accessed on 05/26/2023).
[77] jquery cookie. 2015. carhartl/jquery-cookie: No longer maintained, super-

seded by JS Cookie:. https://github.com/carhartl/jquery-cookie. (Accessed on
05/26/2023).

[78] jquerymigrate. 2023. jquery/jquery-migrate: A development tool to helpmigrate
away from APIs and features that have been or will be removed from jQuery
core. https://github.com/jquery/jquery-migrate. (Accessed on 05/26/2023).

[79] jQuery UI. 2023. jQuery UI. https://jqueryui.com/. (Accessed on 05/26/2023).
[80] jsDelivr. 2023. jsDelivr - A free, fast, and reliable CDN for open source. https:

//www.jsdelivr.com/. (Accessed on 05/26/2023).
[81] Gregg Keizer. 2011. RSA hackers exploited Flash zero-day bug | Com-

puterworld. https://www.computerworld.com/article/2507619/rsa-hackers-
exploited-�ash-zero-day-bug.html. (Accessed on 05/26/2023).

[82] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,WilliamRobertson, Christo
Wilson, and Engin Kirda. 2018. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918
(2018).

[83] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later:
Large-Scale Detection of DOM-Based XSS. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (Berlin, Germany)
(CCS ’13). Association for ComputingMachinery, NewYork, NY, USA, 1193–1204.
https://doi.org/10.1145/2508859.2516703

[84] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological

Study of Web Tracking from 1996 to 2016. In 25th USENIX Security Symposium
(USENIX Security 16). USENIXAssociation, Austin, TX. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/lerner

[85] Fabian Marquardt and Lennart Buhl. 2021. Déjà Vu? Client-Side Fingerprinting
and Version Detection of Web Application Software. In 2021 IEEE 46th Con-
ference on Local Computer Networks (LCN). 81–89. https://doi.org/10.1109/
LCN52139.2021.9524885

[86] Modernizr. 2023. Modernizr: the feature detection library for HTML5/CSS3.
https://modernizr.com/. (Accessed on 05/26/2023).

[87] Moment. 2023. Moment.js | Home. https://momentjs.com/. (Accessed on
05/26/2023).

[88] Mozilla. 2021. End of support for Adobe Flash | Firefox Help. https:
//support.mozilla.org/en-US/kb/end-support-adobe-�ash. (Accessed on
05/26/2023).

[89] Mozilla. 2022. Subresource Integrity - Web security | MDN. https://
developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity. (Ac-
cessed on 05/26/2023).

[90] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736–747.

[91] NIST. 2018. NVD - CVE-2018-9206. https://nvd.nist.gov/vuln/detail/CVE-2018-
9206. (Accessed on 05/26/2023).

[92] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An
Empirical Study of Client-Side JavaScript Bugs. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement. 55–64. https:
//doi.org/10.1109/ESEM.2013.18

[93] Poly�ll. 2023. Poly�ll.io. https://poly�ll.io/v3/. (Accessed on 05/26/2023).
[94] Popper. 2023. Tooltip & Popover Positioning Engine. https://popper.js.org/.

(Accessed on 05/26/2023).
[95] Prototype. 2015. Prototype JavaScript framework: a foundation for ambitious

web applications. http://prototypejs.org/. (Accessed on 05/26/2023).
[96] Nur Aini Rakhmawati, Sayekti Harits, Deny Hermansyah, and Muhammad Ar-

iful Furqon. 2018. A Survey of Web Technologies Used in Indonesia Local
Governments. SISFO Vol 7 No 3 7 (2018).

[97] RequireJS. 2018. RequireJS. https://requirejs.org/. (Accessed on 05/26/2023).
[98] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An Analysis

of the Dynamic Behavior of JavaScript Programs. SIGPLAN Not. 45, 6 (jun 2010),
1–12. https://doi.org/10.1145/1809028.1806598

[99] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex security policy? a longitudinal analysis of deployed
content security policies. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS).

[100] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web
Applications.. In NDSS.

[101] IMQ Minded Security. 2013. IMQ Minded Security Blog: “jQuery Migrate”’ is a
Sink, too?! https://blog.mindedsecurity.com/2013/04/jquery-migrate-is-sink-
too.html. (Accessed on 09/05/2023).

[102] Statcounter. 2023. Browser Market Share Worldwide. https:
//gs.statcounter.com/browser-market-share/desktop/worldwide. (Accessed on
05/26/2023).

[103] statista. 2023. Internet usage worldwide – statistics & facts. https://
www.statista.com/topics/1145/internet-usage-worldwide/. (Accessed on
05/26/2023).

[104] Marius Ste�ens, Marius Musch, Martin Johns, and Ben Stock. 2021. Who’s
hosting the block party? studying third-party blockage of csp and sri. In Network
and Distributed Systems Security (NDSS) Symposium 2021.

[105] Ben Stock, Martin Johns, Marius Ste�ens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX As-
sociation, Vancouver, BC, 971–987. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/stock

[106] Yuta Takata, Hiroshi Kumagai, and Masaki Kamizono. 2021. The Uncontrolled
Web: Measuring Security Governance on the Web. IEICE Transactions on Infor-
mation and Systems 104, 11 (2021), 1828–1838.

[107] Underscore. 2022. Underscore.js. https://underscorejs.org/. (Accessed on
05/26/2023).

[108] Semantic Versioning. 2023. Semantic Versioning 2.0.0. https://semver.org/.
(Accessed on 05/26/2023).

[109] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting preventionwith dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[110] W3. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/#cross-origin-
data-leakage. (Accessed on 05/26/2023).

[111] W3.org. 2023. HTML Standard. https://html.spec.whatwg.org/multipage/
iframe-embed-object.html#the-object-element. (Accessed on 05/26/2023).

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

[112] Whatwg. 2023. HTML Standard. https://html.spec.whatwg.org/multipage/urls-
and-fetching.html#cors-settings-attributes. (Accessed on 05/26/2023).

[113] WordPress. 2022. Enable jQuery Migrate Helper – WordPress plugin.
https://wordpress.org/plugins/enable-jquery-migrate-helper/. (Accessed on
05/26/2023).

[114] WordPress. 2022. Enable jQuery Migrate Helper – WordPress plugin. https:
//wordpress.org/plugins/enable-jquery-migrate-helper/#description. (Accessed
on 05/26/2023).

[115] WordPress. 2023. Con�guring Automatic Background Updates. https:
//wordpress.org/support/article/con�guring-automatic-background-updates/.
(Accessed on 05/26/2023).

[116] Qiushi Wu and Kangjie Lu. 2021. On the feasibility of stealthily introducing
vulnerabilities in open-source software via hypocrite commits. In Proc. Oakland.

[117] Chuan Yue and Haining Wang. 2009. Characterizing Insecure Javascript Prac-
tices on the Web. In Proceedings of the 18th International Conference on World
Wide Web (Madrid, Spain) (WWW ’09). Association for Computing Machinery,
New York, NY, USA, 961–970. https://doi.org/10.1145/1526709.1526838

[118] ZDNET. 2018. Zero-day in popular jQuery plugin actively exploited for at least
three years | ZDNET. https://www.zdnet.com/article/zero-day-in-popular-
jquery-plugin-actively-exploited-for-at-least-three-years/. (Accessed on
05/26/2023).

[119] ZDNET. 2021. Flash version distributed in China after EOL is installing adware
| ZDNET. https://www.zdnet.com/article/�ash-version-distributed-in-china-
after-eol-is-installing-adware/. (Accessed on 05/26/2023).

APPENDIX

Revealed Vulnerabilities. As we have seen in Figure 5, we

showed the number of websites a�ected by incorrect CVE informa-

tion. Figure 14(a) shows that jQuery-Migrate has a CVE stating

that the versions before 1.2.1 are vulnerable. However, we revealed

that the vulnerability expands from 1.0.0 to 3.0.0 (an understated

version case). The red region in the graph shows the domains us-

ing newly revealed vulnerable versions. For Figure 14(d), and Fig-

ure 14(e) same principle applies to Figure 14(a). For Figure 14(b)

and Figure 14(c), the CVE states that more versions are vulnerable

than the versions that are truly vulnerable (an overstated version

case).

Top 5 A�ected Versions. Figure 15 shows the top 5 a�ected

versions for Bootstrap, jQuery-UI, and Prototype. Figure 15(a)

has version 3.3.7 as the dominant version as shown in Table 1.

However, it is a�ected by all of the CVEs we have discovered. From

Figure 15(a), version 3.3.7 is decreasing. However, it is di�cult to say

it is caused by the disclosed vulnerability. Similarly, for Figure 15(b),

version 1.7.1 is the most dominant version, and it decreases slightly.

A similar result is shown but more pronounced because this clearly

shows that the decrease is not a�ected by disclosed CVEs. For

Figure 15(c), the dominant version is also in the top 5 a�ected

versions. This �gure also shows that there is no e�ect on updating

behavior with disclosed CVEs.

Comparison of Overstated Versions and Understated Ver-

sions. As we have seen in Figure 4, a similar analysis is conducted.

For Moment, jQuery-Migrate, jQuery-UI, and Prototype, all

have understated versions indicated in red. As we can see with

jQuery-Migrate and Prototype, more than half of the existing

versions are understated versions. This indicates how inaccurate

CVE information is. The Bootstrap only does not have under-

stated versions, it only has revealed overstated versions. This is

understated but has drawbacks explained in Section 6.4.

Top 10 Disclosed CVEs for WordPress. Table 4 shows the top

10 disclosed CVEs for WordPress (the most recent 5 CVEs and the

most critical CVEs). WordPress is one of the interesting factors in

our observation of JavaScript library updates. WordPress is one
of the most popular content management systems. In our dataset,

26.9% of websites use WordPress as shown in Figure 9. WordPress

has released a total number of 606 versions, excluding beta and RC

(Release Candidate) versions. In our dataset, we found 521 versions

(excluding the last two patches of each version from v3.7 to v5.9,

and the 6.0 branch because they are released after our collection pe-

riod). We further look into disclosed vulnerabilities for WordPress,

and we found a total of 6,155 disclosed CVEs as of May. 2023. From

6,155 disclosed CVEs, we looked at the �ve most severe vulnera-

bilities (highest ranked in CVSS score) and �ve most recent CVEs

(recent CVEs only have medium severity score). From what we

have found, an average of 97.7% of websites is vulnerable according

to the top 5 recently disclosed CVEs and 0.36% of websites are vul-

nerable according to the top 5 most severe CVEs. This indicates that

WordPress tries to �x vulnerabilities as version updates and most

websites are using relatively recent versions of WordPress. This

implies in Section 7 that WordPress has an Auto-Update function

which helps administrators/developers to keep up with the most

recent version of the software.

CVE PoC code. We reimplemented this PoC code from CVE-2020-

7656 to see which version of jquery was truly a�ected.

1 <html>

2 <head>

3 <script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/1.8.3/jquery.js">

4 </script>

5 </head>

6 <body>

7 <h1>CVE-2020-7656</h1>

8 <div id="CVE-2020-7656"></div>

9 <script>

10 $("#CVE-2020-7656").load('inject.html');

11 </script>

12 </div>

13 </body>

14 </html>

Listing 1: Modi�ed PoC for CVE-2020-7656 [29]

1 <div id="CVE-2020-7656">

2 <script>alert('Arbitrary Code Execution');

3 </script></div>

Listing 2: Modi�ed PoC for CVE-2020-7656 (inject.html) [29]

Figure 9: WordPress Usage. Of our collected websites (on

average, 782,300), 26.9% websites are built with WordPress.

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Browser Market share* Flash Support**

Chrome 66.45% N
Edge 10.8% N
Safari 9.59% N
Firefox 7.16% N
Opera 3.09% N
IE 0.81% N
360 Browser 0.66% Y
Yandex Browser 0.39% N
QQ Browser 0.20% N
Edge Legacy 0.16% N

*: Desktop Browser Market Share Worldwide
(Apr. 2022 – Apr. 2023) [102]
**: Manually tested on May 26, 2023.

Table 3: Top 10Web Browser Market share and Flash Support.

360 Browser still supports Adobe Flash even though it is

o�cially no longer supported and major browsers such as

Chrome completely removed the Flash components.

CVE ID Disclosed Date Ver Patched Ver Patched Date #Websites

CVE-2022-21664 01/06/2022 4.1.34 ∼ 5.8.3 5.8.3 01/06/2022 124,556

CVE-2022-21663 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440

CVE-2022-21662 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440

CVE-2022-21661 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440

CVE-2021-44223 11/25/2021 < 5.8 5.8 07/20/2021 121,214

CVE-2012-2400 04/21/2012 < 3.3.2 3.3.2 04/20/2012 545

CVE-2012-2399 04/21/2012 < 3.5.2 3.5.2 06/21/2013∗ 913

CVE-2011-3125 08/10/2011 < 3.1.3 3.1.3 05/25/2011 380

CVE-2011-3122 08/10/2011 < 3.1.3 3.1.3 05/25/2011 380

CVE-2009-2853 08/18/2009 < 2.8.3 2.8.3 08/03/2009 30

*: the vulnerability was disclosed more than a year before the patched version was released

Table 4: Top 10 disclosed CVEs for WordPress The �rst 5

are the most recent CVEs, and the last 5 are the most severe

CVEs.

Lib. Hostname % Lib. Hostname %

jQuery

ajax.googleapi.com 26.0%

isotope

secureservercdn.net 3.3%

code.jquery.com 10.0% cdn.shopify.com 2.1%

cdnjs.cloud�are.com 7.1% cdn.jsdelivr.net 0.8%

jQuery-Migrate

c0.wp.com 22.1%

popper

cdnjs.cloud�are.com 77.3%

cdnjs.cloud�are.com 4.5% cdn.jsdelivr.net 9.0%

secureservercdn.net 2.3% unpkg.com 2.1%

Bootstrap

maxcdn.bootstrapcdn.com 33.6%

poly�ll

poly�ll.io 45.4%

widget.trustpilot.com 10.0% cdn.poly�ll.io 30.8%

stackpath.bootstrapcdn.com 9.7% static.parastorage.com 4.1%

jQuery-UI

ajax.googleapis.com 49.6%

moment

cdnjs.cloud�are.com 51.8%

code.jquery.com 30.7% cdn.jsdelivr.net 6.1%

cdnjs.cloud�are.com 4.2% momentjs.com 1.7%

Modernizr

cdnjs.cloud�are.com 32.4%

swfobject

ajax.googleapis.com 49.1%

cdn.shopify.com 21.8% cdnjs.cloud�are.com 3.0%

cdn.prestosports.com 1.0% s0.wp.com 2.6%

JS-Cookie

cdn.jsdelivr.net 21.1%

jquery-cookie

cdnjs.cloud�are.com 62.6%

c0.wp.com 12.3% cdn.shopify.com 8.4%

cdnjs.cloud�are.com 11.5% c0.wp.com 0.9%

Underscore

c0.wp.com 20.5%

prototype

ajax.googleapis.com 27.7%

cdnjs.cloud�are.com 13.3% strato-editor.com 3.7%

secureservercdn.net 1.5% cdnjs.cloud�are.com 2.2%

Table 5: Top 3 CDNs for JavaScript Library.

Figure 10: Subresource Integrity (SRI). 99.7% websites have at

least one externally-hosted JS library without integrity.

Figure 11: AllowScriptAccess Parameter and Insecure

Always Option.

Figure 12: CDF of the Avg. Number of Vulnerabilities per

Website. The average number of True Vulnerable Versions

(mean: 0.97, median: 0.96) is higher than the one of CVE

vulnerable versions (mean: 0.79, median: 0.75). This indicates

that a signi�cant number of True Vulnerable Versions are

not disclosed due to incorrect CVE descriptions.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

1

2.15.22.11.22.8.1

CVE-2016-4055

1.0.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(a) Moment

3.0.01.9.1

jQuery-Migrate

1.0.0

1

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(b) jQuery-Migrate

1

3.0.01.12.01.10.0

CVE-2016-7103

1.0.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(c) jQuery-UI

1

2

3

1.0.0

1.0.0

3.2.0

3.4.02.1.0

CVE-2018-20676/7

CVE-2018-14040/2

CVE-2016-10735

3.4.0

2.3.0

1.0.0

3.4.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(d) Bootstrap

1

2

1.0.0

1.7.1

CVE-2020-27511

CVE-2020-7993

1.0.0

1.7.1

1.6.0.1

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(e) Prototype

Figure 13: Comparison of Disclosed CVE Vulnerable Version and Understated/Overstated Versions (Moment, jQuery-Migrate,

jQuery-UI, Bootstrap, and Prototype).

(a) jQuery-Migrate: NO CVE ID Assigned (b) Bootstrap: CVE-2016-10735 (c) Bootstrap: CVE-2018-20676

(d) jQuery-UI: CVE-2016-7103 (e) Moment: CVE-2016-4055 (f) Prototype: CVE-2020-27511

Figure 14: CVV and TVV of jQuery-Migrate, jQuery-UI, Bootstrap, Moment, and Prototype.

(a) Bootstrap (b) Prototype (c) jQuery-UI

Figure 15: Top 5 A�ected Versions of Bootstrap, Prototype, and jQuery-UI.

A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Top 10K Domains using GitHub URL Stats for GitHub

Website Ranking GitHub URL Most Used Repository #Websites

kinogo.cc 594 kodir2.github.io/.../actualize.js partnercoll.github.io/actualize.js 4

uptobox.com 744 blueimp.github.io/.../jquery.ui.widget.js malsup.github.com/jquery.form.js 2

cnnindonesia.com 985 malsup.github.com/jquery.form.js afarkas.github.io/.../lazysizes.min.js 2

wittyfeed.com 1639 hammerjs.github.io/.../hammer.min.js blueimp.github.io/.../jquery.ui.widget.js 2

baskino.me 1,680 partnercoll.github.io/actualize.js gitcdn.github.io/.../bootstrap-toggle.min.js 2

the-star.co.ke 2,029
radioafricagroup.github.io/.../cookiestrip.min.js kodir2.github.io/actualize.js 2

radioafricagroup.github.io/.../jquery.popup.js owlcarousel2.github.io/.../owl.carousel.js 2

colourpop.com 2,551 klevron.github.io/.../OrbitControls.js weblion777.github.io/hdvb.js 2

canalrcn.com 3,274 afarkas.github.io/.../lazysizes.min.js hammerjs.github.io/.../hammer.min.js 1

dostor.org 3,329 owlcarousel2.github.io/.../owl.carousel.js malihu.github.io/.../jquery.mCustomScrollbar.concat.min.js 1

morningstar.com 3,976 jonathantneal.github.io/.../svg4everybody.min.js kenwheeler.github.io/.../slick.js 1

raw.githubusercontent.com 4,087 assets-cdn.github.com/.../compat-432e5...a3c.js actlz.github.io/actualize.js 1

bintjbeil.org 4,518 malihu.github.io/.../jquery.mCustomScrollbar.concat.min.js assets-cdn.github.com/.../compat-432e5...a3c.js 1

vkmag.com 5,772 owlcarousel2.github.io/.../owl.carousel.js blueimp.github.io/.../jquery.blueimp-gallery.min.js 1

atresplayer.com 6,455 malsup.github.com/jquery.form.js blueimp.github.io/.../canvas-to-blob.min.js 1

kinoserv.net 6,714
weblion777.github.io/hdvb.js blueimp.github.io/.../load-image.all.min.js 1

partnercoll.github.io/actualize.js blueimp.github.io/.../tmpl.min.js 1

hdkinoteatr.com 6,820
weblion777.github.io/hdvb.js blueimp.github.io/.../jquery.�leupload-audio.js 1

partnercoll.github.io/actualize.js blueimp.github.io/.../jquery.�leupload-image.js 1

ohmynews.com 6,997 kenwheeler.github.io/.../slick.js blueimp.github.io/.../jquery.�leupload-process.js 1

orangebookvalue.com 7,029 gitcdn.github.io/.../bootstrap-toggle.min.js blueimp.github.io/.../jquery.�leupload-ui.js 1

bddatabase.net 7,971 hayageek.github.io/.../jquery.upload�le.min.js blueimp.github.io/.../jquery.�leupload-validate.js 1

noticiasrcn.com 8,008 afarkas.github.io/.../lazysizes.min.js blueimp.github.io/.../jquery.�leupload-video.js 1

kinoplen.ru 8,018
"partnercoll.github.io/replace.js blueimp.github.io/.../jquery.�leupload.js 1

partnercoll.github.io/actualize.js blueimp.github.io/.../jquery.iframe-transport.js 1

english-�lms.com 8,242 actlz.github.io/actualize.js hayageek.github.io/.../jquery.upload�le.min.js 1

uptostream.com 8,796

blueimp.github.io/.../jquery.ui.widget.js jonathantneal.github.io/.../svg4everybody.min.js 1

blueimp.github.io/.../tmpl.min.js klevron.github.io/.../OrbitControls.js 1

blueimp.github.io/.../load-image.all.min.js partnercoll.github.io/replace.js 1

blueimp.github.io/.../canvas-to-blob.min.js radioafricagroup.github.io/.../jquery.popup.js 1

blueimp.github.io/.../jquery.blueimp-gallery.min.js radioafricagroup.github.io/.../cookiestrip.min.js 1

blueimp.github.io/.../jquery.iframe-transport.js

blueimp.github.io/.../jquery.�leupload.js

blueimp.github.io/.../jquery.�leupload-process.js

blueimp.github.io/.../jquery.�leupload-image.js

blueimp.github.io/.../jquery.�leupload-audio.js

blueimp.github.io/.../jquery.�leupload-video.js

blueimp.github.io/.../jquery.�leupload-validate.js

blueimp.github.io/.../jquery.�leupload-ui.js

mega-mult.ru 9,165 kodir2.github.io/actualize.js

rstudio.com 9,610 gitcdn.github.io/.../bootstrap-toggle.min.js

Table 6: Top 10k Websites using JS Library directly from GitHub Repository. The left half of the table indicates domains

representing libraries. The right half of the table indicates the number of domains using the same repositories

	Abstract
	1 INTRODUCTION
	2 Background
	2.1 JavaScript Library
	2.2 Adobe Flash Applet

	3 Motivation & Research Question
	4 Dataset Collection
	4.1 Landing Page Collection
	4.2 Identifying Resources and Versions
	4.3 Collecting Vulnerability Information

	5 Overview of Resources
	6 Vulnerable JavaScript Libraries
	6.1 Landscape of JavaScript Library Usage
	6.2 Known Vulnerability using CVE Report
	6.3 Dominant Vulnerable Versions & Discontinued Library
	6.4 Accuracy of CVE Vulnerability Info.
	6.5 Potential Security Threats of Untrustful External Libraries

	7 Update of Vulnerable JavaScript Libraries
	8 Insecure Adobe Flash
	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

