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Quantifying changes in the probability and magnitude of extreme flood-
ing events is key to mitigating their impacts. While hydrodynamic data are
inherently spatially dependent, traditional spatial models, such as Gaussian
processes, are poorly suited for modeling extreme events. Spatial extreme
value models with more realistic tail dependence characteristics are under
active development. They are theoretically justified but give intractable like-
lihoods, making computation challenging for small datasets and prohibitive
for continental-scale studies. We propose a process mixture model (PMM)
which specifies spatial dependence in extreme values as a convex combina-
tion of a Gaussian process and a max-stable process, yielding desirable tail
dependence properties but intractable likelihoods. To address this, we em-
ploy a unique computational strategy where a feed-forward neural network is
embedded in a density regression model to approximate the conditional dis-
tribution at one spatial location, given a set of neighbors. We then use this uni-
variate density function to approximate the joint likelihood for all locations
by way of a Vecchia approximation. The PMM is used to analyze changes
in annual maximum streamflow within the U.S. over the last 50 years and is
able to detect areas which show increases in extreme streamflow over time.

1. Introduction. The Intergovernmental Panel on Climate Change released its Sixth As-
sessment in 2021 and projected an increased frequency of hydroclimatic extremes. In addition
to changes in the mean of climate variables, the impact of climate change is more severe with
changes in the frequency and magnitude of hydroclimatic extremes. Floods are responsible
for huge economic and human costs (Hirabayashi et al. (2013), Winsemius et al. (2018)),
and this cost is projected to increase due to sea level rise and extreme precipitation events
brought about by our changing climate (Winsemius et al. (2018)). Effective prediction of
future flooding events is required for water infrastructure design but is challenging due to
the complexity of flooding events and uncertain climate predictions (Condon, Gangopadhyay
and Pruitt (2015), François et al. (2019), Kundzewicz et al. (2017), Merz et al. (2014)). Ex-
tensive research has been conducted looking at changing climate signals in historical extreme
rainfall (Knox (1993), Kunkel et al. (2020)) and in flooding (Archfield et al. (2016), Blöschl
et al. (2019), Franks (2002), Hirsch (2011), Meehl et al. (2000), Milly, Dunne and Vecchia
(2005), Sharma, Wasko and Lettenmaier (2018), Vogel, Yaindl and Walter (2011), Walter
(2010)). For example, Hirsch and Ryberg (2012) found a significant change in annual maxi-
mum streamflow (a key measure of flood risk) at 48 of 200 U.S. Geological Survey (USGS)
gauges and spatial clustering in the direction and magnitude of the changes. As a result, there
is a need to account for spatial and temporal variability (i.e., nonstationarity) in flood fre-
quency patterns when assessing current and future risk (Kundzewicz et al. (2014), Merz et al.
(2014), Milly et al. (2008), Milly et al. (2015), Salas and Obeysekera (2014), Vogel, Yaindl
and Walter (2011)).
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One approach to projecting flood risk on the basis of extreme streamflow involves the
statistical extrapolation of the spatiotemporal trends observed in the historical record. Of par-
ticular interest is estimating the joint probability of extremal streamflow at multiple locations,
which is useful for understanding regional flood impacts and assessment to support federal
and state emergency management agencies. For example, Dawdy, Griffis and Gupta (2012),
Lima et al. (2016), Sraj et al. (2016) use extreme value analysis (EVA) methods to model
nonstationarity with regressions or hierarchical models for the relationship between flooding
and watershed characteristics and weather. Classic nonspatial EVA (Coles et al. (2001)) be-
gins by isolating the extreme events of interest. This is done systematically by either selecting
all exceedances over a threshold or computing the block maximum, for example, the annual
maximum of daily streamflow. A spatial EVA analyzes exceedances or pointwise maxima
(i.e., computed separately at each spatial location) as a stochastic process over space. Mod-
eling spatial dependence allows for predictions at ungauged locations and the estimation of
the joint probability of extremes at multiple locations. It also facilitates the borrowing of
information across locations to estimate the marginal distribution at each location, which is
particularly useful for EVA where data are sparse and low-probability events are of interest,
and gives valid statistical inference for model parameters by properly accounting for spatial
dependence.

In this study we consider extreme streamflow data from the United States Geological Sur-
vey’s Hydro-Climatic Data Network (HCDN) (Lins (2012)). Our primary objective is to iden-
tify regions within the U.S. where the distribution of extreme streamflow has changed over
time. The HCDN has a long historical record and consists of locations that are minimally
impacted by anthropogenic activity while excluding sites where human activities affect the
flow of the watercourse. We focus on the modeling of block maxima of streamflow with the
help of the max-stable process (MSP) (de Haan and Ferreira (2006)). MSPs are a limiting
class of models for spatial extremes, featuring strong forms of tail dependence (Kabluchko,
Schlather and de Haan (2009), Reich and Shaby (2012b), Schlather (2002), Smith (1990),
Tawn (1990), Wadsworth and Tawn (2012b)). They are a natural asymptotic model for block
maxima but can also be applied to peaks over a threshold using a censored likelihood (e.g.,
Huser and Davison (2014), Reich, Shaby and Cooley (2013)).

In practice, MSPs pose two challenges. First, the analytic forms of (censored) MSP densi-
ties are computationally intractable for all but a small number of spatial locations (Kabluchko,
Schlather and de Haan (2009), Schlather (2002), Wadsworth (2015), Wadsworth and Tawn
(2012b), Wadsworth and Tawn (2014)). For general MSPs, Castruccio, Huser and Genton
(2016) stated that full likelihood inference seemed limited to n = 13 locations. These low-
dimensional results have led to the use of composite likelihood (CL) approximations (Padoan,
Ribatet and Sisson (2010b)). However, CL suffers from statistical inefficiency for large n

(Huser, Davison and Genton (2016)), finite-sample bias when using all pairs of observations
(Castruccio, Huser and Genton (2016), Sang and Genton (2014b), Wadsworth (2015)), and
computational challenges posed by computing likelihoods at all O(n2) pairs. More recently,
Huser et al. (2019) proposed an expectation-maximization algorithm for full likelihood infer-
ence, with computation time of 19.8 hours with n = 20. Huser, Stein and Zhong (2022) have
also applied the Vecchia approximation that requires only moderate-dimensional (say 10 or
15) joint distribution functions, which are available for some MSPs. Deep learning has also
been used to estimate parameters in spatial models within a framework of simulation-based
inference (Gerber and Nychka (2021), Lenzi et al. (2021), Sainsbury-Dale, Zammit-Mangion
and Huser (2023)). They leverage a likelihood-free approach by simulating datasets with dif-
ferent parameter values and using deep learning to identify features of the simulated data that
are indicative of particular parameter values. Gerber and Nychka (2021) used it to estimate
covariance parameters for spatial Gaussian process (GP) models by training convolutional
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neural networks (CNNs) to take moderate size spatial fields or variograms as input and return
the range and noise-to-signal covariance parameters as output. Lenzi et al. (2021) used sim-
ulated data as input and trained CNNs to learn the parameters of an MSP. Finally, Sainsbury-
Dale, Zammit-Mangion and Huser (2023) have used permutation invariant neural networks
for large spatial extremes datasets in a Bayesian setting for estimating parameters from in-
dependent replicates. However, it is difficult to extend them to problems with large numbers
of parameters; for example, a crucial assumption in our application is that the marginal dis-
tributions have spatiotemporally varying coefficients (STVC), which substantially expands
the parameter space. Bayesian approaches have also been proposed since they provide sta-
bility by incorporating prior information as available and are often preferred for uncertainty
quantification. But they are restricted to either small n (Ribatet, Cooley and Davison (2012))
or very specific models (Bopp, Shaby and Huser (2021), Morris, Reich and Thibaud (2019),
Reich and Shaby (2012b)). For lower dimensional problems, approximate Bayesian compu-
tation (ABC) can replace likelihood evaluation with repeated simulation from the MSP model
(Erhardt and Smith (2012)). For general intractable likelihood estimation problems, neu-
ral networks can be leveraged for conditional density estimation. For example, Greenberg,
Nonnenmacher and Macke (2019) use a sequential neural posterior estimation method for
simulation-based inference. A related method is normalizing flows (Kobyzev, Prince and
Brubaker (2021), Papamakarios et al. (2021)), where a simple density is pushed through a
series of transformations, often involving neural networks, to obtain more complex densities.

A second challenge posed by MSPs is that they are restrictive in the class of dependence
types they can incorporate. Environmental data often have weakening spatial dependence
with increasing levels of extreme quantiles, as we go farther out into the tails of the dis-
tributions; however, MSPs are unable to accommodate this behavior. Wadsworth and Tawn
(2012b) addressed this with a max-mixture model that took an MSP and incorporated asymp-
totic independence at the boundary point of the parameter space using a mixing parameter. A
more general approach was taken in Huser and Wadsworth (2019), which combined a Pareto
random variable with a GP resulting in a hybrid model which interpolates between perfect
dependence and asymptotic independence, indexed similarly by a mixing parameter. This
flexible model can establish asymptotic dependence or asymptotic independence from the
data without needing a prior assumption. A limitation of this model is that the Pareto ran-
dom variable is shared by the spatial locations, inducing dependence between distant sites.
This might be unrealistic for an analysis over a large spatial domain. Finally, Hazra, Huser
and Bolin (2021) consider a mixture of a GP with a stochastic scale process; it can cap-
ture a range of extremal dependence structures but does not employ a mixing parameter and,
therefore, assumes equal contribution from both its constituent processes.

In this paper we propose a spatial EVA model and an associated computational algo-
rithm to address the aforementioned limitations of the MSP and related approaches. The
EVA model is specified as a convex combination of an MSP and a GP for residual depen-
dency and has generalized extreme value (GEV) distributed margins with STVC. We refer
to it as the process mixture model (PMM). From a modeling perspective, the mixture of the
two spatial processes allows asymptotic dependence or independence for locations separated
by distance h with independence as h → ∞ (long-range independence). Furthermore, the
STVC can account for temporal nonstationarity, which is key for large-scale climate studies.
This flexibility comes at a computational cost: the model has hundreds of parameters and
even bivariate PDFs do not have a closed form to the best of our knowledge. Therefore, we
develop a new computational algorithm that uses a feed-forward neural network (FFNN) em-
bedded in a density regression model (Xu and Reich (2021)) to approximate the conditional
distribution at one spatial location given a set of neighbors. Following this, the univariate
density functions are used to approximate the joint likelihood for all locations by means of a
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Vecchia approximation (Vecchia (1988b)). This specification partitions the parameter space
into a low-dimensional vector of spatial dependence parameters and a higher dimensional
vector of marginal parameters and decouples the likelihood approximation from parameter
estimation. The FFNN is trained on synthetic data generated from a design distribution using
different parameter values; this allows us to avoid data scarcity issues and accommodate a
range of marginal densities. Parameter estimation is carried out using Markov chain Monte
Carlo (MCMC) sampling. This computational framework is quite general. Unlike many of
the approaches mentioned above, it can be applied to virtually any spatial process (e.g., GP,
MSP, and mixtures), can accommodate high-dimensional STVC margins, as well as miss-
ing and censored data. We use the PMM to analyze changes in annual maximum streamflow
within the U.S. over the past 50 years.

The rest of this paper is organized as follows. Section 2 provides background on the con-
struction and dependence measures for MSPs. Section 3 introduces the PMM for block max-
ima. Section 4 describes inference for the PMM which employs a deep learning Vecchia
approximated density regression approach. Section 5 consists of a detailed simulation study
demonstrating the method. Section 6 analyzes annual streamflow maxima data for HCDN
stations across the U.S. and identifies changes in their behavior over the past 50 years. Sec-
tion 7 concludes with a discussion. Additional theoretical details, simulation studies, and
results from our application are provided in the Supplementary Material (Majumder, Reich
and Shaby (2024)).

2. Background.

2.1. The max-stable process. A random process {R(s) : s ∈ S ⊂ R
d}, indexed by spatial

locations s, is called max-stable if there exists a sequence {Xi(s) : i ∈ N} of independent
copies of the process {X(s) : s ∈ S} and normalizing functions an(s) > 0, bn(s) ∈ R such that

R(s) d= maxi=1:n Xi(s) − bn(s)
an(s)

.

Further, it can be shown that if there exist continuous functions cn(s) > 0, dn(s) ∈ R such
that, as n → ∞,

maxi=1:n Xi(s) − dn(s)
cn(s)

→ R(s),

then R(s) is either degenerate or an MSP (de Haan (1984)). If R(s) is nondegenerate, the
pointwise distributions of R(s) are in the GEV family (de Haan and Ferreira (2006)).

Max-stable processes arise as the pointwise maxima taken over an infinite number of ap-
propriately rescaled stochastic processes and are, therefore, widely applied for studying spa-
tial extremes, in particular block maxima (with a block size of n). MSPs can be constructed
through a spectral representation (de Haan (1984), Penrose (1992)). Let {Zi : i ∈ N} be the
points of a Poisson process on (0,∞) with intensity 1/z2dz. Then there exists a nonnegative
stochastic process W(s) with continuous sample paths and with EW(s) = 1 for all s ∈ S such
that

R(s) d= max
i≥1

ZiWi(s),

where Wi(s) are independent copies of W(s), and R(s) is max-stable with unit Fréchet
marginal distributions. Common parametric subclasses of MSPs include mixed moving max-
ima processes (Wang and Stoev (2010)), the Schlather processes (Schlather (2002)), and
Brown–Resnick processes (Brown and Resnick (1977), Kabluchko, Schlather and de Haan
(2009)).
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The finite dimensional distribution of an MSP R(s) at a set of locations (s1, . . . , sk) ∈ S
has the form Pr{R(sj ) < rj , j = 1 : k} = exp{−�(r1, . . . , rk)}, where � is known as the
exponent function and is given by

�(r1, . . . , rk) = E

[
max
j=1:k

W(sj )
rj

]
.

2.2. Dependence properties. Let F1 and F2 be the cumulative distribution functions
(CDFs) of R(s1) and R(s2), and let U(si ) = Fi(R(si )) for i = 1,2. The joint tail behav-
ior of the two random variables U(s1) and U(s2) with uniform marginals can be studied in
terms of the conditional exceedance probability, given by

χu(s1, s2) := Pr
[
U(s1) > u|U(s2) > u

] ∈ (0,1),

where u ∈ (0,1) is a threshold. A commonly used measure of extremal dependence is the
upper-tail coefficient (Joe (1997)), defined as

χ(s1, s2) = lim
u→1

χu(s1, s2).

The random variables U(s1) and U(s2) are considered asymptotically dependent if the upper-
tail coefficient is strictly positive and asymptotically independent if it is zero.

We note that asymptotic (in)dependence is different from complete (in)dependence, since
asymptotic (in)dependence is determined specifically by the joint behavior of the tails of the
distribution as u → 1. Asymptotic independence is also different from long-range indepen-
dence which is determined by the asymptotic behavior of χu(s1, s2) as ‖s1 − s2‖ → ∞.

In the asymptotic independence scenario, the coefficient of tail dependence proposed by
Ledford and Tawn (1996), Ledford and Tawn (1997) is useful to study the joint tail behavior
of the process. Consider R(s) with unit Fréchet margins. The joint survivor function of R(s1)

and R(s2) is assumed to have the expression

F̄ (r, r) := Pr
[
R(s1) > r,R(s2) > r

] ∼ L(r)r−1/η, as r → ∞,

where L is a slowly varying function that satisfies L(tr)/L(r) → 1 as r → ∞ for all fixed
t > 0, and η ∈ (0,1] is a constant that effectively determines the decay rate of F̄ (r, r) for
large r . The parameter η is known as the coefficient of tail dependence. A value of η = 1/2
indicates independent marginal variables; values lower and higher than 1/2 correspond to a
negative and a positive association respectively between the pair of variables.

2.3. The Brown–Resnick process. Consider W(s) = exp{ε(s)− γ (s)} in the spectral rep-
resentation of an MSP, where ε(s) is an intrinsically stationary Gaussian process with semi-
variogram γ (·), and ε(0) = 0 almost surely. W(s) is continuous and nonnegative. Then R(s)
is a strictly stationary MSP known as the Brown–Resnick process, whose distribution de-
pends only on γ (·). The Brown–Resnick process is attractive since a wide range of vari-
ograms can be used with them, and they are relatively easily simulated. The exponent func-
tion that defines the joint distribution for the pair R(s1) and R(s2) is

�(r1, r2) = 1

r1
�

{
a

2
− 1

a
log

(
r1

r2

)}
+ 1

r2
�

{
a

2
− 1

a
log

(
r2

r1

)}
,

where a = {2γ (s1 − s2)}1/2, and �(·) denotes the standard normal distribution function.
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3. A process mixture model for spatial extremes. Let {Y(s); s ∈ S} be a spatial ex-
tremes process indexed by the set S ⊂ R

2. In this section we consider Y(s) to be defined
as a block maximum, but the methods can be extended to peaks over a threshold. We as-
sume a potentially different marginal distribution for each spatial location s and denote Fs as
the marginal CDF for site s. For example, we assume that Fs is the GEV distribution with
location μ(s) ∈ R, scale σ(s) > 0, and shape ξ(s) ∈ R so that marginally

Y(s) ∼ GEV
{
μ(s), σ (s), ξ(s)

}
.

Its CDF Fs(y|μ(s), σ (s), ξ(s)) := Pr[Y(s) < y] is

(1) Fs
(
y|μ(s), σ (s), ξ(s)

) =

⎧⎪⎪⎨
⎪⎪⎩

exp
[
−

{
1 + ξ(s)

(
y − μ(s)

σ (s)

)}−1/ξ(s)

+

]
, ξ(s) 	= 0,

exp
{
− exp

(
y − μ(s)

σ (s)

)}
, ξ(s) = 0,

with {y}+ := max(0, y), and support over the set {y : 1 + ξ(s)(y − μ(s))/σ (s) > 0} for the
CDF. The shape parameter ξ(s) controls the lower and upper bounds of the distribution; the
GEV distribution is bounded above for ξ(s) < 0 and bounded below for ξ(s) > 0. Therefore,
the transformed variables

(2) U(s) = Fs
{
Y(s)

}
share common uniform marginal distributions across the spatial domain. This transformation
separates residual spatial dependence in U(s) from the spatial dependence induced by spatial
variation in the GEV parameters, which we model using GP priors over s. We note that
although we describe the marginal and residual models separately, we fit a joint hierarchical
model to simultaneously estimate all model parameters.

We define our spatial dependence model on the residual model U(s) by taking U(s) =
G{V (s)} such that

(3) V (s) = δR(s) + (1 − δ)W(s),

where R(s) and W(s) are an MSP and a GP, respectively, both transformed to have standard
exponential margins, and δ ∈ [0,1] is the weight parameter to control relative contribution of
the two spatial processes. Mixing the asymptotically dependent MSP with the asymptotically
independent GP provides a rich model for spatial dependence. This generalizes the extremal
process of Huser and Wadsworth (2019), who assumed a standard exponential random vari-
able R common to all locations, by replacing it with an MSP. Since (3) mixes two processes,
we refer to it as the process mixture model (PMM). Further details regarding the transfor-
mations required to obtain standard exponential margins and the Huser–Wadsworth model
are provided in the Supplementary Material (Majumder, Reich and Shaby (2024), Appendix
A.2–A.3).

Let G(·) denote the CDF of the marginal distribution of V (s). By construction, V (s)
marginally follows the two-parameter hypoexponential distribution, and its CDF has the fol-
lowing functional form:

(4) G(v) = 1 − 1 − δ

1 − 2δ
exp

{
− v

1 − δ

}
+ δ

1 − 2δ
exp

{
−v

δ

}
,

where δ ∈ (0,1), δ 	= 1/2, and v > 0. When δ = 1/2, the marginal distribution of V (s)
is Gamma(2,2) with a rate parameter of 2. Although other options are possible, we
model the correlation of W(s) using the isotropic powered-exponential correlation function
Cor{W(s1, s2)} = exp{−(h/ρW)αW } with distance h = ‖s1 − s2‖ measured as the L2 norm,
smoothness αW ∈ (0,2], and range ρW > 0. R(s) is assumed to be an isotropic Brown–
Resnick process with the variogram γ (h) = (h/ρR)αR , for smoothness αR ∈ (0,2] and range
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FIG. 1. Behavior of the empirical conditional exceedance: Approximate χu(h) for the PMM plotted as a function
of threshold u, distance h, and asymptotic dependence parameter δ. Smoothness parameters αW = αR = 1, GP
range ρW = 0.2, and MSP range ρR = 0.1 are fixed for both plots.

ρR > 0. We also incorporate a nugget into the process mixture. Denoting the proportion of
the variance explained by the spatial process by r , we construct W(s) and R(s) to satisfy

Cor
(
W(s1),W(s2)

) = r · exp
{−(h/ρW)αW

}
,

R(s) = max
{
r · R1(s), (1 − r) · R2(s)

}
,

where R1(s) is an MSP, and R2(s)
iid∼ GEV(1,1,1) is distributed independently of R1(s).

Since R(s) and W(s) are assumed to be isotropic processes, going forward, we can rewrite
χu(s1, s2) and χ(s1, s2) as functions of the distance between locations, χu(h) and χ(h), re-
spectively.

Figure 1 plots Monte Carlo approximations of χu(h) as a function of u and h for the PMM.
For these plots we fix ρR = 0.1, ρW = 0.2, αR = αW = 1, and δ ∈ {0.2,0.4,0.6,0.8}. Fig-
ure 1(a) sets the correlation to 0.4 by fixing h = 0.22 and plots χu(h) as a function of the
threshold u. The limit is zero for δ < 0.5 and positive for δ > 0.5. For small values of h,
R(s) is approximately the same for both sites (i.e., R(s1) ≈ R(s2) = R) and thus the univari-
ate R result of Huser and Wadsworth (2019) that the process is asymptotically dependent if
and only if δ > 0.5 emerges. An analytical expression for χu(h) in this special case is pro-
vided in Majumder, Reich and Shaby ((2024), Appendix A.4). From Figure 1(b) we see that
as the distance h increases, χu(h) converges to zero for all δ because both R(s) and W(s)
have diminishing spatial dependence for long distances. The rate of convergence of χu(h)

to zero also depends on the value of δ with much slower convergence when δ > 0.5. We
note that χu(h) does not converge to zero for large h under the common R model of Huser
and Wadsworth (2019), which is unrealistic for studies on a large spatial domain. Additional
plots for different values of ρR and ρW are provided in Majumder, Reich and Shaby ((2024),
Appendix A.5).

4. Deep learning Vecchia approximation for the process mixture model. Fitting the
PMM introduced in Section 3 poses computational challenges, especially for large datasets.
The joint distribution for W(s) is available in closed form but is cumbersome for large
datasets; the joint distribution of R(s) is available only for a moderate number of spatial
locations, and the joint distribution of the mixture model is more complicated that either of
its components. An alternative is to build a surrogate likelihood for Bayesian computation
(e.g., Järvenpää et al. (2021), Li et al. (2019), Price et al. (2018), Rasmussen (2003), Wang
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and Li (2018b), Wilkinson (2014)). Below we develop a surrogate likelihood based on a
Vecchia decomposition (Vecchia (1988b)) and deep learning density regression.

Assume the process is observed at n locations s1, . . . , sn. Partition the parameters into
those that affect the marginal distributions, denoted θMARG, and those that affect the spatial
dependence, denoted θSPAT. For the model in Section 3, θMARG includes the GEV parameters
θMARG = {μ(si ), σ (si), ξ(si ); i = 1, . . . , n} and θSPAT = {δ, ρR,αR,ρW ,αW }. Let Y(si ) ≡ Yi

and Ui = F(Yi; θMARG) be the transformation of the response so that the distribution of
Ui ∈ [0,1] does not depend on θMARG. We approximate the spatial model on this scale and
use the standard change of variables formula to define the joint likelihood on the original
scale

(5) fy

(
y1, . . . , yn; θMARG, θSPAT) = fu

(
u1, . . . , un; θSPAT) n∏

i=1

∣∣∣∣dF(yi; θMARG)

dyi

∣∣∣∣,
where fy(·) and fu(·) are the joint density functions of Y1 . . . , Yn and U1, . . . ,Un, respec-
tively.

We approximate the joint likelihood in (5) using a Vecchia approximation (Datta et al.
(2016), Katzfuss and Guinness (2021), Stein, Chi and Welty (2004b), Vecchia (1988b)),

(6) fu

(
u1, . . . , un; θSPAT) =

n∏
i=1

f
(
ui |θSPAT, u1, . . . , ui−1

) ≈
n∏

i=1

fi

(
ui |θSPAT, u(i)

)

for u(i) = {uj ; j ∈ Ni} and Ni ⊆ {1, . . . , i − 1}, for example, the m locations in Ni that are
closest to si . The set of locations s(i) are analogously defined as s(i) = {sj ; j ∈ Ni}; the set
is referred to as the Vecchia neighboring set and its members as the Vecchia neighbors of
location si . Of course, not all locations that are dependent on location si need be included
in Ni because distant observations may be approximately independent after conditioning
on more local observations. The approximation, therefore, entails truncating the dependence
that ui has on all its previous i − 1 ordered sites to instead consider dependence on only
up to m sites, that is, |Ni | ≤ m. The first term on the right-hand side of (6) is the marginal
density f1(u1). Different choices are possible for ordering the locations prior to the Vecchia
approximation (Guinness (2018)). In our work the spatial locations are scaled to be on the
unit square and ordered by their distance from the origin.

The conditional distributions for the PMM do not have closed-form expressions. We con-
sider two related approximations—the local approximation, where individual conditional
density functions fi(·) are fit for each location, and a global approximation where a single
conditional density function f (·) is estimated for all locations si , i = 2, . . . , n. We primarily
focus on the local SPQR and present it in this section. Details of the global SPQR approach
can be found in the Supplementary Material (Majumder, Reich and Shaby (2024), Appendix
A.6).

For the local SPQR approximation at location si , we fit a density regression viewing u(i)

and θSPAT as features (covariates), denoted by xi . We approximate the univariate conditional
densities for density regression using the model introduced in Xu and Reich (2021),

(7) fi(ui |xi ,W) =
K∑

k=1

πik(xi ,Wi)Bk(ui),

for i = 2, . . . , n, where πik(xi ,Wi) ≥ 0 are probability weights with
∑K

k=1 πik(xi ) = 1 that
depend on the parameters Wi and Bk(ui) ≥ 0 are M-spline basis functions that, by definition,
satisfy

∫
Bk(u)du = 1 for all k. By increasing the number of basis functions K and appropri-

ately selecting the weights πik(xi ), this mixture distribution can approximate any continuous
density function (e.g., Abrahamowicz, Clampl and Ramsay (1992), Chui, Smith and Ward
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(1980)). The weights are modeled using a feed-forward neural network (FFNN) with H hid-
den layers with Nl neurons in hidden layer l and a softmax activation function, equivalent to
multinomial logistic weights, in its final layer. The model is

πik(xi ,Wi) = exp{γHk(xi ,Wi)}∑K
j=1 exp{γHj (xi ,Wi)}

,

γlk(xi ,Wi) = Wilk0 +
Nl∑

j=1

Wilkjψ
{
γl−1,j (xi ,Wi)

}
for l ∈ {1, . . . ,H },(8)

γ0k(xi ,Wi) = Wi0k0 +
p∑

j=1

Wi0kj xij ,

where xi = (xi1, . . . , xip), Wi = {Wilkj } are parameters to be estimated and ψ is the ac-
tivation function. Activation functions are nonlinear transformations applied to each output
element of a layer and are a key feature of neural networks that allows them to learn complex,
nonlinear dependencies in the data. The SPQR methodology of Xu and Reich (2021) admits
most of the commonly used activation functions, and we use the rectified linear unit (ReLU)
(Nair and Hinton (2010)). FFNNs use optimization to obtain optimum values of πik(xi ,Wi).
In SPQR the FFNN minimizes the negative log-likelihood loss associated with the density in
(7), using the process values evaluated at locations si as the response. Building on the uni-
versal approximation theorem for FFNNs (Hornik, Stinchcombe and White (1989)), Xu and
Reich (2021) argue that, with H = 1 and large K and N1, the model in (8) can approximate
any conditional density function that is smooth in its arguments.

Within this framework, approximating the conditional distributions is equivalent to esti-
mating the weights W . Unlike a typical statistical learning problem, observational data are
not used to estimate W . Rather, the weights are learned from training data generated from
the PMM with parameters θSPAT ∼ p∗ and then a realization from the process over sites si
and s(i) from the model conditioned on θSPAT. Specifically, we generate data at the observed
spatial location with the same neighbor sets to be used in the analysis. We select the design
distribution p∗ with support covering the range of plausible values for θSPAT. Given these
values, we generate U(s) at s ∈ {si , s(i)}. The feature set xi for modeling ui at location si
thus contains the spatial parameters θSPAT and the process values U(s(i)) at the neighboring
locations.

Therefore, all that is required to build the approximation is the ability to generate small
datasets from the model. The size of the training data is effectively unlimited, meaning the
approximation can be arbitrarily accurate. Once the weights have been learned, applying the
FFNN to the approximate likelihood is straightforward, and the Vecchia approximation en-
sures that the computational burden increases linearly in the number of spatial locations. The
proposed estimation approach is in the same vein as recent simulation based neural inference
methods (Gerber and Nychka (2021), Lenzi et al. (2021), Sainsbury-Dale, Zammit-Mangion
and Huser (2023)); an important distinction is that, instead of estimating model parameters
using a neural network, our approach estimates a set of conditional densities which approxi-
mates the full model likelihood.

The weights in (7) are estimated separately for each location. That is, each component
fi(ui |θSPAT, u(i)) in (6) is modeled using its own FFNN, for i = 2, . . . , n. The model is fit
using the R package SPQR (Xu and Majumder (2022)), and consequently, the fitting process
is referred to as the SPQR approximation. The SPQR package supports hardware acceleration
for systems with a CUDA-compatible NVIDIA graphical processing unit (GPU), which was
used for all SPQR models in this paper and provided significant speedups for computation
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Algorithm 1 Local SPQR approximation
Require: Locations s1, . . . , sn and corresponding sets of neighboring locations s(1), . . . , s(n)

Require: Design distribution p∗, training sample size N

i ← 2
while i ≤ n do

k ← 1
while k ≤ N do

Draw values of θSPAT
k ∼ p∗

Generate Uk(s) at s ∈ {si , s(i)} given θ2k using (3)
Define features xik = (θSPAT

k , u(i)k), where u(i)k = {Uk(s); s ∈ s(i)}
k ← k + 1

end while
solve Ŵi ← argmaxW

∏N
k=1 fi(uik|xik,W) for fi(ui |xi ,Wi) defined in (7) using

SPQR
i ← i + 1

end while

times. All computations were carried out on a mobile workstation with 11th Gen Intel Core
i7-11800H processors (eight cores, 16 logical processors), 64 GB of RAM, and an NVIDIA
T600 laptop GPU with CUDA support. Algorithm 1 outlines the local SPQR procedure.

Given the approximate model in (5) for fy with an SPQR approximation for fu, a Bayesian
analysis using MCMC methods is straightforward. We use Metropolis updates for both
θMARG and θSPAT. For a spatially-varying coefficient model with local GEV coefficients
for location si , we update parameters {μ(si ), σ (si), ξ(si)} as a block sequentially by site,
and exploit the Vecchia approximation to use only terms in the likelihood corresponding to
sites j such that j ∈ Nj , that is, sites for which site i is included in the neighboring set. All
Metropolis updates are tuned to give acceptance probability 0.4, and convergence is diag-
nosed based on the visual inspection of the trace plots. Additional computational details are
given for specific analyses below, and MCMC code is provided in a GitHub repository—
https://github.com/reetamm/SPQR-for-spatial-extremes.

5. Simulation study. We illustrate the potential of the proposed algorithm with a simu-
lation study to evaluate the performance of the method on extreme value data in terms of both
density estimation and parameter estimation. We consider the PMM as the underlying spatial
process and an STVC model for the marginal GEV parameters. The goal of the study is to as-
sess whether our approach can simultaneously model the marginal GEV distributions and the
underlying extremal spatial process. We simulated data from the PMM, defined in Section 3,
at n = 50 spatial locations distributed randomly on the unit square. To put the MSPs and
GPs on the same scale, we assume common smoothness parameter αR = αW = α = 1 and
parameterize ρW and ρR to give the same effective range, that is, the distance at which the
correlation of the GP reaches 0.05 (h = ρW log(20)) and the χ -coefficient of the MSP reaches
0.05 (h = ρR4�−1(1 − 0.05/2)2 where � is the standard normal distribution function). This
results in ρ = ρW and ρR = 0.19ρ.

The locations are ordered by their distance from their origin. For the ith location
si , with i > 1, the Vecchia neighbor set s(i) consists of the m nearest neighbors of si among
the previous i − 1 locations. Up to 15 conditioning points are used in the Vecchia neighbor
set, that is, m = min(i − 1,15), where m = |Ni |. We use the local SPQR model outlined
in Algorithm 1 to model the conditional densities at each location, which employs stochas-
tic gradient descent with the adaptive moment estimation (Adam) optimizer (Kingma and

https://github.com/reetamm/SPQR-for-spatial-extremes
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FIG. 2. Model diagnostics for local SPQR fit on PMM data: VI plot of the five most important variables (left)
and Q-Q plot on the exponential scale (right) for the local SPQR at site 25. The gray lines correspond to Q-Q
plots of fits to different simulated datasets.

Ba (2014)). We compared multiple SPQR models as part of the density estimation process.
Models were compared on the basis of the log-score and the Kullback–Leibler (KL) diver-
gence between the estimated and true densities. Architectures with the lowest validation loss
were chosen in each case. Our NN architecture for each SPQR model consists of two hidden
layers with 30 and 15 neurons, 15 output nodes, a learning rate 0.001, batch size 100, and 50
epochs. We train the SPQR model with design distribution p∗, generating samples uniformly
on ρ ∈ (0.0,0.5) and δ ∈ (0,1).

We first evaluate the SPQR fits of the PMM full conditional distributions. Figure 2(a) plots
variable importances for the local SPQR model at site 25. The VI plot identifies the features
that are most important for explaining different aspects of the conditional distribution; the
spatial parameters are found to be more important at extreme quantiles, while the process
realizations at the Vecchia neighbor locations are more important closer to the median. The
plots indicate that the conditional distributions at each location are sensitive to the spatial pa-
rameters; details of the VI metric used by SPQR are presented in the Supplementary Material
(Majumder, Reich and Shaby (2024), Appendix A.7). To assess goodness of fit, we repeat
the process of fitting the local SPQR model at site 25 for 100 independent datasets simulated
from the PMM. Figure 2(b) is a Q-Q plot based on true and fitted values from the SPQR
models, where each line corresponds to one of the 100 datasets. The Q-Q plot is presented
on the exponential scale (Heffernan and Tawn (2001)) to verify whether the model can ade-
quately capture tail behavior. The values fall along the Y = X line, suggesting a good model
fit. Computation time for local SPQR at sites with all 15 neighbors is approximately 22 min-
utes. The doParallel package in R was used to parallelize SPQR model fits and improve
computation times.

We conduct a simulation study to explore how density-estimation errors propagate to
parameter-estimation errors for spatially varying GEV parameters. Two scenarios are con-
sidered for the simulation studies, corresponding to δ = {0.2,0.8}. For both scenarios we
assume the true values of ρ = 0.15 and r = 0.80, and simulate 100 datasets at the 50 lo-
cations. Each dataset consists of 50 independent (time) replicates. For spatial coordinates
s = (s1, s2), the marginal GEV parameters are

μ0(s) = exp
{
2 + cos(2πs1) + cos(2πs2)

}
,
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μ1(s) = 1,

σ (s) = exp
{
cos(2πs2)

}
,

ξ(s) = 1

2
sin

(
π

2
s1

)
.

We model the marginal GEV parameters using an STVC model. At each location we assume
the data to be GEV with parameters

Yt (s) ∼ GEV
(
μ0(s) + μ1(s)X∗

t , σ (s), ξ(s)
)
,

with X∗
t = (t − 25.5)/10, t = 1 : 50. The variable X∗

t represents changes in the location
parameter over time.

The intercept process μ0(s) is assigned a GP prior with a Matérn covariance function, and
nugget effects allow local heterogeneity,

μ0(s) = μ̃0(s) + e0(s),

e0(s)
iid∼ Normal(0, vμ0),

μ̃0(s) ∼ GP
(
βμ0, τ

2
μ0

K(s, s′;ρμ0, κμ0)
)
,

βμ0 ∼ Normal
(
0,102)

, τ 2
μ0

, v2
μ0

iid∼ IG(0.1,0.1),

logρμ0 ∼ Normal(−1,1), logκμ0 ∼ Normal(−2,1),

where K(s, s′;ρμ0, κμ0) is the Matérn correlation function with spatial range ρμ0 and smooth-
ness parameter κμ0 , and IG(·, ·) is the inverse-Gamma distribution. The slope μ1(s), the log-
scale logσ(s), and the shape ξ(s) are modeled similarly using GPs. The spatial parame-
ters have priors δ ∼ Uniform(0,1), ρ ∼ Uniform(0.0,0.5), and r ∼ Uniform(0,1). Runtimes
were approximately one minute for 1000 iterations of the MCMC.

Table 1 details coverage of the empirical 95% intervals for the posterior distribution of the
marginal GEV parameters. Mean coverage across locations is near or at nominal level across
different parameters and scenarios. Figure 3 plots the sampling distribution of the posterior
mean estimator of δ for the two scenarios and provides empirical coverage of the 95% poste-
rior interval. Both scenarios show low bias; coverage is 91% for the asymptotic independence
scenario, and 97% for the asymptotic dependence scenario. Overall, the SPQR approach is
able to distinguish between the two asymptotic regimes in the presence of spatially varying
marginals.

Additional simulation studies are presented in the Supplementary Material (Majumder,
Reich and Shaby (2024), Appendix B), which involve special cases of the PMM. The first
considers a GP as the spatial process, and evaluates both the global and local SPQR methods.
The second study is also for a PMM but in a non-STVC setting, where we explore a few
additional scenarios, including negative shape parameters and missing and censored data.
The final demonstrates the need of nonlinear NN layers by fitting a SPQR model without any
hidden NN layers.

TABLE 1
Coverage (in %) for marginal GEV parameters under two scenarios based on MCMC simulations over 100

datasets. The three values represent the minimum, mean, and maximum coverage across the 50 study location

μ0 μ1 σ ξ

δ = 0.2 (86, 92, 96) (91, 96, 99) (83, 91, 98) (92, 96, 100)
δ = 0.8 (85, 93, 100) (90, 95, 100) (86, 93, 98) (90, 96, 100)
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FIG. 3. Sampling distribution of the posterior mean for the asymptotic dependence parameter δ for two simula-
tion scenarios. The horizontal dashed lines are true values, and the numbers along the bottom give the empirical
coverage of the 95% intervals.

6. Analysis of extreme streamflow in the U.S.

6.1. Data description and exploratory analysis. We apply the proposed methods to
model extreme streamflow from 1972–2021 at 487 stations across the U.S. with complete
data. These locations are part of the USGS Hydro-Climatic Data Network (HCDN) 2009
(Lins (2012)) and are relatively unaffected by human activities. The data is downloaded using
the dataRetrieval package in R (De Cicco et al. (2022)), and the code is made available
in our GitHub repository.1 Our goal is to identify regions within the U.S. where the distribu-
tion of extreme streamflow is changing over time. The annual maximum of daily streamflow
is measured in m3/s, and for each of the T = 50 years and n = 487 stations, the response
Yt (s) is taken to be the logarithm of the annual maximum. The log-transformation was cho-
sen as a Box–Cox transformation parameter after comparing parameter values between −2
and 2 on the basis of goodness of fit, profile likelihood values, and the stability of initial MLE
estimates at the locations. Figure 4 plots the sample 0.9 quantile of the T = 50 observations
at each station, which show considerable spatial variation.

In order to study the dependence structure of the process, especially at its extremes, we
consider the conditional exceedance probability χu(h) of maximum streamflow at pairs of

FIG. 4. HCDN annual maxima: Sample 0.9 quantile of the log-annual streamflow maxima Yt (s) (in m3/s) at
each of the 487 gauges.

1https://github.com/reetamm/SPQR-for-spatial-extremes.

https://github.com/reetamm/SPQR-for-spatial-extremes
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FIG. 5. Spatial behavior of log annual maximum streamflow in terms of the conditional exceedance and the
variogram, units of km.

stations separated by a distance h = ‖sj − sk‖ in kilometers (km). Figure 5(a) plots χu(h) for
rank-standardized streamflow data as a function of u for different values of h. The rank stan-
dardization ensures a Uniform(0,1) marginal distribution at each location. Stations farther
away from each other can be seen to have less extremal dependence, with tail dependence
approaching 0 for stations 1000 km apart. Figure 5(b) plots the mean of the annual vari-
ograms of the streamflow data. It shows a range of over 1500 km as well as the presence
of a nugget effect. Both plots suggest that extremal streamflow is spatially dependent at dis-
tances of 1000 km or more, even after accounting for the spatial differences in the marginal
distributions.

For the marginals at each location, we assume GEV distributions with STVC,

(9) Yt (s) ∼ GEV
[
μ0(s) + μ1(s)Xt , σ (s), ξ(s)

]
,

where Xt = (yeart − 1996.5)/10 for yeart = 1972 + t − 1. This parameterization attempts
to capture changes in the location parameter in the past 50 years due to changing climate;
positive values of μ1(s) would suggest an increase in the magnitude of the annual extremal
streamflow. Figure 6 plots variograms for MLE estimates (estimated separately by location)
of the GEV parameters at each location. All four GEV parameters show spatial dependency,
which motivates the STVC specification.

The marginal GEV parameters for each location are assigned GP priors with a Matérn
correlation functions and nugget effects to allow for local heterogeneity. The prior specifi-
cation is similar to the one used in Section 5, except with the additional assumption of a
common Matérn smoothness parameter was made for all four GP priors to improve MCMC
convergence, that is, κμ0 = κμ1 = κσ = κξ = κ . For the residual model, we use the PMM in

FIG. 6. Sample variogram plots for the MLE of GEV parameters for extreme streamflow at each location.
Parameters are labeled on the top-left of each panel.
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Section 3 for spatial dependence and assume independence across years. The specification in-
cludes a nugget based on the mean variogram (Figure 5(b)). As priors for the joint parameters
θSPAT, we set δ, r ∼ Uniform(0,1), and ρ ∼ Uniform(0,6251) measured in km.

6.2. Results. The local SPQR approximation for the log of annual streamflow maxima is
thus based around θSPAT = (δ, ρ, r), and models are fit using 200,000 synthetic observations
at each of the 486 locations with neighbors. Once the local SPQR models have been fit, we
run two MCMC chains for 30,000 iterations each, with two different starting values of δ. The
first 10,000 iterations from each chain are discarded as burn-in; additional results are provided
in the Supplementary Material (Majumder, Reich and Shaby (2024), Appendix C.2).

6.2.1. Parameter estimates. The posterior means (standard deviations) of the spatial pa-
rameters are δ̂ = 0.45 (0.02), ρ̂ = 807 (45) km, and r̂ = 0.92 (0.004). The posterior of δ has a
95% interval of (0.40,0.49), which puts the process in the asymptotic independence regime
with high probability. The GEV Matérn smoothness parameter estimate is κ̂ = 0.60 (0.03),
and the four range parameters (in km) are ρ̂μ0 = 12,435 (10,645), ρ̂μ1 = 27,605 (10,689),
ρ̂σ = 20,311 (11,232), and ρ̂ξ = 20,320 (11,481). The STVC parameters are, therefore,
much smoother over space than the year-to-year variation captured by ρ. The intercept is
the most variable GEV parameter across space, and the slope is the least, having the small-
est and largest range parameter estimates, respectively. It is likely that the intercept varies
the most because the magnitude of streamflow at a station is dependent on very local fea-
tures. Conversely, the slope parameter may vary smoothly because the drivers of change are
regional rather than local in nature.

Figure 7 plots the spatial distribution of posterior means for the GEV parameters. The
shape and scale parameters are negatively associated for large parts of the country, possibly
a consequence of the constraints on the GEV parameters. The scale parameter σ(s) is high-
est in the Arkansas–Rio Grande-Texas Gulf and the Missouri basin regions,2 and the scale
parameter is highest in the North Atlantic–Appalachian and the Columbia–Pacific Northwest
regions. Areas with high estimates of μ0(s) and ξ(s) coincide with areas of high precipitation
in the 1991–2020 U.S. Climate Normals,3 the current official baseline for describing average
U.S. climate. This suggests that an association between precipitation and streamflow maxima.
In Figure 7d we note that the posterior means of the shape parameters ξ(s) are negative at
all 487 stations on the log-transformed data. The use of the log-transform for the streamflow
data leads to negative GEV shape parameter estimates, imposing a finite upper bound on the
distribution, even on the original scale. However, we do not expect this to affect estimation
of either the quantiles of the marginal distribution or the joint exceedance probabilities. To
assess the effect of transforming the data, additional analysis was carried out on PMMs fit-
ted to the original scale of the data as well as on the square root of streamflow. Results from
both these analyses are provided in the Supplementary Material (Majumder, Reich and Shaby
(2024), Appendix C.4).

Our primary interest, however, is in estimates of the location parameters across the U.S.
Figure 7a plots the posterior mean of the intercept μ0(s) of the location parameter and has a
spatial distribution similar to Figure 4. Figure 7b plots the posterior mean of the slope μ1(s)
of the location parameters with respect to time across the U.S., and Figure 8 plots the poste-
rior probability of the slope parameter being positive, Pr[μ1(s) > 0]. Positive slope estimates
in Figure 7b indicate an increase in extreme streamflow over time, and high probabilities in
Figure 8 indicate stronger evidence for the increase being significant. The majority of the

2DOI unified regions.
3U.S. Climate Normals, U.S. Climate Atlas

https://www.doi.gov/employees/reorg/unified-regional-boundaries
https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals
https://www.ncei.noaa.gov/access/climateatlas/
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FIG. 7. HCDN GEV parameter estimates: Posterior means for 487 stations in the U.S.A. based on log-trans-
formed data from 1972–2021.

positive slope parameters are concentrated in the Mississippi and Missouri basins and the
Arkansas–Rio Grande–Texas Gulf regions. The North Atlantic–Appalachian region in the
east has a large number of catchments with slope estimates near zero, but the majority of zero
and negative slope estimates are concentrated around the Lower Colorado Basin, Columbia–
Pacific Northwest, and the California–Great Basin regions. An exception is Washington, in
the northwest, which has high estimates of the slope. The upper Colorado basin, which in-
cludes Wyoming, Colorado, and New Mexico, is of particular interest since HCDN stations

FIG. 8. Posterior of Pr[μ1(s) > 0] for GEV location parameters based on log-transformed data from
1972–2021.
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FIG. 9. PIT scores of marginal GEV fits for HCDN locations in Colorado (left) and New Mexico (right).

in the region have relatively low 0.9 quantile values in Figure 4 as well as low μ0(s) esti-
mates in Figure 7a, suggesting that extreme streamflow is starting to have large impacts in
this region over time.

6.2.2. Regional joint exceedance behavior. To study the behavior of extreme streamflow
jointly for multiple locations, we consider two clusters of HCDN stations in Colorado (CO)
and in New Mexico (NM), comprising of 10 and 11 stations, respectively. Figure 9 plots the
probability integral transform (PIT) scores of marginal GEV fits for locations within each
cluster based on posterior means of GEV parameters, which suggest adequate marginal fits
for both sets of locations. To quantify the effect of changing climate on extreme streamflow
for each cluster, we look at the joint posterior probability of streamflow maxima exceeding
the observed 0.90 quantile values, as shown in Figure 4, that is, Pr[Yt(si ) > qi, i = 1, . . . , ni]
for the sample 0.90 quantile qi at location si , where ni is the number of stations within each
cluster. Since our marginal models have STVC, we are able to calculate posterior proba-
bilities for both 1972 and 2021. The probabilities are calculated based on 200 post burn-in
MCMC samples from the posterior distribution of the parameters. For each MCMC sample,
20,000 observations are generated from the fitted model; the 1972 and 2021 probabilities are
calculated based on 10,000 observations each.

In Colorado the 10 HCDN stations correspond to catchments with drainage ranging from
15.5 km2 to 432.9 km2. The cluster is well separated from other stations and has high poste-
rior estimates of Pr[μ1(s) > 0] (minimum = 0.10, mean = 0.57). The HCDN stations are all
situated in the Upper Colorado Basin region, and the set of neighbors are spread across the
Upper and Lower Colorado Basin regions. The joint exceedance probability for 1972 has a
mean of 0.075 with an SD of 0.04. The joint exceedance probability for 2021 has a mean of
0.17 with an SD of 0.046. This corresponds to an increase of around 125% of the mean joint
exceedance probability in the last 50 years. Note that if we assume independence across lo-
cations, the joint exceedance probability for the 10 locations would be approximately 10−10.
Finally, the probability that the joint exceedance in 2021 is higher than in 1972 is 0.90, pro-
viding strong evidence in favor of increased extremal streamflow in the area, possibly due to
changing climate.

In New Mexico the 11 HCDN stations correspond to catchments with drainage ranging
from 43.8 km2 to 4804.9 km2. The stations are all situated in the Upper Colorado Basin re-
gion, and the set of Vecchia neighbors are located across the Upper and Lower Colorado
Basin as well as the California–Great Basin region. The catchments have a mix of high-
and low-posterior estimates of Pr[μ1(s) > 0] (minimum = 0.07, mean = 0.48). The joint ex-
ceedance probability for 1972 has a mean of 0.045 with an SD of 0.012. The joint exceedance
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probability for 2021 has a mean of 0.053 with an SD of 0.017. This corresponds to an increase
of around 18% of the mean joint exceedance probability in the last 50 years. The probability
that the the joint exceedance in 2021 is higher than in 1972 is 0.695, which is lower than the
result for Colorado but still significantly higher than the independent scenario. Majumder,
Reich and Shaby ((2024), Appendix C.2) contains additional results for both clusters.

6.2.3. Model comparison and model fit. We compared the PMM with three spatial
processes—a GP, an MSP, and the Huser–Wadsworth (HW) process. In each case inference is
carried out by using SPQR for density estimation and using MCMC afterward for parameter
estimation. This allows for a comparison of the appropriateness of different spatial processes
for our application. For all three competing models, we used the same neural network archi-
tecture in our local SPQR fits as the PMM.

Table 2 lists estimates and standard errors from leave-one-out cross-validation (LOO-CV)
(Vehtari, Gelman and Gabry (2016)) and the Watanabe–Akaike information criterion (WAIC)
(Watanabe (2010)) for the four models. Based on both metrics, the PMM has the lowest values
and thus the best model fit, followed by the HW model. The MSP and the GP are noticeably
worse than the PMM and HW models, but their LOO-CV and WAIC estimates are relatively
close to each other. This suggests that models, which assume asymptotic (in)dependence
(e.g., the MSP and the GP), are likely to have worse fits when the dependence structure
is complex. An intercomparison of the posterior means of the slope parameter from each
of these models is presented in the Supplementary Material (Majumder, Reich and Shaby
(2024), Appendix C.3).

Finally, we evaluate the fit when using the PMM as the underlying spatial process by
comparing estimates of χu(h) based on the posterior distribution with empirical estimates
obtained from the rank-standardized observed data. For this we choose three regions within
the U.S.A., the first two of which are the CO and NM clusters studied in Section 6.2.2. Both
clusters have a total of 34 locations (including the Vecchia neighbor locations). The third area
consists of HCDN locations in Oregon (OR) and with its Vecchia neighbors, accounting for
a total of 56 locations in Oregon, Washington, Nevada, and California. This region provides
a contrast to the CO and NM clusters; locations are farther apart and have low estimates of
the slope and scale but high estimates of the shape parameter. For each of the three clusters,
we generated realizations of the spatial process based 200 samples from the posterior and
estimated χu(h) for each sample.

Figure 10 plots the empirical and posterior estimates of χu(h) for the three regions. The
top row plots the upper tail coefficient for high quantiles, for locations h = 10 km apart for
CO and NM, and h = 100 km apart for OR. The bottom row plots estimates of χu(h) for
u = 0.90. In each panel the bold line represents the empirical estimate, and the dashed line
and band represent the mean and 95% interval of the posterior estimates, respectively. We
note that both the model-based and empirical estimates of the upper tail coefficient behaves

TABLE 2
Estimates and standard errors (in parentheses) from leave-one-out cross validation (LOO-CV) and the
Watanabe–Akaike information criterion (WAIC) for comparing the process mixture model (PMM), the

Huser–Wadsworth model (HW), the max-stable process model (MSP), and the Gaussian process model (GP).
Lower values indicate a better fit

PMM HW MSP GP

LOO-CV 29,108 (540) 29,708 (544) 32,058 (583) 33,842 (561)
WAIC 29,559 (549) 30,193 (565) 33,441 (552) 34,440 (585)
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FIG. 10. Estimates of χu(h) for three different regions: Empirical estimates of the upper tail coefficient in bold,
compared against estimates based on the posterior distribution. The dashed lines and the bands correspond to the
mean and 95% interval, respectively.

similarly for the three regions and are consistent with the empirical estimate that is obtained
from data for the entire U.S.A. (Figure 5(a)). This suggests that the stationarity assumption
for the dependence structure in our model is appropriate. The 95% intervals in the top row
includes 0 for all three regions, reflecting the asymptotic independence corresponding to our
estimate of δ. Both the empirical and posterior estimates show behavior similar to Figure 1(a)
for the asymptotic independent case. The tail coefficients can also been seen to decrease as
distance increases, similar to Figure 1(b). We noted similar behavior for other regions within
the country. While the fitted model tends to overestimate χu(h) for several regions, it is able
to capture the behavior of extremal dependence over large distances and at high quantile
levels.

7. Discussion. In this paper we proposed a process mixture model (PMM) for spatial
extremes, where the marginal distributions at different spatial locations are GEV and their
spatial dependence is captured using a convex combination of a GP and an MSP. The PMM
extends Huser and Wadsworth (2019) and is flexible enough to accommodate missingness
and censoring as well as STVC for the marginal GEV distributions. We approximated the
joint likelihood for the spatial model using a Vecchia approximation. We used the density
regression model proposed in Xu and Reich (2021) to approximate this likelihood, whose
weights are modeled using a feed-forward neural network and learned using synthetic data
generated from a design distribution. Parameter estimation for the model is carried out using
MCMC.

We used the PMM to analyze changes in annual maximum streamflow within the U.S.
over the past 50 years. For this study we used the annual maximum streamflow measured
at 487 stations in the USGS Hydro-Climatic Data Network. The posterior means of the lo-
cation parameter have nonzero slope estimates in several parts of the country. We noted a
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high concentration of positive slope estimates in the Mississipi and Missouri basins and the
Arkansas–Rio Grande–Texas Gulf regions, indicating that extremal streamflow has increased
in those areas over the last 50 years.

Future work will focus on the theoretical properties of this model. While it is straightfor-
ward to derive an analytical expression for χu(h) for the trivial case of a shared MSP and has
been provided in the Supplementary Material (Majumder, Reich and Shaby (2024), Appendix
A.4), that is, for R(s) = R, obtaining an analytical expression for the general case is more
challenging. This would also enable us to investigate the properties of χu(h) for the PMM
for different values of δ and as h → ∞. We would like to further investigate improvements
to the computational aspects of this model and identify reasonable plug-and-play settings for
local and global SPQR approximations. Finally, we would also like to extend this model to
provide climate-informed estimates by regressing the spatiotemporal variability of the EVA
parameters onto large-scale climate drivers from GCM output with spatially-varying regres-
sion coefficients for local calibration. Another area of future work is to extend the model
to accommodate more complex spatial dependence structures. Recent work on spatial ex-
tremes has incorporated graphical models as additional information for computing distances
(Engelke and Hitz (2020)). While our work considers only spatial coordinates, it is possible
to incorporate additional distance measures in the form of river network information to re-
flect the physical structure of watersheds and the so-called “river distance” between stations
(Asadi, Davison and Engelke (2015)). While the stream network information is not readily
available for these data, incorporating this network structure might improve spatial modeling.
Spatial models on stream networks have been developed for both max-stable (Asadi, Davi-
son and Engelke (2015)) and Gaussian (Santos-Fernandez et al. (2022b)) processes, and so it
should be possible to incorporate these features into the PMM.
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SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/23-AOAS1847SUPPA; .pdf). The Supplementary Material
consists of three appendices. Appendix A goes over the some properties of the PMM, and
an overview of the variable importance measure used in the text. Appendix B presents sup-
plementary simulation studies detailing the performance of the PMM in various density es-
timation and parameter estimation scenarios. Appendix C consists of additional results from
the HCDN data analysis, including MCMC convergence, model comparison and model fit
results, and selected results from analyzing the extremal streamflow data in its original scale.

MCMC code for the HCDN streamflow data (DOI: 10.1214/23-AOAS1847SUPPB;
.zip). The folder contains code pertaining to the case study presented in Section 6. Users
can replicate our results by running SPQR_fit.R, which carries out the density estimation,
and simEVP_local_parallel_HUC02.R, which carries out parameter estimation. The
input data has already been provided for convenience; it can also be generated from scratch
using download_annual_max.R. Most of the remaining files contain code for exploratory
data analysis as well as generating the various plots that we have presented. Some require in-
termediate files which we have been unable to provide due to data size constraints, but they

https://doi.org/10.1214/23-AOAS1847SUPPA
https://doi.org/10.1214/23-AOAS1847SUPPB
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can all be generated by the user, mostly as the full output of SPQR_fit.R. A vignette has
also been provided in the form of Demo.html where the density estimation and parameter
estimation has been demonstrated for a section of North East US.
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