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a b s t r a c t

Extreme streamflow is a key indicator of flood risk, and quantify-
ing the changes in its distribution under non-stationary climate
conditions is key to mitigating the impact of flooding events.
We propose a non-stationary process mixture model (NPMM)
for annual streamflow maxima over the central US (CUS) which
uses downscaled climate model precipitation projections to fore-
cast extremal streamflow. Spatial dependence for the model is
specified as a convex combination of transformed Gaussian and
max-stable processes, indexed by a weight parameter which
identifies the asymptotic regime of the process. The weight
parameter is modeled as a function of the annual precipita-
tion for each of the two hydrologic regions within the CUS,
introducing spatio-temporal non-stationarity within the model.
The NPMM is flexible with desirable tail dependence properties,
but yields an intractable likelihood. To address this, we embed
a neural network within a density regression model which is
used to learn a synthetic likelihood function using simulations
from the NPMM with different parameter settings. Our model
is fitted using observational data for 1972–2021, and inference
carried out in a Bayesian framework. The two regions within the
CUS are estimated to be in different asymptotic regimes based
on the posterior distribution of the weight parameter. Annual
streamflow maxima estimates based on global climate models for
two representative climate pathway scenarios suggest an overall
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increase in the frequency and magnitude of extreme streamflow
for 2006–2035 compared to the historical period of 1972–2005.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The increase in the frequency of hydroclimatic extreme events in the last few decades has
aused devastating economic damage and claimed thousands of human lives (Hirabayashi et al.,
013; Winsemius et al., 2018). Winsemius et al. (2016) predicted an increase in this cost due to
ea level rise and extreme precipitation events brought about by climate change. Uncertainty in
limate change projections, particularly those associated with precipitation (Bhowmik et al., 2017),
lso results in significant challenges to the design and maintenance of water infrastructure (e.g.,
ahedifard et al., 2017; Kasler and Hecht, 2017). This is further exacerbated by the complexity of
looding events (Merz et al., 2014; Condon et al., 2015; Kundzewicz et al., 2017; François et al., 2019)
s extremal streamflow, which is a key measure of flood risk, shows spatial clustering (Hirsch and
yberg, 2012; Majumder et al., 2022). There is therefore a need to account for spatial and temporal
ariability (i.e., non-stationarity) in extremal streamflow due to precipitation when assessing
urrent and future flood risk (Milly et al., 2008; Vogel et al., 2011; Merz et al., 2014; Kundzewicz
t al., 2014; Salas and Obeysekera, 2014; Milly et al., 2015; Šraj et al., 2016).
A relatively simple approach to projecting flood risk on the basis of extreme streamflow is by the

tatistical extrapolation of spatio-temporal trends observed in the historical record. Extreme value
nalysis (EVA) methods have been used to model the relationship between flooding, watershed
haracteristics, and the weather, using regressions or hierarchical models to account for non-
tationarity (Šraj et al., 2016; Dawdy et al., 2012; Lima et al., 2016). However, purely statistical
rojections of extremal streamflow that do not consider physical variables which are expected
o change under climate change (e.g., temperature and precipitation) are likely to be unreliable
or long-term projections (Jain and Lall, 2001). Precipitation has a large impact on groundwater
low and is therefore a major driver of extremal streamflow. Like streamflow, it exhibits non-
tationarity (Cheng et al., 2014; Kunkel et al., 2020) which needs to be incorporated into any
odeling that attempts to provide future projections of extremal streamflow. In this paper, our
bjective is to build a spatial model relating precipitation and streamflow and use climate model
orecasts of future precipitation to understand flood risk under different climate change scenarios.

While climate change is often described in terms of the mean, it will mostly be experienced
hrough extremes. Data for extreme events are by definition sparse, and parametric models must
herefore be carefully chosen based on extremal theory to estimate small probabilities. Standard
easures of dependence such as correlation and spatial models such as Gaussian processes (GP) do
ot adequately model extreme events; in order to properly account for spatial dependence while
odeling rare event probabilities, we use spatial extreme value analysis (EVA). For modeling block
axima, e.g., the annual maximum of daily streamflow, the commonly used spatial EVA model is

he max-stable process (MSP) (De Haan and Ferreira, 2006; Smith, 1990; Tawn, 1990; Schlather,
002; Kabluchko et al., 2009; Buishand et al., 2008; Wadsworth and Tawn, 2012; Reich and Shaby,
012). MSPs are a natural asymptotic model for block maxima, but can also be applied to peaks
ver a threshold using a censored likelihood (e.g., Huser and Davison, 2014; Reich et al., 2013).
xact inference for MSPs is challenging, and commonly used censored likelihood models for MSPs
re also computationally intractable for all but a small number of spatial locations (Schlather, 2002;
abluchko et al., 2009; Wadsworth and Tawn, 2012, 2014; Wadsworth, 2015). Further, MSPs enforce
symptotic dependence among spatial locations (Huser and Wadsworth, 2019), an unreasonable
ssumption for environmental data that often has weakening spatial dependence with increasing
xtremeness. Alternatives and extensions to MSPs include process mixture models (Huser and
adsworth, 2019; Majumder et al., 2022; Zhang et al., 2022b) and max-infinitely divisible process
2
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(MIDP) models (Bopp et al., 2021), both of which can accommodate more flexible asymptotic
regimes of tail dependence.

Climate-informed flood projections which consider non-stationarity is an ongoing area of re-
earch (Delgado et al., 2014; Condon et al., 2015; François et al., 2019; Schlef et al., 2018, 2021;
ankarasubramanian and Lall, 2003; Zhang et al., 2015; Bertola et al., 2019; Awasthi et al., 2022),
ut flood projections are not commonly studied as a spatial EVA problem. The intractability of
ommon spatial EVA likelihoods pose computational challenges which make it difficult to fit realistic
tatistical models. For example, in a study of a large geographic region under a changing climate, it is
nrealistic to assume stationarity in the degree of extremal dependence between nearby locations.
on-stationarity could appear due to dependence on variables which vary spatio-temporally, or
ue to physical considerations like topography. Recent work on incorporating non-stationarity in
patial EVA models include Wadsworth and Tawn (2022), who incorporate non-stationarity using
he framework of Sampson and Guttorp (1992). They deform the coordinate system into one where
he process is stationary; this approach, however, does not use covariates. Huser and Genton (2016)
se covariates in the covariance structure of an MSP, extending the work of Paciorek and Schervish
2006). Chevalier et al. (2021) uses multidimensional scaling to capture regional variation in the
symptotic spatial dependence of an MSP, and Zhong et al. (2022) construct an MIDP which include
ovariates to capture spatio-temporal non-stationarities. Similarly, our work proposes a spatial EVA
odel that allows extremal dependence to vary over both space and time via climate covariates.
hile this model is flexible and intuitive, it is difficult to fit using standard computational methods.
Many of the modeling and computational limitations of extreme value theory have been ad-

ressed using deep learning. For example, Cannon (2010), Vasiliades et al. (2015), Shrestha et al.
2017), Pasche and Engelke (2022), Richards and Huser (2022) and the references therein use neural
etworks to obtain flexible regression frameworks relating covariates to extreme quantities. Similar
o the application in this paper, Shrestha et al. (2017) use neural networks to model the dependence
f extreme streamflow on precipitation and temperature, and then use these relationships with
limate models to project future extreme streamflow events. Recently, Wilson et al. (2022) have
sed a convolutional neural network to regress spatial fields onto the parameters of an extreme
alue distribution. Computational limitations due to intractable likelihoods associated with spatial
xtreme value processes have also been addressed using deep learning. Lenzi et al. (2021) and
ainsbury-Dale et al. (2022) replace maximum likelihood estimators with neural networks, while
ajumder et al. (2022) develop synthetic likelihood functions by sampling from the spatial extreme
alue process with different parameter settings, and fitting these simulations with neural networks
o learn an approximate likelihood function connecting the data with the model parameters.

In this work, we propose a non-stationary process mixture model (NPMM) for climate-informed
stimation of extremal streamflow. We specify a statistical EVA model for annual streamflow
axima within the central US (CUS) region, and use downscaled and bias-corrected precipitation
rojections obtained from the Multivariate Adaptive Constructed Analogs (MACA) dataset (Abat-
oglou and Brown, 2012) as predictors. The NPMM addresses two important aspects of climate-
nformed EVA modeling. First, the process mixture model allows learning both the type and strength
f asymptotic (in)dependence from the data by interpolating between a GP and an MSP. Second, the
PMM introduces non-stationarity by allowing the asymptotic regime of the spatial process to vary
patio-temporally as a function of precipitation for sub-regions within the CUS. Climate models
ot only consider different distributions of climate variables between historical and future time
eriods, they also consider multiple future pathways where model outputs diverge considerably as
e extend the time horizon. Covariates allow us to accommodate potential changes in the spatial or
arginal behavior or both for extreme streamflow under future climate projections which deviate

rom historical patterns. Inference for the NPMM is separated into density estimation and parameter
stimation. The density estimation, used to approximate the intractable likelihood of the spatial
rocess, is carried out using semi-parametric quantile regression (SPQR) (Xu and Reich, 2021). The
uantile process has a basis function representation, whose weights are estimated using a feed-
orward neural network. The NPMM provides a flexible framework for incorporating covariates into
he spatial process as well as the marginal distributions at each location, and we use it to project
xtremal streamflow for 2006–2035 informed by climate model precipitation under two different
limate pathways.
3
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Fig. 1. HCDN sites in HUC-02 regions 10L and 11: Locations and 0.99 quantiles of annual streamflow maxima (in
3/s) at 55 HCDN stations overlaid on an elevation map (in m) of the central United States region bounded by
−107,−90] × [30, 44]. The two large polygons within the figure correspond to regions 10L (top) and 11 (bottom),
and the smaller polygons correspond to the HCDN basins that each station measures streamflow for.

The rest of the paper is organized as follows. We introduce the streamflow and precipitation
datasets for the CUS region in Section 2. Section 3 presents the NPMM and discusses density
estimation, parameter estimation, and tail behavior for the model. Density estimation using SPQR for
the CUS locations is carried out in Section 4, and we conduct a simulation study to see how errors in
density estimation affect parameter estimates. The analysis of extremal streamflow as a function of
precipitation is presented in Section 5, along with future projections of extremal streamflow based
on downscaled and bias-corrected climate model precipitation data. Section 6 concludes.

2. Hydroclimatic data for the Central US

2.1. Observed streamflow data

The USGS Hydro-Climatic Data Network (HCDN) (Lins, 2012) is a dataset of streamflow records
within the United States and its Territories. The HCDN consists of locations that are minimally
impacted by anthropogenic activity, making it suitable to study the effects of changing climate
on streamflow. The HCDN has been used to study the effect of climatic variables on stream-
flow (Sankarasubramanian et al., 2001; Oh and Sankarasubramanian, 2012) and to study the change
in extremal streamflow over time (Majumder et al., 2022). For studying water resources, the USGS
divides the US into groups of nested Hydrologic Units, identified by Hydrologic Unit Codes (HUCs).
The first level of classification divides the US into 21 regions, referred to as HUC-02 regions. Our
study focuses on two specific HUC-02 regions for which we have a complete data record between
1972–2021; the lower half of Region 10, denoted as 10L, and Region 11. Together, they span a region
in the Central US (CUS) that consist of 55 gauges spread across South Dakota, Nebraska, Colorado,
Wyoming, Kansas, Iowa, Missouri, Arkansas, Oklahoma, New Mexico and Texas. Fig. 1 plots the

3
sample 0.99 quantile of annual streamflow maxima (measured in m /s) over the last 50 years at

4
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each station. There is spatial variation in these data, with extremal streamflow increasing from west
to the east.

2.2. Observed precipitation data

The CUS is characterized by severe convective storms (Risser et al., 2019; Zhang et al., 2022a),
nd precipitation trends that could potentially influence flooding (Kunkel et al., 2020). Condon
t al. (2015) have used monthly average precipitation as a model predictor to project future floods,
hile Awasthi et al. (2022) have used monthly total precipitation as predictors to project flood

requencies under near-term climate change. We refer the reader to Awasthi et al. (2022) for
urther references regarding the use of precipitation and temperature as predictors of extremal
treamflow. In this study, we use seasonal and annual precipitation means as predictors of annual
xtremal streamflow. Monthly precipitation data is sourced from the NOAA Monthly US Climate
ridded Dataset (NClimGrid) (Vose et al., 2014), which is based on the Global Historical Climatology
etwork (GHCN) dataset. NClimGrid data is available on a 5 km × 5 km grid, and for each of the 55
CDN stations we use monthly precipitation for all NClimGrid cells for the corresponding basins as
utlined in Fig. 1.
The NClimGrid data are treated as covariates to estimate both the marginal parameters at each

ite as well as dependence parameters for the underlying spatial process. For our response variable
t (s), the extremal streamflow for year t and location s, we consider the corresponding seasonal
recipitations as covariates. Following Awasthi et al. (2022), the seasons correspond to winter
JFM), spring (AMJ), summer (JAS), and autumn (OND), where JFM denotes the months of January–
ebruary–March, and so on. Fig. 2(a) plots the mean seasonal precipitation across the 2 HUC-02
egions. Not only is there spatial variability within a season, we also see heterogeneity across
easons. The highest values are observed in the southeast, and lower values seen along the west. We
lso note that the spring season has the highest precipitation. Fig. 2(b) plots the 0.99 quantile of the
easonal precipitation associated with the HCDN sites for each season. Additionally, we define the
ovariates Z1t and Z2t as the annual precipitation within HUC-02 Regions 10L and 11, respectively,
hich is computed as the total precipitation for all NClimGrid points for the corresponding region.
ig. 3 plots a time series of annual precipitation for the 2 HUC-02 regions from 1972–2021. We
ote that Region 11, which is located in the southern part of the CUS, has higher precipitation than
egion 10L.

.3. Global Climate Model output of future precipitation

While Global Climate Models (GCMs) do not produce streamflow estimates, they provide pre-
ipitation variables which we use to predict extremal streamflow. The Multivariate Adaptive
onstructed Analogs (MACA1) dataset (Abatzoglou and Brown, 2012) is a statistical downscaling
ethod for GCMs. MACA downscales the model output from 20 GCMs of the Coupled Model Inter-
omparison Project 5 (CMIP5) (Taylor et al., 2012) for historical GCM forcings (1950–2005) as well
s future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP 8.5 scenarios (2006–2100)
rom the native coarse resolution of the GCMs to a higher spatial resolution of 4 km. RCP 4.5
ssumes that total anthropogenic CO2 will peak around 2040, and decline till 2080, whereas RCP
.5 assumes that CO2 concentrations continue to rise until the end of the century. MACA provides
onthly precipitation (pr) as one of its outputs; we obtain both the historical runs for 1972–2005

or calibrating it to NClimGrid output, and use it to estimate extremal streamflow for the CUS
rom 2006–2035. The quality of the GCM model projections can vary according to variable, climate
athway, geographic region, and time horizon, and Joyce and Coulson (2020, page 9) provides
riteria for selecting climate models. We choose 6 models for each RCP scenario following on the
odel rankings provided by Joyce and Coulson (2020); the chosen models are the top three ranked
rojections in terms of precipitation change (dry, wet) at mid-century (2041–2070) under the 2
cenarios (RCP 4.5, RCP 8.5) at the coterminous US scale. While our study focuses on projections

1 https://www.climatologylab.org/maca.html
5
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Fig. 2. Seasonal distribution of NClimGrid precipitation for 1972–2021: Seasons are specified on the top right of each
panel and defined as winter (JFM), spring (AMJ), summer (JAS), and autumn (OND).
6
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Fig. 3. Time series of annual NClimGrid precipitation (in mm) from 1972–2021 for the 2 HUC-02 regions of the CUS.
Values represent an average over all grid cells within the corresponding region.

Fig. 4. Datasets used in the study, with periods of availability and usage details.

p until 2035, our choice of models ensure that these results can be extended for longer durations,
nd account for model and scenario uncertainty. The models chosen for RCP 4.5 are IPSL-CM5A-
R, bcc-csm1-1-m, IPSL-CM5A-LR, CSIRO-Mk3-6-0, CNRM-CM5, and MRI-CGCM3; models chosen

or RCP 8.5 are IPSL-CM5A-MR, HadGEM2-ES, inmcm4, CNRM-CM5, MRI-CGCM3, and CSIRO-Mk3-
-0. We refer readers to Joyce and Coulson (2020) for further comparisons of all 20 models. Fig. 4
7
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Fig. 5. Mean seasonal precipitation (in mm) over the CUS based on the CNRM-CM5 model for the GCM historical period
of 1972–2005. Seasons are specified on the top right of each panel and defined as winter (JFM), spring (AMJ), summer
(JAS), and autumn (OND).

contains a schematic of the observational and climate model datasets used in this study, as well as
the historical and projection time periods.

The GCM data do not have temporal correspondence; GCM output for the year 2005 is not a
epresentation of the weather in 2005. Rather, GCM data for the historical and future periods are
esigned to approximate the distribution of the observed or forecast data for similar time periods.
he lack of temporal correspondence makes it inappropriate to regress observed streamflow onto
odeled precipitation to estimate the relationship between these variables. However, given a model

it using temporally-correspondent observed precipitation and streamflow, estimates generated
sing bias-corrected GCM data as covariates can be used to compare the changes in the distribution
cross different time periods. Fig. 5 plots mean seasonal precipitation over the CUS based on the
NRN-CM5 model for the GCM historical period of 1972–2005. This is one of the models projecting
wetter future, and the historical precipitation from this model is higher than the observed
ClimGrid data in Fig. 2(a). The spatial patterns are broadly similar between the two datasets, and
he GCM output needs to be calibrated to the observational data before it can be used as a covariate
o model extremal streamflow.

The GCM output is calibrated to remove bias compared to the observed precipitation at each
ocation. The GCM log-precipitation outputs during the historical period are calibrated to have the
ame sample mean and variance as the observed precipitation for the same time period. This log-
inear transformation is estimated and applied separately for each HCDN station and each GCM
orcing, and applied to the GCM precipitation projections as well. Precipitation for the 2 HCDN
egions are also similarly calibrated. It is recommended that averages of the weather over at least
0 years be used to assess the climate. Hence, we consider a historical (baseline) period of 1972–
005 and a future projection period of 2006–2035, and study changes in the extremal quantiles of
he distribution of predicted streamflow maxima for these two time periods.
8
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3. Non-stationary process mixture models for spatial extremes

3.1. The NPMM for block maxima

Let Yt (s) be the extreme observation at time t and spatial location s, for t ∈ {1, . . . , T } and
∈ {s1, . . . , sn}. The observations Yt (s) are defined as block maxima, and are thus assumed to arise

from a generalized extreme value (GEV) distribution with location µt (s), scale σt (s), and shape ξt (s):

Yt (s) ∼ GEV{µt (s), σt (s), ξt (s)},

hose cumulative distribution function (CDF) Ft,s(y) := P[Yt (s) < y] is

P
[
Yt (s) < y

]
= exp

{
−

[
1+ ξt (s)

(
y− µt (s)
σt (s)

)]−1/ξt (s)}
. (1)

The CDF is defined over the set
{
y : 1+ ξt (s)(y− µt (s))/σt (s) > 0

}
.

Denote Zjt , for j = 1, 2 and t = 1, . . . , 50, as the annual precipitation for the two HUC-02 regions
10L and 11) defined in Section 2. We define X1t (s) as the annual precipitation for the HUC-02 region
hat location s belongs to, i.e.,

X1t (s) = I{s ∈ Region 10L}Z1t + I{s ∈ Region 11}Z2t ,

here I(·) is the indicator function. Further, denote Xit (s), i = 2, . . . , 5 and t = 1, . . . , 50 as the
seasonal precipitation for site s at time t for the four seasons as defined in Section 2. We assume
the GEV location parameters vary spatially and are dependent on precipitation, while the scale and
shape parameters also vary spatially, i.e.,

µt (s) = µ0(s)+
5∑

i=1

µi(s)Xit (s), σt (s) = σ (s), ξt (s) = ξ (s). (2)

The CDF transformed variables Ut (s) := Ft,s
(
Yt (s)

)
share common uniform marginal distributions

but are spatially correlated; this transformation separates residual spatial dependence in Ut (s) from
the spatial dependence induced by spatial variation in the GEV parameters, which can be modeled
using GP priors over s.

A spatial dependence model on Ut (s) is obtained via the transformation Ut (s) = Gt,s
(
Vt (s)

)
, such

that

Vt (s) = δt (s)gR
(
Rt (s)

)
+ (1− δt (s))gW

(
Wt (s)

)
, (3)

where Rt (s) is a max-stable process (MSP), Wt (s) is a Gaussian process (GP), and gR and gW
are transformations to ensure that gR

(
Rt (s)

)
and gW

(
Wt (s)

)
both follow the standard exponential

distribution. Without loss of generality, we assume that Rt (s) has a marginal GEV(1, 1, 1) dis-
tribution and Wt (s) has a marginal N(0, 1) distribution; the corresponding transformations are
gR(r) = − log(1− exp(−1/r)) and gW (w) = − log(1−Φ(w)) for the standard normal CDF Φ(w). By
construction, Vt (s) follows a two-parameter hypoexponential distribution marginally, with CDF

Gt,s(v) = 1−
1− δt (s)
1− 2δt (s)

e−
v

1−δt (s) +
δt (s)

1− 2δt (s)
e−

v
δt (s) . (4)

The parameters δt (s) ∈ [0, 1] are weight parameters that control the relative contribution of the
two spatial processes at every site and time point.

The spatial dependence model in (3) was originally introduced in Majumder et al. (2022) where
it assumed a constant value of δt (s) = δ. In practice, however, it is reasonable to partition the sites
into L regions such that sites within each partition share a common value of δt (s) at any given
time point t , with different partitions having potentially different values of δt (s). Locations can
be assigned to partitions based on underlying geophysical characteristics of the data, or clustered
according to an appropriate distance metric. For streamflow data, the two HUC-02 regions (10L and
9
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11) are considered partitions of the CUS. Thus L = 2 for our study, and we denote δ1t and δ2t as the
weight parameters for these 2 partitions, i.e.,

δt (s) = I{s ∈ Region 10L}δ1t + I{s ∈ Region 11}δ2t .

As with the marginal parameters, we assume δ1t and δ2t depend on partition-specific covariates:

g−1(δit ) = βi0 + βi1Zit , i = 1, 2, (5)

where g(·) is an appropriate link function, and Zit are the annual precipitation for the two HUC-02
regions as defined in Section 2. The variable δit depends on time through the covariate Zit . Mixing the
asymptotically dependent MSP with the asymptotically independent GP provides a rich model for
spatial dependence, while the covariates help capture changes in the spatio-temporal dependence.

We model the correlation of the GP Wt (s) using the isotropic powered-exponential correlation
function Cor

(
Wt (s1),Wt (s2)

)
= exp{−(h/ρW )αW } with distance h = ∥s1 − s2∥, smoothness αW ∈

(0, 2), and range ρW > 0. The MSP Rt (s) is assumed to have isotropic Brown–Resnick spatial
dependence defined by the variogram γ (h) = (h/ρR)αR for smoothness αR ∈ (0, 2) and range ρR > 0.
We also incorporate a nugget into the process mixture. We denote the proportion of the variance
explained by the spatial process by r , and construct Wt (s) and Rt (s) as:

Cor
(
Wt (s1),Wt (s2)

)
= r · exp{−(h/ρW )αW },

Rt (s) = max{r · R1t (s), (1− r) · R2t (s)},

where R1t (s) is an MSP, and R2t (s)
iid
∼ GEV(1, 1, 1) distributed independently of R1t (s).

We refer to this model as a non-stationary process mixture model (NPMM), with marginal
arameters θ1 = {µ0(si), . . . , µ5(si), σ (si), ξ (si); i = 1 : n} and spatial dependence parameters θ2 =

{β10, β11, β20, β21, ρR, αR, ρW , αW , r}. Alternative spatial dependence structures are viable under
the NPMM; in general, most spatial processes are compatible with the methodology presented
in this work. For the purposes of this particular problem, we choose a relatively smooth spatial
process, and aim to capture additional complexity using spatio-temporally varying coefficients
(STVC) models (Gelfand et al., 2003; Majumder et al., 2022) on the components of θ1.

3.2. Asymptotic joint tail behavior for the NPMM

Extremal spatial dependence of the process at sites s1 and s2 is often measured using the
conditional exceedance probability,

χu(s1, s2) := P{U(s1) > u|U(s2) > u}, (6)

where u ∈ (0, 1) is a threshold. The random variables U(s1) and U(s2) are defined as asymptotically
dependent if the limit

χ (s1, s2) = lim
u→1

χu(s1, s2) (7)

is positive, and independent if χ (s1, s2) = 0.
To examine the model in a simpler case, we assume δ1t to be the same for t = 1, . . . , T , and

define δi := δit , i = 1, 2. We numerically approximate χu(s1, s2) for various values of u, δ1 and δ2.
e scale our region of interest and all 55 sites within it to fall within the unit square, and consider

he extremal spatial dependence between a hypothetical pair of sites at a distance of h = 0.12 from
ach other. The value for h is chosen as the solution to:

h = max
i=1:55
∥si − si∗∥,

here a : b is used as shorthand notation for a, a+ 1, . . . , b− 1, b, and si∗ is the site closest to si.
n its original scale, this is equivalent to HCDN stations 218 km apart. Fig. 6(a) plots the behavior
f χu(s1, s2) for different (δ1, δ2) pairs. Assuming an isotropic model, χu(s1, s2) is a function only of
he distance h = ∥s1 − s2∥, and so we use the notation χu(h) := χu(s1, s2). While χu(h) depends
n (δ , δ ) in our work, we suppress the dependence for notational convenience and instead use
1 2

10
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Fig. 6. Empirical χu(h) where h = 0.12 for the process mixture model as a function of δ1 and δ2 for sites corresponding
o the HCDN stations in the CUS.

u(h) in the remainder of the text. As in Huser and Wadsworth (2019), we set the GP to have a
orrelation of 0.40, which is equivalent to fixing ρW = 0.134 and ρR = 0.19ρW (see Section 4 for a
iscussion on the choice of ρW and ρR), and computed the conditional exceedance probability for
= 0.9999. When δ1 = δ2 = δ, Majumder et al. (2022) have shown using empirical studies that
u(h) → 0 if δ < 0.5 and χu(h) > 0 for δ > 0.5. An analytical result consistent with this finding
as also derived for the case of a shared extremal process, i.e., for R(s1) = R(s2) = R, at which point
e recovered the similar result from Huser and Wadsworth (2019). From Fig. 6(a), we can also see
hat χu(h)→ 0 when both δ1, δ2 < 0.5. To understand the tail behavior of the process when δ1 is
igh and δ2 is low (and vice-versa), we consider the case where δ1 = δ, δ2 = 1 − δ, for δ ∈ (0, 1).
e find that χ (h) → 0 in this situation for all values of δ; this is verified empirically in Fig. 6(b)
here χu(h) → 0 for different values of δ1 and δ2. It also corresponds to the diagonal in Fig. 6(a)
hich is shown to go to 0. This is intuitively reasonable; R(s) and W (s) are independent, and thus
symptotic dependence is only achieved if both sites have large delta and thus both sites allow
ubstantial contribution for the asymptotically dependent process R(s). An analytical derivation of
his result for the case of a shared extremal process is provided in Appendix A.

.3. Density regression using deep learning for the NPMM

Assume the process is observed at n sites s1, . . . , sn. We partition the parameters into those that
ffect the marginal distributions in (2), denoted θ1, and those that affect the spatial dependence,
enoted θ2. Denoting Y (si) ≡ Yi and Ui := F (Yi; θ1), we can express the joint distribution for all the
bservations using a change of variables, as:

fy(y1, . . . , yn; θ1, θ2) = fu(u1, . . . , un; θ2)
n∏

i=1

⏐⏐⏐⏐dF (yi; θ1)
dyi

⏐⏐⏐⏐ . (8)

Model fitting for the NPMM is challenging due to the way the spatial dependence is specified; the
joint distribution of the MSP R(s) is available only for a moderate number of locations, and working
with the term fu(u1, . . . , un; θ2) in (8) analytically is not viable. As in Majumder et al. (2022), the
change of variables in (8) sets the process mixture component up for density estimation. The density
estimation is carried out on a surrogate likelihood based on a Vecchia decomposition (Vecchia,
1988; Stein et al., 2004; Datta et al., 2016; Katzfuss and Guinness, 2021) of the joint distribution
fu(u1, . . . , un; θ2),

fu(u1, . . . , un; θ2) =
n∏

fi(ui|θ2, u1, . . . , ui−1) ≈
n∏

fi(ui|θ2, u(i)), (9)

i=1 i=1

11
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for u(i) = {uj; j ∈ Ni} and Ni ⊆ {1, . . . , i − 1}. The set of locations s(i) are analogously defined as
(i) = {sj; j ∈ Ni} and is referred to as the Vecchia neighboring set. The approximation therefore
entails truncating the dependence that ui has on all its previous i−1 ordered sites to instead consider
ependence on only up to m sites, i.e., |Ni| ≤ m. The first term of the approximation is the marginal
ensity f1(u1|θ2).
The univariate conditional distribution terms on the right hand side of (9) do not have closed-

orm expressions. Density regression is carried out for each of the n− 1 terms separately using the
emi-parametric quantile regression (SPQR) model introduced in Xu and Reich (2021):

fi(ui|xi,W) =
K∑

k=1

πik(xi,Wi)Bk(ui), (10)

for i = 2 : n, where πik(xi,Wi) ≥ 0 are probability weights with
∑K

k=1 πik(xi) = 1 that depend on the
parameters Wi, and Bk(ui) ≥ 0 are M-spline basis functions that, by definition, satisfy

∫
Bk(u)du = 1

or all k. The density regression model in (10) treats u(i) and θ2 as features (covariates), denoted as
xi, with ui being the corresponding response variable.

By increasing the number of basis functions K and appropriately selecting the weights πik(xi), the
ixture distribution in (10) can approximate any continuous density function (e.g., Chui et al., 1980;
brahamowicz et al., 1992) which makes it suitable for our application. The weights are modeled
sing a neural network (NN) with H hidden layers and a multinomial logistic (softmax) activation

function on its output layer, i.e.,

πik(xi,Wi) = f NNi (xi,Wi), for i = 2 : n. (11)

Instead of using observational data, the weights are learned from training data generated from the
process mixture model with parameters θ2 ∼ p∗, which can then be used to obtain realizations from
the process over sites si and s(i) from the model conditioned on θ2. Specifically, we generate data
at the observed spatial site with the same Vecchia neighbor sets as the problem at hand. We select
the design distribution p∗ with support covering the range of plausible values for θ2. Given these
values, we generate U(s) at s ∈ {si, s(i)}. The feature set xi for modeling ui at site si thus contains
the spatial parameters θ2, and process values at the neighboring sites U(s(i)). Since we can generate
arbitrarily large datasets from the design distribution, model fit is not affected by any data scarcity
of the observations. This is important since NNs often require large datasets for training.

The NNs have their own hyperparameters which cannot be estimated directly but rather need
to be tuned. These include the network architecture — the number of hidden layers (H), the size of
each hidden layer (Lh), the number of basis functions (K ), the activation function (ψ(·)), etc. They
also include NN training parameters like the learning rate, batch size, number of epochs, and early
stopping criteria. We have assumed the same network architecture for all the NNs in (11), with
the exception of differences due to a smaller Vecchia neighboring set for the first few sites. The
model is fit using the R (R Core Team, 2022) package SPQR (Xu and Majumder, 2022) whose in-
built cross-validation functions can be used to tune the NN hyperparameters. Once the weights have
been learned, applying the NN to the approximate likelihood is straightforward, and the Vecchia
approximation ensures that the computational burden increases linearly in the number of spatial
locations. Algorithm 1 outlines the local SPQR approximation.

3.4. Parameter estimation using MCMC for the NPMM

Given the approximate model in (8)–(9) for fy with an SPQR approximation for the spatial
dependence fu, a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods is used for
parameter estimation. We use Metropolis updates for both θ1 and θ2. For an STVC model with local
GEV coefficients for site i, we update parameters {µt (si), σ (si), ξ (si)} as a block sequentially by site,
nd exploit the Vecchia approximation to use only terms in the likelihood corresponding to sites
hich appear either as the response variable in the Vecchia approximation or in a Vecchia neighbor
et. The coefficients (βi0, βi1) are updated as a block for each i, and the weight parameters δti, i = 1, 2
are updated as a result of that. All Metropolis updates are tuned to give acceptance probabilities of
0.4, and convergence is diagnosed based on the visual inspection of the trace plots.
12
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Algorithm 1 Local SPQR approximation

Require: sites s1, . . . , sn with sets of neighboring locations s(1), . . . , s(n)
equire: Design distribution p∗, training sample size N
i← 2
while i ≤ n do

j← 1
while j ≤ N do

Draw values of θ2j ∼ p∗
Generate Uj(s) at s ∈ {si, s(i)} given θ2j using (3)
Define features xij = (θ2j, u(i)j), where u(i)j = {Uj(s); s ∈ s(i)}
j← j+ 1

end while
solve Ŵi ← argmax

W

∏N
j=1 fi(uij|xij,W) for fi(ui|xi,W) defined in (10) using SPQR

i← i+ 1
end while

Fig. 7. Sites used to fit SPQR models: Distribution of 55 watershed locations scaled to the unit square. Squares and
ircles denote sites in the 2 different regions. The blue square corresponds to site 45, and the red squares and circles
orrespond to its Vecchia neighboring set. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

. Density estimation for CUS sites and numerical studies

Density estimation for the NPMM only requires knowledge of the spatial configuration of sites,
nd a reasonable design distribution. We consider the n = 55 HCDN sites with the domain scaled
o the unit square for convenience. Sites are assigned to the two different regions with their own
eight parameters based on which HUC-02 region they belong to. Fig. 7 plots the distribution of
he 55 sites, alongside site 45 and its Vecchia neighboring set of m = 15 neighbors. We assume a
ommon smoothness parameter αR = αW = 1 to put the 2 spatial processes on the same scale. A
urther assumption is made to improve model identifiability; we parameterize ρW and ρR to have
he same effective range. We define the effective range as the distance at which the GP correlation
eaches 0.05 and the extremal coefficient χ for the MSP reaches 0.05. In Majumder et al. (2022),
his was achieved by setting ρ = ρW and ρR = 0.19ρ.

ocal SPQR model architecture. For density estimation, we fit local SPQR models for each site
, i = 2:55. The local SPQR models have identical architectures for each site with 2 hidden layers
i

13
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Fig. 8. Model diagnostics for local SPQR fit at site 45: Q-Q plot (left) for goodness of fit and variable importance plot
right) for the local SPQR model. δ12 in the variable importance plots is defined as log δ1 − log δ2 .

ith 30 and 20 neurons respectively, 15 output nodes, a learning rate of 0.01, and 100 epochs
ith a batch size of 1000. The model architecture was chosen by comparing the log-likelihood of

itted models with different architectures, and are very similar to those used in Majumder et al.
2022). The number of output nodes in this case correspond to the number of basis functions
sed to approximate the true conditional density. While the analytical form of the conditional
ensities are not available for the NPMM, Majumder et al. (2022) was able to study this for
GP, which is equivalent to setting δ1t = δ2t = 0. The conditional densities are univariate
aussian and analytically available in this case; 10–15 output nodes were found to be sufficient
n modeling the conditional density, with higher values leading to random fluctuations in the
stimated approximated conditional density. We train the SPQR models with the design distribution
∗, generating 2×106 samples uniformly from ρ, δ1t , δ2t , r ∈ (0, 1) with all parameters independent
f each other. Choosing p∗ ∼ U(0, 1) for each of the parameters allows us to explore the parameter

space uniformly within its support. The response ui is a function of exactly one of δ1t or δ2t
epending on which region si belongs to. The other weight parameter is relevant for density
stimation only if one of the neighbors is in the other region. Thus, some sites require exactly one
f δ1t or δ2t , while other sites require both. To ensure consistent dimensions of the feature vector
cross locations as well as identifiability of the weight parameters, we define δy and δy′ to be the
eight parameters corresponding to the response and the neighbors respectively. If all neighbors
elong to the same region as the response, δy′ = δy. Finally, we define δ(y) = log δy − log δy′ , which
s non-zero only if some of the neighbors belong to a different region from the response. Instead of
sing δ1t and δ2t , we use δy and δ(y) as covariates for density estimation. Algorithm 1 is then used
o fit the local SPQR models.

Fig. 8(a) plots the probability integral scores for the local SPQR model at site 45; the scores
alling along the Y = X line (partially visible, in red) suggests a good model fit. Fig. 8(b) plots the
ariable importance scores for the two nearest neighbors (denoted as X1 and X2) as well as the
patial parameters of the process. The neighbors have the highest importance across the quantiles,
nd the spatial parameters are important covariates for at least one of the extremal quantiles. The
emaining neighbors have significantly lower importances compared to the first few and have been
mitted from the plot for clarity; their exact magnitude often depends on the spatial configuration
f the locations. Variable importance plots for additional locations are provided in Appendix B.2.

umerical study for parameter estimation. Before using the density estimates on the observed
nnual streamflow maxima data, we consider 3 scenarios with different spatial and marginal
EV parameters in order to ascertain how the density-estimation errors propagate to parameter-
stimation errors. We assume δ1t and δ2t are independent of each other and depend on time by
eans of a probit link function, i.e.,

Φ−1(δ ) = β + β Z , i = 1, 2. (12)
it i0 i1 it

14
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Table 1
True parameter values for the 3 simulation study scenarios.
Scenario µ0 µ1 σ ξ ρ β10 β11 β20 β21

1 12 3 2 0.2 0.4 −1 1.8 0.2 2
2 13 5 2 0.1 0.1 1 −1.2 −1 0.8
3 12 3 3 −0.1 0.2 −1.5 2 −1.5 0.8

Fig. 9. Marginal and spatial parameter estimates: Sampling distribution of the posterior mean for GEV and spatial
arameters for the three simulation scenarios. The red dots are the true values, and empirical coverage of the 95%
ntervals are provided at the bottom of each plot. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

s covariates, we use Z1t = (t − t̄)/10 and Z2t = Z1t − 0.05, where t = 1972 + t − 1 and t̄ is the
mean of t . For all cases, the location parameters of the GEV are assumed to depend on a covariate
as in (2), and we use Xt (s) = Z1t for all sites. Within a scenario, each site is assumed to have the
same marginal GEV parameters. Table 1 lists the true parameter values for the 3 scenarios.

We generated 60 datasets for each scenario. Each dataset contains 50 independent realizations
of the NPMM at the 55 sites shown in Fig. 7. For priors, we select µ0, µ1, log(σ ) ∼ Normal(0, 102),
ξ ∼ Normal(0, 0.252), β10, β11, β20, β21 ∼ Normal(0, 1), and ρ, r ∼ Uniform(0, 1). We approximate
the posterior using MCMC with 11,000 iterations and Metropolis candidate distributions tuned to
have an acceptance probability of around 0.4. After discarding the first 1000 iterations as burn-
in, we compute posterior means and 95% confidence intervals for each parameter based on the
remaining samples. The posterior distributions of β10, β11, β20, and β21 are used to evaluate the
posterior distributions of the mean of δ1t and δ2t .

Fig. 9 plots the sampling distribution of the posterior mean estimator of model parameters of
interest and provides the empirical coverage of 95% posterior intervals at the bottom of each panel.
15
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Posterior estimators of the GEV parameters have relatively little bias and nominal coverage. To
evaluate the posterior of δ1t and δ2t , we plot δi = 1

50

∑50
t=1 δit , for i = 1, 2. Estimation of δi proves

more challenging, likely due to the spatial configuration of the locations, and the relatively low
importance of δy and δ(y) in the SPQR model. While bias and variability are higher for the spatial
parameters, but our methods can still distinguish between the asymptotic regimes of δ1 and δ2.

. Analysis of extremal streamflow in Central US

.1. Model description

We assign an STVC model to each of the marginal GEV parameters. The responses are modeled
s

Yt (s) ∼ GEV

⎧⎨⎩µ0(s)+
5∑

j=1

µj(s)Xjt (s), σ (s), ξ (s)

⎫⎬⎭ . (13)

The intercept process µ0(s) is assigned a GP prior with nugget effects to allow local heterogeneity:

µ0(s) = µ̃0(s)+ e0(s)

e0(s)
iid
∼ Normal(0, vµ0 )

µ̃0(s) ∼ GP(βµ0 , τ
2
µ0

K (s, s′)), where K (s, s′) = exp{−∥s− s′∥/ρµ0}

βµ0 ∼ Normal(0, 102), τ 2µ0
, v2µ0

iid
∼ IG(0.1, 0.1), log ρµ0 ∼ Normal(−2, 1),

where IG(·, ·) is the inverse-Gamma distribution. The slopes µj(s), j = 1:5, the log-scale log σ (s),
and the shape ξ (s) are modeled similarly using GPs. The STVC parameters are denoted as θ3 =

{βµ0 , τ
2
µ0
, ρµ0 , . . . , βξ , τ

2
ξ , ρξ }.

For the residual model, we use the process mixture model in Section 3 for spatial dependence
and assume independence across years. The simplifying assumptions that we make for the MSP
Rt (s) and the GP Wt (s) in Section 4 are maintained here. The model for the weight parameters δ1t
and δ2t along with the priors for all parameters in θ2 are written as:

Φ−1(δit ) = βi0 + βi1Zit , i = 1, 2
β10, β11, β20, β21 ∼ Normal(0, 1)

ρ, r ∼ Uniform(0, 1).

Note that the priors on the spatial ranges are for the scaled domain. In addition, both the streamflow
and precipitation data have been rescaled to [0,1] to ensure stable estimates. Fig. 10(a) plots
χu(h) for rank-standardized streamflow data as a function of u for different values of h. The rank
standardization ensures a Uniform(0, 1) marginal distribution at each location. The plot suggests
an asymptotically independent process. Fig. 10(b) plots the mean of the annual variograms of the
streamflow data. It shows a range of over 500 km, as well as the presence of a nugget effect.

5.2. Extremal streamflow patterns within the CUS

The local SPQR models from Section 4 are used to compute the density estimates. For parameter
estimation, we ran 2 independent MCMC chains for 15,000 iterations each, discarding the first 5000
of each chain as burn-in. Table 2 lists the posterior means and standard deviations of the spatial
parameters based on the 20,000 post-burn-in posterior samples.

The posterior mean of r suggests the presence of a nugget effect. For the posterior distribution
of δi, i = 1, 2, we evaluate 1

50

∑50
t=1 δit for each posterior MCMC sample of (βi0, βi1) and interpret

it as the average value of the weight parameter conditioned on precipitation. The empirical 95%
confidence intervals for the slope parameters βi1 are β11 ∈ (−0.76, 2.56), and β21 ∈ (−1.18, 2.47);
both intervals include zero, suggesting that the weight parameters for the two regions which
16



R. Majumder and B.J. Reich Spatial Statistics 55 (2023) 100755

2
f
t
t
i
t
o

e
p
b
e
p
A
i
p

h
f
h
s
m
o
a
a

Fig. 10. Spatial behavior of annual maximum streamflow in terms of the conditional exceedance and the variogram.

Table 2
Posterior means and standard deviations (SD) of spatial parameters of the NPMM based on MCMC.
Parameter Mean SD Parameter Mean SD

β10 −0.15 0.33 ρ 0.25 0.49
β11 0.92 0.86 r 0.88 0.03
β20 0.47 0.41 δ1 0.53 0.10
β21 0.65 0.94 δ2 0.71 0.12

ascribe the asymptotic regime of extremal streamflow are not associated with changes in the annual
regional precipitation.

To understand changes in δit as a function of annual precipitation, we evaluate it for 1972–
021 based on the posterior means of (βi0, βi1). Fig. 11 plots the value of the weight parameter
or the 2 HUC-02 regions from 1972–2021. Region 11 which corresponds to the lower half of
he CUS, has a higher estimate of the weight parameter than region 10L. The sites in region 11
end to show asymptotic dependence, while the sites in region 10L vary between asymptotic
ndependence and asymptotic dependence in different years. The estimates are quite different for
he 2 regions and vary quite a lot from year to year for region 10L, indicating the appropriateness
f the non-stationarity assumption of the spatial process.
Fig. 12 shows the goodness of fit of the marginal GEV models, based on maximum likelihood

stimates (MLE) computed individually at each site in 12(a), and estimates derived using the
osterior means of the NPMM in 12(b). Visual inspection suggests that the NPMM provides overall
etter fits compared to independent MLE despite having more bias. We compared the standard
rrors of the GEV parameters based on the MLE with the posterior standard deviation of the GEV
arameters based on the NPMM, and found that the latter was always lower; see Table B.4 in
ppendix B.3 for more details. Since extremes data is often scarce by definition, pooling in spatial
nformation across sites is crucial for improving model fits and in turn getting valid inference. The
osterior means and standard deviations for the components of θ3 are also provided in Table B.5.
Fig. 13 shows the posterior means of the slope parameters for each HCDN site. Since each site

as 5 slopes corresponding to the annual precipitation as well as 4 seasonal precipitations, we
ocus on the largest slope parameter for each site, corresponding to the season where precipitation
as the most significant effect on streamflow. Fig. 13(a) plots the slope parameter for the most
ignificant season at each site; the colors denote the magnitudes of the slope parameter for the
ost significant season and the shapes denote the season it corresponds to. We see that most
f the points are for spring (AMJ), and exactly one location (in region 11) is affected more by
nnual precipitation than by seasonal precipitation. To assess the strength of the significance for
ll seasons, we computed the posterior probability of each slope parameter being greater than 0,
17
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Fig. 11. Posterior means of δ1 corresponding to region 10L and δ2 corresponding to region 11, computed annually for
972–2021.

Fig. 12. Goodness of fit for the marginal distributions of annual streamflow maxima: Q-Q plots for MLE computed
ndependently at all sites (left), and based on posterior means from the NPMM (right).

.e., P[µj(s) > 0] for j = 2:5. The slope corresponding to the annual precipitation is not considered
in this case, and all 55 sites had at least one seasonal slope with a non-zero probability. We count
the number of seasons where P[µj(s) > 0] > 0.90 for each site; the resulting plot is presented in
Fig. 13(b). The lower values in the plot indicate that precipitation has a large effect on streamflow
only in specific seasons, whereas the higher values signify that maximum streamflow is a function
of seasonal precipitation from different seasons for different years. We refer the reader to Awasthi
et al. (2022) for further discussion on the seasonal/annual effect of precipitation on streamflow
for different regions. Considering that most of these sites have 3–4 significant seasons as shown
18
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Fig. 13. Posterior means of slope parameters for annual streamflow maxima: Estimates of µ(s) = max(µj(s)) for
j = 2 : 5 corresponding to the 4 seasons with shapes denoting the season with the highest slope value (left), and number
of seasons (excluding annual) where P[µ(s) > 0] > 0.90 (right).

Fig. 14. Posterior means of scale and shape parameters of annual streamflow maxima.

n Fig. 13(b), it is reasonable to conclude that maximum streamflow is affected by the convective
torms that occur in the CUS and the associated precipitation.
Finally, Fig. 14 contains posterior means of the scale and shape parameters of all the watersheds.

oth parameters are spatially dependent over the CUS region. We also note that the posterior means
f the shape parameter are positive for 54 of the 55 sites.

.3. Annual streamflow maxima projections under RCP 4.5 and RCP 8.5

We used the bias-corrected MACA precipitation data for six RCP 4.5 and six RCP 8.5 models as
pecified in Section 2.3 to get future projections of streamflow. Future projections for MACA (and
MIP5 data in general) begin from 2005, and we consider the distribution of extremal streamflow
orecasts for the period from 2006–2035. Each CMIP5 model also provides historical runs alongside
he projections, from which we estimate the distribution of extremal streamflow for 1972–2005.
or each scenario (historical, RCP 4.5, RCP 8.5) and each GCM model listed in Section 2.3, we use
easonal and annual bias-corrected GCM precipitation to generate estimates of annual streamflow
axima using the following steps:
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Table 3
Measure of joint exceedance in projected streamflow maxima: Mean number of locations
jointly above the 0.90 and 0.99 quantile thresholds. Values in parentheses represent the minimum
and maximum projections from among the 6 models used in each scenario.

u = 0.90 u = 0.99

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

1972–2005 (5.49, 5.55) (5.49, 5.55) (0.54, 0.56) (0.54, 0.56)
2006–2035 (5.49, 5.54) (5.50, 5.53) (0.54, 0.56) (0.55, 0.56)

1. Draw 1000 post burn-in samples θ
(1)
1 , . . . , θ

(1000)
1 from the posterior distribution of the GEV

parameters. Repeat steps 2–3 for each sample and each scenario
2. Use bias-corrected GCM precipitation as covariates in (2) to get GEV distribution location,

scale, and shape parameter estimates independently for each site
3. Solve for and compute the 0.90 and 0.99 quantiles of the distribution of streamflow maxima

over the entire time period.

he quantiles for each site, given the GEV parameters for the entire time period (34 years for the
istorical period and 30 years for the projection period), can be computed by univariate root-finding
lgorithms. This gives us 1000 extremal quantile estimates of the distribution of annual streamflow
axima at each of the 55 sites for the historical, RCP 4.5, and RCP 8.5 scenarios. For each of the two
CP scenarios and two extremal quantile levels, we study and report the percent change in annual
treamflow maxima compared to the historical period.
Figs. 15–16 show the mean percentage change in the observed 0.90 and 0.99 quantiles under

he RCP 4.5 and RCP 8.5 projections, averaged over the 1000 estimates. The top row of each figure
onsists of models that project a wetter future, whereas the bottom row consists of models which
roject a drier future. In both figures, the triangles denote an increase, while the circles denote a
ecrease in annual streamflow maxima at each location. Four of the six models under each RCP
cenario are common to both scenarios — CNRM-CM5, CSIRO-Mk3-6-0, and MRI-CGCM3 which
roject wetter futures, and IPSL-CM5A-MR, which projects a drier future. The output based on these
our models can thus be compared across scenarios and quantile levels. For a particular quantile
evel, with the exception of CSIRO-Mk3-6-0, the wetter models predict more positive changes under
CP 8.5 than under RCP 4.5 Similarly, IPSL-CM5A-MR predicts more negative changes under RCP 8.5
han under RCP 4.5. CSIRO-Mk3-6-0 shows noticeable differences between RCP 4.5 and RCP 8.5, with
everal locations that show positive change under one scenario showing negative change under the
ther and vice versa. We expect further divergences between scenarios if this study is extended to
longer time horizon due on the underlying assumptions of the 2 RCP scenarios.
Looking across quantile levels, we note that the 0.99 quantiles in Fig. 16 estimate lower levels of

hange, ranging from −2.7%–8.4%, compared to the 0.90 quantiles in Fig. 15 which show changes
etween −10.3%–12.3%. However, the number of locations with positive changes are the same or
igher when we go from the 0.90 quantile to the 0.99 quantile under both RCP scenarios. Under
CP 4.5, all six models estimate that more than 50% locations have increased flow for both quantile
evels, with values ranging from 51%–93%. For RCP 8.5, four out of the six models estimate more
han half the locations to have increased streamflow. In this case, the values range from 22%–91%;
n all cases, CSIRO-Mk3-6-0 gives the lowest estimates.

Table 3 shows the expected number of locations jointly above the threshold for the historical
nd projection periods based on Monte-Carlo simulations from the fitted spatial model using bias-
orrected GCM precipitation data. The values in parentheses correspond to the minimum and
aximum of the estimates obtained from the 6 GCM models used. If the probability of exceeding

he threshold at all locations were independent, the number of locations above the threshold would
ollow a Binomial distribution with parameters n = 55 and probability 1 − u, for the two cases of
= 0.90 and u = 0.99. In turn, the expected number of locations above the threshold under the

ndependence assumption would be 5.5 and 0.55 respectively. For both the historical and projection
eriods, estimates from most of the models are higher than estimates from the independence
ssumption. In particular, both the mean and median for each of the 8 sets of values are higher
20
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Fig. 15. Percentage change in observed 0.90 quantile under RCP 4.5 and RCP 8.5 for 2006–2035, compared to the baseline
period of 1972–2005. Triangles denote positive values and circles denote negative values.

than what we would get from an independence assumption. Overall, this suggests that concurrent
extremal streamflow at multiple locations is likely to keep occurring into the near future.
21
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Fig. 16. Percentage change in observed 0.99 quantile under RCP 4.5 and RCP 8.5 for 2006–2035, compared to the baseline
period of 1972–2005. Triangles denote positive values and circles denote negative values.
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6. Discussion

In this paper, we propose a non-stationary process mixture model for spatial extreme value
nalysis. The marginal distributions of the process are GEV, while the spatial dependence is specified
s an interpolation of a GP and an MSP indexed by a weight parameter which is allowed to
ary spatio-temporally, introducing non-stationarity. Similarly, STVC specifications used for the
arginal parameters make the model flexible in terms of learning different spatio-temporal patterns
resent in the data. The model is an extension of the (stationary) process mixture model introduced
n Majumder et al. (2022). The intractable joint likelihood for the spatial model is approximated
sing a Vecchia decomposition, and is learned using the density regression approach of Xu and
eich (2021). The density regression estimates a quantile process for the approximate likelihood
hose weights are obtained from a neural network by maximizing the approximate likelihood.
We use the NPMM to provide climate informed near-term projections of annual streamflow

axima for the central US region. The CUS is affected by convective storms and, therefore, any
rojections of streamflow should take into account seasonal and annual precipitation over the
egion. The CUS is divided into two HUC-02 regions, and the asymptotic regime for the regions
re estimated independently. We used observed NClimGrid precipitation data to fit the model for
nnual streamflow maxima. The means of the posterior distribution puts Region 11 in the south
o be asymptotically dependent for all 50 years, whereas Region 10L in the north is asymptotically
ependent for 39 out of the 50 years and asymptotically independent for the rest of the years.
egion 10L also has more variability in the posterior mean of asymptotic (in)dependence parameter
rom year to year. These inter-year differences and differences between the regions justify the
ppropriateness of the non-stationary assumptions we make about the process. While we find no
ignificant linear relationship between region-wide precipitation and the logit of weight parameter,
e note that region 11 has higher precipitation compared to region 10L. Afterwards, bias-corrected
CM precipitation projections are used as covariates to obtain streamflow estimates for the future
eriod of 2006–2035 and compared against the historical period of 1972–2005. Based on our
rojections, both the magnitude of extremal streamflow as well as the number of locations which
re concurrently affected by these extreme events are likely to increase in the near-term future.
Future research will focus on generating long-term climate-informed projections. The current

ork considers only seasonal precipitation as covariates, as adding too many variables adversely
ffected MCMC convergence. However, longer-term precipitation as well as temperature can affect
treamflow (Awasthi et al., 2022), and we would like to incorporate additional covariates in future
ork. Learning the weight parameter proves more challenging for the NPMM compared to its
tationary equivalent; we hope to improve the spatial dependence in the model as well as the
stimates obtained from it by incorporating network structure, as has been done for both max-
table (Asadi et al., 2015) and Gaussian (Santos-Fernandez et al., 2022) processes. Relaxing the
implifying assumptions on the smoothness and range parameters would improve the spatial
odeling, but could make estimation more difficult as more variables are free to vary. Finally, the
ynthetic likelihood approach to density estimation for spatial processes using deep learning is not
pecific to the NPMM, and we would like to explore its performance and properties for other spatial
xtremes models.
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Appendix A. Derivation of conditional exceedance for a common spatial process

Majumder et al. (2022) derived χ (s1, s2) for a process mixture model with a common MSP
(s1) = R(s2) = R and W (s1) and W (s2) are independent. We extend that and focus on a specific
ase where δ1 = δ and δ2 = 1 − δ, where δ1, δ2 are defined as in Section 3.2. This is a convenient
ase because with this restriction both sites have the same marginal distribution. This case is also
nteresting because it illustrates the behavior of the process when the two sites are in different
symptotic regimes. We denote gW {W (s1)} = W ∗1 , gW {W (s2)} = W ∗2 , gR(R) = R∗ for convenience.

y assumption W ∗1 ,W
∗

2 , R
∗

iid
∼ Exponential(1). Under these conditions, the joint survival probability

s as follows:

Pr[Y1 > y, Y2 > y] = Pr[δ1R∗ + (1− δ1)W ∗1 > y, δ2R∗ + (1− δ2)W ∗2 > y]

= ER∗

[
Pr

{
W ∗1 >

y− δr
1− δ

}
Pr

{
W ∗1 >

y− (1− δ)r
δ

}
|R∗ = r

]
.

Defining r1 := (y− δr)/(1− δ) and r2 := (y− (1− δ)r)/δ, we get

Pr[Y1 > y, Y2 > y] = ER∗

[
Pr{W ∗1 > r1}Pr{W ∗2 > r2}I{r1 > 0, r2 > 0}

]
+ER∗

[
Pr{W ∗1 > r1}I{r1 > 0, r2 < 0}

]
+ER∗

[
Pr{W ∗2 > r2}I{r1 < 0, r2 > 0}

]
+ ER∗

[
I{r1 < 0, r2 < 0}

]
. (A.1)

Note that:

r1 > 0, r2 > 0 H⇒ r < min(y/δ, y/(1− δ))
r1 > 0, r2 < 0 H⇒ (y/(1− δ) < r < y/δ)I{δ < 0.5}
r1 < 0, r2 > 0 H⇒ (y/δ < r < y/(1− δ))I{δ > 0.5}
r1 < 0, r2 < 0 H⇒ r > max(y/δ, y/(1− δ))

We first assume that δ < 0.5. Denoting the four terms on the right-hand side of (A.1) as J1, J2, J3,
and J4, we first see that J3 = 0. The remaining three terms are computed individually.

J1 = exp
{
−y

(1
δ
+

1
1− δ

)} ∫ y/1−δ

0
exp

{
r
( δ

1− δ
+

1− δ
δ

)}
exp{−r}dr

= exp
{
−y

(1
δ
+

1
1− δ

)} ∫ y/1−δ

0
exp

{3δ2 − 3δ + 1
δ(1− δ)

r
}
dr

= k1 exp
{
−y

(1
δ
+

1
1− δ

)}[
exp

{3δ2 − 3δ + 1
δ(1− δ)2

y
}
− 1

]
= k1 exp

{
−

y
1− δ

}[
exp

{
−

1− 2δ
(1− δ)2

y
}
− exp

{
−

y
δ

}]
,

here k1 is the appropriate constant arising from the integration.

J2 = exp
{
−

y
1− δ

} ∫ y/δ

y/1−δ
exp

{
r
( δ

1− δ
− 1

)}
dr

= k2 exp
{
−

y
1− δ

}[
exp

{
−

1− 2δ
δ(1− δ)

y
}
− exp

{
−

1− 2δ
(1− δ)2

y
}]
,

here k2 is the appropriate constant that arises from the integration. Finally,

J = exp{−y/δ}.
4
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The marginal survival probability can be obtained from (4). We denote it as M , where

M =
δ

1− 2δ
exp{−

y
δ
} −

1− δ
1− 2δ

exp{−
y

1− δ
}.

The conditional exceedance probability χ (s1, s2) can be expressed as:

χ (s1, s2) = lim
y→∞

J1 + J2 + J3 + J4
M

= lim
y→∞

J1
M
+ lim

y→∞

J2
M
+ lim

y→∞

J4
M
.

ach of the limits are evaluated individually:

J1
M
= k1

exp
{
−

1−2δ
(1−δ)2

y
}
− exp

{
−

y
δ

}
δ

1−2δ exp
{
−y 1−2δ

δ(1−δ)

}
−

1−δ
1−2δ

H⇒ lim
y→∞

J1
M
= k1

0− 0
0− 1−δ

1−2δ

= 0.

J2
M
= k2

exp
{
−

1−2δ
δ(1−δ)y

}
− exp

{
−

1−2δ
(1−δ)2

y
}

δ
1−2δ exp

{
−y 1−2δ

δ(1−δ)

}
−

1−δ
1−2δ

H⇒ lim
y→∞

J2
M
= 0

inally,

J4
M
=

exp
{
−

y
δ

}
δ

1−2δ exp{−
y
δ
} −

1−δ
1−2δ exp{−

y
1−δ }

=
exp

{
−y 1−2δ

δ(1−δ)

}
δ

1−2δ exp
{
−y 1−2δ

δ(1−δ)

}
−

1−δ
1−2δ

H⇒ lim
y→∞

J4
M
= 0.

∴ χ (s1, s2) = 0.

ext, consider the case of δ > 0.5. We see that the term J2 in (A.1) is 0. Like before, we simplify
he remaining 3 terms.

J1 = exp
{
−y

(1
δ
+

1
1− δ

)} ∫ y/δ

0
exp

{
r
( δ

1− δ
+

1− δ
δ

)}
exp{−r}dr

= exp
{
−y

(1
δ
+

1
1− δ

)} ∫ y/δ

0
exp

{3δ2 − 3δ + 1
δ(1− δ)

r
}
dr

= k3 exp
{
−y

(1
δ
+

1
1− δ

)}[
exp

{3δ2 − 3δ + 1
δ2(1− δ)

y
}
− 1

]
= k3 exp

{
−

y
δ

}[
exp

{
−

2δ − 1
δ2

y
}
− exp

{
−

y
1− δ

}]
,

where k3 is the appropriate constant from the integration. We note the symmetry between J1 for
δ < 0.5 and J1 computed for δ > 0.5. It is straightforward to show that limy→∞ J1/M = 0 in this
ase as well. It follows by symmetry that lim J /M = 0 for δ > 0.5. Finally, we verify the
y→∞ 4
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s

b

Fig. B.17. Empirical χu(h) for different combinations of δ1 and δ2 with threshold u = 0.9999 under two different model
pecifications.

ehavior for J3:

J3 = exp
{
−

y
δ

} ∫ y/1−δ

y/δ
exp

{
r
(1− δ
δ
− 1

)}
dr

= k4 exp
{
−

y
δ

}[
exp

{
−

2δ − 1
δ(1− δ)

y
}
− exp

{
−

2δ − 1
δ2

y
}]
,

where k4 is the appropriate constant for integration. Thus, limy→∞ J3/M = 0 due to its symmetry
with J2.

Therefore, for δ ∈ (0, 0.5) ∪ (0.5, 1), χ (s1, s2) = 0.

Appendix B. Computational details

B.1. Asymptotic joint tail behavior

Fig. B.17 depicts the behavior of χu(0.12) at the 0.9999 quantile for two related models, which
relax our current model assumption of ρR = 0.19ρW . In Fig. B.17(a), we assume that ρR = ρW .
This increases the range of χu(0.12) as more extremal dependence is introduced. In Fig. B.17(b),
we replace the MSP with a GEV(1, 1, 1) distribution, which makes this equivalent to the model
presented in Huser and Wadsworth (2019). This has the maximum amount of extremal dependence
among this class of models by construction, which is reflected in the high range of χu(0.12).
However, for both cases, the same behavior holds for different values of δ1 and δ2, with asymptotic
dependence only if both sites are in an asymptotic dependence regime.

B.2. Variable importance plots

Fig. B.18 presents variable importance plots for 4 different locations within our study area.
Location 11 does not have a full suite of neighbors, as the Vecchia neighboring set can have up
to 15 neighbors. Location 16 is the first location which has all 15 neighbors, and locations 35 and
50 also have all 15 neighbors. For all 4 locations, the nearest neighbor has the highest importance.
The importance of the second neighbor varies from location to location. We have found this to be
a function of the spatial configuration — in particular, how far the second neighbor is from the
response site, as well as how close it is to the other neighbors. It could also depend on whether it
belongs to the same region or not.

The remainder of the neighbors show similar behavior with a steady drop off of their impor-
tances, and have thus been omitted for clarity. It is interesting to note the fundamentally different
26
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Fig. B.18. Variable importance (VI) plots based on SPQR output for 4 different locations within the CUS.

Table B.4
Model fit diagnostics for marginal GEV parameters: Standard errors based on the maximum
likelihood estimates of GEV distributions fitted independently at each location (MLE), and posterior
standard deviations based on the process mixture model (NPMM). Values represent an average
taken over all 55 locations.
Parameter MLE NPMM Parameter MLE NPMM

µ0 0.05 0.03 µ1 0.17 0.09
µ2 0.07 0.05 µ3 0.09 0.06
µ4 0.08 0.05 µ5 0.07 0.05
σ 0.20 0.01 ξ 0.22 0.13

way the neighbors affect the quantiles of the response compared to how the spatial parameters
affect them. The neighbors have the largest effect around the median and drop off in importance
near the extreme quantiles at both ends. The spatial parameters have the opposite behavior. We
also note that δy is more important to the response compared to δ(y). This is to be expected since δy
is the mixing parameter that corresponds to the response, while δ(y) can be either 0 or a function
of the other mixing parameter that does not directly affect the response.

B.3. Parameter estimates

Table B.4 provides a comparison of the marginal GEV model fits across locations based on the
NPMM, as well as independent MLE estimates of the GEV parameters. The MLE estimates were used
as initial values in our MCMC; we computed the standard errors for each variable and averaged it
across the 55 sites. For the NPMM estimate, we compute the posterior SD of each parameter based

on 20,000 post-burn in samples, and similarly average over all 55 locations. In all cases, the NPMM
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Table B.5
STVC parameter estimates: Mean and SD for the GP parameters for the marginal GEV parameters.

Param. Mean SD Param. Mean SD Param. Mean SD

βµ0 −0.01 0.18 τ 2µ0
0.19 0.04 ρµ0 4.52 1.60

βµ1 −0.06 0.25 τ 2µ1
0.26 0.08 ρµ1 3.24 1.53

βµ2 0.20 0.29 τ 2µ2
0.30 0.09 ρµ2 2.86 1.46

βµ3 0.26 0.32 τ 2µ3
0.33 0.11 ρµ3 2.56 1.43

βµ4 0.06 0.24 τ 2µ4
0.25 0.07 ρµ4 3.50 1.55

βµ5 0.08 0.22 τ 2µ5
0.23 0.06 ρµ5 3.73 1.59

βσ 0.17 2.19 τ 2σ 0.89 0.48 ρσ 1.36 1.20

βξ 0.33 0.69 τ 2ξ 0.72 0.29 ρξ 1.57 1.14

has lower spread, suggesting a better model fit. Finally, Table B.5 provides posterior means and SD
of the GP parameters associated with the STVC model for the marginal parameters described in
Section 5.1.
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