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increase in the frequency and magnitude of extreme streamflow
for 2006-2035 compared to the historical period of 1972-2005.
© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The increase in the frequency of hydroclimatic extreme events in the last few decades has
caused devastating economic damage and claimed thousands of human lives (Hirabayashi et al.,
2013; Winsemius et al.,, 2018). Winsemius et al. (2016) predicted an increase in this cost due to
sea level rise and extreme precipitation events brought about by climate change. Uncertainty in
climate change projections, particularly those associated with precipitation (Bhowmik et al., 2017),
also results in significant challenges to the design and maintenance of water infrastructure (e.g.,
Vahedifard et al., 2017; Kasler and Hecht, 2017). This is further exacerbated by the complexity of
flooding events (Merz et al., 2014; Condon et al., 2015; Kundzewicz et al., 2017; Francois et al., 2019)
as extremal streamflow, which is a key measure of flood risk, shows spatial clustering (Hirsch and
Ryberg, 2012; Majumder et al., 2022). There is therefore a need to account for spatial and temporal
variability (i.e., non-stationarity) in extremal streamflow due to precipitation when assessing
current and future flood risk (Milly et al., 2008; Vogel et al., 2011; Merz et al., 2014; Kundzewicz
et al., 2014; Salas and Obeysekera, 2014; Milly et al., 2015; Sraj et al., 2016).

A relatively simple approach to projecting flood risk on the basis of extreme streamflow is by the
statistical extrapolation of spatio-temporal trends observed in the historical record. Extreme value
analysis (EVA) methods have been used to model the relationship between flooding, watershed
characteristics, and the weather, using regressions or hierarchical models to account for non-
stationarity (Sraj et al., 2016; Dawdy et al., 2012; Lima et al., 2016). However, purely statistical
projections of extremal streamflow that do not consider physical variables which are expected
to change under climate change (e.g., temperature and precipitation) are likely to be unreliable
for long-term projections (Jain and Lall, 2001). Precipitation has a large impact on groundwater
flow and is therefore a major driver of extremal streamflow. Like streamflow, it exhibits non-
stationarity (Cheng et al.,, 2014; Kunkel et al., 2020) which needs to be incorporated into any
modeling that attempts to provide future projections of extremal streamflow. In this paper, our
objective is to build a spatial model relating precipitation and streamflow and use climate model
forecasts of future precipitation to understand flood risk under different climate change scenarios.

While climate change is often described in terms of the mean, it will mostly be experienced
through extremes. Data for extreme events are by definition sparse, and parametric models must
therefore be carefully chosen based on extremal theory to estimate small probabilities. Standard
measures of dependence such as correlation and spatial models such as Gaussian processes (GP) do
not adequately model extreme events; in order to properly account for spatial dependence while
modeling rare event probabilities, we use spatial extreme value analysis (EVA). For modeling block
maxima, e.g., the annual maximum of daily streamflow, the commonly used spatial EVA model is
the max-stable process (MSP) (De Haan and Ferreira, 2006; Smith, 1990; Tawn, 1990; Schlather,
2002; Kabluchko et al., 2009; Buishand et al., 2008; Wadsworth and Tawn, 2012; Reich and Shaby,
2012). MSPs are a natural asymptotic model for block maxima, but can also be applied to peaks
over a threshold using a censored likelihood (e.g., Huser and Davison, 2014; Reich et al.,, 2013).
Exact inference for MSPs is challenging, and commonly used censored likelihood models for MSPs
are also computationally intractable for all but a small number of spatial locations (Schlather, 2002;
Kabluchko et al., 2009; Wadsworth and Tawn, 2012, 2014; Wadsworth, 2015). Further, MSPs enforce
asymptotic dependence among spatial locations (Huser and Wadsworth, 2019), an unreasonable
assumption for environmental data that often has weakening spatial dependence with increasing
extremeness. Alternatives and extensions to MSPs include process mixture models (Huser and
Wadsworth, 2019; Majumder et al., 2022; Zhang et al., 2022b) and max-infinitely divisible process
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(MIDP) models (Bopp et al., 2021), both of which can accommodate more flexible asymptotic
regimes of tail dependence.

Climate-informed flood projections which consider non-stationarity is an ongoing area of re-
search (Delgado et al., 2014; Condon et al., 2015; Francois et al., 2019; Schlef et al., 2018, 2021;
Sankarasubramanian and Lall, 2003; Zhang et al., 2015; Bertola et al., 2019; Awasthi et al., 2022),
but flood projections are not commonly studied as a spatial EVA problem. The intractability of
common spatial EVA likelihoods pose computational challenges which make it difficult to fit realistic
statistical models. For example, in a study of a large geographic region under a changing climate, it is
unrealistic to assume stationarity in the degree of extremal dependence between nearby locations.
Non-stationarity could appear due to dependence on variables which vary spatio-temporally, or
due to physical considerations like topography. Recent work on incorporating non-stationarity in
spatial EVA models include Wadsworth and Tawn (2022), who incorporate non-stationarity using
the framework of Sampson and Guttorp (1992). They deform the coordinate system into one where
the process is stationary; this approach, however, does not use covariates. Huser and Genton (2016)
use covariates in the covariance structure of an MSP, extending the work of Paciorek and Schervish
(2006). Chevalier et al. (2021) uses multidimensional scaling to capture regional variation in the
asymptotic spatial dependence of an MSP, and Zhong et al. (2022) construct an MIDP which include
covariates to capture spatio-temporal non-stationarities. Similarly, our work proposes a spatial EVA
model that allows extremal dependence to vary over both space and time via climate covariates.
While this model is flexible and intuitive, it is difficult to fit using standard computational methods.

Many of the modeling and computational limitations of extreme value theory have been ad-
dressed using deep learning. For example, Cannon (2010), Vasiliades et al. (2015), Shrestha et al.
(2017), Pasche and Engelke (2022), Richards and Huser (2022) and the references therein use neural
networks to obtain flexible regression frameworks relating covariates to extreme quantities. Similar
to the application in this paper, Shrestha et al. (2017) use neural networks to model the dependence
of extreme streamflow on precipitation and temperature, and then use these relationships with
climate models to project future extreme streamflow events. Recently, Wilson et al. (2022) have
used a convolutional neural network to regress spatial fields onto the parameters of an extreme
value distribution. Computational limitations due to intractable likelihoods associated with spatial
extreme value processes have also been addressed using deep learning. Lenzi et al. (2021) and
Sainsbury-Dale et al. (2022) replace maximum likelihood estimators with neural networks, while
Majumder et al. (2022) develop synthetic likelihood functions by sampling from the spatial extreme
value process with different parameter settings, and fitting these simulations with neural networks
to learn an approximate likelihood function connecting the data with the model parameters.

In this work, we propose a non-stationary process mixture model (NPMM) for climate-informed
estimation of extremal streamflow. We specify a statistical EVA model for annual streamflow
maxima within the central US (CUS) region, and use downscaled and bias-corrected precipitation
projections obtained from the Multivariate Adaptive Constructed Analogs (MACA) dataset (Abat-
zoglou and Brown, 2012) as predictors. The NPMM addresses two important aspects of climate-
informed EVA modeling. First, the process mixture model allows learning both the type and strength
of asymptotic (in)dependence from the data by interpolating between a GP and an MSP. Second, the
NPMM introduces non-stationarity by allowing the asymptotic regime of the spatial process to vary
spatio-temporally as a function of precipitation for sub-regions within the CUS. Climate models
not only consider different distributions of climate variables between historical and future time
periods, they also consider multiple future pathways where model outputs diverge considerably as
we extend the time horizon. Covariates allow us to accommodate potential changes in the spatial or
marginal behavior or both for extreme streamflow under future climate projections which deviate
from historical patterns. Inference for the NPMM is separated into density estimation and parameter
estimation. The density estimation, used to approximate the intractable likelihood of the spatial
process, is carried out using semi-parametric quantile regression (SPQR) (Xu and Reich, 2021). The
quantile process has a basis function representation, whose weights are estimated using a feed-
forward neural network. The NPMM provides a flexible framework for incorporating covariates into
the spatial process as well as the marginal distributions at each location, and we use it to project
extremal streamflow for 2006-2035 informed by climate model precipitation under two different
climate pathways.
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Fig. 1. HCDN sites in HUC-02 regions 10L and 11: Locations and 0.99 quantiles of annual streamflow maxima (in
m3/s) at 55 HCDN stations overlaid on an elevation map (in m) of the central United States region bounded by
[—107, —90] x [30, 44]. The two large polygons within the figure correspond to regions 10L (top) and 11 (bottom),
and the smaller polygons correspond to the HCDN basins that each station measures streamflow for.

The rest of the paper is organized as follows. We introduce the streamflow and precipitation
datasets for the CUS region in Section 2. Section 3 presents the NPMM and discusses density
estimation, parameter estimation, and tail behavior for the model. Density estimation using SPQR for
the CUS locations is carried out in Section 4, and we conduct a simulation study to see how errors in
density estimation affect parameter estimates. The analysis of extremal streamflow as a function of
precipitation is presented in Section 5, along with future projections of extremal streamflow based
on downscaled and bias-corrected climate model precipitation data. Section 6 concludes.

2. Hydroclimatic data for the Central US
2.1. Observed streamflow data

The USGS Hydro-Climatic Data Network (HCDN) (Lins, 2012) is a dataset of streamflow records
within the United States and its Territories. The HCDN consists of locations that are minimally
impacted by anthropogenic activity, making it suitable to study the effects of changing climate
on streamflow. The HCDN has been used to study the effect of climatic variables on stream-
flow (Sankarasubramanian et al., 2001; Oh and Sankarasubramanian, 2012) and to study the change
in extremal streamflow over time (Majumder et al., 2022). For studying water resources, the USGS
divides the US into groups of nested Hydrologic Units, identified by Hydrologic Unit Codes (HUCs).
The first level of classification divides the US into 21 regions, referred to as HUC-02 regions. Our
study focuses on two specific HUC-02 regions for which we have a complete data record between
1972-2021; the lower half of Region 10, denoted as 10L, and Region 11. Together, they span a region
in the Central US (CUS) that consist of 55 gauges spread across South Dakota, Nebraska, Colorado,
Wyoming, Kansas, lowa, Missouri, Arkansas, Oklahoma, New Mexico and Texas. Fig. 1 plots the
sample 0.99 quantile of annual streamflow maxima (measured in m3/s) over the last 50 years at
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each station. There is spatial variation in these data, with extremal streamflow increasing from west
to the east.

2.2. Observed precipitation data

The CUS is characterized by severe convective storms (Risser et al., 2019; Zhang et al., 2022a),
and precipitation trends that could potentially influence flooding (Kunkel et al., 2020). Condon
et al. (2015) have used monthly average precipitation as a model predictor to project future floods,
while Awasthi et al. (2022) have used monthly total precipitation as predictors to project flood
frequencies under near-term climate change. We refer the reader to Awasthi et al. (2022) for
further references regarding the use of precipitation and temperature as predictors of extremal
streamflow. In this study, we use seasonal and annual precipitation means as predictors of annual
extremal streamflow. Monthly precipitation data is sourced from the NOAA Monthly US Climate
Gridded Dataset (NClimGrid) (Vose et al., 2014), which is based on the Global Historical Climatology
Network (GHCN) dataset. NClimGrid data is available on a 5 km x 5 km grid, and for each of the 55
HCDN stations we use monthly precipitation for all NClimGrid cells for the corresponding basins as
outlined in Fig. 1.

The NClimGrid data are treated as covariates to estimate both the marginal parameters at each
site as well as dependence parameters for the underlying spatial process. For our response variable
Y:(s), the extremal streamflow for year t and location s, we consider the corresponding seasonal
precipitations as covariates. Following Awasthi et al. (2022), the seasons correspond to winter
(JEM), spring (AM]), summer (JAS), and autumn (OND), where JFM denotes the months of January-
February-March, and so on. Fig. 2(a) plots the mean seasonal precipitation across the 2 HUC-02
regions. Not only is there spatial variability within a season, we also see heterogeneity across
seasons. The highest values are observed in the southeast, and lower values seen along the west. We
also note that the spring season has the highest precipitation. Fig. 2(b) plots the 0.99 quantile of the
seasonal precipitation associated with the HCDN sites for each season. Additionally, we define the
covariates Z;; and Z,; as the annual precipitation within HUC-02 Regions 10L and 11, respectively,
which is computed as the total precipitation for all NClimGrid points for the corresponding region.
Fig. 3 plots a time series of annual precipitation for the 2 HUC-02 regions from 1972-2021. We
note that Region 11, which is located in the southern part of the CUS, has higher precipitation than
Region 10L.

2.3. Global Climate Model output of future precipitation

While Global Climate Models (GCMs) do not produce streamflow estimates, they provide pre-
cipitation variables which we use to predict extremal streamflow. The Multivariate Adaptive
Constructed Analogs (MACA!) dataset (Abatzoglou and Brown, 2012) is a statistical downscaling
method for GCMs. MACA downscales the model output from 20 GCMs of the Coupled Model Inter-
Comparison Project 5 (CMIP5) (Taylor et al., 2012) for historical GCM forcings (1950-2005) as well
as future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP 8.5 scenarios (2006-2100)
from the native coarse resolution of the GCMs to a higher spatial resolution of 4 km. RCP 4.5
assumes that total anthropogenic CO, will peak around 2040, and decline till 2080, whereas RCP
8.5 assumes that CO, concentrations continue to rise until the end of the century. MACA provides
monthly precipitation (pr) as one of its outputs; we obtain both the historical runs for 1972-2005
for calibrating it to NClimGrid output, and use it to estimate extremal streamflow for the CUS
from 2006-2035. The quality of the GCM model projections can vary according to variable, climate
pathway, geographic region, and time horizon, and Joyce and Coulson (2020, page 9) provides
criteria for selecting climate models. We choose 6 models for each RCP scenario following on the
model rankings provided by Joyce and Coulson (2020); the chosen models are the top three ranked
projections in terms of precipitation change (dry, wet) at mid-century (2041-2070) under the 2
scenarios (RCP 4.5, RCP 8.5) at the coterminous US scale. While our study focuses on projections

1 https://www.climatologylab.org/maca.html
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Fig. 2. Seasonal distribution of NClimGrid precipitation for 1972-2021: Seasons are specified on the top right of each
panel and defined as winter (JFM), spring (AM]), summer (JAS), and autumn (OND).
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Fig. 3. Time series of annual NClimGrid precipitation (in mm) from 1972-2021 for the 2 HUC-02 regions of the CUS.
Values represent an average over all grid cells within the corresponding region.

NPMM Fitted using observed data

S

N Observed precipitation (NCIlimGrid)
Q .
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1972 | 2005 | | 2021 | | 2035 |
Baseline period Projection period

T Historical GCM A, |Projected GCM precipitation
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Distribution of streamflow maxima based on NPMM and

-

bias-corrected GCM precipitation

Fig. 4. Datasets used in the study, with periods of availability and usage details.

up until 2035, our choice of models ensure that these results can be extended for longer durations,
and account for model and scenario uncertainty. The models chosen for RCP 4.5 are IPSL-CM5A-
MR, bcc-csm1-1-m, IPSL-CM5A-LR, CSIRO-Mk3-6-0, CNRM-CM5, and MRI-CGCM3; models chosen
for RCP 8.5 are IPSL-CM5A-MR, HadGEM2-ES, inmcm4, CNRM-CM5, MRI-CGCM3, and CSIRO-Mk3-
6-0. We refer readers to Joyce and Coulson (2020) for further comparisons of all 20 models. Fig. 4
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Fig. 5. Mean seasonal precipitation (in mm) over the CUS based on the CNRM-CM5 model for the GCM historical period
of 1972-2005. Seasons are specified on the top right of each panel and defined as winter (JFM), spring (AM]), summer
(JAS), and autumn (OND).

contains a schematic of the observational and climate model datasets used in this study, as well as
the historical and projection time periods.

The GCM data do not have temporal correspondence; GCM output for the year 2005 is not a
representation of the weather in 2005. Rather, GCM data for the historical and future periods are
designed to approximate the distribution of the observed or forecast data for similar time periods.
The lack of temporal correspondence makes it inappropriate to regress observed streamflow onto
modeled precipitation to estimate the relationship between these variables. However, given a model
fit using temporally-correspondent observed precipitation and streamflow, estimates generated
using bias-corrected GCM data as covariates can be used to compare the changes in the distribution
across different time periods. Fig. 5 plots mean seasonal precipitation over the CUS based on the
CNRN-CM5 model for the GCM historical period of 1972-2005. This is one of the models projecting
a wetter future, and the historical precipitation from this model is higher than the observed
NClimGrid data in Fig. 2(a). The spatial patterns are broadly similar between the two datasets, and
the GCM output needs to be calibrated to the observational data before it can be used as a covariate
to model extremal streamflow.

The GCM output is calibrated to remove bias compared to the observed precipitation at each
location. The GCM log-precipitation outputs during the historical period are calibrated to have the
same sample mean and variance as the observed precipitation for the same time period. This log-
linear transformation is estimated and applied separately for each HCDN station and each GCM
forcing, and applied to the GCM precipitation projections as well. Precipitation for the 2 HCDN
regions are also similarly calibrated. It is recommended that averages of the weather over at least
30 years be used to assess the climate. Hence, we consider a historical (baseline) period of 1972-
2005 and a future projection period of 2006-2035, and study changes in the extremal quantiles of
the distribution of predicted streamflow maxima for these two time periods.
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3. Non-stationary process mixture models for spatial extremes
3.1. The NPMM for block maxima

Let Y:(s) be the extreme observation at time t and spatial location s, for t € {1,...,T} and
s € {s1, ..., s,}. The observations Y;(s) are defined as block maxima, and are thus assumed to arise
from a generalized extreme value (GEV) distribution with location 1. (s), scale o:(s), and shape &(s):

Yi(s) ~ GEV{u(s), o¢(8), &(s)},

whose cumulative distribution function (CDF) F; s(y) := P[Y:(s) < y] is

y — pwe(s) —1/&(s)
P[Yi(s) <] ZEXD{— [1+ét(5)(t>] - (1)
o(s)
The CDF is defined over the set {y : 1+ &(s)(y — uc(s))/oe(s) > 0}.
Denote Zy, forj=1,2and t = 1, ..., 50, as the annual precipitation for the two HUC-02 regions

(10L and 11) defined in Section 2. We define X;;(s) as the annual precipitation for the HUC-02 region
that location s belongs to, i.e.,

X1t(s) = I{s € Region 10L}Z;; + I{s € Region 11}Zy,

where I(-) is the indicator function. Further, denote X;;(s),i = 2,...,5and t = 1,...,50 as the
seasonal precipitation for site s at time t for the four seasons as defined in Section 2. We assume
the GEV location parameters vary spatially and are dependent on precipitation, while the scale and
shape parameters also vary spatially, i.e.,

5
1) = po(s) + Y wi(s)Xi(s), ou(s) =o(s), &(s) = &(s). (2)

i=1

The CDF transformed variables U;(s) := Ft’s(Y[(s)) share common uniform marginal distributions
but are spatially correlated; this transformation separates residual spatial dependence in U(s) from
the spatial dependence induced by spatial variation in the GEV parameters, which can be modeled
using GP priors over s.

A spatial dependence model on U,(s) is obtained via the transformation U,(s) = Gt,S(V[(s)), such
that

Ve(s) = 8:(s)gr (Re($)) + (1 — 8e(8))gw (Wi(s)), (3)

where R((s) is a max-stable process (MSP), W(s) is a Gaussian process (GP), and gz and gy
are transformations to ensure that gR(Rt(s)) and gw (Wt(s)) both follow the standard exponential
distribution. Without loss of generality, we assume that R;(s) has a marginal GEV(1, 1, 1) dis-
tribution and W,(s) has a marginal N(0O, 1) distribution; the corresponding transformations are
gr(r) = —log(1 —exp(—1/r)) and gw(w) = — log(1 — &(w)) for the standard normal CDF &(w). By
construction, V;(s) follows a two-parameter hypoexponential distribution marginally, with CDF

1-— (S[(S) _# 8[(5) — v
— ‘e TH) 4 —— (S, 4
1—250)°  T1-280° @)

The parameters 8,(s) € [0, 1] are weight parameters that control the relative contribution of the
two spatial processes at every site and time point.

The spatial dependence model in (3) was originally introduced in Majumder et al. (2022) where
it assumed a constant value of §;(s) = 4. In practice, however, it is reasonable to partition the sites
into L regions such that sites within each partition share a common value of §(s) at any given
time point t, with different partitions having potentially different values of §.(s). Locations can
be assigned to partitions based on underlying geophysical characteristics of the data, or clustered
according to an appropriate distance metric. For streamflow data, the two HUC-02 regions (10L and

Ges(v) =1~

9
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11) are considered partitions of the CUS. Thus L = 2 for our study, and we denote §;; and J,; as the
weight parameters for these 2 partitions, i.e.,

8¢(s) = I{s € Region 10L}51; + I{s € Region 11}3,;.
As with the marginal parameters, we assume 81, and 8,; depend on partition-specific covariates:
g7 (8) = Bio + BuZir. i = 1,2, (5)

where g(-) is an appropriate link function, and Z; are the annual precipitation for the two HUC-02
regions as defined in Section 2. The variable §;; depends on time through the covariate Z;;. Mixing the
asymptotically dependent MSP with the asymptotically independent GP provides a rich model for
spatial dependence, while the covariates help capture changes in the spatio-temporal dependence.

We model the correlation of the GP W;(s) using the isotropic powered-exponential correlation
function Cor(Wi(s1), Wi(s2)) = exp{—(h/pw )"} with distance h = ||s; — s ||, smoothness oy €
(0,2), and range py > 0. The MSP R((s) is assumed to have isotropic Brown-Resnick spatial
dependence defined by the variogram y(h) = (h/pg)*® for smoothness ay € (0, 2) and range pg > 0.
We also incorporate a nugget into the process mixture. We denote the proportion of the variance
explained by the spatial process by r, and construct W(s) and R(s) as:

Cor(Wi(s1), Wi(s2)) = r - exp{—(h/pw )"},
Ri(s) = max{r - Ry,(s), (1 —r) - Ry(s)},

where Ry;(s) is an MSP, and Ry (s) % GEV(1, 1, 1) distributed independently of Ry(Ss).

We refer to this model as a non-stationary process mixture model (NPMM), with marginal
parameters 61 = {uo(si), ..., us(si), o(s;), £(s;); i = 1 : n} and spatial dependence parameters 6, =
{B10, B11, P20, P21, PR, OR, Pw, Qw, T'}. Alternative spatial dependence structures are viable under
the NPMM; in general, most spatial processes are compatible with the methodology presented
in this work. For the purposes of this particular problem, we choose a relatively smooth spatial
process, and aim to capture additional complexity using spatio-temporally varying coefficients
(STVC) models (Gelfand et al., 2003; Majumder et al., 2022) on the components of ;.

3.2. Asymptotic joint tail behavior for the NPMM

Extremal spatial dependence of the process at sites s; and s, is often measured using the
conditional exceedance probability,
Xu(S1, 82) :== P{U(s1) > u|U(s2) > u}, (6)

where u € (0, 1) is a threshold. The random variables U(s1) and U(s;) are defined as asymptotically
dependent if the limit

x(s1,82) = lim x,(s1, s2) (7)
u—1
is positive, and independent if x(sq, s;) = 0.
To examine the model in a simpler case, we assume 31, to be the same for t = 1,..., T, and
define §; := 8;;,1 = 1, 2. We numerically approximate x,(si, sz) for various values of u, §; and &,.

We scale our region of interest and all 55 sites within it to fall within the unit square, and consider
the extremal spatial dependence between a hypothetical pair of sites at a distance of h = 0.12 from
each other. The value for h is chosen as the solution to:
h = max ||s; — si||,
i=1:55

where a : b is used as shorthand notation for a,a+ 1,...,b — 1, b, and s;« is the site closest to s;.
In its original scale, this is equivalent to HCDN stations 218 km apart. Fig. 6(a) plots the behavior
of xu(s1, sy) for different (84, §;) pairs. Assuming an isotropic model, x,(s1, S2) is a function only of
the distance h = ||s; — s;||, and so we use the notation x,(h) := xu(s1, S2). While yx,(h) depends
on (81, 6) in our work, we suppress the dependence for notational convenience and instead use

10
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Fig. 6. Empirical y,(h) where h = 0.12 for the process mixture model as a function of §; and §, for sites corresponding
to the HCDN stations in the CUS.

xu(h) in the remainder of the text. As in Huser and Wadsworth (2019), we set the GP to have a
correlation of 0.40, which is equivalent to fixing py = 0.134 and pgr = 0.19py, (see Section 4 for a
discussion on the choice of pyw and pg), and computed the conditional exceedance probability for
u = 0.9999. When §; = §; = §, Majumder et al. (2022) have shown using empirical studies that
xu(h) = 0if § < 0.5 and y,(h) > 0 for § > 0.5. An analytical result consistent with this finding
was also derived for the case of a shared extremal process, i.e., for R(s;) = R(s;) = R, at which point
we recovered the similar result from Huser and Wadsworth (2019). From Fig. 6(a), we can also see
that x,(h) — 0 when both §;, §; < 0.5. To understand the tail behavior of the process when §; is
high and 4, is low (and vice-versa), we consider the case where §; = §,48, = 1 — 4, for § € (0, 1).
We find that x(h) — 0 in this situation for all values of §; this is verified empirically in Fig. 6(b)
where y,(h) — 0 for different values of §; and 4. It also corresponds to the diagonal in Fig. 6(a)
which is shown to go to 0. This is intuitively reasonable; R(s) and W(s) are independent, and thus
asymptotic dependence is only achieved if both sites have large delta and thus both sites allow
substantial contribution for the asymptotically dependent process R(s). An analytical derivation of
this result for the case of a shared extremal process is provided in Appendix A.

3.3. Density regression using deep learning for the NPMM

Assume the process is observed at n sites sy, ..., s,. We partition the parameters into those that
affect the marginal distributions in (2), denoted 64, and those that affect the spatial dependence,
denoted 6,. Denoting Y(s;) = Y; and U; := F(Y;; 61), we can express the joint distribution for all the
observations using a change of variables, as:

n

FO1 - yni 01,02) = fulur, . uns 02) ] |

i=1

dF(yi; 61)

dy; ’ ®

Model fitting for the NPMM is challenging due to the way the spatial dependence is specified; the
joint distribution of the MSP R(s) is available only for a moderate number of locations, and working
with the term f,(uq, ..., uy; 63) in (8) analytically is not viable. As in Majumder et al. (2022), the
change of variables in (8) sets the process mixture component up for density estimation. The density
estimation is carried out on a surrogate likelihood based on a Vecchia decomposition (Vecchia,
1988; Stein et al.,, 2004; Datta et al., 2016; Katzfuss and Guinness, 2021) of the joint distribution
fulug, ... up; 63),

n n
Fulwr, o uns 0) = [ [ficwilf, wr, - wia) = [ [ ficwil6s, u), (9)
i=1 i=1

11
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for ug = {u;;j € M} and N; C {1,...,i— 1}. The set of locations s(; are analogously defined as
si = {sj;j € N} and is referred to as the Vecchia neighboring set. The approximation therefore
entails truncating the dependence that u; has on all its previous i—1 ordered sites to instead consider
dependence on only up to m sites, i.e., |NVj| < m. The first term of the approximation is the marginal
density f1(uq|60;).

The univariate conditional distribution terms on the right hand side of (9) do not have closed-
form expressions. Density regression is carried out for each of the n — 1 terms separately using the
semi-parametric quantile regression (SPQR) model introduced in Xu and Reich (2021):

K

filuilxi, W) =" (i, Wi)Bi(us), (10)

k=1

fori = 2 : n, where my(x;, W;) > 0 are probability weights with Zle mik(X;) = 1 that depend on the
parameters W;, and Bi(u;) > 0 are M-spline basis functions that, by definition, satisfy f B(u)du =1
for all k. The density regression model in (10) treats u) and @, as features (covariates), denoted as
X;, with u; being the corresponding response variable.

By increasing the number of basis functions K and appropriately selecting the weights m;(X;), the
mixture distribution in (10) can approximate any continuous density function (e.g., Chui et al., 1980;
Abrahamowicz et al., 1992) which makes it suitable for our application. The weights are modeled
using a neural network (NN) with H hidden layers and a multinomial logistic (softmax) activation
function on its output layer, i.e.,

mu(xi, Wi) = [N (xi, W), fori=2:n. (11)

Instead of using observational data, the weights are learned from training data generated from the
process mixture model with parameters 6, ~ p*, which can then be used to obtain realizations from
the process over sites s; and s;) from the model conditioned on #,. Specifically, we generate data
at the observed spatial site with the same Vecchia neighbor sets as the problem at hand. We select
the design distribution p* with support covering the range of plausible values for #,. Given these
values, we generate U(s) at s € {s;, s;;)}. The feature set x; for modeling u; at site s; thus contains
the spatial parameters #,, and process values at the neighboring sites U(s(;). Since we can generate
arbitrarily large datasets from the design distribution, model fit is not affected by any data scarcity
of the observations. This is important since NNs often require large datasets for training.

The NNs have their own hyperparameters which cannot be estimated directly but rather need
to be tuned. These include the network architecture — the number of hidden layers (H), the size of
each hidden layer (L), the number of basis functions (K), the activation function (v (-)), etc. They
also include NN training parameters like the learning rate, batch size, number of epochs, and early
stopping criteria. We have assumed the same network architecture for all the NNs in (11), with
the exception of differences due to a smaller Vecchia neighboring set for the first few sites. The
model is fit using the R (R Core Team, 2022) package SPQR (Xu and Majumder, 2022) whose in-
built cross-validation functions can be used to tune the NN hyperparameters. Once the weights have
been learned, applying the NN to the approximate likelihood is straightforward, and the Vecchia
approximation ensures that the computational burden increases linearly in the number of spatial
locations. Algorithm 1 outlines the local SPQR approximation.

3.4. Parameter estimation using MCMC for the NPMM

Given the approximate model in (8)-(9) for f, with an SPQR approximation for the spatial
dependence f;;, a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods is used for
parameter estimation. We use Metropolis updates for both #; and #,. For an STVC model with local
GEV coefficients for site i, we update parameters {.(s;), o(s;), £(s;)} as a block sequentially by site,
and exploit the Vecchia approximation to use only terms in the likelihood corresponding to sites
which appear either as the response variable in the Vecchia approximation or in a Vecchia neighbor
set. The coefficients (8o, Bi1) are updated as a block for each i, and the weight parameters &;,i = 1, 2
are updated as a result of that. All Metropolis updates are tuned to give acceptance probabilities of
0.4, and convergence is diagnosed based on the visual inspection of the trace plots.

12
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Algorithm 1 Local SPQR approximation

Require: sites sq, ..., s, with sets of neighboring locations s(y), ..., S
Require: Design distribution p*, training sample size N
i< 2
while i < n do
j<1

while j < N do
Draw values of 8,; ~ p*
Generate Uj(s) at s € {s;, S;;)} given 6; using (3)
Define features X; = (64, ug);), where ugy = {Uj(s); s € s}
J<ij+1
end while
solve W; < argmax ]_[;':]f,-(u,ﬂx,j, w) for fi(u;|x;, W) defined in (10) using SPQR
w
i<—i+1
end while
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Fig. 7. Sites used to fit SPQR models: Distribution of 55 watershed locations scaled to the unit square. Squares and
circles denote sites in the 2 different regions. The blue square corresponds to site 45, and the red squares and circles
correspond to its Vecchia neighboring set. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

4. Density estimation for CUS sites and numerical studies

Density estimation for the NPMM only requires knowledge of the spatial configuration of sites,
and a reasonable design distribution. We consider the n = 55 HCDN sites with the domain scaled
to the unit square for convenience. Sites are assigned to the two different regions with their own
weight parameters based on which HUC-02 region they belong to. Fig. 7 plots the distribution of
the 55 sites, alongside site 45 and its Vecchia neighboring set of m = 15 neighbors. We assume a
common smoothness parameter g = o = 1 to put the 2 spatial processes on the same scale. A
further assumption is made to improve model identifiability; we parameterize py and pg to have
the same effective range. We define the effective range as the distance at which the GP correlation
reaches 0.05 and the extremal coefficient x for the MSP reaches 0.05. In Majumder et al. (2022),
this was achieved by setting p = pw and pg = 0.19p.

Local SPQR model architecture. For density estimation, we fit local SPQR models for each site
s;, i = 2:55. The local SPQR models have identical architectures for each site with 2 hidden layers

13
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Fig. 8. Model diagnostics for local SPQR fit at site 45: Q-Q plot (left) for goodness of fit and variable importance plot
(right) for the local SPQR model. 81, in the variable importance plots is defined as log§; — log J,.

with 30 and 20 neurons respectively, 15 output nodes, a learning rate of 0.01, and 100 epochs
with a batch size of 1000. The model architecture was chosen by comparing the log-likelihood of
fitted models with different architectures, and are very similar to those used in Majumder et al.
(2022). The number of output nodes in this case correspond to the number of basis functions
used to approximate the true conditional density. While the analytical form of the conditional
densities are not available for the NPMM, Majumder et al. (2022) was able to study this for
a GP, which is equivalent to setting §;; = 8, = 0. The conditional densities are univariate
Gaussian and analytically available in this case; 10-15 output nodes were found to be sufficient
in modeling the conditional density, with higher values leading to random fluctuations in the
estimated approximated conditional density. We train the SPQR models with the design distribution
p*, generating 2 x 10° samples uniformly from p, 81;, 85, r € (0, 1) with all parameters independent
of each other. Choosing p* ~ U(0, 1) for each of the parameters allows us to explore the parameter
space uniformly within its support. The response u; is a function of exactly one of §;; or 8
depending on which region s; belongs to. The other weight parameter is relevant for density
estimation only if one of the neighbors is in the other region. Thus, some sites require exactly one
of §1; or 8¢, while other sites require both. To ensure consistent dimensions of the feature vector
across locations as well as identifiability of the weight parameters, we define §, and é, to be the
weight parameters corresponding to the response and the neighbors respectively. If all neighbors
belong to the same region as the response, 8,y = §,. Finally, we define 4.,y = log, — logé,, which
is non-zero only if some of the neighbors belong to a different region from the response. Instead of
using 8¢, and 8y, we use &, and &) as covariates for density estimation. Algorithm 1 is then used
to fit the local SPQR models.

Fig. 8(a) plots the probability integral scores for the local SPQR model at site 45; the scores
falling along the Y = X line (partially visible, in red) suggests a good model fit. Fig. 8(b) plots the
variable importance scores for the two nearest neighbors (denoted as X; and X;) as well as the
spatial parameters of the process. The neighbors have the highest importance across the quantiles,
and the spatial parameters are important covariates for at least one of the extremal quantiles. The
remaining neighbors have significantly lower importances compared to the first few and have been
omitted from the plot for clarity; their exact magnitude often depends on the spatial configuration
of the locations. Variable importance plots for additional locations are provided in Appendix B.2.

Numerical study for parameter estimation. Before using the density estimates on the observed
annual streamflow maxima data, we consider 3 scenarios with different spatial and marginal
GEV parameters in order to ascertain how the density-estimation errors propagate to parameter-
estimation errors. We assume 81, and §,; are independent of each other and depend on time by
means of a probit link function, i.e.,

@ (8i) = Bio + BunZi,i = 1,2. (12)
14
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Table 1
True parameter values for the 3 simulation study scenarios.
Scenario o 1 o & P Bo Bu B2 B21
1 12 3 2 0.2 0.4 —1 1.8 0.2 2
2 13 5 2 0.1 0.1 1 —-12 -1 0.8
3 12 3 3 —0.1 0.2 —1.5 2 —-15 0.8
144 44
5.
134
3.
4
=2 121 . =3 ©
2.
11 31
104 95 97 88 2 5 97 8 14 87 87 83
1 2 3 1 2 3 1 2 3
Scenario Scenario Scenario
0.31 1.004 1.004
0.21 * 0.75+ 0.751
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0.01
-0.1+ 0.25+ 0.25+
-0.24 98 97 100 0.004 90 92 78 0.004 58 92 63
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Fig. 9. Marginal and spatial parameter estimates: Sampling distribution of the posterior mean for GEV and spatial
parameters for the three simulation scenarios. The red dots are the true values, and empirical coverage of the 95%
intervals are provided at the bottom of each plot. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

As covariates, we use Z;, = (t — t)/10 and Z,; = Z;; — 0.05, where t = 1972 +t — 1 and { is the
mean of t. For all cases, the location parameters of the GEV are assumed to depend on a covariate
as in (2), and we use X;(s) = Z;, for all sites. Within a scenario, each site is assumed to have the
same marginal GEV parameters. Table 1 lists the true parameter values for the 3 scenarios.

We generated 60 datasets for each scenario. Each dataset contains 50 independent realizations
of the NPMM at the 55 sites shown in Fig. 7. For priors, we select jig, t1, log(c') ~ Normal(0, 10?),
£ ~ Normal(0, 0.25%), B10, B11, B20, B21 ~ Normal(0, 1), and p, r ~ Uniform(0, 1). We approximate
the posterior using MCMC with 11,000 iterations and Metropolis candidate distributions tuned to
have an acceptance probability of around 0.4. After discarding the first 1000 iterations as burn-
in, we compute posterior means and 95% confidence intervals for each parameter based on the
remaining samples. The posterior distributions of B1o, B11, B20, and B,; are used to evaluate the
posterior distributions of the mean of 81, and 8.

Fig. 9 plots the sampling distribution of the posterior mean estimator of model parameters of
interest and provides the empirical coverage of 95% posterior intervals at the bottom of each panel.
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Posterior estimators of the GEV parameters have relatively little bias and nominal coverage. To
evaluate the posterior of 8;; and §,;, we plot §; = % Zf; 8it, for i = 1, 2. Estimation of §; proves
more challenging, likely due to the spatial configuration of the locations, and the relatively low
importance of 8, and 4y in the SPQR model. While bias and variability are higher for the spatial
parameters, but our methods can still distinguish between the asymptotic regimes of §; and 6,.

5. Analysis of extremal streamflow in Central US
5.1. Model description

We assign an STVC model to each of the marginal GEV parameters. The responses are modeled
as

5

Yi(s) ~ GEV Mo(S)+Zuj(s)&'r(s),a(s),é(s) : (13)
j=1

The intercept process jo(s) is assigned a GP prior with nugget effects to allow local heterogeneity:
Ho(8) = fo(s) + eo(s)
eo(s) X Normal(0, v,,,)
[o(8) ~ GP(B,. T/ K(s,s")), where K(s, s) = exp{—I|s — §'l|/py,}

v2, % 1G(0.1,0.1), log py,y ~ Normal(~2, 1),

B, ~ Normal(0, 10%), rjo, b
where IG(-, -) is the inverse-Gamma distribution. The slopes u;(s), j = 1:5, the log-scale log o (s),
and the shape &(s) are modeled similarly using GPs. The STVC parameters are denoted as 63 =
{ﬂ}l,(y TZ ’ plt()’ M ﬂE’ Téz’ pé}-

For t?le residual model, we use the process mixture model in Section 3 for spatial dependence
and assume independence across years. The simplifying assumptions that we make for the MSP
R:(s) and the GP W,(s) in Section 4 are maintained here. The model for the weight parameters §;;
and &y along with the priors for all parameters in 6, are written as:

@ (8ie) = Bio + BunZie, i = 1,2

B1o. B11, B2o, B21 ~ Normal(0, 1)
o, 1 ~ Uniform(0, 1).

Note that the priors on the spatial ranges are for the scaled domain. In addition, both the streamflow
and precipitation data have been rescaled to [0,1] to ensure stable estimates. Fig. 10(a) plots
xu(h) for rank-standardized streamflow data as a function of u for different values of h. The rank
standardization ensures a Uniform(0, 1) marginal distribution at each location. The plot suggests
an asymptotically independent process. Fig. 10(b) plots the mean of the annual variograms of the
streamflow data. It shows a range of over 500 km, as well as the presence of a nugget effect.

5.2. Extremal streamflow patterns within the CUS

The local SPQR models from Section 4 are used to compute the density estimates. For parameter
estimation, we ran 2 independent MCMC chains for 15,000 iterations each, discarding the first 5000
of each chain as burn-in. Table 2 lists the posterior means and standard deviations of the spatial
parameters based on the 20,000 post-burn-in posterior samples.

The posterior mean of r suggests the presence of a nugget effect. For the posterior distribution
of §;,i = 1, 2, we evaluate % fil ;¢ for each posterior MCMC sample of (Bio, Bi1) and interpret
it as the average value of the weight parameter conditioned on precipitation. The empirical 95%
confidence intervals for the slope parameters §;; are 811 € (—0.76, 2.56), and B, € (—1.18, 2.47);
both intervals include zero, suggesting that the weight parameters for the two regions which
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Fig. 10. Spatial behavior of annual maximum streamflow in terms of the conditional exceedance and the variogram.

Table 2

Posterior means and standard deviations (SD) of spatial parameters of the NPMM based on MCMC.
Parameter Mean SD Parameter Mean SD
Bio —0.15 0.33 P) 0.25 0.49
B 0.92 0.86 T 0.88 0.03
Bao 0.47 0.41 81 0.53 0.10
B 0.65 0.94 85 0.71 0.12

ascribe the asymptotic regime of extremal streamflow are not associated with changes in the annual
regional precipitation.

To understand changes in §; as a function of annual precipitation, we evaluate it for 1972-
2021 based on the posterior means of (B, Bi1). Fig. 11 plots the value of the weight parameter
for the 2 HUC-02 regions from 1972-2021. Region 11 which corresponds to the lower half of
the CUS, has a higher estimate of the weight parameter than region 10L. The sites in region 11
tend to show asymptotic dependence, while the sites in region 10L vary between asymptotic
independence and asymptotic dependence in different years. The estimates are quite different for
the 2 regions and vary quite a lot from year to year for region 10L, indicating the appropriateness
of the non-stationarity assumption of the spatial process.

Fig. 12 shows the goodness of fit of the marginal GEV models, based on maximum likelihood
estimates (MLE) computed individually at each site in 12(a), and estimates derived using the
posterior means of the NPMM in 12(b). Visual inspection suggests that the NPMM provides overall
better fits compared to independent MLE despite having more bias. We compared the standard
errors of the GEV parameters based on the MLE with the posterior standard deviation of the GEV
parameters based on the NPMM, and found that the latter was always lower; see Table B.4 in
Appendix B.3 for more details. Since extremes data is often scarce by definition, pooling in spatial
information across sites is crucial for improving model fits and in turn getting valid inference. The
posterior means and standard deviations for the components of 83 are also provided in Table B.5.

Fig. 13 shows the posterior means of the slope parameters for each HCDN site. Since each site
has 5 slopes corresponding to the annual precipitation as well as 4 seasonal precipitations, we
focus on the largest slope parameter for each site, corresponding to the season where precipitation
has the most significant effect on streamflow. Fig. 13(a) plots the slope parameter for the most
significant season at each site; the colors denote the magnitudes of the slope parameter for the
most significant season and the shapes denote the season it corresponds to. We see that most
of the points are for spring (AM]), and exactly one location (in region 11) is affected more by
annual precipitation than by seasonal precipitation. To assess the strength of the significance for
all seasons, we computed the posterior probability of each slope parameter being greater than 0,
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Fig. 12. Goodness of fit for the marginal distributions of annual streamflow maxima: Q-Q plots for MLE computed
independently at all sites (left), and based on posterior means from the NPMM (right).

i.e., P[u(s) > 0] for j = 2:5. The slope corresponding to the annual precipitation is not considered
in this case, and all 55 sites had at least one seasonal slope with a non-zero probability. We count
the number of seasons where P[u;(s) > 0] > 0.90 for each site; the resulting plot is presented in
Fig. 13(b). The lower values in the plot indicate that precipitation has a large effect on streamflow
only in specific seasons, whereas the higher values signify that maximum streamflow is a function
of seasonal precipitation from different seasons for different years. We refer the reader to Awasthi
et al. (2022) for further discussion on the seasonal/annual effect of precipitation on streamflow
for different regions. Considering that most of these sites have 3-4 significant seasons as shown
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Fig. 13. Posterior means of slope parameters for annual streamflow maxima: Estimates of u(s) = max(u;(s)) for
j=2:5 corresponding to the 4 seasons with shapes denoting the season with the highest slope value (left), and number
of seasons (excluding annual) where P[x(s) > 0] > 0.90 (right).
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Fig. 14. Posterior means of scale and shape parameters of annual streamflow maxima.

in Fig. 13(b), it is reasonable to conclude that maximum streamflow is affected by the convective
storms that occur in the CUS and the associated precipitation.

Finally, Fig. 14 contains posterior means of the scale and shape parameters of all the watersheds.
Both parameters are spatially dependent over the CUS region. We also note that the posterior means
of the shape parameter are positive for 54 of the 55 sites.

5.3. Annual streamflow maxima projections under RCP 4.5 and RCP 8.5

We used the bias-corrected MACA precipitation data for six RCP 4.5 and six RCP 8.5 models as
specified in Section 2.3 to get future projections of streamflow. Future projections for MACA (and
CMIP5 data in general) begin from 2005, and we consider the distribution of extremal streamflow
forecasts for the period from 2006-2035. Each CMIP5 model also provides historical runs alongside
the projections, from which we estimate the distribution of extremal streamflow for 1972-2005.
For each scenario (historical, RCP 4.5, RCP 8.5) and each GCM model listed in Section 2.3, we use
seasonal and annual bias-corrected GCM precipitation to generate estimates of annual streamflow
maxima using the following steps:
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Table 3

Measure of joint exceedance in projected streamflow maxima: Mean number of locations
jointly above the 0.90 and 0.99 quantile thresholds. Values in parentheses represent the minimum
and maximum projections from among the 6 models used in each scenario.

u=090 u=0.99
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
1972-2005 (5.49, 5.55) (5.49, 5.55) (0.54, 0.56) (0.54, 0.56)
2006-2035 (5.49, 5.54) (5.50, 5.53) (0.54, 0.56) (0.55, 0.56)
1. Draw 1000 post burn-in samples 0(1), cees 0(]1000) from the posterior distribution of the GEV

parameters. Repeat steps 2-3 for each sample and each scenario

2. Use bias-corrected GCM precipitation as covariates in (2) to get GEV distribution location,
scale, and shape parameter estimates independently for each site

3. Solve for and compute the 0.90 and 0.99 quantiles of the distribution of streamflow maxima
over the entire time period.

The quantiles for each site, given the GEV parameters for the entire time period (34 years for the
historical period and 30 years for the projection period), can be computed by univariate root-finding
algorithms. This gives us 1000 extremal quantile estimates of the distribution of annual streamflow
maxima at each of the 55 sites for the historical, RCP 4.5, and RCP 8.5 scenarios. For each of the two
RCP scenarios and two extremal quantile levels, we study and report the percent change in annual
streamflow maxima compared to the historical period.

Figs. 15-16 show the mean percentage change in the observed 0.90 and 0.99 quantiles under
the RCP 4.5 and RCP 8.5 projections, averaged over the 1000 estimates. The top row of each figure
consists of models that project a wetter future, whereas the bottom row consists of models which
project a drier future. In both figures, the triangles denote an increase, while the circles denote a
decrease in annual streamflow maxima at each location. Four of the six models under each RCP
scenario are common to both scenarios — CNRM-CM5, CSIRO-Mk3-6-0, and MRI-CGCM3 which
project wetter futures, and IPSL-CM5A-MR, which projects a drier future. The output based on these
four models can thus be compared across scenarios and quantile levels. For a particular quantile
level, with the exception of CSIRO-Mk3-6-0, the wetter models predict more positive changes under
RCP 8.5 than under RCP 4.5 Similarly, IPSL-CM5A-MR predicts more negative changes under RCP 8.5
than under RCP 4.5. CSIRO-Mk3-6-0 shows noticeable differences between RCP 4.5 and RCP 8.5, with
several locations that show positive change under one scenario showing negative change under the
other and vice versa. We expect further divergences between scenarios if this study is extended to
a longer time horizon due on the underlying assumptions of the 2 RCP scenarios.

Looking across quantile levels, we note that the 0.99 quantiles in Fig. 16 estimate lower levels of
change, ranging from —2.7%-8.4%, compared to the 0.90 quantiles in Fig. 15 which show changes
between —10.3%-12.3%. However, the number of locations with positive changes are the same or
higher when we go from the 0.90 quantile to the 0.99 quantile under both RCP scenarios. Under
RCP 4.5, all six models estimate that more than 50% locations have increased flow for both quantile
levels, with values ranging from 51%-93%. For RCP 8.5, four out of the six models estimate more
than half the locations to have increased streamflow. In this case, the values range from 22%-91%;
in all cases, CSIRO-Mk3-6-0 gives the lowest estimates.

Table 3 shows the expected number of locations jointly above the threshold for the historical
and projection periods based on Monte-Carlo simulations from the fitted spatial model using bias-
corrected GCM precipitation data. The values in parentheses correspond to the minimum and
maximum of the estimates obtained from the 6 GCM models used. If the probability of exceeding
the threshold at all locations were independent, the number of locations above the threshold would
follow a Binomial distribution with parameters n = 55 and probability 1 — u, for the two cases of
u = 0.90 and u = 0.99. In turn, the expected number of locations above the threshold under the
independence assumption would be 5.5 and 0.55 respectively. For both the historical and projection
periods, estimates from most of the models are higher than estimates from the independence
assumption. In particular, both the mean and median for each of the 8 sets of values are higher
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(a) Change in projected streamflow based on RCP 4.5.
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(b) Change in projected streamflow based on RCP 8.5.

Fig. 15. Percentage change in observed 0.90 quantile under RCP 4.5 and RCP 8.5 for 2006-2035, compared to the baseline
period of 1972-2005. Triangles denote positive values and circles denote negative values.

than what we would get from an independence assumption. Overall, this suggests that concurrent
extremal streamflow at multiple locations is likely to keep occurring into the near future.
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(b) Change in projected streamflow based on RCP 8.5.

Fig. 16. Percentage change in observed 0.99 quantile under RCP 4.5 and RCP 8.5 for 2006-2035, compared to the baseline
period of 1972-2005. Triangles denote positive values and circles denote negative values.
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6. Discussion

In this paper, we propose a non-stationary process mixture model for spatial extreme value
analysis. The marginal distributions of the process are GEV, while the spatial dependence is specified
as an interpolation of a GP and an MSP indexed by a weight parameter which is allowed to
vary spatio-temporally, introducing non-stationarity. Similarly, STVC specifications used for the
marginal parameters make the model flexible in terms of learning different spatio-temporal patterns
present in the data. The model is an extension of the (stationary) process mixture model introduced
in Majumder et al. (2022). The intractable joint likelihood for the spatial model is approximated
using a Vecchia decomposition, and is learned using the density regression approach of Xu and
Reich (2021). The density regression estimates a quantile process for the approximate likelihood
whose weights are obtained from a neural network by maximizing the approximate likelihood.

We use the NPMM to provide climate informed near-term projections of annual streamflow
maxima for the central US region. The CUS is affected by convective storms and, therefore, any
projections of streamflow should take into account seasonal and annual precipitation over the
region. The CUS is divided into two HUC-02 regions, and the asymptotic regime for the regions
are estimated independently. We used observed NClimGrid precipitation data to fit the model for
annual streamflow maxima. The means of the posterior distribution puts Region 11 in the south
to be asymptotically dependent for all 50 years, whereas Region 10L in the north is asymptotically
dependent for 39 out of the 50 years and asymptotically independent for the rest of the years.
Region 10L also has more variability in the posterior mean of asymptotic (in)dependence parameter
from year to year. These inter-year differences and differences between the regions justify the
appropriateness of the non-stationary assumptions we make about the process. While we find no
significant linear relationship between region-wide precipitation and the logit of weight parameter,
we note that region 11 has higher precipitation compared to region 10L. Afterwards, bias-corrected
GCM precipitation projections are used as covariates to obtain streamflow estimates for the future
period of 2006-2035 and compared against the historical period of 1972-2005. Based on our
projections, both the magnitude of extremal streamflow as well as the number of locations which
are concurrently affected by these extreme events are likely to increase in the near-term future.

Future research will focus on generating long-term climate-informed projections. The current
work considers only seasonal precipitation as covariates, as adding too many variables adversely
affected MCMC convergence. However, longer-term precipitation as well as temperature can affect
streamflow (Awasthi et al., 2022), and we would like to incorporate additional covariates in future
work. Learning the weight parameter proves more challenging for the NPMM compared to its
stationary equivalent; we hope to improve the spatial dependence in the model as well as the
estimates obtained from it by incorporating network structure, as has been done for both max-
stable (Asadi et al., 2015) and Gaussian (Santos-Fernandez et al., 2022) processes. Relaxing the
simplifying assumptions on the smoothness and range parameters would improve the spatial
modeling, but could make estimation more difficult as more variables are free to vary. Finally, the
synthetic likelihood approach to density estimation for spatial processes using deep learning is not
specific to the NPMM, and we would like to explore its performance and properties for other spatial
extremes models.

Acknowledgments

The authors thank Prof. Sankarasubramanian Arumugam of NC State University for discussion of
the data and scope of the project.

Funding

This work was supported by grants from the Southeast National Synthesis Wildfire and the
United States Geological Survey’s National Climate Adaptation Science Center (G21AC10045) and
the National Science Foundation (DMS2152887, CBET2151651). Part of this research was per-
formed while author Reetam Majumder was visiting the Institute for Mathematical and Sta-
tistical Innovation (IMSI), which is supported by the National Science Foundation (Grant No.
DMS-1929348).

23



R. Majumder and B.J. Reich Spatial Statistics 55 (2023) 100755

Appendix A. Derivation of conditional exceedance for a common spatial process

Majumder et al. (2022) derived x(s1,S;) for a process mixture model with a common MSP
R(s1) = R(s;) = R and W(s;) and W(s;) are independent. We extend that and focus on a specific
case where §; = § and §, = 1 — 8, where 84, 8, are defined as in Section 3.2. This is a convenient
case because with this restriction both sites have the same marginal distribution. This case is also
interesting because it illustrates the behavior of the process when the two sites are in different
asymptotic regimes. We denote gy {W(s1)} = W7, gw{W(s2)} = WS, gr(R) = R* for convenience.

By assumption W}, W3, R* X Exponential(1). Under these conditions, the joint survival probability
is as follows:

PriYy >y, Yy > y] = Pr{§iR" + (1 = §))Wy >y, R" + (1 = &)W > y]

. y—or L y—QaQ==8r, .
:ER*[PT{Wl > 1-35 }PT{W] > T}'R Zr].

Defining ry := (y — 6r)/(1 —38)and rp := (y — (1 — §)r)/s, we get

PriY, > y,Y; > y] = Eps [Pr{W{‘ > r}Pr{wy > r}I{r; > 0,1, > 0}]
+ Eg+ |:PT'{W1* > T]}H{rl >0, < 0}:|

+ Egx |:PT{W2* > Tz}]l{rl < 0, rn > 0}] + Eg+ |:]I{r1 <0, n < O}] (A])

Note that:
r>0,rn>0 = r <min(y/s,y/(1-36))
rn>0nrn<0= (y/(1-46)<r<y/§{§ < 0.5}
rn<0nrn>0—= (y/6<r<y/(1-345)){s> 0.5}
r<0,rn<0 = r>max(y/s,y/(1-23))

We first assume that § < 0.5. Denoting the four terms on the right-hand side of (A.1) as J, J2, J3,
and J4, we first see that J3 = 0. The remaining three terms are computed individually.

n=enly(G 4 b [ el

+ 18;8)} exp{—r}dr

1-6 1-6
1 1 y/1-8 382 —35+1
=exp{—y(3—i-—1_8)}/0 exp{ia(l_a) ridr

1 1 382 —-35+1

= ki eXp{_y(g + 1 _8)}[exp{ 8(1—5)2 y} - 1]
y 1-26 y

= Ik exp{——1 = }[exp{—(1 —5 v} - exp{—g}],

where k; is the appropriate constant arising from the integration.

y/é 5
]z=exp{—1yf8}/ exp{r(]_(S — 1) }dr
Y,

/1-8
y 1-26 1-26
= kz eXp{—m}[eXp{—m}/} — eXp{—mJ/}],

where k is the appropriate constant that arises from the integration. Finally,

Ja = exp{—y/s}.
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The marginal survival probability can be obtained from (4). We denote it as M, where

_ y,_ 1= Yy
= 1o Pl T g Rl

The conditional exceedance probability x(si, s;) can be expressed as:

. hth+)+
x(s1,82) = lim —u

y—00

Jh 2 Ja
= lim = + lim lim —.
y—oo M +y%oo M +y»oo M

Each of the limits are evaluated individually:

1-25
N ’ EXP{_(l 3)2y} - exP{_%}
Yt 1-23 -5
M 035 eXp{~y (175)} ~ 1%
0—-0
— llmL—klﬁ:O.
yoo M 55

J exp{— 57257} — exp{— =25y}
2 =k — °

M ﬁ exp{—yshfg)} - 1]77265
)

M

— lim =0
Finally,
Ja eXP{—%}
I
M Loexp{—¥) — =5 exp{—15)
. exP{_ya(lﬂs) }
5 xp{ Y5 | — 1
. Ja
= lim — =0.
y—oo M
- x(s1,82) =0.

Next, consider the case of § > 0.5. We see that the term J, in (A.1) is 0. Like before, we simplify
the remaining 3 terms.

1 v/ 8 1-38
h= exp{—y( + 7)}/0 exp{r( + ——)} exp{—r}dr

) 1-56 1-46 )
1 v/8 382 — 36+ 1
= exp{—y(8 +1—5 5)}/ exp{i(s(1 —5 ridr

1 35% —38 + 1
=ks eXP{—Y(g + m)}[eXP{WY} -1]

=kaexp{—§}[exp{—285; ) —ex p{‘%}]

where k3 is the appropriate constant from the integration. We note the symmetry between J; for
8 < 0.5 and J; computed for § > 0.5. It is straightforward to show that lim,_, ., J;/M = 0 in this
case as well. It follows by symmetry that limy_, o Js/M = 0 for § > 0.5. Finally, we verify the
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Fig. B.17. Empirical x,(h) for different combinations of §; and &, with threshold u = 0.9999 under two different model
specifications.

behavior for J3:

y/1-5 1-34
5= exp{—g}/ exp{r( S 1)}dr
v

/8
y 28 —1 28 —1
=k —= -yt — -Vl
aexp{—F}[exp{— 75—y} —exp{——5—vl]
where k4 is the appropriate constant for integration. Thus, lim,_, «, J3/M = 0 due to its symmetry
with J,.
Therefore, for 6§ € (0,0.5)U (0.5, 1), x(s1,s2) = 0.

Appendix B. Computational details

B.1. Asymptotic joint tail behavior

Fig. B.17 depicts the behavior of x,(0.12) at the 0.9999 quantile for two related models, which
relax our current model assumption of pr = 0.19pw. In Fig. B.17(a), we assume that pg = pw.
This increases the range of x,(0.12) as more extremal dependence is introduced. In Fig. B.17(b),
we replace the MSP with a GEV(1, 1, 1) distribution, which makes this equivalent to the model
presented in Huser and Wadsworth (2019). This has the maximum amount of extremal dependence
among this class of models by construction, which is reflected in the high range of x,(0.12).
However, for both cases, the same behavior holds for different values of §; and §,, with asymptotic
dependence only if both sites are in an asymptotic dependence regime.

B.2. Variable importance plots

Fig. B.18 presents variable importance plots for 4 different locations within our study area.
Location 11 does not have a full suite of neighbors, as the Vecchia neighboring set can have up
to 15 neighbors. Location 16 is the first location which has all 15 neighbors, and locations 35 and
50 also have all 15 neighbors. For all 4 locations, the nearest neighbor has the highest importance.
The importance of the second neighbor varies from location to location. We have found this to be
a function of the spatial configuration — in particular, how far the second neighbor is from the
response site, as well as how close it is to the other neighbors. It could also depend on whether it
belongs to the same region or not.

The remainder of the neighbors show similar behavior with a steady drop off of their impor-
tances, and have thus been omitted for clarity. It is interesting to note the fundamentally different
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Fig. B.18. Variable importance (VI) plots based on SPQR output for 4 different locations within the CUS.

Table B.4

Model fit diagnostics for marginal GEV parameters: Standard errors based on the maximum
likelihood estimates of GEV distributions fitted independently at each location (MLE), and posterior
standard deviations based on the process mixture model (NPMM). Values represent an average
taken over all 55 locations.

Parameter MLE NPMM Parameter MLE NPMM
o 0.05 0.03 1 0.17 0.09
2 0.07 0.05 "3 0.09 0.06
4 0.08 0.05 s 0.07 0.05
o 0.20 0.01 & 0.22 0.13

way the neighbors affect the quantiles of the response compared to how the spatial parameters
affect them. The neighbors have the largest effect around the median and drop off in importance
near the extreme quantiles at both ends. The spatial parameters have the opposite behavior. We
also note that §, is more important to the response compared to . This is to be expected since §,,
is the mixing parameter that corresponds to the response, while () can be either 0 or a function
of the other mixing parameter that does not directly affect the response.

B.3. Parameter estimates

Table B.4 provides a comparison of the marginal GEV model fits across locations based on the
NPMM, as well as independent MLE estimates of the GEV parameters. The MLE estimates were used
as initial values in our MCMC; we computed the standard errors for each variable and averaged it
across the 55 sites. For the NPMM estimate, we compute the posterior SD of each parameter based
on 20,000 post-burn in samples, and similarly average over all 55 locations. In all cases, the NPMM
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:;‘3? :afameter estimates: Mean and SD for the GP parameters for the marginal GEV parameters.

Param. Mean SD Param. Mean SD Param. Mean SD

Buo —0.01 0.18 r‘fu 0.19 0.04 Puo 452 1.60
B, —0.06 0.25 r‘fl 0.26 0.08 Puy 3.24 153
Buy 0.20 0.29 rﬁz 0.30 0.09 Puy 2.86 1.46
Bus 0.26 0.32 rja 0.33 0.11 Pus 2.56 1.43
Bua 0.06 0.24 rj . 0.25 0.07 Pus 3.50 1.55
Bus 0.08 0.22 1,35 0.23 0.06 Pus 3.73 1.59
Bs 0.17 2.19 72 0.89 0.48 Po 1.36 1.20
Be 0.33 0.69 r§ 0.72 0.29 D¢ 1.57 1.14

has lower spread, suggesting a better model fit. Finally, Table B.5 provides posterior means and SD
of the GP parameters associated with the STVC model for the marginal parameters described in
Section 5.1.
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