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ABSTRACT
Predicting the response at an unobserved location is a fundamental problem in spatial statistics. Given
the difficulty in modeling spatial dependence, especially in nonstationary cases, model-based prediction
intervals are at risk of misspecification bias that can negatively affect their validity. Here we present a new
approach for model-free nonparametric spatial prediction based on the conformal prediction machinery.
Our key observation is that spatial data can be treated as exactly or approximately exchangeable in a
wide range of settings. In particular, under an infill asymptotic regime, we prove that the response values
are, in a certain sense, locally approximately exchangeable for a broad class of spatial processes, and we
develop a local spatial conformal prediction algorithm that yields valid prediction intervals without strong
model assumptions like stationarity. Numerical exampleswithboth real and simulateddata confirm that the
proposed conformal prediction intervals are valid and generally more efficient than existing model-based
procedures for large datasets across a range of nonstationary and non-Gaussian settings.
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1. Introduction

Providing valid predictions of the response at an unobserved
location is a fundamental problem in spatial statistics. For exam-
ple, epidemiologists may wish to extrapolate air pollution con-
centrations from a network of stationary monitors to the resi-
dential locations of the study participants. There are a number
of challenges one faces in carrying out valid prediction at a new
spatial location, but one of the most pressing is that existing
methods are model-based, so the reliability of the predictions
depends crucially on the soundness of the posited model. For
example, prediction intervals based on Kriging—see Cressie
(1992) and Section 2.1—often rely onnormality, and stationarity
is often assumed to facilitate estimating the spatial covariance
function required for Kriging. It is now common to perform
geostatistical analysis for massive datasets collected over a vast
and diverse spatial domain (Heaton et al. 2019). For complex
processes observed over a large domain, the normality and
stationarity assumptions can be questionable. Failing to account
for nonstationarity can affect prediction accuracy, but typically
has a larger effect on uncertainty quantification such as pre-
diction intervals (Fuglstad et al. 2015). While there are now
many methods available for dealing with nonstationary (Risser
see 2016, for a recent review) and non-Gaussianity (Gelfand,
Kottas, and MacEachern 2005; Duan, Guindani, and Gelfand
2007; Reich and Fuentes 2007; Rodriguez and Dunson 2011),
these typically involve heavy computations. This exacerbates the
already imposing computational challenges posed by massive
datasets. Further, fitting the entire stochastic process may be
unnecessary if only prediction intervals are desired. Nonpara-
metric machine-learning methods can be used for prediction
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(Kim, Kwon Lee, and Mu Lee 2016a,b; Lim et al. 2017; Tai,
Yang, and Liu 2017; Hengl et al. 2018; Franchi, Yao, and Kolb
2018; Wang, Guan, and Reich 2019; Li, Sun, and Reich 2020),
but these methods typically focus on uncertainty estimation. In
this article we propose a method with provably valid prediction
intervals—exact in some cases, asymptotically approximate in
others—for the response at a single location without requiring
specification of a statistical model, and hence not inheriting the
risk of model misspecification bias.

In recent years, the use of machine learning techniques in
statistics has become increasingly more common. While there
are numerous examples of this phenomenon, the one most
relevant here is conformal prediction. This method originated
in Vovk, Gammerman, and Shafer (2005) and the references
therein (Shafer and Vovk see, also, 2008), but has appeared
frequently in the recent statistics literature (Lei and Wasser-
man 2014; Lei et al. 2018; Guan 2019; Romano, Patterson, and
Candes 2019; Tibshirani et al. 2019). What makes this method
especially attractive is that it provides provably valid predic-
tion intervals without specification of a statistical model. More
precisely, the conformal prediction intervals achieve the nomi-
nal frequentist prediction coverage probability, uniformly over
all data distributions; see Section 2.2. The crucial assumption
behind the validity of conformal prediction is that the data are
exchangeable.

Whether it is reasonable to assume exchangeability in a
spatial application depends on how the data are sampled. On
the one hand, if the locations are randomly sampled in the
spatial domain, then exchangeability holds automatically; see
Lemma 1. In such cases, standard conformal prediction can be
used basically off the shelf. On the other hand, if the locations
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are fixed in the spatial domain, then exchangeability does not
hold in general. We show, however, that for a wide range of
spatial processes, the response variables at tightly concentrated
locations are approximately exchangeable; see Theorem 1.
Therefore, a version of the basic conformal prediction method
applied to these tightly concentrated observations ought to be
approximately valid.

Using this insight about the connection between exchange-
ability and the sampling design, we propose two related spa-
tial conformal prediction methods. The first, a so-called global
spatial conformal prediction (GSCP) method, described in Sec-
tion 3, is designed specifically for cases where the spatial loca-
tions are sampled at random. In particular, this global method
produces a prediction interval which is marginally valid, i.e.,
valid on average with respect to the distribution of the target
location at which prediction is desired; asymptotic efficiency of
this global method is also investigated. The second, a local spa-
tial conformal prediction (LSCP)method, described in Section 4,
is designed specifically for the casewhen the spatial locations are
fixed. Since our goal is to proceed without strong assumptions
about the spatial dependence structure, it is only possible to
establish approximate or local exchangeability. Therefore, the
proposed local spatial conformal prediction method can only
provide approximately valid predictions; see Theorem 2. But
our goal in the fixed-location case resembles the “conditional
validity” target in the conformal prediction literature (Barber
et al. 2019; Chernozukov, Wüthrich, and Zhu 2021) so, given
the impossibility theorems in the latter context, approximate
validity is all that can be expected.

For both the global and local formulations, our proposed
method is computationally feasible for large datasets andmodel-
free in the sense that its validity does not depend on a correctly-
specified model. In Sections 5 and 6, we show using real and
simulated data that the proposed methods outperform both
standard global Kriging and local approximateGaussian process
regression (Gramacy and Apley laGP; 2015) for nonstationary
and non-Gaussian data. In addition to be useful for spatial
applications, it is also an advancement in conformal prediction
to the case of dependent data, and establishes the conditions
on the spatial sampling design and data-generating mechanism
that ensure (approximate) validity of the conformal prediction
intervals.

The remainder of this article is organized as follows. Sec-
tion 2 reviews spatial and conformal prediction. Sections 3 and
4 introduce the proposed methods, which are examined using
simulations in Section 5 and a real data analysis in Section 6.
Additional numerical and theoretical results, along with all
proofs, are given in the Supplemental Materials.

2. Background

2.1. Spatial PredictionMethods

Let Yi ∈ R and Xi ∈ R
d, with d ≥ 1, be the observable

pairs at spatial location si ∈ D ⊆ R
2. Note that Xi can

include covariates that are deterministic functions of the spatial
location, such as elevation, genuinely stochastic covariates like
wind speed, or even nonspatial covariates such as the smoking
status of the resident at location. Write the data points as triples

Zi = (si,Xi,Yi), for i = 1, 2, . . .. We assume only a single
observation is made at each location and thus often adopt the
notation Yi = Y(si) and Xi = X(si).

Geostatistical analysis often assumes that the data follow a
Gaussian process model, Yi = X�

i β + θi + εi, for i = 1, . . . , n,
where β is the vector of regression coefficients, ε1, . . . , εn are
independent Normal(0, τ 2) errors, θi = θ(si), and θ is a
mean-zero Gaussian process with isotropic covariance function
C(θi, θj) = σ 2ρ(dij), a function of the distance dij between
locations si and sj. A common example is theMatérn correlation
function ρ(d;φ, κ) parameterized by correlation range φ

and smoothness parameter κ . Denote the spatial covariance
parameters as 
 = {σ 2, τ 2,φ, κ}. The main assumptions of
this model are that the data are Gaussian and the covariance
function is stationary and isotropic, that is, it is a function only
of the distance between spatial locations and is thus the same
across the spatial domain.

Consider data Zn+1 = (Z1, . . . ,Zn,Zn+1). In our applica-
tions,Zn will be observed and (sn+1,Xn+1)will be given, and the
goal is to predict the correspondingYn+1.However, the ordering
of the data is irrelevant so one can imagine different orderings
that correspond to data point i in the last position, where i =
1, . . . , n, n + 1. That is, imagine we have the observed data
zn+1
(i) = {z1, . . . , zn+1} \ {zi}, along with (si, xi) and parameter
estimates β̂ and 
̂; then the predictive distribution of Yi is nor-
mal with mean μ̂n+1,i(si, xi) and variance σ 2

n+1,i(si, xi), where
both the mean and variance depend on 
̂ and the configuration
of the spatial locations; see the Supplementary Material for the
specific expressions. The standardized residuals are

en+1,i = yi − μ̂n+1,i(si, xi)
σ̂n+1,i(si, xi)

, i = 1, . . . , n, n + 1, (1)

and the corresponding 100(1 − α)% prediction interval for Yi
is μ̂n+1,i(si, xi) ± q�

α σ̂n+1,i(si, xi), where q�
α is the upper α/2

quantile of a standard normal distribution.

2.2. Conformal Prediction

Here we take a step back and review conformal prediction for
nonspatial problems; for a detailed treatment, see Vovk, Gam-
merman, and Shafer (2005) and Shafer and Vovk (2008). Sup-
pose we have a data sequence Z1, . . . ,Zn,Zn+1, . . ., assumed to
be exchangeable with joint distribution P, that is, Z1,Z2,Z3, . . .
and Zξ(1),Zξ(2),Zξ(3), . . . have the same joint distribution for
any permutation ξ defined on the positive integers. This data
may be response-only, i.e., Zi = Yi, or may be response-
covariate pairs, i.e., Zi = (Xi,Yi); we will focus on the latter
more general case. No assumptions about P are made here,
beyond that it is exchangeable. We observe Zn = zn, and the
goal is to predictYn+1 at a new valueXn+1 of the covariate.More
specifically, we seek a procedure that returns, for any α ∈ (0, 1),
a prediction interval �α(Zn;Xn+1) that is valid in the sense that

Pn+1{�α(Zn;Xn+1) � Yn+1} ≥ 1 − α, for all (α, n, P), (2)

where Pn+1 is the distribution of (Z1, . . . ,Zn,Zn+1) under P.
That we require the inequality (2) to hold for all exchangeable
distributions P rules out the use of model-based procedures,
such as likelihood or Bayesian methods.
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The original conformal prediction method proceeds as fol-
lows. Define a nonconformity measure �(B, z), a function that
takes two arguments: the first is a “bag” B that consists of a finite
collection of data points; the second is a single data point z. Then
�(B, z)measures how closely z represents the data points in bag
B. For example, if π is a prediction rule and d is some measure
of distance, then we might take�(B, z) = d(πB, z), the distance
between z and the value πB returned by the prediction rule π

applied to B. The choice of � depends on the context, though
often there is a natural choice. Throughout this article we will
assume � is symmetric in its first argument, so that shuffling
the data in bag B does not change the value of �(B, z).

Given the nonconformity measure �, the next step is to
appropriately transform the data via�. Specifically, augment the
observed data zn = (z1, . . . , zn)with a provisional value zn+1 of
Zn+1 = (Xn+1,Yn+1); this zn+1 value is generic and free to vary.
Define

δi = �(zn+1
(i) , zi), i = 1, . . . , n, n + 1.

Note that δn+1 is special because it compares the actual observed
data with this provisional value of the unobserved future obser-
vation. Next, compute the plausibility (Cella and Martin 2022)
of zn+1 as a value for Zn+1 according to the formula

p(yn+1 | zn, xn+1) = 1
n + 1

n+1∑
i=1

1{δi ≥ δn+1}, (3)

where 1{A} denotes the indicator of event A. Note that this
process can be carried out for any provisional value zn+1, so the
result is actually a mapping ỹ �→ p(ỹ | zn, x̃), for a given x̃,
which we will refer to as the plausibility contour returned by the
conformal algorithm. This function can be plotted to visualize
the uncertainty about Yn+1 based on the given x̃, data zn, the
choice of nonconformity measure, etc. Moreover, a prediction
set �α(zn; x̃) can be obtained as

�α(zn; x̃) = {ỹ : p(ỹ | zn, x̃) > α}. (4)

3. Global Spatial Conformal Prediction

3.1. GSCP Algorithm

The first approach we consider is a direct application of the
original conformal algorithm to spatial prediction but with
spatial dependence encoded in the nonconformity measure.
In contrast to the local algorithm presented in Section 4, this
method equally weights the nonconformity across all spatial
locations in the plausibility contour evaluation. Therefore, we
refer to this as global spatial conformal prediction, or GSCP for
short.

From Section 2.1, recall that zi = (si, xi, yi) and zn+1 =
{z1, . . . , zn+1}; also, zn+1

(i) denotes zn+1 \ {zi}, the full dataset
with zi excluded. Now define the nonconformity measure for
the GSCP algorithm as

δi = �(zn+1
(i) , zi) =

∣∣∣yi − μ̂n+1,i(si, xi)
σ̂n+1,i(si, xi)

∣∣∣, i = 1, . . . , n + 1,

(5)
where μ̂n+1,i(si, xi) and σ̂n+1,i(si, xi) are, respectively, the mean
response and standard error estimates at spatial location si with

covariate xi based on data in zn+1
(i) . Then we define a plausibility

contour exactly like in Section 2.2, with obvious notational
changes. That is, for provisional values (sn+1, xn+1, yn+1) of
(Sn+1,Xn+1,Yn+1), we have

p(yn+1 | zn; sn+1, xn+1) = 1
n + 1

n∑
i=1

1{δi ≥ δn+1}. (6)

The corresponding 100(1 − α)% prediction interval for Yn+1,
denoted by �α(zn; sn+1, xn+1), is just an upper level set of the
plausibility contour, consisting of all those provisional yn+1
values with plausibility exceeding α, analogous to (4).

Any reasonable choice of (μ̂, σ̂ ) estimates can serve the
purpose here, including inverse distance weighting predictions
(Henley 2012), deep learning predictions (Franchi, Yao, and
Kolb 2018), Kriging predictions, etc. In our numerical results
presented below, we use the Kriging estimates as defined in Sec-
tion 2.1, so that δi is a standardized Kriging residual, |ei|, from
(1). Conformal prediction is invariant tomonotone transforma-
tions of its δi’s, and we found that similar results are obtained
with other related measures, such as unstandardized Kriging
residuals. A particular advantage of our recommended choice
of δi’s is that we can quickly compute the plausibility contour
and prediction interval by exploiting the inherent quadratic
structure of the Kriging-based nonconformity measure; see the
Supplementary Materials. Moreover, note that validity of the
GSCP-based prediction intervals does not require the Gaussian
model associated with the Kriging method be correctly speci-
fied, nor does it depend on our choice of the δi’s.

3.2. Theoretical Validity of GSCP

Given the importance of exchangeability to the validity of con-
formal prediction and the fact that the spatial dependence gen-
erally is incompatible with exchangeability, we might have some
concerns about the validity of GSCP. However, there are prac-
tically relevant cases in which exchangeability does hold, in
particular, when the spatial locations are sampled indepen-
dently and identically distributed (iid). The following elemen-
tary lemma explains this.

Lemma 1. If the spatial locations S1, S2, . . . are iid, then
Z1,Z2, . . ., with Zi = (Si,X(Si),Y(Si)), is an exchangeable
sequence.

Since randomly sampled spatial locations makes the data
exchangeable, a validity property for GSCP follows immediately
from the general theory in, for example, Shafer andVovk (2008).

Theorem 1. Let (X,Y) be a stochastic process over D and let
S1, S2, . . . be iid draws in D. Let Zi = (Si,X(Si),Y(Si)) for i =
1, 2, . . ., and define the coverage probability function

c(α, n, P) = Pn+1{�α(Zn;Xn+1, Sn+1) � Y(Sn+1)}.
Then the proposed GSCP is valid in the sense that

c(α, n, P) ≥ 1 − α, for all (α, n, P), (7)
where Pn+1 is the joint distribution of Z1, . . . ,Zn,Zn+1 under P.
Moreover, if δ1, . . . , δn+1 in (5) have a continuous distribution,
then

c(α, n, P) ≤ 1 − α + (n + 1)−1, for all (α, n, P). (8)
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The upper bound in (8), which follows from the same argu-
ments as in Lei et al. (2018), implies that the GSCP method
is not only valid but also efficient in the sense that the cover-
age probability is not too much larger than the nominal level.
That is, the coverage condition is not being achieved simply
giving excessively wide intervals. Some further details on the
efficiency of the global spatial conformal prediction procedure
are investigated in the Supplementary Materials. Note, also,
that Theorem 1 makes no assumptions about the distribution
of (X,Y), so it surely covers non-Gaussian and nonstationary
processes.

Theorem 1 gives a marginal validity result in the sense that
it accurately predicts the response Y(Sn+1) at X(Sn+1), for a
randomly sampled spatial location Sn+1. However, it does not
ensure conditional validity, that is, the case where Sn+1 = s�
with s� being a fixed spatial location. There are negative results
in the literature (Lei and Wasserman 2014) which state that
strong conditional validity—for all P and almost all targets s�—
is impossible with conformal prediction. Considerable effort has
been expended recently trying to achieve “approximate” condi-
tional validity in some sense; see, for example, Lei and Wasser-
man (2014), Tibshirani et al. (2019), Barber et al. (2019), and
Chernozukov, Wüthrich, and Zhu (2021). Remarkably, there is
at least one scenario in which a strong conditional validity result
can be achieved in our context. In particular, as we show in the
Appendix, the GSCP-based intervals are both marginally and
conditionally valid for the special case of an isotropic process
sampled uniformly on a sphere. Admittedly, these are rather
strong conditions, so one would hope for (approximately) valid
prediction under much less. In Section 4, we show that asymp-
totically valid prediction intervals at a fixed location can be
obtained under only mild conditions on the sampling scheme
and the unknown process.

4. Local Spatial Conformal Prediction

4.1. LSCP Algorithm

For valid prediction at a fixed location s�, we propose a local
spatial conformal prediction (LSCP) approach that is based
on only those data points in the neighborhood of s�. Fix an
integer m > 0 and select a neighborhood around s� that
contains m many locations, sij , for j = 1, . . . ,m. Note that
{sij : j = 1, . . . ,m} is a subset of the full set of spatial locations
s1, . . . , sn. Without structural assumptions about the response
process, such as stationarity, the data at locations far from s�
are not obviously relevant to prediction at s�, so removing—
or down-weighting (Section 4.3)—them from the local analysis
is reasonable. Plus, in applications where the infill asymptotic
regime is appropriate, there are many observations nearby s�, so
m could be taken to be large.

From here, we can proceed very much like in Section 3.
For notational simplicity, assume that indices i = 1, . . . ,m
correspond to those m spatial locations closest to s�. Now let
Zi = (si,Xi,Yi), for i = 1, . . . ,m, denote the observations
at these m closest locations to s�. With a slight abuse of that
notation, set sm+1 = s� and (xm+1, ym+1) as the provisional
values of X and Y at s�. Then define the nonconformity scores
exactly as before:

δi = �(zm+1
(i) , zi), i = 1, . . . ,m + 1.

With this, we can readily obtain the plausibility contour func-
tion:

p(ym+1 | zm, s�, xm+1) = 1
m + 1

m+1∑
i=1

1{δi ≥ δm+1}. (9)

Specific details are presented in Algorithm 2 in the Supplemen-
tary Materials. The output of this algorithm is a 100(1 − α)%
prediction interval forYm+1 = Y(s�), depending on Zm and the
observed Xm+1 = X(s�), which we denote by �α

s� (Z
m;Xm+1).

4.2. Theoretical Validity of LSCP

Our theoretical results hinge on a definition of local exchange-
ability. Let D ⊂ R

2 be a compact spatial domain, for example,
[0, 1]2. For a generic Rd-valued stochastic process T defined on
D, with d ≥ 1, define the localized version of T, relative to a
location s� ∈ D, as

T̃r(u) = T(s� + ru), u ∈ U = {u ∈ R
2 : ‖u‖ ≤ 1}, (10)

indexed by the unit disk U and the radius r > 0. Now suppose
that T can be decomposed as

T(s) = ψ (L(s),E(s)) , s ∈ D, (11)

where L and E are independent Rd-valued stochastic process, L
is a continuous spatial process, E is a nonspatial process, and ψ

is a deterministic, continuous,Rd-valued function.More specif-
ically, suppose that L and E, respectively, satisfy the following
conditions:

• L is L2-continuous at s� in the sense that its localized version
L̃r satisfies E‖̃Lr(u) − L̃0(u)‖2 → 0 as r → 0 for any u ∈ U ;

• E is locally iid at s�, that is, its localized version Ẽr converges
in distribution to an iid process as r → 0.

This formulation is too abstract to be useful, but formulating
a general result here is appropriate. Appendix A.2 describes
several common spatial models that satisfy (11), and generalizes
the above formulation to the case where the covariates are also
considered stochastic processes.

These assumptions yield a certain kind of local exchange-
ability which will be used below to show the LSCP algorithm
achieves a desired validity property. We first establish this local
exchangeability result, which may be of independent interest.

Proposition 1. Suppose that T can be decomposed as in (11),
where L is L2-continuous at s�, E is locally iid at s�, and L and E
are independent. Then the localized process T̃r in (10) converges
in distribution as r → 0, and the limit is an exchangeable
process in the sense that its finite-dimensional distributions are
exchangeable.

Using Proposition 1, we can establish the (asymptotically
approximate) theoretical validity of the LSCPmethod. To set the
scene, those m spatial locations closest to s� fall in a neighbor-
hood of some radius r. As is common in the spatial statistics lit-
erature (Stein 1990; Cressie 1992), we adopt an infill asymptotic
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regime in which the region D remains fixed while the number
of observations n goes to infinity, hence filling the space. The
relevant point for our analysis is that under this regime the
number of observations made in any neighborhood of s� ∈ D
will go to infinity. Such a regime is natural—and necessary—in
cases without structural assumptions about Y , e.g., stationarity,
where it is simply not possible to learn the local features of a
process at s� if data are not concentrated in a neighborhood
around s�. Under the infill asymptotic framework , if m is fixed
and the number of locations n is increasing to fill the bounded
spaceD, then the radius of the neighborhood in which thosem
points fall is vanishing. For example, if the spatial locations are
(roughly) uniformly distributed inD, then the number of points
in a neighborhood of radius r would be proportional to nr2;
setting this equal tom gives r = rn = (m/n)1/2 → 0 as n → ∞.

It follows from Proposition 1 that the joint distribution of
the response Y at these m-many spatial locations around s�
(corresponding to m-many vectors in U) would be approxi-
mately exchangeable and, consequently, a conformal prediction
algorithm that creates nonconformity scores using only thesem
observations would be valid for predicting Y(s�).

Theorem 2. Consider an infill asymptotic regime with n spatial
locations in the boundeddomainD, withn → ∞. Fix an integer
m > 0 and let r = rn → 0 be such that the m closest locations
to s� fall in a neighborhood of radius r. Under the assumptions
of Proposition 1, the nonconformity measure � is a continuous
function of its inputs, and if the limiting distribution in Propo-
sition 1 is continuous, then the LSCP prediction intervals are
asymptotically valid at s� in the sense that

lim
n→∞ Pm+1{�α

s� (Z
m;Xm+1) � Ym+1} = 1 − α + O(m−1),

where Pm+1 is the joint distribution of Z1, . . . ,Zm,Zm+1 at the
m spatial locations and at s�.

4.3. The Smoothed LSCP Algorithm

Theorem 2 implies that the local spatial conformal prediction
withm nearest neighbors is approximately valid under the infill
asymptotic regime. However, in practice completely disregard-
ing the contribution of the observations outside the m nearest
neighbors may be unsatisfactory, so we propose a smoothed
version of the LSCP algorithm (sLSCP).

The GSCP algorithm weights all n + 1 nonconformity
measures δi equally in the plausibility contour computation
in (3), but this is questionable for nonstationary processes with
stochastic properties that vary throughout the spatial domain.
To allow for nonstationarity, the sLSCP algorithm weights the
nonconformity measures δi by how far the corresponding si is
from the prediction location. Let f be a nonincreasing function,
and define weights

wi ∝ f (di), i = 1, . . . , n + 1,
where di = ‖si−s�‖, dn+1 ≡ 0, and the proportionality constant
ensures that

∑n+1
i=1 wi = 1. Different f functions can be applied,

but we recommend the normalized Gaussian kernel function
with bandwidth η,

wi = exp(−d2i /2η2)
1 + ∑n

j=1 exp(−d2j /2η2)
, i = 1, . . . , n + 1. (12)

Note that, if η → ∞, then wi → (n + 1)−1 for each i,
which corresponds to the GSCP algorithm. Finally, with these
new weights, the plausibility contour at a provisional value
(sn+1, xn+1, yn+1) of Y(s�) is given by

pw(yn+1 | Zn+1
(n+1), sn+1, xn+1) =

n+1∑
i=1

wi1{δi ≥ δn+1}, (13)

As before, we recommend the Kriging-based strategy with δi the
standardized residual in (1).

Since we are interested only in the local structure of Y , it is
natural that locations far from s� have negligible weight, as in
(12). But including all n observations requires some nontrivial
calculations, e.g., inverting a large n × n covariance matrix.
Therefore, to avoid cumbersome and ultimately irrelevant com-
putation, we recommend using only the M � n observations
closest to s� for both the Kriging predictions that determine
δi and in the plausibility scores in (13). The resulting method
is both locally adaptive and computationally efficient even for
large data sets.

The tuning parameter η can be selected using cross vali-
dation, as illustrated in Sections 5 and 6. The value of M is
determined by the bandwidth η so that all observations with
substantialwi are included, as are observations that are required
for the Kriging prediction of these observations. Typically the
number of nearby observations required to approximate the
Kriging prediction is a small subset of the total number of obser-
vations (Stein 2002). As a rule of thumb, M could be selected
to roughly include all observations within 2η + r� radius of s�,
where 2η captures observations with substantial weights, and r�
is selected so that all theM observations include the nearest 15
neighbors of the observation within 2η of s�. We summarize the
details of Algorithm sLSCP in Algorithm 1. For simplicity, we
use sLSCP and LSCP indistinguishably.

Algorithm 1: Smoothed local spatial conformal predic-
tion (sLSCP).
Input: observations zi = (si, xi, yi), i = 1, . . . , n; predict

location s�; nonconformity measure �;
significance level α; and a fine grid of candidate
response values weight parameter η ∈ (0,∞);
number of neighbors to considerM ≤ n

Output: (1 − α)100% prediction interval, �α , for Y(s�)
1 determineM through η if not given;
2 form zi, i = 1, . . . ,M, based onM locations closest to s�;
3 sM+1 ← s�;
4 calculate weights wi, i = 1, . . . ,M + 1 as in (12);
5 for yM+1 in the specified grid do
6 for i = 1 to M+1 do
7 define zM+1

(i) by removing yi from zM+1;
8 δi ← �(zM+1

(i) , yi) ;
9 end

10 compute plausibility for yM+1 as pw(yM+1 | · · · ) in
(13);

11 include yM+1 in �α if pw(yM+1 | · · · ) ≥ tM(α);
12 end
13 return �α .
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It is important for our proposed methods to be computa-
tionally feasible for large datasets. Conformal prediction itself
is relatively expensive since it requires fitting the underlying
model once for each held-out data point being predicted. In
particular, the Kriging residuals and the associated nonconfor-
mity score computations require us to compute μ̂n+1,i(si, xi)
and σ̂n+1,i(si, xi) for each i = 1, . . . , n, which involves n many
evaluations of (β̂ , 
̂). To overcome this computational bottle-
neck, various adjustments have been considered in the literature.
One is the split conformal prediction strategy—also called induc-
tive conformal prediction in Vovk, Gammerman, and Shafer
(2005)—which is common; see, for example, Lei et al. (2018,
Sec. 2.2). The idea is to split the data into two parts: one for
fitting the underlying model and the other for running con-
formal prediction with the fitted model from the first part
fixed. The theoretical validity of split conformal prediction is
now well-known, for example, Section 3 of the Supplementary
Materials. Alternatively, as is common in parametric Kriging,
one could use the entire dataset to estimate (β̂ , 
̂) and then
use the entire dataset again for prediction with the parameter
estimates plugged in as if they were the “true values.” Given
that the number of parameters in the working spatial model
is relatively small, both approaches should perform well for
moderate to large n. The simulation results presented in the
Supplemental Materials suggest that this plug-in conformal is
more efficient than split conformal in terms of width of the
corresponding prediction intervals (or, more precisely, in terms
of the interval score as defined in Section 5.2), so the numerical
results in Sections 5 and 6 below are based on plug-in versions
of the proposed GSCP and LSCP algorithms.

5. Simulation Study

5.1. Data Generation

We consider one mean-zero Gaussian stationary process (Sce-
nario 1) and seven non-Gaussian and/or nonstationary data-
generating scenarios (Scenarios 2–8). Data are generated based
on transformations of a latent Gaussian process Z(s) and a white
noise process E(s)with standard normal distribution, where s =
(sx, sy) ∈ [0, 1]2. The mean-zero stationary Gaussian process
process Z(s) has a Matérn covariance function with variance
σ 2 = 3, range φ = 0.1, and smoothness κ = 0.7. Data are
sampled on theN ×N grid of n = N2 points in the unit square,
s ∈ {N−1, 2N−1, . . . , 1}2, withN = 20 orN = 40. The scenarios
are:
1. Y(s) = Z(s) + E(s);
2. Y(s) = Z(s)3 + E(s);
3. Y(s) = q[�{Z(s)/

√
3}] + E(s) where � is the standard

normal distribution function and q is the Gamma(1, 3−1/2)
quantile function;

4. Y(s) = √
3Z(s)|E(s)|;

5. Y(s) = sign{Z(s)}|Z(s)|sx+1 + E(s);
6. Y(s) = √

ω(s)/3Z(s) + √
1 − ω(s)E(s) where ω(s) =

�( sx−0.5
0.1 );

7. Y(s) = Z(s) + sx E(s);
8. Y(s) = Z(s) + 10 exp(−50‖s − c‖2) where c = (0.5, 0.5);
Scenario 1 is Gaussian and stationary, Scenarios 2–4 are sta-
tionary but non-Gaussian, and Scenarios 5–8 are nonstationary

either in the spatial variance (Scenarios 5 and 6), error variance
(Scenario 7), or mean (Scenario 8). Scenario 3 generates skewed
data to assess the method’s performance when the symmetry of
the base Kriging model is violated.

5.2. PredictionMethods andMetrics

For each dataset we apply the global and local (with η = 0.1)
conformal spatial prediction algorithms. For the parametric
Kriging method and the initial Kriging predictions of our pro-
posed conformal prediction, we estimate the spatial covariance
parameters using empirical variogram methods (Cressie 1992).
The empirical variograms are calculated using the variog
function in the R package geoR, and the covariance parameters
are chosen to minimize the weighted (by number of observa-
tions) squared error between the empirical and model-based
variograms.

We compare the proposed conformal prediction methods
with standard global Kriging prediction and the local Kriging
(laGP) method of Gramacy and Apley (2015) that dynamically
defines the support of a Gaussian process predictor based on a
local subset of the data. For laGP, we use the function provided
by the laGP package in R the local sequential design scheme
starting from 6 points to 50 points through an empirical Bayes
mean-square prediction error criterion.

Methods are trained using a completely randomset of 90%
of the observations and tested on the remaining 10%. Each
scenario is repeated 100 times, and performance is evaluated
using average coverage of (1 − α)100% prediction intervals,
average interval width, and average interval score (Gneiting and
Raftery 2007), defined as

Sα(I; yn) = 1
n

n∑
i=1

{
(Iu − Il) + 2

α
(Il − yi)+ + 2

α
(yi − Iu)+

}
,

where I = [Il, Iu] is the 100(1 − α)% prediction interval, yn
contains the observations y1, . . . , yn, and z+ = z ∨ 0 denotes
the “positive part.” A smaller interval score is desirable as this
rewards both high coverage and narrow intervals. We use α =
0.1 in this simulation study.

5.3. Results

We present results averaged over data sets and all spatial loca-
tions in Table 1. For the nonstationary scenarios varying across
sx (Scenarios 5–7), we present the results by the first spatial coor-
dinate (sx) averaged over the datasets and the second coordinate
(sy) in Figure 1, e.g., the value of coverage plotted at sx = N−1

is the average of the coverage over the N points of the form
(N−1, sy) for sy ∈ {N−1, 2N−1, . . . , 1}.

In Scenario 1, the Gaussian and stationary process, the per-
formance of GSCP, LSCP, and Kriging are comparable (Table 1).
Kriging performs well in this case since the data generating
mechanism aligns with its underlying assumption, but the con-
formal methods are competitive with the parametric model in
terms of both coverage and interval width. In Scenarios 2, 3, and
4, the non-Gaussian but stationary processes, GSCP, LSCP, and
Kriging performmore or less the same in terms of interval score
and outperform laGP. However, the coverage of the conformal
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Table 1. Performance comparison for simulation scenarios (“Scen”) without a
covariate. The metrics are the empirical coverage of 90% prediction intervals
(“Cov90”), the width of prediction intervals (“Width”) and the interval score
(“IntScore”), each averaged over location and dataset. The methods are global
(GSCP) and local (LSCP) conformal prediction, stationary and Gaussian Kriging
(“Kriging”) and local approximate Gaussian process (“laGP”) regression.

N = 20 N = 40

Scen Method Cov90 Width IntScore Cov90 Width IntScore

GSCP 0.906 4.67 5.78 0.897 4.00 5.06
LSCP 0.890 4.57 5.95 0.891 3.99 5.12
Kriging 0.912 4.73 5.78 0.888 3.90 5.07
LaGP 0.877 4.78 6.50 0.879 4.27 5.63

2 GSCP 0.895 33.62 67.16 0.897 22.12 43.80
LSCP 0.896 31.05 58.37 0.910 21.74 36.47
Kriging 0.931 44.07 69.38 0.924 27.75 44.80
LaGP 0.913 40.57 69.38 0.928 31.28 47.24

3 GSCP 0.908 4.79 6.32 0.895 4.05 5.27
LSCP 0.893 4.65 6.27 0.893 4.03 5.24
Kriging 0.919 4.95 6.33 0.887 3.96 5.28
LaGP 0.883 4.92 6.83 0.880 4.29 5.77

4 GSCP 0.902 7.06 11.06 0.895 6.25 10.25
LSCP 0.892 6.84 11.23 0.895 6.08 9.74
Kriging 0.918 7.70 11.12 0.908 6.71 10.26
LaGP 0.898 7.40 11.83 0.901 6.68 10.51

5 GSCP 0.900 6.51 9.40 0.898 5.03 7.11
LSCP 0.887 6.36 9.06 0.892 5.05 6.75
Kriging 0.924 7.18 9.52 0.897 5.11 7.15
LaGP 0.887 7.20 10.42 0.891 5.98 8.08

6 GSCP 0.894 2.78 3.69 0.896 2.63 3.60
LSCP 0.878 2.66 3.47 0.895 2.38 3.06
Kriging 0.897 2.78 3.69 0.888 2.54 3.61
LaGP 0.865 2.58 3.60 0.869 2.32 3.21

7 GSCP 0.905 3.63 4.55 0.896 2.77 3.71
LSCP 0.888 3.53 4.59 0.896 2.70 3.46
Kriging 0.915 3.77 4.55 0.889 2.70 3.72
LaGP 0.869 3.92 5.31 0.881 3.17 4.14

8 GSCP 0.906 3.04 3.74 0.899 1.93 2.45
LSCP 0.880 3.00 3.91 0.895 1.92 2.46
Kriging 0.928 3.25 3.78 0.915 2.05 2.48
LaGP 0.863 3.39 4.64 0.871 2.41 3.20

methods, especially the GSCP algorithm, is closer to the nom-
inal level than Kriging and the Kriging intervals are generally
wider than the conformal intervals.

Figure 1 shows the results for nonstationary Scenarios 5 and
6 when N = 40. LSCP performs the best among the four
methods for these nonstationary scenarios. For Scenario 5, the
process is Gaussian to the west and non-Gaussian to the east.
The global prediction methods GSCP and Kriging generate
prediction intervals with similar width for all sx (ignoring edge
effects), while LSCP and laGP provide wider intervals on the
east (sx near 1) than the west (sx near 0). LSCP has coverage
around 90% for all sx, and the lowest interval scores, especially
in the east where the process is more non-Gaussian. Similarly,
in Scenario 6, the correlation is stronger in the east than the
west, and the LSCP performs the best by providing adaptive
prediction interval width and valid coverage across space.

We also conducted a simulation study when spatial locations
are sampled uniformly on [0, 1]2. The performance is very simi-
lar to that when locations are fixed at equally-spaced grid points,
so we only show the latter in the article. Additional results for
the scenarios with covariates (thus a comparison with universal
Kriging) and a sensitivity analysis confirming our method’s

Table 2. Performance comparison for the canopy height data. The metrics are
the width, coverage (“Cov90”) and interval score (“IntScore”) of 90% prediction
intervals, each averaged over 10,000 randomly chosen test locations. The methods
are local conformal prediction (LSCP), stationary and Gaussian Kriging (“Kriging”)
and local approximate Gaussian process (“laGP”) regression.

Width Cov90 IntScore

LSCP 2.87 87.9% 4.33
Kriging 5.44 96.6% 6.81
laGP 5.04 91.1% 6.63

robustness to the estimates of the spatial covariance parameters
are included in the Supplemental Materials.

6. Real Data Analysis

This section demonstrates the performance of conformal pre-
diction method using the canopy height data in Figure 2a.
The data were originally presented in Cook et al. (2013) and
were analyzed using a nearest-neighborGaussian processmodel
in Datta et al. (2016). The data are available in the R pack-
age spNNGP (Finley, Datta, and Banerjee 2017). There are
n = 1, 723, 137 observations and clear nonstationarity and non-
normality. For example, there are several heterogeneous areas
with small height canopies around the location with longitude
and latitude being 729,000 and 470,000, respectively.

We compare methods using 90% prediction intervals for
10,000 test locations chosen completely at random from the
full dataset. Since the data clearly exhibit nonstationarity we do
not apply GSCP. We select the kernel function and bandwidth
parameter using cross-validation over the validation locations.
The average interval score is consistently smaller for the Gaus-
sian kernel (ranging between 4.3 and 4.4 by η) than the uniform
kernel (ranging between 4.9 and 5.2 by η) and minimized by
the Gaussian kernel with η = 6 × 10−4. Table 2 compares the
performance of LSCP on the 10,000 test locations with Kriging
and laGP. LSCP outperforms the othermethods as the empirical
coverage of LSCP is the closet to the desired 90% and the LSCP
minimizes the interval score.

Figure 2 plots the interval widths for each method. Unlike
Kriging, the LSCP and laGP interval widths are locally adaptive
with wider intervals in heterogeneous areas and more narrow
intervals in homogeneous areas. Comparing LSCP and laGP,
LSCP generally provides narrower intervals than laGP, which
means the proposedmethod ismore efficient than laGP. In addi-
tion, the locations of the observations that fall outside the pre-
diction intervals are uniformly distributed for LSCP and laGP,
but clustered in the heterogeneous areas for Kriging. In short,
the proposed spatial conformal prediction algorithm shows its
superiority in this real data analysis.

7. Discussion

In this article, we proposed a spatial conformal prediction algo-
rithm to provide valid, robust, and model-free prediction inter-
vals by combining spatial methods and the classical confor-
mal prediction. We provided both global and local versions to
accommodate different stationarity cases and sampling designs.
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Figure 1. Performance comparison by sx for Scenario 5: Y(s) = sign{Z(s)} · |Z(s)|sx+1 + E(s) and Scenario 6: Y(s) = √
ω(s)/3 · Z(s) + √

1 − ω(s) · E(s) where
ω(s) = �( sx−0.5

0.1 )when N = 40 (results are smoothed over sx for clarity).

We proved their validity under various sampling designs and
data-generating mechanisms. To the authors’ knowledge, this
work is among the first in making the classical conformal algo-
rithm work for nonexchangeable data. Our simulation studies
and real data analyses demonstrate the advantage of the pro-

posed spatial conformal prediction algorithms. We also devel-
oped an R package entitled scp (https://github.com/mhuiying/
scp) to compute the plausibility contours and generate spatial
prediction intervals using either Kriging residual or any other
user-defined nonconformity measure.

https://github.com/mhuiying/scp
https://github.com/mhuiying/scp
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Figure 2. (a) Heatmap of the canopy height data; (b)–(d) Prediction interval width (color) and locations not covered (points) for LSCP, Kriging, and laGP. Longitude and
latitude are in UTM Zone 18.

An attractive feature of the proposed algorithms is that they
are model-free in the sense that their theoretical validity does
not depend on correct specification of a model. In our imple-
mentations we use the squared residuals from a simple para-
metric model to define the nonconformity terms. However,
as anticipated by our theoretical results, our simulation study
shows that the methods work well even if the parametric family
or the mean and covariance functions are misspecified, and
that the results are insensitive to inaccurate estimation of the
parameters in the parametric model. This robustness allows the
methods to be applied broadly and with confidence.

The local conformal prediction method relies on a dense
grid of points around each prediction location and thus a large
dataset. Computation time often prohibits application of spatial
methods to large datasets. Fortunately, we are able to apply our
method to large datasets by exploiting local algorithms and an
explicit formula for the plausibility contour using the Kriging-
based nonconformity score. Similar derivations are needed for

prediction procedures other than Kriging in order to maintain
computational efficiency.

Future research directions include extending the work to
spatial processes with discrete observations, e.g., when Y(s) is
binary or a count. Generalized spatial linear models are com-
patible with our current framework (see the Appendix), but
continuity in the distribution function is required. Therefore,
further studies would be required to establish the validity of
conformal prediction for discrete data. Another limitation of
the proposed algorithms is that they only produce intervals for
a single location. Generalizing the algorithms to produce joint
intervals for multiple locations would be useful in some appli-
cations. One option is to use a Bonferroni correction; of course,
this may be inefficient for many simultaneous predictions, but
greater efficiency would require model assumptions to link the
multiple locations and facilitate information sharing. It would
also be of interest to extend the proposed spatial conformal
predictionmethods to spatiotemporal data, perhaps building on
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recent work for time series data (Xu and Xie 2020; Zaffran et al.
2022).

Appendix

A.1: Conditional validity on a sphere

An obstacle that prevents a conditional validity result in the
existing literature is an “edge effect.” That is, conditional validity
is typically achieved at targets in the middle of the domain,
but fails at targets in the extremes; see Figure 1(b) in Lei and
Wasserman (2014). So if it were possible to eliminate the edge
effect—even if in a trivial way, by eliminating the edge itself—
then there is hope for establishing a conditional validity result.
In our spatial context, but perhaps not in other cases, it may not
be unreasonable to assume that the spatial locations are sampled
iid from a uniform distribution on a sphere. Since the sphere has
no edges and a uniform distribution has no extremes, there is
no “edge effect” preventing conditional validity. Some additional
structure in the (X,Y) process is also needed here, in particular,
it should be isotropic in the sense that the correlation structure
only depends on the distance between spatial locations. Note
that, if the mean of the parametric base model is correctly
specified, so that the conditional distribution of Y − Xβ , given
X, is free of X, then the stationarity assumption about X can be
removed.

To our knowledge, Proposition 2 below gives the first finite-
sample conditional validity result for conformal prediction in
the literature, albeit under rather strong conditions.

Proposition 2. Let (X,Y) be an isotropic stationary process over
the sphere D = {s ∈ R

3 : ‖s‖ = 1}, and suppose that the
locations S1, . . . , Sn, Sn+1 are independent and uniformly dis-
tributed onD. For�α as described above, define the conditional
coverage probability function

c(s� | α, n, P) = Pn+1{�α(Zn; Sn+1,Xn+1) � Yn+1 | Sn+1 = s�}.

Then the GSCP-based predictions are conditionally valid,
that is, c(s� | α, n, P) ≥ 1 − α for all (α, n, s�) and all P under
which (X,Y) is stationary and isotropic and S are iid uniform
onD.

A.2: Locally-exchangeable processes

To better understand how the locally-exchangeable processes in
Section 4.2 relate to our prediction problem, consider a simple
case with no covariates, where {Y(s) : s ∈ D} is the only random
process under consideration. In that case, we want to show
that T(s) = Y(s) has this local exchangeability property. Then
the sufficient condition (11) above amounts to assuming there
exists a suitable real-valued functionψY , along with appropriate
processes LY and EY , such that

Y(s) = ψY (LY(s),EY(s)) , s ∈ D.

There are a number of common models for continuous
responses thatmeet this condition, including the additivemodel
in Section 2.1, certain generalized spatial linear models Diggle,

Tawn, and Moyeed (1998), spatial copula models (Krupskii
and Genton 2019), and max-stable processes (Reich and Shaby
2012). For example, in a generalized spatial linear model,
with suitable spatial process LY and Gaussian white noise EY ,
take

ψY(�, e) = H−1
g(�)

(
�−1(e)

)
, (A.1)

where Hξ is the distribution function for an exponential family
with natural parameter ξ , g is the link function, and � is the
standard normal distribution function. Of course, to meet the
continuity requirement, the exponential family must have a
density with respect to Lebesgue measure.

For the practically relevant case with both a response Y
and covariate X process, the idea is similar but the notation is
more complicated. The goal is to find conditions under which
the joint process T(s) = (X(s),Y(s)) has a representation
as in (11). Admittedly, it is challenging to consider the joint
process directly, which is why we aim to give a simpler sufficient
condition based on the marginal distribution of X and the
conditional distribution of Y , given X. Consider the following
decomposition:

X(s) = ψX (LX(s),EX(s))
Y(s) = ψY (LY(s),EY(s) | X(s)) .

(A.2)

Roughly, this amounts to assuming that each of X and Y has a
decomposition like that described above for Y alone. Individual
assessments of the distributional properties ofX andY aremore
manageable than directly considering their joint distribution.
And as the following simple lemma states, separate considera-
tions of itsmarginal and conditional structure suffice to establish
a decomposition of the joint structure.

Lemma 2. If (X,Y) can be decomposed as in (A.2), if the
pairs of processes (LX , LY) and (EX ,EY) in are individually L2-
continuous and locally iid, respectively, and if (�, e) �→ ψX(�, e)
and (�, e, x) �→ ψY(�, e | x) are both continuous, then T(s) =
(X(s),Y(s)) satisfies the conditions of Proposition 1.

As we discussed above, the decomposition of the X marginal
as in (A.2) is quite flexible. For example, it is quite common that
X could be expressed as X = LX + EX for a spatial and non-
spatial components, LX and EX , respectively, but the additive
form is not necessary. And just like in our discussion above
Proposition 2 above, if themean of the parametric basemodel is
correctly specified, then these assumptions about X here can be
dropped. Similarly, if the decomposition of Y in the response-
only model was flexible, then the corresponding conditional
decomposition in (A.2) must be equally flexible. For example,
the same generalized spatial linearmodel can be considered, but
now it is allowed to depend smoothly on the covariate.
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