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A key task in the emerging field of materials informatics is to use ma-
chine learning to predict a material’s properties and functions. A fast and
accurate predictive model allows researchers to more efficiently identify or
construct a material with desirable properties. As in many fields, deep learn-
ing is one of the state-of-the art approaches, but fully training a deep learn-
ing model is not always feasible in materials informatics due to limitations
on data availability, computational resources, and time. Accordingly, there
is a critical need in the application of deep learning to materials informat-
ics problems to develop efficient transfer learning algorithms. The Bayesian
framework is natural for transfer learning because the model trained from
the source data can be encoded in the prior distribution for the target task of
interest. However, the Bayesian perspective on transfer learning is relatively
unaccounted for in the literature and is complicated for deep learning because
the parameter space is large and the interpretations of individual parameters
are unclear. Therefore, rather than subjective prior distributions for individual
parameters, we propose a new Bayesian transfer learning approach based on
the penalized complexity prior on the Kullback–Leibler divergence between
the predictive models of the source and target tasks. We show via simulations
that the proposed method outperforms other transfer learning methods across
a variety of settings. The proposed method is applied to predict the proper-
ties of a molecular crystal, based on its structural properties, and we show
improved precision for estimating the band gap of a material compared to
state-of-the-art methods currently used in materials science.

1. Introduction. Materials informatics has fundamentally changed materials science re-
search (e.g., Himanen et al. (2019)). To design or select a material for a particular function,
researchers have traditionally relied on intuition and costly experimentation. This process is
now supplemented by machine learning to predict a candidate material’s properties and triage
materials for further experimentation. The addition of machine learning has been shown to
improve efficiency, especially when using multiple data sources (e.g., Batra (2021)). We aim
to build a predictive model for a material’s band gap, defined as the energy differential be-
tween the lowest-unoccupied and highest-occupied electronic states (Kittel, McEuen and Wi-
ley (2019)). The band gap governs desirable properties that are useful in industrial sectors
such as electric and photovoltaic conductivity. Traditionally, band gap size is computed us-
ing methods in quantum mechanics such as density functional theory (DFT; Kohn and Sham
(1965)). However, these methods require running costly computer simulations, and so it is
not feasible to exhaustively search over a broad class of materials. Our objective is to build
a statistical model (sometimes called a meta-model, surrogate model, or emulator; O’Hagan
(2006)) along with an accompanying transfer learning methodology that is both effective at
predicting the output of the DFT simulation and is able to optimize experimentation on future
test data sets from related data sources.
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Deep neural network (DNN) architectures have emerged as leading models in materials in-
formatics. Beyond materials science DNNs have revolutionized the field of machine learning
with significant breakthroughs in a wide variety of applications including computer vision
(Voulodimos et al. (2018)), natural language processing (Young et al. (2018)), and protein
folding (Senior et al. (2020)); see Dargan et al. (2020) for further references to modern appli-
cations. Their ability to model complex nonlinear processes enables them to handle a large
class of prediction problems. Training a neural network, however, is not an easy task, often
requiring intensive computational cost, large quantities of training data, and careful hyper-
parameter selection (Bengio (2012)). As an overparameterized expressive model, DNNs are
prone to overfitting, especially in the case of small data sets. Tan et al. (2018) conclude that
the number of parameters in a DNN and the size of the data required for good generalization
performance have an almost linear relationship. Since these models tend to have thousands
(sometimes millions) of parameters, the size of the data required becomes quickly prohibitive.
This is where transfer learning plays a central role.

Broadly defined, transfer learning describes a machine learning approach for augmenting
the training of a learning task on a target population data set with a learning algorithm that
has already been trained on a closely related data set from a source population, particularly
for scenarios where the target and source populations are not identical; see Weiss, Khosh-
goftaar and Wang (2016) for a recent survey on transfer learning. By developing effective
transfer learning strategies, it is possible to reduce the computational burden and the need for
large training data sets for training DNN models in applications where complex DNNs have
already been trained for similar data sets. For example, Raghu et al. (2019) and Ahishakiye
et al. (2021) investigated the use of a pretrained DNN on ImageNet (Deng et al. (2009)) to
improve the accuracy in medical imaging tasks where labeled data is usually scarce. Although
the potential benefits for transfer learning are significant, there are no generally accepted pro-
cedures for how to construct or evaluate a transfer-learning strategy, and this is especially true
from the Bayesian perspective. Dube et al. (2020) provides a review of the current approaches
to address a variety of important questions of concern for developing transfer-learning meth-
ods. For instance, what aspects of the source tasks can be leveraged to improve performance
on the target task? In the case of DNN source models, this commonly boils down to isolating
the layers that are task agnostic versus those that are task dependent.

1.1. Data and motivation. Motivated by the predictive materials science application of
estimating the band gap of a material based on its structural properties, we propose a prin-
cipled statistical approach to transfer learning within a Bayesian framework. In materials
science, the band gap governs desirable properties of candidate materials. The conductivity
of a solid is closely related to the band gap size. For example, materials with large band gaps
are generally insulators, while materials with low band gaps are semiconductors (Van de
Walle (2012)). Band gap size (measured in electronvolts, eV) is typically computed using
different quantum mechanics methods like the DFT. DFT calculation can be expensive for
large molecules and crystals. This, combined with the large possible number of materials,
has driven the need for fast screening methods. According to Olsthoorn et al. (2019), there
has been a growing interest in the development of accurate machine learning models for ma-
terial sciences and quantum systems. For small organic molecules, Olsthoorn et al. (2019)
reported that DNN models have reached chemical accuracy. For large molecular crystals,
however, the task of band gap prediction seems to be much harder. In addition, DFT calcu-
lations are more expensive to perform on molecular crystals. For example, Ma et al. (2021)
found that the algorithmic complexity of DFT is cubic in the number of particles for a given
molecule; hence, it is easier to collect and compute band gap values for molecules than it is
for molecular crystals. Given the difficulty of band gap calculation for molecular crystals, we
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propose to use transfer-learning methods to borrow information from molecules (source) to
molecular crystals (target) to improve prediction. The target data considered here will consist
of 50,000 molecular crystals and their band gap values computed using DFT. This data set
was provided by the Material Science Research Group at Carnegie Mellon University and
required a sustained effort over several years to produce. The source data will be the OE62
data set (Stuke et al. (2019)), which consists of 62,000 molecules and their band gap values.
The molecules in the source data were all extracted from organic crystals, and the band gap
values were also computed using DFT.

1.2. Literature review. Bayesian neural networks have attracted considerable attention in
recent years as a result of computational advances (e.g., Wilson (2020)). One of the earliest
works on Bayesian transfer learning in DNNs was Wohlert et al. (2018), where a single
source task is considered and a DNN with feed forward layers is trained using mean field
variational Bayes (VB; Zhang et al. (2019)). The approximate posterior learned on the source
task is used as a prior on the parameters for the target task. Wohlert et al. (2018) did not,
however, address the problem of freezing or training the transferred layers and surprisingly
gave worse performance than training using only the target data. Chandra and Kapoor (2020)
introduced a new method for Bayesian multisource transfer learning where they proposed
a new Markov chain Monte Carlo (MCMC) sampling scheme with parameter proposals for
the target task based on proposals for all the source tasks. At first, all source task parameters
are sampled, and then a single source for transfer of knowledge is used for the proposals for
the target task. This method requires storing all source tasks data in memory together with
the target task and does not fall under the two-stage inductive transfer-learning framework
considered in our paper. Bueno et al. (2019) used Bayesian transfer learning for volcano-
seismic prediction and uncertainty quantification using variational inference. Yang, Jiao and
Sun (2020) focused on Bayesian hyperparameter optimization for transfer learning. Zhou
et al. (2020) proposed a new form of regularization that can be viewed as a Gaussian prior
on the network weights where the Fisher information from the source task is used as the
precision matrix. More generally, Bayesian transfer learning for models other than DNNs has
been considered by other articles in the literature, most commonly attributable to the fact that
it is natural to borrow strength across data sets via prior distributions (e.g., Karbalayghareh,
Qian and Dougherty (2018)).

The Bayesian transfer-learning methodology that we develop sequentially trains a DNN on
a target data set by first specifying a prior distribution concentrated on parameter estimates
for the DNN trained from a source data set. While this approach is sensible, the primary
challenge is that constructing prior densities from pretrained DNN layers is not trivial because
individual parameters are not identifiable nor do they have inherent meaning. Accordingly,
to solve this issue we extend the fundamental notion of penalized complexity priors (PCPs)
from Simpson et al. (2017) to the deep-learning setting and specify our transfer-learning
prior distribution in terms of the Kullback–Leibler divergence between the source and target
model. This prior is constructed with the intuition that the predictive model is likely shared
(to some extent) across tasks but is flexible enough to disregard the source task if appropriate.

The target data set in our materials science application is small, and so we implement a
fully Bayesian analysis with computations via MCMC sampling strategies. However, since
the source data set is large, a fully Bayesian analysis is prohibitive, and so we analyze the
source data using both optimization and variational-inference (VI; Blundell et al. (2015))
methods. Both methods provide point estimates for each parameter, but VI also provides (ap-
proximate) uncertainty quantification. Therefore, in addition to applying to cases where data
sets from both the target and the source are available, our proposed method can be applied
using source data DNNs trained by other users, such as ImageNet (Deng et al. (2009)). In our
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exposition we develop our transfer-learning methods using the optimization-based source
model and the VI-based source model in parallel, and we show that both provide improve-
ments over traditional transfer-learning methods for both synthetic and real data.

The remainder of the paper proceeds as follows. Section 2 reviews background material
on DNNs and transfer learning. Section 3 introduces the proposed PCP priors for transfer
learning in DNNs. The proposed methods are then evaluated using simulated and real data in
Sections 4 and 5, respectively. Section 6 concludes. The code for reproducing our empirical
results is available at https://github.ncsu.edu/mabba/Pybayes.git.

2. Background material.

2.1. Deep-learning model. We begin by briefly reviewing the DNN model; for a more
comprehesive review, see Goodfellow, Bengio and Courville (2016). In general, DNNs are
comprised of successive layers, starting with an input layer, followed by one or more hidden
layers, and finally an output layer. Each layer contains a number of nodes that are connected
to the next layer through weights that control the impact of a given layer on the next. For con-
creteness we describe the Bayesian transfer-learning model in the simple case of a continuous
response and fully-connected feed forward neural network. However, the ideas proposed in
this paper translate to other structures, including recurrent (Medsker and Jain (2001)) and
convolutional (LeCun, Bengio et al. (1995)) networks (see Section 6 for further discussion).

A dense feed forward layer is a function l : Rd −→ Rk characterized by a weight matrix
W ∈ Rk×d , a bias vector b ∈ Rk , and a real-valued activation function a applied element-
wise to a vector argument. For x ∈ Rd , the dense layer applies an affine transformation to x
followed by the activation function, l(x) = a(Wx + b). A DNN with L hidden layers first
applies an input layer, typically l0(x) = x, then L − 1 hidden layers, and one output layer;
each layer is assigned unique weights, biases, and (potentially) activation functions; that is,
li(x) = ai(Wix + bi) for layer i ∈ {1, . . . ,L}. The composition of these L layers defines a
function f from the input space X to the output space Y ,

f (·; θ) : X −→ Y,

f (x; θ) = lL
(
lL−1

(· · · (l1(x)))),(1)

where θ := {θ1, . . . , θL} and θ i := {bi,Wi} are the parameters for layer i. For a regression
task, we consider f (x; θ) to be the mean response given x, whereas for a classification task,
f (x; θ) represents a vector of probabilities.

2.2. Transfer learning. Before discussing transfer learning for DNNs, we review general
definitions and concepts of transfer learning. We adopt notation from Pan and Yang (2009)
and Weiss, Khoshgoftaar and Wang (2016) whose early work has been widely adopted in the
literature. A domain is composed of two parts, a feature space X and a sampling distribution
p(X), where X denotes a set of instances X = {xi |xi ∈ X , i = 1, . . . , n}. Accordingly, D =
{X ,p}. Next, a task (e.g., classification or prediction) consists of a label space Y and a
decision function f ; that is, T = {Y, f }.

Transfer learning considers two domains: the source and the target. The main objective
is to perform the target task in the target domain, and the analysis are supplemented by the
related data from the source task (or multiple source tasks, e.g., Maurer, Pontil and Romera-
Paredes (2016)). For a source domain and task, denoted DS and TS , respectively, an observed
data set is the collection {(xi , yi)|xi ∈ XS, yi ∈ YS,1 ≤ i ≤ nS}, and fS is understood as a
conditional distribution or decision function for the instances yi , given xi for i ∈ {1, . . . , nS}.
Similarly, define DT , TT , {(xi , yi)|xi ∈ XT , yi ∈ YT ,1 ≤ i ≤ nT } as the domain, task, and
data for the target domain. DNNs typically require inductive transfer learning where the

https://github.ncsu.edu/mabba/Pybayes.git
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feature space is the same across tasks (Pan and Yang (2009)), i.e., XS = XT . Therefore, we
will drop the subscript on the feature space and simply use X . Note that this does not imply
that the conditional decision functions or the sampling distributions of the features are the
same for the source and target.

2.3. Transfer learning with DNN architectures. As discussed in Section 2.1, DNNs are
composed of many layers, each performing a transformation of the data. These transforma-
tions can be viewed as learned representations. It has been argued that different layers may
learn different concepts relating to the task (Dube et al. (2020)). Specifically, there is evi-
dence that early layers learn general representations of the data, while the the deeper layers
are more task specific and learn specialized representations. In Zeiler and Fergus (2013), the
authors studied the activation of early layers of DNNs in computer vision problems, where
convolutional layers are typically used, and noted that early convolutional layers extract high-
level features with the potential to generalize to different image domains. Using this logic,
it follows that transfer learning for DNNs amounts to determining how many early layers to
share across tasks and how many to assign as task specific.

As defined in (1), in DNNs the tasks are defined by the weight parameters for each
layer of the network. Assuming the same network architecture for both tasks, define θS =
{θS1, . . . , θSL} and θT = {θT 1, . . . , θT L} as the parameters for the source and target tasks,
respectively. A transfer-learning strategy with DNNs can be defined as the process of learn-
ing simultaneously the parameters θS to augment the learning of θT on the target task. The
transferred layers can either be held fixed on the target task (referred to as freezing) or fine-
tuned. Recently, Dube et al. (2020) investigated the empirical performances of freezing and
fine-tuning. In their work they focused on a computer vision task with pretrained layers from
different architectures that were fit to the Imagenet data set. The conclusion was that freezing
pretrained layers, although not optimal, was always better than random initialization. The
best performance was obtained when the learning rate for the pretrained layers was signifi-
cantly lower than the rate of the other layers in the model. They advocate for a factor of 10%
as a default choice.

3. PCPs for deep Bayesian transfer learning. For the target task, let θT ≡ θ =
{θ1, . . . , θL}, and denote vi as the number of parameters in θ i ; for the source task, denote
θ̂ = {θ̂1, . . . , θ̂L} as the estimated values for θ that are trained from the source data, and
when available, let �i be the covariance matrix for θ i (e.g., the posterior covariance, given
the source data). Our goal is to leverage these estimated parameters to construct an informa-
tive prior for the target task. If the tasks were the same, the natural solution would be to set
θ = θ̂ . On the other hand, if the tasks were not at all related, θ̂ does not encode any informa-
tion for the target task and would probably be worse than random initialization. In between
these two extreme cases lies the core of transfer learning, where there is a reason to assume
that tasks are related but we do not know to which degree.

The focus of our analysis is a judicious choice of the prior distribution for θ . Constructing
a prior distribution that uses θ̂ requires, first, the choice of a method for computing θ̂ from
the source data, and second, requires specification of the prior distribution for θ , given θ̂ .
As described in the next subsection, we use the PCP of Simpson et al. (2017) for the prior
distribution of θ , given θ̂ . The remainder of this section provides an overview the PCP idea
of Simpson et al. (2017) and then describes two methods we propose for constructing θ̂ . The
PCP is derived for both methods of constructing θ̂ .
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3.1. Penalized complexity priors. In the framework of Simpson et al. (2017), the problem
of prior choice is considered from a model complexity perspective. The prior on the parameter
of interest θ is controlled by a flexibility parameter τ . The base (or simplest) model for θ ,
which we will denote by p0(θ), corresponds to the case where τ = 0, and for larger values of
τ , the prior deviates from the base model. Following Occam’s razor, simple models should
be preferred until there is evidence for more complex ones; in other words, the hyperprior on
τ should favor the base model. PCPs, as defined in Simpson et al. (2017), give a principled
way of choosing a prior on τ that controls the deviation from the base model by penalizing a
scaled version of the Kullback–Liebler divergence from p0(θ) to p(θ |τ),

(2) dKL(p||p0) =
√

2KL(p||p0) =
(

2
∫
θ
p(θ |τ) log

(
p(θ |τ)

p0(θ)

)
dθ

)1/2
.

From (2) it is clear that dKL(p||p0) is a function of τ . That being so, let

h(τ) = dKL
(
p(θ |τ)||p0(θ)

)
,

and notice that h(τ) = 0 if and only if τ = 0. Furthermore, if h(·) is strictly increasing, penal-
ising h(τ) for large values induces a prior that penalizes large values of τ and, consequently,
puts more mass close to the base model. Simpson et al. (2017) recommend using an exponen-
tial distribution, h(τ) ∼ Exp(λ) to ensure a mode at τ = 0 and a constant rate of penalization
for larger τ . Let

p(θ |τ ) =
L∏

i=1

N
(
θ i; θ̂ i , g(τi)�i

)
,

where N is the multivariate Gaussian density function, g is an increasing function, the flexi-
bility parameter τi controls the deviation from the base model in layer i, and τ = (τ1, . . . , τL).
The case τ = 0 is used to define the base model. This layerwise specification reflects the fact
that some layers can be more transferable than others and hence require more penalization.

If we marginalize over τ , the prior model becomes a scale mixture of Gaussian distribu-
tions, where the mixing distribution will be the prior on τ . This latter distribution will be
implicitly defined by placing an exponential distribution on h(τ ) = dKL(p(θT |τ )||p0(θT )).
When L > 1, the implicit prior on τ is not identifiable since the mapping h :RL+ −→ R+ can-
not be bijective and hence is not invertible. To circumvent this issue, Simpson et al. (2017)
extend the PCP prior to a multivariate parameter τ by having the prior on τ uniform on each
level set of h(·). Instead, we opt for the simpler approach of constraining τ to the (L − 1)-
simplex given by any weighted combination of its elements. This is equivalent to τ = τ̃c,
where c ∼ Dirichlet(1L) and τ̃ ∈ R+. In this formulation τ̃ becomes a global flexibility pa-
rameter, and the weights ci control how much deviation each layer is allowed since τi = τ̃ ci .
Thus, given the vector of weights c, we have a one-to-one mapping hc(τ̃ ) through which we
have an explicit penalising prior on the global parameter τ̃ .

3.2. PCP for the VI case. If the source data are analyzed using VB methods, then θ̂ i is
an approximate posterior mean and �i is an approximate vi × vi posterior covariance matrix.
Because standard VB methods approximate the posterior as independent across parameters,
�i is a diagonal matrix for each i. We incorporate this information in the prior by setting
g(τ) = 1 + τ so that the base model with τ = 0 uses the posterior of the source data directly
as the prior for the target data, which would be optimal Bayesian learning if the two tasks
are the same. If τi > 0, then the prior variance increases to reflect uncertainty about the
relationship between source and target tasks.
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FIG. 1. The form of the PCP distribution on τ̃ with λ = 1, L = 3, ci = 1/L, v1 = v2 = 16, and v3 = 1.

Under this prior distribution, the KL divergence is

KL
(
p(θ |τ̃ , c)||p0(θ)

) =1

2

(
L∑

i=1

vici τ̃ − vi log(1 + ci τ̃ )

)
.

So if d = √
2KL(p(θ |τ̃ , c)||p0(θ)) ∼ Exp(λ), the one-to-one mapping between d and τ̃ is

(3) d =
√√√√ L∑

i=1

viφ(ci τ̃ ),

where φ(x) = x − log(1 + x). Furthermore, φ is continuously differentiable and strictly in-
creasing; hence, given c, we have a unique prior on τ̃ corresponding to the desired prior on
the KL divergence from the base model. The induced prior is

p(τ̃ |c) =p
(
hc(τ̃ )

)∣∣∣∣dhc(τ̃ )

dτ̃

∣∣∣∣ = λe−λhc(τ̃ )

2(
∑L

i=1 viφ(ci τ̃ ))1/2

(
L∑

i=1

vi

c2
i τ̃

1 + ci τ̃

)
,(4)

with hc(τ̃ )2 = ∑L
i=1 viφ(ci τ̃ ). Equation (4), coupled with the Dirichlet prior on the weight c,

completely specifies a prior distribution on the vector of scales τ . Using numerical inversion
of the mapping in (3), sampling from this prior is straightforward.

It can be shown that the induced prior on the global flexibility parameter in (4) has a mode
at zero with a strictly decreasing density, as τ̃ increases. Also, the tail of the prior behaves
like a modified Weibull distribution (Almalki and Nadarajah (2014)) with rate λ

∑
vici and

shape 0.5. Figure 1 plots the density when λ = 1.

3.3. PCP for the point estimate case. Assume that a point estimate θ̂ is derived from the
source data but no measure of uncertainty � is provided. In this case the source data does
not define a base distribution for θ , and thus we cannot compute the KL divergence between
base and full models for θ without further assumptions. Since DNNs are primarily used for
prediction, we place a prior on the KL divergence between the predictive model under the
source and target models. Let f (x|θ) denote the target DNN output for a given input x and
parameter values (θ). Let the regression model likelihood be p(y) ∼ Normal(f (x|θ), σ 2) and
θ i ∼ Normal(θ̂ i , τiI), which induces a prior distribution on the function f . Unfortunately, for
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the DNN model it is not available in analytical form. To overcome this, we approximate the
DNN output using a first-order Taylor approximation around θ̂

(5) f (x|θ) ≈ f (x|θ̂) + (θ − θ̂)T∇
θ̂
f (x|θ̂).

For small values of τ̃ (i.e., the most relevant values for the prior, assuming the target and
source are similar), a first-order approximation is arguably tight enough. Furthermore, if the
activation functions used in the model are piecewise linear, like the widely used ReLU func-
tion (Agarap (2018)), the output function f (x|θ) will also be piecewise linear, and we cannot
go beyond a first-order Taylor expansion.

Based on the approximation, for the base model with τ = 0, we get the prior distribution

p0(y) ∼ Normal
(
f (x|θ̂ , ), σ 2)

,

and for the flexible model, the prior on f (y|τ̃ , c) is

p(y|τ̃ , c)
.≈ Normal

(
f (x|θ̂), σ 2 + τ̃cTα(x)

)
,

where α(x) = (‖∇
θ̂ i

f (x|θ̂ , )‖2)1≤i≤L. Now that we have two normal models, an analytic
expression for the KL distance is

KL
(
p(y|τ̃ , c)||p0

) =1

2
φ

[
τ̃ α̃c(x)

]
where α̃c(x) = cTα(x)

σ 2 .(6)

In equation (6) α̃(x) depends on the gradient of f (x|θ̂) for a given input point x. Assuming
that the inputs are identically distributed and we have N target data points, the marginal KL
divergence can be approximated by

KL
(
p||p0

) ≈ 1

2N

N∑
i=1

φ
[
τ̃ α̃c(xi )

]
.(7)

Using (7), we have a one-to-one mapping between d = √
2KL(p||p0) and the global flexibil-

ity parameter τ̃ . Hence, an exponential distribution on d induces a prior on τ̃ , which can be
obtained with the same simple change of variables as in (4). Let dc(τ̃ ) = ∑N

i=1 φ[τ̃ α̃c(xi )]/N .
Then

p(τ̃ |c) =p
(
dc(τ̃ )

)∣∣∣∣dc(τ̃ )

dτ̃

∣∣∣∣ = λe−λdc(τ̃ )

2( 1
N

∑N
i=1 φ[τ̃ α̃c(xi )])1/2

(
1

N

N∑
i=1

α̃c(xi )
2τ̃

1 + α̃c(xi )τ̃

)
.(8)

The form of the prior in (8) is similar to (4): in both cases the prior induced on τ̃ has mode at
zero, is a strictly decreasing density as τ̃ increases, and has the same tail behavior.

We evaluate the approximation used in (5) to verify that the derived prior on τ will result
in an approximately exponential distribution on the KL divergence between the two models.
We assume L = 3 layers with {64,32,1} nodes, respectively. The source-data estimates θ̂ i are
generated following the Glorot initialization scheme (Glorot and Bengio (2010)). Since we
cannot compute the KL divergence analytically, the distribution of KL divergence is approx-
imated with Monte Carlo sampling. The approximation is evaluated for 50 different target
data sets generated, as described in Section 4. For each of those data sets, we compute the
gradients in (5) and first draw c and τ̃ from their priors for different values of the rate pa-
rameter λ, then sample θ i |τ ∼ Normal(θ̂ i , τiI). We then sample 20,000 replications of the
model output f (x; θ) and approximate the KL divergence from the base model f (x; θ̂) for
each replication to get the empirical distribution of the KL divergence. Figure 2 plots the
cumulative hazard function of the scaled KL divergence d , which should be linear with slope
λ if the distribution is Exponential(λ). The approximation holds near the origin for all λ and
is tighter for the entire distribution for larger values of λ.
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FIG. 2. True hazard function of the scaled KL divergence (blue), and cumulative hazard for different generated
data sets (gray). The dashed lines represent the median and mean of the empirical cumulative hazard.

4. Simulation study. We perform the following simulation experiments to evaluate the
predictive performance of the proposed Bayesian transfer-learning methods. The data are

generated as follows. For observation i the covariates are generated as xi1
iid∼ Normal(0,1)

and xij |xij−1 ∼ Normal(ρxij−1,1 − ρ2) for j ∈ {2, . . . , p}. The source data are generated
for constants, c, σ , and k1, as

Yi ∼ Normal
{
cμ1(xi ), σ

2}
with μ1(xi ) = cos

(
2

k1∑
j=1

xij /k1

)
,

and the target data are generated, for constant k2, as

Yi ∼ Normal
{
cμ2(xi ), σ

2}
with μ2(xi ) = cos

(
2

k2∑
j=1

xij /k2

)
.

We set p = 30 covariates, so xi ∈ Rp , ρ = 0.5, σ = 1, k1 = 15, and k2 = k1 + k with k ∈
{0,5,10,15}, and we generate 1000 synthetic source training observations with a varying
number of target training observations n ∈ {30,50,70}. The constant c is set so that the
signal-to-noise ratio is 4:1 for the target data (i.e., so the variance of cμ2(xi ) is 4). If k = 0,
then the two data-generating processes are identical, and if k is large, they are dissimilar.
For each scenario we simulate 500 data sets and compare predictions on a test set of size
ntest = 200.

Both the source and target data are analyzed using the fully-connected model with four
hidden layers having widths 24, 16, 12, and 8, respectively. The source data are fit using
the optimization scheme provided in Section 2 of the Supplementary Material (Abba et al.
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(2023)); this produces estimates θ̂ and their variances in the case of VI. We then fit several
models to each target data set. The first group are non-Bayesian optimization-based transfer-
learning “TL” methods. We consider two methods that fix some layers using the source fit
and tune the remaining layers using the target data. The first model “TL1” shares no layers
and is fit to the target data with no connection to the source data. The second model “TL2”
proceeds in two stages; first, the output layer only is trained on the target data while the others
are frozen, and next, in the second stage all layers are fine tuned.

The second group of methods are Bayesian. The first Bayesian model “BNN” ignores
the source data by setting the prior θ i |τ ∼ Normal(0,τ iI) and τi ∼ InvGamma(2,1) so that
the marginal standard deviation is 1. Although there is no consensus on the default prior
choice in Bayesian deep learning, priors with zero mean and unit standard deviation are
the most common (Fortuin (2022)). The second method, “BTL-PCP-PE,” fits the Bayesian
transfer-learning model with the priors centered at point estimates θ̂ alone, as described in
Section 3.3. The third model, “Bayes-PCP-VI,” uses the PCP prior based on VI, as described
in Section 3.2. For both PCP methods, we assume c ∼ Dirichlet(1L) and set λ so that the
correlation between f (xi; θ) and Yi is 0.5. All Bayesian method are fit using MCMC, as
described in Section 3 of the Supplementary Material (Abba et al. (2023)).

The results are compared using MSE, and for the Bayesian methods, the coverage and
width of 95% prediction intervals for μ2(xi ) over a target data test set of 200 observations is
provided. The results are reported in Table 1. BLT-PCP-PE outperforms TL1 and TL2 in all
cases, perhaps due to the added stability of prior distributions. When the source and target are
similar (i.e., k ∈ {0,5}), all the transfer-learning methods work well, especially if the number
of training samples is small. When the discrepancy between the source and target domain is
high, however, the transfer-learning methods do not improve the performance of the models.
In fact, the point estimate method “TL-1” outperforms “TL-2,” and the Bayesian methods are
comparable. An interesting result is the poor performance of the PCP prior for the VI case
compared to the other Bayesian methods. It seems that building a PCP prior, based on the
mean-field VI posterior approximation, does not encode enough information for the model
to learn from small data sets. However, while VI does not perform as well as MCMC, it is
much faster than MCMC and still outperforms TL1 and TL2 in most cases and is thus a
viable option for large data sets. The average computational time for each method is reprted
in Table 2. Furthermore, when k is large, “BNN” outperforms all the other methods. This is
expected since the prior distribution in the PCP has a sharp mode at zero which results in
a strong penalizing effect. Thus, when the data sets are dissimilar and the number of target
training samples is small, BNN performs better. Perhaps choosing a different distribution
for the prior, with heavier tails, on the scaled Kullback–Leibler divergence could reduce this
dependence on the source in such cases. That being said, this could also lead to a less sharp
mode at the origin and hence less concentration around the true solution when the data sets
are similar.

To mimic the the real data analysis in Section 5, we conduct a second set of simulations
with the same generative model as above but with p = 1000 covariates, ρ = 0.5, σ = 0.32,
and the constant c = 1 to approximate the 3:1 signal-to-noise in the data analysis. The number
of active covariates is determined by k1 = 900 and k2 = k1 + k with k ∈ {0,100}; if k = 0,
then the two data-generating processes are identical, and if k is large, they are similar but
not identical. We generate 10,000 synthetic source training observations and n = 500 target
training observations. For each scenario we simulate 100 data sets and compare predictions
on a test set of size ntest = 10,000. For these larger data sets, we also consider the VI approach
of Zhou et al. (2020). The results in Table 3 resemble those in Table 1; that is, the BTL-PCP-
PE approach has the smallest MSE and coverage near the nominal level.
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TABLE 1
Simulation study results: The non-Bayesian methods (“TL1-TL2”) use transfer learning by fixing different
numbers of layers of the network using source data, the Bayesian methods are the Bayesian model without

transfer learning (“BNN”) or full Bayesian transfer-learning model with point estimate (“BTL-PCP-PE”) and
VI (“BTL-PCP-VI”) in the first stage. Table (a) gives the mean square prediction error (Monte-Carlo standard

errors) over the 500 replicated data sets by the difference between the number of active covariates over tasks, k,
and size of the target data set, n. Table (b) gives the average coverage (width) for the Bayesian 95% prediction

intervals

(a) Mean squared prediction error (Monte Carlo standard errors)
k n TL1 TL2 BNN BTL-PCP-PE BTL-PCP-VI

0 30 1.98 (0.06) 1.36 (0.03) 1.87 (0.06) 1.04 (0.03) 1.48 (0.05)
0 50 1.82 (0.09) 1.16 (0.03) 1.60 (0.03) 1.01 (0.04) 1.14 (0.09)
0 70 1.59 (0.08) 1.02 (0.04) 1.06 (0.03) 0.70 (0.02) 0.94 (0.05)
5 30 2.10 (0.05) 1.49 (0.09) 1.81 (0.05) 1.09 (0.02) 1.47 (0.05)
5 50 1.82 (0.05) 1.26 (0.04) 1.64 (0.03) 1.07 (0.04) 1.20 (0.03)
5 70 1.65 (0.07) 1.02 (0.05) 1.01 (0.04) 0.86 (0.02) 0.93 (0.01)

10 30 1.89 (0.10) 2.11 (0.05) 1.85 (0.09) 1.37 (0.03) 1.69 (0.03)
10 50 1.84 (0.06) 1.79 (0.05) 1.61 (0.08) 1.49 (0.06) 1.83 (0.07)
10 70 1.74 (0.10) 1.83 (0.04) 1.05 (0.04) 1.04 (0.05) 1.12 (0.06)
15 30 2.18 (0.09) 2.61 (0.03) 1.89 (0.04) 1.94 (0.02) 2.21 (0.04)
15 50 1.86 (0.07) 2.12 (0.05) 1.46 (0.08) 1.49 (0.07) 1.85 (0.08)
15 70 1.69 (0.05) 1.81 (0.06) 1.19 (0.03) 1.32 (0.02) 1.70 (0.03)

(b) Average coverage (Monte Carlo standard errors, average width) of 95% prediction intervals
k n BNN BTL-PCP-PE BTL-PCP-VI

0 30 0.86 (0.0089, 0.71) 0.94 (0.0076, 0.65) 0.78 (0.0118, 0.52)
0 50 0.88 (0.0081, 0.69) 0.95 (0.0057, 0.51) 0.82 (0.0095, 0.49)
0 70 0.93 (0.0072, 0.55) 0.98 (0.0044, 0.41) 0.90 (0.0099, 0.38)
5 30 0.86 (0.0096, 0.73) 0.91 (0.0099, 0.68) 0.76 (0.0102, 0.51)
5 50 0.90 (0.0083, 0.70) 0.95 (0.0064, 0.49) 0.83 (0.0094, 0.50)
5 70 0.92 (0.0064, 0.52) 0.97 (0.0056, 0.39) 0.90 (0.0087, 0.40)

10 30 0.85 (0.0099, 0.70) 0.90 (0.0092, 0.67) 0.73 (0.0134, 0.56)
10 50 0.91 (0.0090, 0.61) 0.94 (0.0065, 0.54) 0.89 (0.0106, 0.53)
10 70 0.95 (0.0081, 0.47) 0.97 (0.0057, 0.45) 0.91 (0.0096, 0.43)
15 30 0.82 (0.0097, 0.72) 0.78 (0.0096, 0.56) 0.65 (0.0127, 0.57)
15 50 0.91 (0.0082, 0.64) 0.90 (0.0091, 0.48) 0.80 (0.0119, 0.51)
15 70 0.95 (0.0068, 0.50) 0.94 (0.0074, 0.46) 0.88 (0.0081, 0.41)

5. Real data analysis. We apply the proposed transfer-learning methods for band gap
prediction of the molecular crystal target data set. For training we consider only subsets of
the data with cardinality 1000, 2500, or 5000 samples to represent a typical data set size, a
validation set of 10,000 samples, and finally a testing set of 20,000 samples. Since we are
dealing with molecules, we first need to preprocess the data and compute descriptors x that

TABLE 2
Approximate computational times of the methods used in the simulation study for data sets of size 1000. The

Bayesian methods take approximately six times more time to train compared to classical methods

Computational time per method
TL1 TL2 BNN BTL-PCP-PE BTL-PCP-VI

Time in minutes 15.12 15.09 98.04 103.41 21.05
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TABLE 3
Simulation study results: The non-Bayesian methods (“TL1-TL2”) use transfer learning by fixing different
numbers of layers of the network using source data, the Bayesian methods are the Bayesian model without

transfer learning (“BNN”), full Bayesian transfer-learning model with point estimate (“BTL-PCP-PE”) and VI
(“BTL-PCP-VI”) in the first stage, and Bayesian transfer learning prior from Zhou et al. (2020) “BTL-VI.”

Table (a) gives the mean square prediction error by the difference between the number of active covariates over
tasks, k, and size of the target data set, n. Table (b) gives the average coverage (width) for the Bayesian 95%

prediction intervals

(a) Mean squared prediction error (standard errors)
k n TL1 TL2 BNN BTL-PCP-PE BTL-PCP-VI BTL-VI

0 500 0.68 (0.12) 0.65 (0.08) 0.76 (0.11) 0.44 (0.08) 0.68 (0.09) 0.70 (0.15)
100 500 0.70 (0.08) 0.72 (0.09) 0.72 (0.13) 0.47 (0.11) 0.71 (0.12) 0.73 (0.13)

(b) Average coverage (average width) of 95% prediction intervals
k n BNN BTL-PCP-PE BTL-PCP-VI BTL-VI

0 500 0.90 (0.41) 0.94 (0.35) 0.79 (0.22) 0.82 (0.19)
100 500 0.89 (0.35) 0.92 (0.38) 0.73 (0.18) 0.80 (0.24)

can be fed into the DNN. We use the MBTR descriptor method (Huo and Rupp (2018)) to
compute p = 1260 descriptors for every data point in both the source and target data sets.
These descriptors are functions of the structure of the material, for example, the types and
configuration of its atoms. The architecture of the model will have two hidden layers with
128 and 64 neurons, respectively. First, the model is trained on the source data with 40,000
samples for training set and 10,000 for the validation. The parameters of the best performing
model in terms of mean squared error (MSE) are saved and transferred to the target task as θ̂ .

On the target task, we consider four different transfer-learning methods. The non-Bayesian
methods differ in the treatment of the hidden layers of the model; we can either freeze the
hidden layers and treat them as feature extractors and only fit the output layer to the target task
“TL-freeze,” or we can fine-tune the hidden layers along with the output layer on the target
task “TL-fine-tune.” For both Bayesian methods, the priors are θ i |τ ∼ Normal(θ̂ i , τiI). The
two methods differ in the priors on τ = (τ1, τ2, τ3); we compare the PCP with point estimate
approach “BTL-PCP-PE” from Section 3.3 with c ∼ Dirichlet(1,1,1) to the uninformative
prior approach with τi ∼ InvGamma(2,1) “BTL-BNN.” Since the point estimate approach
outperformed the VI approach in the simulation study, we consider only the point estimate
approach in this data analysis. To verify that transfer learning provides benefit over using
only the target data, we compare to the state-of-the-art DNN model used in materials science
where DNNs have been developed as end-to-end models in the sense that they take as input
the molecular representation and learn their own embedding. Two of the leading methods are
SHNET (Schütt et al. (2017)) and MEGNET (Chen et al. (2019)).

The target data are split into groups of size 5000, 10,000, and 20,000 for training so that
each group contains materials of different classes and the band gap distribution stays roughly
the same. We train the model for samples of size n ∈ {1000,2500,5000}. Figure 3 plots the
MSE on a test set of size 20,000 for each method and training set, and Figure 4 plots the
observed and predicted values for the BTL-PCP-PE method. As expected, MSE decreases
for each method as the size training set increases, and in all cases the BTL-PCP-PE method
gives the smallest MSE.

With a fully Bayesian treatment of all the parameters, we can look at the summary statistics
of c, the parameter that controls which layers contain the useful information from the source
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FIG. 3. Test set mean squared error (MSE; eV2) for different transfer-learning methods applied to band-gap
prediction. The methods are plotted against the size of the target data training set. Each point represents the MSE
for one fold in the cross validation. For comparison, the sample variance of the response is 1.12 eV2.

data and which are irrelevant. For training set size 5000, the posterior means (standard devi-
ation) for c1, c2, and c3 are 0.05 (0.02), 0.05 (0.03), and 0.90 (0.15), respectively. Therefore,
the first two layers are shrunk toward the source data fits while the output layer varies from
the source-model fit. The Bayesian methods also provide prediction intervals. The empirical
coverage and average width of 95% prediction intervals for the test set are, respectively, 0.91
and 1.24 for BTL-BNN and 0.94 and 1.16 for BTL-PCP-PE.

These results are competitive with state-of-the-art methods in the materials community.
For a training set of size 5000 (the same 5000 as in Figure 3), the MSE for SHNET and
MEGNET are 0.48 eV2 and 1.01 eV2, respectively. In fact, using the same data except with a
much larger training set of 30,000 observations, the methods achieved MSE of 0.59 eV2 for
SHNET and 0.34 eV2 for MEGNET.

6. Conclusions. For molecular crystals the computational cost of band gap values can
be orders of magnitude higher in comparison to organic molecules. Recently, DNN models
reached chemical accuracy levels for band gap prediction on small organic molecules and can
now be reliably used as a fast screening method. However, these models often require large
data sets for training and can have unstable performance on small data sets. Using transfer

FIG. 4. Predicted vs. band-gap for the training (left) and test (right) sets for the BLT-PCP-PE methods with
n = 5000 training observations. The units of the plot are electronvolts.
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learning, we leverage the accuracy of neural networks models on organic molecules to build
a data efficient model with accurate predictions and calibrated uncertainty quantification for
molecular crystals band gap prediction. Our new transfer-learning methods provide regular-
ization by centering the prior distribution on estimates from an auxiliary source data set, that
is, organic molecules. We use the PCP framework to ensure that the prior concentrates around
the source model but is allowed to deviate if appropriate. We develop two methods for cases
where the source data analysis does and does not provide uncertainty measures for the pa-
rameter estimates. We show via simulation that the proposed methods reduce prediction error,
compared to standard transfer-learning methods, and unlike standard methods, the Bayesian
approach gives reasonable coverage for prediction intervals.

The accuracy of our method for large molecular crystals matches state-of-the-art models
while only requiring a sixth of the training data. The performance on both simulated and real
data sets indicate that the methods can be used to guide and optimize experimentation and
selection of materials with specific properties without the need for a large training sample,
hence reducing the cost associated with DFT calculations. The potential scope of the appli-
cation of the developed transfer-learning methods goes beyond material science and includes
areas of applied statistical learning where data labelling is costly and auxiliary source tasks
are available.

There are many areas of future work. We have developed our method in the simplest case of
a continuous response and feed forward network. The prior based on VI in Section 3.2 would
apply directly to other networks and response distributions, as the prior is only a function
of the approximate Gaussian posterior distribution from the source data analysis. Similarly,
the prior based on point estimates in Section 3.3 can be applied without modification to non-
Gaussian responses and richer architecture. Changing the network architecture would change
the form of the gradients in (5), but the method itself can be used without modification. The
method also applies for noncontinuous responses if we view f as a process that spans the
real line that is related to the response distribution. For example, for binary data, f in (5)
could be the logistic function of the success probability, which spans the real line, and thus
the proposed methods could be applied on this scale. It may also be possible to extend the
PCP prior from neural networks to other frameworks such as tree-based methods (e.g., Chen
and Guestrin (2016), Chipman, George and McCulloch (2010)).

Next, our method applies an informative prior on the overall variance parameter but a
uniform prior on the distribution of the variance across levels, c. If prior information about
the transferability of different layers is available, it could be incorporated in the prior for c.
For example, it may be reasonable to assume the prior mean of ci increases from the input to
the output layer. Lastly, another interesting area of future work is to compare the two-stage
analysis that sequentially analyzes the source then target data with a simultaneous analysis
of all data sources. Here we have assumed that building a hierarchical model for all data
sources is computationally prohibitive, but it would be interesting to compare the efficiency
of these two approaches when possible, especially when the source data set is small and thus
the parameter estimates are uncertain.
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SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/23-AOAS1759SUPPA; .pdf). The Appendix is divided into
three sections. The first section details the complete procedure to evaluate the approximation
in (5). The second section provides all the details of the optimization procedure for all the
non-Bayesian methods considered in the paper. Finally, the last section covers the details of
the MCMC details for the Bayesian ethods.

Codes for the simulation and real data analysis (DOI: 10.1214/23-AOAS1759SUPPB;
.zip). All the codes used for the simulation study and the real data analysis are provided in
one zip file.
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