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Abstract

We introduce the resolvent composition, a monotonicity-preserving operation between a
linear operator and a set-valued operator, as well as the proximal composition, a convexity-
preserving operation between a linear operator and a function. The two operations are linked
by the fact that, under mild assumptions, the subdifferential of the proximal composition of a
convex function is the resolvent composition of its subdifferential. The resolvent and proximal
compositions are shown to encapsulate known concepts, such as the resolvent and proximal
averages, as well as new operations pertinent to the analysis of equilibrium problems. A
large core of properties of these compositions is established and several instantiations are
discussed. Applications to the relaxation of monotone inclusion and convex optimization
problems are presented.
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1 Introduction

Throughout, H and G are real Hilbert spaces, 27 is the power set of H, Ids is the identity
operator of H, and B(H, G) is the space of bounded linear operators from H to G. Let
B: G — 29 be a set-valued operator and denote by Jp its resolvent, that is,

Jp = (B+1dg)"". (1.1)

The resolvent operator is a central tool in nonlinear analysis [2, 9, 14, 28, 51], largely
owing to the fact that its set of fixed points {y € G|y € Jpy} coincides with the set of
zeros {y € G|0 € By} of B, which models equilibria in many fields; see for instance
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[3, 15, 18, 21, 29, 30, 33, 34, 40, 52, 57]. A standard operation between B and a linear
operator L € B(H, G) that induces an operator from # to 27 is the composition

L*oBolL. (1.2)

Early manifestations of this construct can be found in [17, 50]. A somewhat dual operation
is the parallel composition L* > B: H — 2™ defined by [9, 13] (see [16, 28] for further
applications)

L*>B=(L*oB'oL)™". (13)

The objective of the present article is to investigate alternative compositions, which we call
the resolvent composition and the resolvent cocomposition.

Definition 1.1 Let L € B(H, G) and B: G — 29. The resolvent composition of B with L is
the operator L o B: H — 27t given by

LoB=L">(B+1dg) — ldy (1.4)
and the resolvent cocomposition of B with L is Lé B = (Lo B~1)™1,

The terminology in Definition 1.1 stems from the following composition rule, which
results from (1.1), (1.4), and (1.3).

Proposition 1.2 Let L € B(H,G) and B: G — 29. Then J; o3 = L* o Jp o L.

The resolvent composition will be shown to encapsulate known concepts as well as new
operations pertinent to the analysis of equilibrium problems. As an illustration, we recover
below the resolvent average.

Example 1.3 (resolvent average) Let 0 # p € N and, for every k € {1,..., p}, let
Bi: H — 2" and wy € 10, +o0l. Additionally, let G be the standard product vector space
HP, with generic element y = (yi)1<k<p, equipped with the scalar product (y, y) —
Z,f:la)k(yk | y;),andset L: H - G: x — (x,...,x)and B: G — 29:y > Byy x
-+ X Bpyp. Then L*: G — H: y Zle i vk and we derive from (1.4) that

» —1 » -1
LoB = (Zwk(Bk +IdH)1) —Idy = <Za)k.13k) — Idy. (1.5)

k=1 k=1

In particular, if Z]’Z:l wi = 1, then (1.5) is the resolvent average of the operators (Bi)1<k<p-
This operation is studied in [4, 12], while Z,f:l wrJp, = JL o shows up in common zero
problems [24, 37].

Given L € B(H,G) and a proper convex function g: G —]—00, +00] with subdiffer-
ential dg, a question we shall address is whether the resolvent composition L ¢ dg is itself
a subdifferential operator and, if so, of which function. Answering this question will lead
to the introduction of the following operations, where O denotes infimal convolution and
where 24 = || - ||%1/2 and Zg = || - ||é/2 are the canonical quadratic forms of H and G,
respectively (see Section 2 for notation).

Definition 1.4 Let L € B(H, G) and let g: G —]—00, +00] be proper. The proximal com-
position of g with L is the function L © g: H —]—00, +00] given by

Log=((g"02g)0L)" — 2y (1.6)

and the proximal cocomposition of g with L is Leg = (L o g*)*.
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In connection with the above question, if ||L] < 1 and if g is lower semicontinuous and
convex in Definition 1.4, the proximal composition will be shown to be linked to the resolvent
composition through the subdifferential identity

d(Log) = Lodg, (1.7)

and its proximity operator to be decomposable as prox; , , = L* oprox ¢ © L, which explains
the terminology in Definition 1.4. Furthermore, we shall see that the proximal composition
captures notions such as the proximal average of convex functions.

We provide notation and preliminary results in Section 2. Examples of resolvent composi-
tions are presented in Section 3. In Section 4, various properties of the resolvent composition
are investigated. Section 5 is devoted to the proximal composition and its properties. Appli-
cations to monotone inclusion and variational problems are discussed in Section 6.

2 Notation and Preliminary Results

We refer to [9] for a detailed account of the following elements of convex and nonlinear
analysis. In addition to the notation introduced in Section 1, we designate the direct Hilbert
sum of H and G by ‘H @ G. The scalar product of a Hilbert space is denoted by (- | -) and the
associated norm by || - ||.

Let A : H — 27 be a set-valued operator. We denote by gra A = {(x,x*) € H X
H|x* € Ax} the graph of A, by domA = {x € H|Ax # O} the domain of A, by ran
A ={x* € H|(3x € H) x* € Ax} the range of A, by zer A = {x € H |0 € Ax} the set
of zeros of A, by Fix A = {x € H|x € Ax)} the set of fixed points of A, and by A~! the
inverse of A, which is the set-valued operator with graph {(x*, x) € H x H | x* € Ax}. The
parallel sum of A and B: H — 2™ is

AOB=(A""+B7H)7". @.1)

The resolvent of A is J4 = (A +Idy)~! = A~' OIdy and the Yosida approximation of A
of index y €10, 4oo[is YA = y_l(IdH — Jy 4). Furthermore, A is injective if

Vx1 e H)Y(Vxa € H) AxiNAX2 #9 = x| = x2, 2.2)
monotone if
(V(xl,xi‘) € gra A) (V(xz,xi") € gra A) (x1 —x2 | xy —x3) >0, (2.3)

a-strongly monotone for some « € ]0, +o0o[ if A —« Idy; is monotone, and maximally mono-
tone if

(Vx1 € H)(Vxf € H) [(x1,x]) € graA & (V(x2,x3) € gra A) (x] — x2|x] — x3) > 0].

24

Let D be a nonempty subset of H and let 7: D — H. Then T is nonexpansive if it is
1-Lipschitzian, firmly nonexpansive if

(Vx1 € D)(Vx2 € D) || Tx1—Tx2|* + | (Idy—T)x1—(Idp —T)x2 1> < llx1—x2)1?, (2.5)
and strictly nonexpansive if
(Vx1 € D)Vx2 € D) x1 #x2 = |Txi —Txall < [lx1 — x2ll. (2.6)

Let B € ]0, 4o00[. Then T is B-cocoercive if BT is firmly nonexpansive.
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A function f: H —]—o0, +00] is proper if dom f = {x € H| f(x) < 400} # 2,
in which case the set of global minimizers of f is denoted by Argmin f; if Argmin f is
a singleton, its unique element is denoted by argmin, .4, f(x). The conjugate of f: H —
[—00, +00] is the function

¥ H — [—00, +00]: x* > sup ((x | x*) — f(x)). Q.7
xeH

The infimal convolution of f: H —]—o00, 400] and g: H —]—00, +00] is

ng:H—>[—oo,—i—oo]:x|—>Ziél7fi(f(z)+g(x—z)) (2.8)
and the Moreau envelope of f of index y € ]0, +o0[ is
f=fo(y' 2n). (2.9)
The infimal postcomposition of f: H — [—oc0, +00] by L € B(H, G) is
L>f:G— [—oo,+00]: y = inf f(L™{y}) = xiél?f{ F(x), (2.10)
Lx=y

and it is denoted by L B> f if, for every y € L(dom f), there exists x € H such that
Lx = yand (L> f)(y) = f(x)€]—o00, +00]. We denote by I'g(H) the class of proper
lower semicontinuous convex functions f: H —]—o00, +0o0]. Now let f € T'g(H). The
subdifferential of f is

3f it H—2" x> W eH|(VzeH) (z—x|x*)+ fx) < f(2)} (2.11)
and its inverse is
@N=asn 2.12)
Fermat’s rule states that
Argminf =zerdf. (2.13)
The proximity operator of f is
1
prox, = Jyr: H —> H:x > argmin(f(z) + —|lx — z||2), (2.14)
’ ze€H 2
and we have
Argmin f = Fix prox . (2.15)

We say that f is a-strongly convex for some « € ]0, +oo[ if f — a2 is convex.

Let C be a subset of H. The interior of C is denoted by int C, the indicator function of
C by (¢, and the distance function to C by d¢. If C is nonempty, closed, and convex, the
projection operator onto C is denoted by projc, i.e., projc = prox,. = Jn, and the normal
cone operator of C is N¢ = dic.

Next, we state a few technical facts that will assist us in our analysis.

Lemma2.1 Let L € B(H,G), let B €]0,+oo[, let D be a nonempty subset of G, and let
T: D — G be B-cocoercive. Then the following hold:

(i) Suppose that L # 0. Then L* o T o L is ;3||L||_2—cocoercive.
(ii) Suppose that T is firmly nonexpansive and that |L|| < 1. Then L* o T o L is firmly
nonexpansive.
(iii) Suppose that D = H, T is firmly nonexpansive, and |L|| < 1. Then L* o T o L is
maximally monotone.
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Proof (i): Set R = L* o T o L and take x; and x in dom R = L~'(D). Then
(x1 —x2 | Rx1 — Rxz) = (Lx1 — Lxz | T(Lx1) — T(Lx2))
BIT (Lx)) = T(Lxo)|I?

>
> BILI2IIRx1 — Rx2|%. (2.16)

(ii): The firm nonexpansiveness is clear when L = 0, and it otherwise follows from (i) with
B =1
(iii): This follows from (ii) and [9, Example 20.30]. ]

The following result, essentially due to Minty [41], illuminates the interplay between
nonexpansiveness and monotonicity.

Lemma 2.2 ([9, Proposition 23.8]) Let D be a nonempty subset of H, let T: D — 'H, and
set A = T~V —1dy. Then the following hold:

1) T = Ja.
(ii) T is firmly nonexpansive if and only if A is monotone.
@iii) T is firmly nonexpansive and D = H if and only if A is maximally monotone.

Lemma2.3 Let A: H — 2M. Then the following hold:

(i) Let y €10, +ool. Then YA = (yldp + A™Y) " = (J,-1,-1) 0y dy.
(i) Idy DA = J4—1 =1dy — Ja.
(iii) zer A =Fix Jy.
(iv) (A—Idy)~ ' = ddy — A~ H™! —1dy.
(v) Suppose that A is monotone and let o € ]0, +00[. Then A is a-strongly monotone if
and only if J4 is (o« + 1)-cocoercive.

Proof (i): See [9, Proposition 23.7(ii)].
(ii): Apply (i) with y = 1.
(ili): zerA={x e H|x € (A+Idy)x} ={x € H|x € (A+1dp) 'x}.
(iv): By (i), A" = Ja 14, = 1y — J(a_1,,)-1 = Idpy — (Idp + (A — Idy) ™) 7", So
(Idy — A~H ™! =1dy + (A — Idy) ! as claimed.
(v): See [9, Proposition 23.13]. O

Lemma2.4 ([1, Theorem 2.1]) Let A: H — 2™ be a maximally monotone operator and let
B: H — 2™ be a monotone operator such that dom B = H and A — B is monotone. Then
A — B is maximally monotone.

Lemma 2.5 ([45, Theorem 5]) Let L € B(H,G) and let B: G — 29 be 3* monotone, that
is,

(V(y1. y}) € dom B x ran B) sup{{y1 — y2|y3 — y[)|(y2, y3) € gra B} < 4+00. (2.17)

Suppose that L* o B o L is maximally monotone. Then the following hold:

(i) int L*(ran B) C ran (L* o B o L).
(i) L*(ran B) C tan(L* o Bo L).

Lemma 2.6 Let f € I'g(H). Then the following hold:

(i) [9, Theorem 9.20] f admits a continuous affine minorant.
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(ii) [9, Corollary 13.38] £* € To(H) and f** = f.

Lemma 2.7 [9, Theorem 18.15] Let f: H — R be continuous and convex, and let B €
10, +o0l[. Then the following are equivalent:

(1) f is Fréchet differentiable on 'H and V f is B-Lipschitz continuous.
(i) f* is B~ '-strongly convex.

Lemma 2.8 (Moreau [44]) Let T : H — H be nonexpansive. Then T is a proximity operator
if and only if there exists a differentiable convex function h: H — R such that T = Vh. In
this case, T = prox r, where f = h* — 2.

Lemma 2.9 (Moreau [44]) Let f € I'o(H). Then the following hold:

(i) 0 f is maximally monotone.
(1) fO21: H — Ris convex and Fréchet differentiable.
(i) (fO2r)* = f*+2xand (f + 21)* = [fO2x.
(iv) prox; = V(f*D2y).
(V) prox is firmly nonexpansive.
Vi) fO2y+ ffO2x = 2n.
(vii) prox y + prox g« = Idy.
(viii) 3(f + 2n) = 3 + Ldy.

3 Examples of Resolvent Compositions

We provide a few examples that expose various facets of the resolvent composition. The first
one describes a scenario in which the compositions (1.2), (1.3), and (1.4) happen to coincide.

Example 3.1 Suppose that L € B(H, 2) is a surjective isometry and let B: G — 29. Then
LoB=L*oBoL=L*>B.

Proof Since L™' = L*,(1.4)yields Lo B = L*>(B+1dg) —Idy = (L™ o (B+1dg) ' o
L)y ' —1dy = L 'o(B+Idg)oL—1dg = L~ 'oBoL = (L™ 'oB loL)' = L7 'oB =
L*> B. O

Example3.2 Let o € R ~ {0}, let B: H — 2™, and set L = o~ '1dy. Then Lo B =
(o — DIdy + aB o (aldy).

The broad potential of Definition 1.1 is illustrated below by deploying it in product spaces.

Example 3.3 (multivariate resolvent mixture) Let 0 # m € N and 0 # p € N. For
every i € {1,...,m} and every k € {1,..., p}, let H; and Gi be real Hilbert spaces, let
Lii € B(H;, Gr), let wy €]0, +oo[, and let By : G — 29. Let H be the standard product
vector space Hi X --- x H,,, with generic element x = (x;)1<i<m, and equipped with
the scalar product (x,x") — Y /", (xi|x/). Let G be the standard product vector space
G1 X -+ X Gp, with generic element y = (yx)1<k<p» and equipped with the scalar product
(. ¥) = o0y @xlyk | yp). Set

m m
L:H—>G: x> (ZLl,-xi,...,ZLpixi> (3.1)
i=1

i=1
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and
B:g—>2g:yr—>31y1x-~-><prp. (3.2)

Then Proposition 1.2 yields

Joop: H — 2H. x>
P m P m
(Zkazl (JBk(Z Lk,-xi>>, Y oL, <J3k<z Lk,-x,-)>> (3.3)
k=1 i=1 k=1 i=1

andwecall LoB = (JLop) ! — Idy a multivariate resolvent mixture.
When m = 1 in Example 3.3, we obtain the following construction.

Example 3.4 (resolvent mixture) Let 0 # p € N and, forevery k € {1, ..., p},let Gx be a
real Hilbert space, let Ly € B(H, Gi), let wx €]0, +o0o[, and let Bx: Gy — 29, Define G
and B as in Example 3.3, and set L: H — G: x — (L1x,..., L,x). Then we obtain the
resolvent mixture

p -1 p -1
LoB = (Zka;; oJg, o Lk> —Idy = (ZwaLkOBk> — Idy (3.4)

k=1 k=1

and Jp o = Z,le a)kL,’: o Jp, o L. In particular, if, for every k € {1,...,p}, Gr = H
and Ly = Idy, then (3.4) reduces to Example 1.3, which itself encompasses the resolvent
average.

Example 3.5 (linear projector) Let V be a closed vector subspace of H and let B: H — 2.
Then projy, ¢ B = (projy, o Jp o projy) ™! — Ids. Here are noteworthy special cases of this
construction:

(i) Let C be a nonempty closed convex subset of H and suppose that B = Nc¢. Then
projy ¢ B = (projy o projc o projv)_1 — Idy. This operator was employed in [19] to
construct an instance of weak — but not strong — convergence of the Douglas-Rachford

algorithm.
(ii) Define G, (Br)1<k<p» and B as in Example 1.3, with Zle wy = 1. In addition, define
V={yeglyi=-=ypl,letA= (Z,’:Zl waBk)_] — Idy¢ be the resolvent average

of (Br)1gkgp (see(1.5)),lety € G,andsety = ZIIZ:I i Y- Then we derive from Propo-
sition 1.2 and [9, Propositions 23.18 and 29.16] that Jproj, o B ¥ =(Z,f=l wdBy, ...
Z,’::] wiJB,Y)=(JAY, ..., JaY). Inthe case of convex feasibility problems, where each
By, is the normal cone to a nonempty closed convex set, this type of construction was first
proposed in [47, 48].

The next example places the subdifferential identity (1.7) in a rigorous framework.

Example 3.6 (subdifferential) Suppose that L € B(H, G) satisfies 0 < ||[L|| < 1 and let
g: G — ]—o00, +00] be a proper function that admits a continuous affine minorant. Then the
following hold:

(i) g* € To(9).
(i) Log e To(H).
(i) Lodg* =d(Log).
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(iv) prox ., = L* o prox,« o L.
(v) Suppose that g € I'g(G). Then Lo dg = (L ¢ g).
(vi) Suppose that g € T'o(G). Then prox; ,, = L*o prox, o L.

Proof Set h = ((g* 02g) o L)* — ||L||~>2%. On the one hand, by [9, Proposition 13.13],
g™ is lower semicontinuous and convex. On the other hand, by [9, Propositions 13.10(ii) and
13.12(ii)], g* is proper. Thus,

g €To(@) (3.5)

and it follows from Lemma 2.9 that g*025: G — R is Fréchet differentiable on G with
nonexpansive gradient Idg — prox,. In turn,

V((g* 02g)oL)=L"o(dg — proxg«) o L (3.6)
has Lipschitz constant || L |2 and we derive from Lemma 2.7 that

((g*02g) o L)* is |IL||~2-strongly convex, (3.7)
We also record the fact that (3.5) and Lemma 2.6(ii) imply that g** € T'g(G).

(i): See (3.5).
(ii): We infer from (3.7) that & € T'o(H). Hence, since ||L||~2 > 1, we conclude that

Log=h+ (ILI™* = 1)23 € To(H). (3.8)

(iii): Note that, on account of Lemma 2.6(i), g** admits a continuous affine mino-
rant. Using (1.4), (1.3), (2.12), Lemma 2.9(viii), Lemma 2.9(ii), [9, Proposi-
tion 13.16(iii) and Corollary 16.53(1)], we get

Lodg™ +1dy = L* > (0g™ +1dg)
= (L*o (3™ +1dg) o L)

(L*o (3™ + 2)) ' o L)

(L*o0d(g™ + 2g) o L)~

(L*0d(g**02g) o L)

(L*0d(g*02g) 0 L)

3((g*02g) 0 L)". (3.9)

Since 0 < ||L|| < 1, we deduce from (3.7) that ((g* 0 2g) o L)* — 24 € T'o(H).
Hence, appealing to Lemma 2.9(viii) and (1.6), we obtain

0" 025 0 L) = (((6"02) o L) — 25 + 2
- a(((g*m,@g) o L) — ,@H) + 0.2y
= 9(Log) +Idy. (3.10)

The sought identity follows by combining (3.9) and (3.10).
(iv): In view of (ii), prox; < is well defined and, combining (iii) and Proposition 1.2,
we obtain proxy oo = ]B(Log) = JLoag** =L*o ]Bg** oL =L*%o ProXgxx © L.

(v)—(vi): These identities follow from Lemma 2.6(ii), (iii), and (iv). m]
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Example 3.7 (proximity operator) Suppose that L € B (H, G) satisfies 0 < ||[L|| < 1 and
let g € I'p(G). Then we derive from Lemma 2.9(iv) and Example 3.6(v) that

L oprox, = d(L o (g"02¢)). (3.11)

Example 3.8 (projection operator) Suppose that L € B (H, G) satisfies 0 < || L|| < 1, let
C be a nonempty closed convex subset of G, and set g = (¢. Then g0 2g = dé /2 and
Lemma 2.9(vi) yields g*02g = 2g — d% /2. Altogether, we derive from Example 3.7 and
Lemma 2.9(vii) that

Loprojc = d(Lo(2g —dz/2)) and Lo (Idg —projc) = d(L o (dE/2)).  (3.12)

Example 3.9 (frames) Suppose that (e )ren is a frame in H [22],1.e., there exist« € ]0, +o00[
and B €]0, +oo[ such that

VxeH) alxl> <) Kxle) < Bllxl* (3.13)
keN

We set G = ¢2(N), denote by L: H — G: x — ({x|ex))keN the frame analysis operator,
and let (¢ )ren be functions in I'g(R) such that (Vk € N) ¢ > ¢x(0) = 0. Further, we set
B: G — 29 nken = {(Vken € G| (Vk € N) v € 3¢k (i)} Then

-1
LoB = (Z (prox, (- |ek))ek> — Idy. (3.14)

keN

Proof Set ¢: G — ]—00, +00] : (MkeN > I pen k() and note that L*: G —
H: (M keN > Y gen Mkek- As shown in [31], ¢ € To(G), B = 3¢, and Jp: (N)ren —
(prox, n)ken. Thus, (L* > (B 4+1dg)) ™' = L* o Jg o L = Y ;. (proxy, (| ex))ex. O

Our last example parallels Example 3.6 in the case of the proximal cocomposition of
Definition 1.4.

Example 3.10 (subdifferential) Suppose that L € B(H, G) satisfies 0 < ||L|| < 1 and let
g: G — ]—o00, +00] be a proper function that admits a continuous affine minorant. Then the
following hold:

(i) Leg € To(H).
(i) Ledg*™ =0d(Leg).
(iii) prox; ¢, =1Idp —L* o L + L* o prox,s o L.
(iv) Suppose that g € I'g(G). Then Ledg = d(Leg).
(v) Suppose that g € I'g(G). Then Prox; ¢ = Idy —L*o L+ L*o prox, o L.

Proof By virtue of Example 3.6(i) and Lemma 2.6(i), g* is in I'o(G) and it admits a continuous
affine minorant. As a consequence of Example 3.6(ii), we record the fact that

Log* e To(H). (3.15)

(1): We invoke (3.15) and Lemma 2.6(ii) to deduce that Leg = (L © g*)* € To(H).
(ii): It follows from Lemma 2.6(ii) that g** € I'g(G). Hence, using Definition 1.1, (3.15),
(2.12), and Definition 1.4, we obtain

Ledg™=(Lo@g™) ") = (Lodg™) ™ = (3(Logh) " =d(Log"* =d(Leg).
(3.16)
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(iii): Property (i) ensures that prox; o ¢ is well defined. Further, we deduce from (3.15),
Lemma 2.9(vii), and Example 3.6(iv) that

prox; ¢, = Idp —prox; o« = Idp¢ —L* 0 proXgus o L = Idp —L* o (Idg —prox«) o L.
(3.17)
(iv)—(v): Since g = g** by Lemma 2.6(ii), these follow from (ii) and (iii). O

4 Properties of the Resolvent Composition
We start with basic facts.
Proposition 4.1 Let L € B(H, G) and let B: G — 29. Then the following hold:

(i) LoB=(L*oJgoL) ! —Idy.

(i) LéB=(Idy—L*oL+L*oJgoL)" ! —Idy.

(iii) Suppose that L is an isometry. Then Lo B = LeB.

(iv) (LoB) ' =LeB ' =dy —L*oJgo L)™' —1dy.

(v) Jrep=Idy —L*o L+ L*oJpolL.

(vi) gra(LoB) = {(x,x*) eHXH | (x+x*,x)egra(L*oJpo L)}.
(vii) gra(LeB)={(x,x*) e HxH |(x+x*, (L* o L)(x+x*)—x*)egra(L* o Jg o L)}.
(viii) dom (L ¢ B) C L*(dom B).

(ix) ran (L ¢ B) C ran Idyy — L* o L) + L*(ran B).

(x) dom (LeB) C ran (Id)y — L* o L) + L*(dom B).

(xi) ran (LeB) C L*(ran B).

(xii) zer (L© B) = Fix(L* o Jgo L).
(xiii) L~'(zer B) C zer (LeB).
(xiv) (Lo B)OIdy + L* o (B~ '01dg) o L = Idy.

(xv) (LeB)OIdyy =L*o(BOIdg)o L.

Proof (i): A consequence of (1.1) and Proposition 1.2.

(ii): In view of (i), Lemma 2.3(iv), and Lemma 2.3(ii), Lé B = (Lo B~ )™! = ((L* o
Jg-1oL) ' —Idy) ™' = (Idyy —L*oJg-10 L)' —1dy = (Idyy —L*o(Idg —Jp)o L)™' —
Idyy.

(iii): Since L* o L = Idyy, this follows from (i) and (ii).

(iv): The first identity is clear by inspecting Definition 1.1. To establish the second, note
that (i) and Lemma 2.3(iv) yield

(LoB) ' =((L*oJgoL)™' — IdH)_l =Udy —L*oJgoL) ' —1dy. (4.1

(v): A consequence of (ii).

(vi): Let (x,x™) € H x H. Then (i) yields (x,x™) € gra(LoB) < x* € (L*o Jp o
L)y 'x—x&xe(L*oJpoL)(x+x*).

(vii): Let (x, x*) € H x H. By (vi) and Lemma 2.3(ii), (x, x*) € gra(LeB) & (x*,x) €
gra(LoB™') & x+x* € (L*oJg10L) 'x* & x* € (L* 0o Jg-1 0 L)(x + x*) =
(L*oL)(x+x*)—(L*oJgpoL)(x +x*) & (L*o L) (x +x*) —x* € (L*oJgo L)(x +x™).

(viii): In view of (i) and Proposition 1.2,

dom (L ¢ B) = dom (L*oJgoL)™! = ran (L*oJgoL) C L*(ran Jg) = L*(dom B). (4.2)
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(ix): We invoke (iv) and Lemma 2.3(ii) to get
ran (L ¢ B) = dom (Lo B)~!
=dom (Idy —L* o Jgo L)~
=ran (Idy — L* o Jp o L)
=ran(Ildy —L*o L+ Lo (Idg — Jp)o L)
=ran(Idy — L* oL+ L*o0Jg-10L) 4.3)
Cran(Idyy — L*o L) +ran(L* o Jg-1 0 L)
Cran(Idyy — L*o L) + L*(ran Jg-1)
=ran(Idy — L* o L) + L*(dom B~ 1)
=ran(Idy — L* o L) + L*(ran B), 4.4)

1

which furnishes the desired inclusion.

(x): In view of (ix), dom (LeB) = ran (L o B~") C ran (Idyy —L*o L)+ L*(ran B~!) =
ran (Idyy —L* o L) + L*(dom B).

(xi): In view of (viii), ran (LeB) = dom (L ¢ B~') ¢ L*(dom B~!) = L*(ran B).

(xii): Combine Lemma 2.3(iii) and Proposition 1.2.

(xiii): Let x € H. With the help of Lemma 2.3(ii)—(iii) and Proposition 1.2, we derive that

x €L Y(zerB) & 0 € Lx — Jg(Lx)
= 0 € L*((Idg —Jp)Lx)
& 0€ L*(Jp-1Lx)
& 0eJp1x
& x € (Idg —.]LoB—l)X
& x € Jpop-1)-1X
& X € zer (LQB). 4.5)

(xiv): It follows from Lemma 2.3(ii) that (L ¢ B)O Idy + (L o B)~' 0 Idyy = Id. On
the other hand, Proposition 1.2 yields (Lo B)~'0 Idy = Jiop = L* o (B~ 0 Idy) o L.
(xv): It follows from (1.1), (iv), and Proposition 1.2 that (LeB)O Idy = J 51 =
Jiop-1=L*oJg1oL=L*"o(BOIdg)o L. O

Remark 4.2 (isometry) In connection with Proposition 4.1(iii), here are some important
settings in which L is an isometry:

(i) Example 3.4 under the assumption that Y ;_; oL} o Ly = Idy,.
(ii) The resolvent average of Example 1.3, as a realization of (i).
(iii) Example 3.9 under the assumption that (e )xeN is a Parseval frame, ie., o = =1
in (3.13).

Proposition 4.3 Let IC be a real Hilbert space, let Q € B(H, G), let L € B(G, K), and let
B: K — 2K . Then Qo (Lo B) = (Lo Q)¢ B.

Proof Tt follows from Proposition 4.1(i) and Proposition 1.2 that Q ¢ (L ¢ B) = (Q*oJr s po

Q) '—Idy =(Q*oL*oJgoLoQ) '—Idy = (Lo Q) oJpo(LoQ) '—1Idy =
(Lo Q)oB. o
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The next results bring into play monotonicity. A key fact is that, if L is nonexpansive,
then the resolvent composition preserves monotonicity and maximal monotonicity.

Proposition 4.4 Let L € B(H, G) andlet B: G — 29 be monotone. Then the following hold:

(i) Suppose that ||L|| < 1. Then L o B is monotone.
(ii) Suppose that |L|| < 1. Then L& B is monotone.
(iii) Suppose that L # 0, let « € [0, 4o0o[ be such that B — o Idg is monotone, set
B = (o + D|L|~2 — 1, and suppose that one of the following is satisfied:

@ LI < Ve +1.
) IL)| £ 1and o > 0, i.e., B is a-strongly monotone.
© LI <L

Then L ¢ B is B-strongly monotone.

Proof (i): We set R = L* o Jp o L and note that R is single-valued on its domain
since Lemma 2.2(i)-(ii) states that Jp is. Now take (x1,x]) € gra(L ¢ B) and (x2,x3) €
gra(L ¢ B). By Proposition 4.1(iv), (x; + x{, x1) € graR and (x2 4+ x3, x2) € graR, ie.,
x1 = R(x; + x{) and x = R(x2 + x3). However, since R is firmly nonexpansive by
Lemma 2.1(ii), we get

(1 — x| xf — x3) = (R(x1 +x7) — R(xa +x3) | (x1 +x7) — (x2 + x3)) — [lx1 — %212
> |[R(x1 +x}) — R(x2 + 251> — llx1 — x2?
=0, (4.6)

which establishes (2.3).

(ii): Since monotonicity is preserved under inversion, B~!is monotone, and sois L ¢ B!
by (i). In turn, if Lé B = (L ¢ B~1~1 is monotone as well.

(iii): We consider only property (iii)(a), which implies that 8 > 0, since (iii)(b) and (iii)(c)
are special cases of it. In view of Lemma 2.2(ii) (for « = 0) and Lemma 2.3(v) (for o > 0),
Jg is (& + 1)-cocoercive and L* o Jp o L is therefore (« + 1)||L||~2-cocoercive on account
of Lemma 2.1(i). This shows that (L* o Jg o L)~ is (a0 + 1)||L||_2—str0ngly monotone.
Appealing to Proposition 4.1(i), we conclude that Lo B = (L* o Jg o L)y~1— Idy is B-
strongly monotone. O

The theorem below significantly improves Proposition 4.4(i)-(ii) and Proposition 4.1(viii)—
(xi) in the case of maximally monotone operators.

Theorem 4.5 Let L € B(H, G) be such that |L|| < 1 and let B: G — 29 be maximally
monotone. Then the following hold:

(i) Lo B is maximally monotone.
(i) Le B is maximally monotone.
(iii) Suppose that L is injective and that B is at most single-valued. Then L ¢ B is at most
single-valued.
@iv) Suppose that L and B are injective. Then L © B is injective.
(v) intdom (L ¢ B) = int L*(dom B).
(vi) dom (L ¢ B) = L* (dom B).
(vii) intran (L ¢ B) = int (ran (Id}y — L* o L) + L*(ran B)).
(viii) ran (L ¢ B) =ran (Idyy — L* o L) 4+ L*(ran B).
(ix) int dom (L& B) = int (ran (Idyy —L* o L) 4+ L*(dom B)).
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(x) dom (LeB) =ran (Idy; —L* o L) + L*(dom B).
(xi) intran (L e B) = int L*(ran B).
(xii) ran (LeB) = L*(ran B).

Proof Tt follows from Lemma 2.2(iii) that Jp: G — G is firmly nonexpansive. Hence, we
derive from Lemma 2.1(iii) that

L* o Jp o L is maximally monotone. “@.7

(i): It follows from (4.7) that (L* o Jg o L)~ ! is maximally monotone. In view of
Proposition 4.1(i), Proposition 4.4(i), and Lemma 2.4, we conclude that L ¢ B is maximally
monotone.

(ii): Since maximal monotonicity is preserved under inversion, B~! is maximally mono-
tone. In view of (i), this renders L ¢ B! maximally monotone. We then infer that Le B =
(L o B~1~! is maximally monotone.

(iii): Let us first recall that a maximally monotone operator is at most single-valued if and
only if its resolvent is injective [11, Theorem 2.1(iv)]. Hence, Jp is injective and, appealing
to (i) and Proposition 1.2, it is enough to show that L* o Jp o L is injective. Let x| € H and
xp € H be such that (L* o Jg o L)x; = (L* o Jp o L)x5. Then, since Lemma 2.2(iii) asserts
that Jp is firmly nonexpansive,

0= ((L*oJpoL)x; —(L*oJgoL)xy|x1 —x3)
= (Jp(Lx1) — Jp(Lxp) | Lx; — Lx2)
> |Jp(Lx1) — Jp(Lxo)||>. (4.8)

Therefore Jp(Lx1) = Jp(Lx3) and, since Jp is injective, Lx| = Lx». Finally, the injectivity
of L yields x| = x3.

(iv): Using the fact that a maximally monotone operator is injective if and only if its resol-
vent is strictly nonexpansive [11, Theorem 2.1(ix)], we obtain the strict nonexpansiveness of
Jp. Furthermore, according to (i) and Proposition 1.2, it is enough to show that L* o Jg o L
is strictly nonexpansive. To this end, we let x; € H and x, € H be such that

I(L* o Jp o L)x; — (L* o Jp o L)x2|| = llx1 — x2]. 4.9)
Then, since ||L*|| = ||L]| < 1,
lx; —x2ll = I(L* o Jp o L)x; — (L o Jp o L)x2||
< | (Lxy) — Jp(Lx)||

< [[Lxy — Lxa]

< b = xafl. (4.10)
Thus, ||Jp(Lx1) — Jp(Lx2)|| = ||[Lx; — Lxz|| and, since Jp is strictly nonexpansive, we
obtain Lx; = Lx».In view of the injectivity of L, this means that x; = x. As Lemma 2.2(iii)
and Lemma 2.1(ii) imply that L* o Jp o L is nonexpansive, we conclude that it is strictly

nonexpansive.
(v)—(vi): Arguing as in (4.2), we observe that

ran (L* o Jg o L) = dom (L ¢ B) C L*(dom B). (4.11)
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On the other hand, [9, Example 25.20(ii)] asserts that Jp is 3* monotone. Therefore, we
derive from (4.7) and Lemma 2.5(i) that

int L*(dom B) = int L*(ran Jg) C ran (L* o Jg o L) = dom (L ¢ B) C L*(dom B),
4.12)
which yields (v). Let us turn to (vi). Proceeding as above and invoking Lemma 2.5(ii), (4.11)
yields

L*(dom B) = L*(ran Jg) C tan (L* o Jg o L) = dom (L o B) C L*(dom B)  (4.13)

and, therefore, dom (L ¢ B) = L*(dom B).
(vii)—(viii): Set
A= 1Idy —L*oL
L:H—->H®&G: x+— (x,Lx) 4.14)
B:H®G— 2" x29: (x,y) > Ax x {Jz-1y}.
Since L*: H® G — H: (x*, y*) — x* + L*y*, we deduce from (4.3) and (4.4) that

ran(L*oBoL)=ran (A4 L* o Jg-1 0 L)=ran (L © B) Cran A 4+ L*(ran B) = L*(ran B).
(4.15)
In addition, since

(Vx € H) {x|L*(Lx)) = |Lx||* > [ILI* ILx|* > IL*(Lx)%, (4.16)

the operator L* o L is firmly nonexpansive and so is therefore A = Idy — L* o L, which is
thus maximally monotone by virtue of [9, Example 20.30]. In view of [9, Proposition 25.16],
this means that A is 3* monotone. On the other hand, since B~! is maximally monotone,
we derive from [9, Example 25.20(iii)] that Jz-1 is 3* monotone. Thus, B is 3* monotone.
Moreover, since [9, Proposition 20.23] implies that B is maximally monotone and since
dom B = H® G, it follows from [9, Corollary 25.6] that L* o B o L is maximally monotone.
We can therefore invoke Lemma 2.5(i) to obtain

intL*(ran B) Cran(L* o Bo L). 4.17)
In view of (4.15), this proves (vii). Similarly, Lemma 2.5(ii) guarantees that
L*(ranB) ctan(L* o Bo L) (4.18)
and, using (4.15), we arrive at (viii).
(ix): Using (vii), we obtain
intdomLeB = intranL o B!
= int (ran (Id3y —L* o L) + L*(ran B_l))
= int (ran (Id3 —L* o L) + L*(dom B)). (4.19)
(x): Using (viii), we obtain
domLeB =tanLoB™!
=ran(Idy —L* o L) + L*(ran B—1)
=ran (Idyy —L* o L) + L*(dom B). (4.20)

(xi): Using (v), we obtain intran Le B = intdomL oB~! = intL*(domB~!) =
int L*(ran B).
(xii): Using (vi), we obtaintan Le B = dom L o B~! = L*(dom B~—!) = L*(ran B). O
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Corollary 4.6 Suppose that L € B(H, G) satisfies | L|| < 1 andlet B: G — 29 be maximally
monotone. Then the following hold:

(1) Suppose that L*(dom B) = H. Then dom (L ¢ B) = H.

(ii) Suppose that ran (Idyy — L* o L) 4+ L*(ran B) = H. Then L ¢ B is surjective.
(iii) Suppose that ran (Idyy — L* o L) + L*(dom B) = ‘H. Then dom (LeB) = H.
(iv) Suppose that L*(ran B) = H. Then L& B is surjective.

Proof We deduce (i) from Theorem 4.5(v), (ii) from Theorem 4.5(vii), (iii) from Theo-
rem 4.5(ix), and (iv) from Theorem 4.5(xi). O

Example 4.7 Going back to Example 3.5, let B: H — 2™ be maximally monotone and
suppose that V # {0} is aclosed vector subspace of H such that (Vv € V) (v+VHNran B #
@. Then projy, ¢ B is surjective.

Proof Set L = projy,. Then ||L|| = 1 and ran (Idyy — L* o L) = ran (Idy — projy) = VL.
On the other hand, (Vv € V)(3x* e ran B)x* e v+ V+ = proj‘_,lv. Therefore L*(ran B) =
projy (ran B) = V. Thus, ran (Idy — L* o L) + L*(ranB) = V + V1L = H and the result
follows from Corollary 4.6(ii). O

Proposition 4.8 Suppose that L € B(H, G), let B €]0 + oo, let D be a nonempty subset
of G, let B: D — G be B—cocoercive, suppose that 0 < ||L|| < /B + 1, and set « =
(B+ DIL|I"2 = 1. Then L& B is a—cocoercive.

Proof Since B~! is B-strongly monotone, Lemma 2.3(v) entails that Jg-11s (B + 1)-
cocoercive. In turn, by Lemma 2.1(1), L* o Jg-1 0 L is (B + D)|| L]~ 2-cocoercive, which
makes (L* o Jz-1 o L)~ ! a (B8 + 1)||L||~2-strongly monotone operator. In view of Proposi-
tion 4.1(iv) and Proposition 4.1(i), we conclude that

(LeB) ' =LoB™ ' =(L*oJg10L)” —Idy .21)
is @ —strongly monotone and hence that L ¢ B is @ —cocoercive. O

Proposition 4.9 Let L € B(H, G) be suchthat | L| < 1, let D be a nonempty subset of G, and
let B: D — G be monotone and nonexpansive. Then L B is monotone and nonexpansive.

Proof The monotonicity of L B is established in Proposition 4.4(ii). Let us show its nonex-
pansiveness. Since B is nonexpansive, it follows from [9, Proposition 4.4] and Lemma 2.2(ii)
that there exists a monotone operator E: G — 29 such that B = 2Jg— Idg. Now set
M =1dy — L* oL+ L*o E o L. Since ||L|| < 1, Idy — L* o L is monotone, while
L* o E o L is monotone by [9, Proposition 20.10]. The sum M of these two operators is
therefore monotone, which renders Jy, firmly nonexpansive by Lemma 2.2(ii), and hence
2 Jy— 1dy nonexpansive. On the other hand, Proposition 4.1(v) yields
Jiep=ldy—L*oL+L*o(B+1Idg) ‘oL

=Idy—L*oL+L*cJg) ‘oL

= (21dy —2L* o L + L* o (E 4+ Idg) o L) o (Id3 /2)

= (Idp¢ +M) o (I /2)

= Q" (4.22)

We have thus verified that Le B = 2.J); — Ids is nonexpansive. O
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Remark 4.10 (resolventaverage) Consider the setting of Example 1.3, where Z,le wp =1,
and let A be the resolvent average of the operators (By)i<k<p defined in (1.5). Then, as
discussed in Example 1.3, Remark 4.2(ii), and Proposition 4.1(iii), A = LB = LeB,
where L: x — (x,...,x) is an isometry with adjoint L*: (yt)1<i<p — Z,’;:] ok yr and
B: (yr)1<k<p > Biy1 X -+ x Bpyp. We can therefore establish at once from the above
results various properties of the resolvent average, such as the following:

(i) Proposition4.1(iv) yields A™' = Lo B~! = (XF_, o (B '+ Td) ™) ™! — Tdy (see
[4, Theorem 2.2]).

(ii) Suppose that the operators (Bi)i<kgp are monotone. Then Theorem 4.5(i) asserts
that A is maximally monotone if the operators (Bi)1<k<p are. In addition, Propo-
sition 4.1(viii) asserts that dom A C Z,’:Zl wrdom By and Proposition 4.1(xi) that
ran A C Z,’::l wiran By (see [4, Proposition 2.7] and note that maximality is not
required in the last two properties).

(iii) Suppose that the operators (By) 1<k« p are maximally monotone. Then Theorem 4.5(v)—
(vi) yields intdom A = int Z,’:Zl wrdom By and dom A = Z,’::l wy dom By,
while Theorem 4.5(xi)—(xii) yields intran A = int Z,’j:l wiran By, and ran A =
Z,le wyi ran By (see [4, Theorem 2.11]).

(iv) Suppose that the operators (By )| <k< p are maximally monotone and strongly monotone.
Then it follows from Proposition 4.4(iii)(b) that A is strongly monotone (see [4, The-
orem 3.20], where the strong monotonicity of A is established under the more general
assumption that only one of the operators (By)|<k< is strongly monotone).

(v) Suppose that, for every k € {1, ..., p}, Bx: Gr — Gi is monotone and nonexpansive.
Then it follows from Proposition 4.9 that A is monotone and nonexpansive (see [4,
Theorem 4.16]).

Remark 4.11 (parametrization) A parameter y € ]0, +o0o[ can be introduced in Defini-
tion 1.1 by putting

Y
LOB=L*s>(B+y '1dg) —y ! Idy. (4.23)
In the special case of the resolvent average discussed in Example 1.3, (4.23) leads to

the parametrized version of (1.5) considered in [4], namely L <y> B = (Z,le wi(Br +
y~11dy)~ 1! — 71 1dy. In general, with the assistance of Lemma 2.3(i) and Proposi-
tion 1.2, we obtain

Jy(LZB) =L"oJypol = Jieyn): (4.24)

This shows that the parametrized version (4.23) is closely related to the original one (1.4)
since y (L S B) = Lo (y B). The proximal composition of Definition 1.4 can be parametrized
similarly by putting L <,; g=g"0(yL2g))o L) — y =12y,

Remark 4.12 (warping) An extension of Definition 1.1 can be devised using the theory

of warped resolvents [20]. Let X and ) be reflexive real Banach spaces, let Ky: Y D
Dy — Y let L € B(X,Y),andlet B:Y — 2V, Then, under suitable conditions,

the warped resolvent of B with kernel Ky is Jé(y = (B + Ky)*l o Ky (for instance, if
h:Y — ]—o00, 400] is a Legendre function such that dom B C intdom & and Ky = Vh,
then J g Y is the D-resolvent of B [6]). For a suitable kernel Kx: X D Dy — X*, we then
define the warped resolvent composition Lo B = Ky o (L* > (KJ_,l o(B+Ky)) — Kx,
which yields /%, = L* 0 J5¥ o L.
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5 The Proximal Composition

This section is dedicated to the study of some aspects of the proximal composition operations
introduced in Definition 1.4 and further discussed in Examples 3.6 and 3.10.

Remark 5.1 The proximal composition was linked to the resolvent composition in Exam-
ple 3.6(v). We can also motivate this construction via Moreau’s theory of proximity operators
and envelopes [42—44].Indeed, let g € 'g(G), suppose that L € B(H, G) satisfies0 < || L] <
I,andset T = L* o prox, o L. Then T is nonexpansive since prox, and L are. On the other
hand, we infer from Lemma 2.9(iv) that T = L* o V(g*0Z2g) o L = V((g*0Z2¢g) o L).
Altogether, Lemma 2.8 implies that T = prox ;, where f = ((g*02g) o L)* — 2. The
function f is precisely the proximal composition L ¢ g. Thus, up to an additive constant,
L ¢ g is the function the proximity operator of which is L* o prox, o L.

Let us now establish some properties of proximal compositions.

Proposition 5.2 Let L € B(H,G), let g: G — ]—00, +00] and h: G — ]—00, +00] be
proper functions such that h < g, and let g be the largest lower semicontinuous convex
function majorized by g. Then the following hold:

i) Loh<Log.
(ii) Suppose thath > g and that g admits a continuous affine minorant. Then L o g = L o h.
(iii) Suppose that g admits a continuous affine minorant. Then Lo g = L ¢ g**.

Proof (i): In view of (2.7) and (2.8), h* > g* and hence h*02g > g*0Z2g. Thus,
(h*02g) o L > (g*02g) o L and therefore ((h*02g) o L)* < ((g*02g) o L)*.
Appealing to (1.6), we conclude that Loh < Lo g.

(ii): Let a be a continuous affine minorant of g. Then —oco <a =a < g < g # +ooand
g is therefore proper. In addition, ¢ < & < g. Hence, [9, Proposition 13.16] yields h* = g*
and the conclusion follows from (1.6).

(iii): Since ¢ = g** [9, Proposition 13.45], the assertion follows from (ii). ]

Proposition 5.3 Suppose that L € B(H,G) satisfies 0 < ||L|| < 1 and let g: G —
]1—o00, +00] be a proper function that admits a continuous affine minorant. Then the following
hold:

(i) Log=L*P (g 4+ 2g) — 2x.
(ii) dom (L ¢ g) = L*(dom g**).
(i) (Log)* =(2x — (§"0Z2g) o L)* — 2.
(iv) (Log)* = Leg™.
(V) (Leg)* =Log™
(Vi) (Log)02y + (Leg") 02y = 2.
(vii) Suppose that L is an isometry. Then Lo g = Leg.

Proof By Example 3.6(i) and Lemma 2.6(i), g* is in ['g(G) and it admits a continuous affine
minorant. In turn, we deduce from Lemma 2.9(ii) that g*0.2g € I'o(G) and hence that
(g¥02g)oL € I'g(H). We then deduce from Lemma 2.6(ii) that ((g* 0 2g)o L)* € T'o(H).

(1): Since dom (g*0%2g) = G and g*0Z%2g € T'o(9), it follows from [9, Corol-
lary 15.28(i)] and Lemma 2.9(iii) that L © g+ 24 = ((g*0Z2g)oL)* = L* B> (g* 0 2g)* =
L* B> (g™ + 2g).

(ii): We invoke (i) and [9, Proposition 12.36(i)] to get dom (L ¢ g) = dom (L* B> (g** +
2g)) = L*(dom (g** + 2g)) = L*(dom g**).
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(iii): Since ((g*02g) o L)* € T'o(H), it follows from Definition 1.4 and [9, Proposi-
tion 13.29] that

Loy =(((€"02) 0 L)" = 25’

kk *

= (2r- (" 029)0 1)) - 2x

=(2x —(8"02g) o L)" — 2. (5.1)
(iv): Proposition 5.2(iii) yields Leg* = (L © g**)* = (L © g)*.
(v): Example 3.6(i)—(ii) implies that Lo g* € T['o(G). In turn, Lemma 2.6(ii) yields

(Leg)* =(Log")™ =Log"

(vi): Combine Example 3.6(ii), Lemma 2.9(vi), and (iv).
(vii): Since 29y = Zg o L, we derive from Lemma 2.9(vi) and (iii) that

Log=((g"02g)0L)" — 2y,
= (25 —¢™02g) 0 L)" — 2
= (21— (g™"02g)0L)" — 2y
=(Log"*
= Leg, (5.2)
as claimed. ]

The next result concerns the case when L is an isometry.

Proposition 5.4 Suppose that L € B(H, G) is an isometry and let g: G — ]—00, +00] be a
proper function that admits a continuous affine minorant. Then (g* o L)* < Lo g < go L.

Proof We recall from Example 3.6(ii) that L ¢ g € T'g(H). Fix x € H and recall that g** < g
[9, Proposition 13.16(i)]. By Proposition 5.3(i),

(Log)(x) = inf ("M +26() — 21 (x) < inf (e +25(y) — 21 (x). (53)

L*y=x L*y=x
Now set y = Lx. Then L*y = L*(Lx) = x and 2g(Lx) = 24/(x). Therefore, (5.3) yields
(Log)x) < g(Lx) + Zg(Lx) — Zn(x) = (g0 L)(x), 54

which provides the second inequality. To prove the first one, we recall from Example 3.6(i)
that g* € T'g(G). Therefore, g* admits a continuous affine minorant by Lemma 2.6(i). In turn,
(5.4) yields L o g* < g* o L and hence (L © g*)* > (g* o L)*. We then invoke successively
Proposition 5.2(i), Proposition 5.3(iv), and Proposition 5.3(vii) to obtain

Log>Log™ =(Log")" > (g"oL)", (5.5)
as announced. ]

Let us take a closer look at the proximal composition for functions in I'g(G).

Theorem 5.5 Suppose that L € B(H, G) satisfies 0 < |L|| < 1 and let g € To(G). Then the
following hold:

(i) Log=L*"P (g+ 2g) — 2x.
(i) dom (L ¢ g) = L*(dom g).
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(iii) Argmin (L ¢ g) = Fix(L* o prox, o L).

(iv) (Log)02y =21y —(g"02g) o L.

(v) (Leg)0 2y =(g0Zg)o L.

(vi) L~ (Argmin g) C Argmin (Leg) = Argmin ((§0Zg) o L).

Proof We recall from Lemma 2.6(i) that ¢ admits a continuous affine minorant and from
Example 3.6(ii) that L ¢ g € T'o(H).

(1)—(ii): These follow from Proposition 5.3(i)—(ii) and Lemma 2.6(ii).

(iii): Example 3.6(vi) and (2.15) yield Argmin(L¢g) = Fix ProX; o, = Fix(L* o
prox, o L).

(iv): It follows from (i) that (L © g) + @4 = L* P> (g + 2g). Therefore, using Exam-
ple 3.6(ii), Lemma 2.9(iii), and [9, Proposition 13.24(iv)], we derive that

(Log)* 02 = (Log)+2n)" = (L* B (g+20)" = (g+25)" oL = (§"02g)oL.
(5.6)
Hence, it follows from Lemma 2.9(vi) that

(Log)02y +(§°02g) oL = (Log)02y + (Log)* 02y = 2. (5.7)

(v): We use Example 3.10(i), Lemma 2.9(vi), Proposition 5.3(v), (iv), and Lemma 2.6(ii)
to obtain
(Leg)0 2y =2y — (Leg)" 02y
=25 —(Log") D2y
=25 — (20— (*02g) o L)
=(g0L2g)o L. (5.8)
(vi): We derive from (2.13), Proposition 4.1(xiii) with B = dg, and Example 3.10(iv) that
L~ '(Argming) = L™ (zerdg) C zer (L#dg) = zer3(Leg) = Argmin (Leg). (5.9)

Next, since Leg € TI'o(H) by Example 3.10(i), [9, Proposition 17.5] and (v) yield
Argmin (Leg) = Argmin ((Leg)02x) = Argmin ((§0Z2g) o L). O

Proposition 5.6 Suppose that L € B(H, G), satisfies 0 < ||[L|| < 1, let @ € [0, +o0], let
g € I'0(9) be such that g — a 2g is convex, and set B = (a + DIL|2 -1 Suppose that
one of the following is satisfied:

(1) o >0, i.e., g is a-strongly convex.
G |IL|| < L.

Then L ¢ g is B-strongly convex.

Proof By assumption, g — «2g € ['g(G) and hence, by Lemma 2.9(i), d(g — ¢ Z2g) is
maximally monotone. However, by Lemma 2.9(viii),

9g = 3((g — 2 2g) + €.25) = d(g — 2. 2g) + aldg (5.10)

and therefore dg — o Idg = 9(g — ¢ Zg) is monotone. Moreover, by [55, Remark 3.5.3],
dg is a-strongly monotone in (i). Altogether, it follows from Example 3.6(v) and Proposi-
tion 4.4(iii) that 9(L © g) = L ¢ dg is B-strongly monotone. Appealing to [55, Remark 3.5.3]
again, we conclude that L ¢ g is §-strongly convex. O
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Proposition 5.7 Suppose that L € B(H, G) satisfies 0 < ||L]| < 1, let « €]0, 00|, let
g: G — R be convex and differentiable, with a «~'-Lipschitzian gradient, and set =
(@ 4+ D||L||72 — 1. Then Leg is differentiable on 'H and its gradient is p~"-Lipschitzian.

Proof We derive from Lemma 2.7 that g* is a-strongly convex. In turn, Proposition 5.3(v) and
Proposition 5.6(ii) imply that (Leg)* = L ¢ g* is B-strongly convex. Invoking Lemma 2.7
once more, we obtain the assertion. O

The remainder of this section is devoted to examples of proximal compositions.

Example 5.8 (linear projection) Let V be a closed vector subspace of H and let g: H —
] — 00, +00] be a proper function that admits a continuous affine minorant. Then projy, ¢ g =
w (g +dy/2)"

Proof Let x € H. By Proposition 5.3(ii), dom (projy ¢ g) = projy (dom g**) C V. There-
fore, if x ¢ V, then (projy, ¢ g)(x) = 4o00. Now suppose that x € V and note that, by
Pythagoras’ identity, (Vv € VL) 21(x — v) = 24(x) + 23 (v). Hence, using Proposi-
tion 5.3(i) and basic conjugation calculus [9, Chapter 13], we get

(projy 0 g)(x) = min g (y) + 2x(y) — 2n(x)
yeH

projy y=x

= min g™ () + 2n(y) — 2 ()
yex+V+

= min g (x — v) + Dn(x —v) — Dy (x)
veVi

= min g™ (x — v) + ty1 (V) + 24 (v)
veH

= (8™ 00yL + 27))(x)
= ((¢H* 0@} /2)*)(x)
= (g +dy/2)" (), (5.11)

which establishes the identity. O

Example 5.9 (proximal mixture) Let 0 # p € N and, for every k € {l,..., p},
let G, be a real Hilbert space, let Ly € B(H,Gi), let wx €]0,400[, and let g €
['o(Gk). Suppose that 0 < Zle a)k||Lk||2 < 1 and let G be the standard product vec-
tor space Gy X --- x Gp, with generic element y = (yx)1<k<p» and equipped with the
scalar product (y,y’) — Z,lewk(ykly,’c). Set L: H — G:x +— (Lix)igkgp and
g:G —>1—00,+00l: y > Y0 wkgi(yr). Then 25: G — Riy > YV w1 2, (y0),
L*:G - H:y — Z,le oLy yr, prox, : G > Gy > (proxgkyk)lgkgp, and
g G —>]—00, +00]: y* Zf(’:l wr & (). Thus, g € To(G), 0 < |IL]] < 1, (1.6)
produces the proximal mixture

P *
Log= (Zwk(g,jmggk)oLk> - 9y, (5.12)
k=1
and Example 3.6 yields
m
LogeTlyg(H) and prox;,, = Zka;: o prox,, o Lg. (5.13)
k=1
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In particular if, forevery k € {1, ..., p}, Gx = Hand Ly = Idy, then (5.12) is the proximal
average
P *
Log= (Z wk(g,fmgﬁ)) - 9y, (5.14)
k=1

which has been studied in [10] (see also [39] for illustrations and numerical aspects). The
fact that ) WEPIoX,, is a proximity operator was first observed by Moreau [43, 44] as a
consequence of Lemma 2.8.

Remark 5.10 (proximal sum) In Example 5.9, if Z,f:l wrllLel* > 1, the proximal mixture
(5.12) may not be a function in I'g(H). In the case of (5.14) with p =2 and w] = wy =1,
conditions under which the proximal sum L o g = (g 0 21+ g5 0 2x)* — 2y isinTo(H)
are provided in [7, 28, 56].

Remark 5.11 (proximal average) Asin Remark 4.10, we can specialize the above results to
establish in a straightforward fashion various properties of the proximal average (5.14). In this
context, we define G and g as in Example 5.9 with G| = --- =G, = H and Z,’:zl wp =1,
andset L: H — G: x + (x,...,x). Then L is an isometry and the resulting proximal
average f = Lo g = Leg of (5.14) (see Proposition 5.3(vii)) possesses in particular the
following properties:

(i) Example 3.6(ii) yields f € I'o(H) (see [10, Corollary 5.2]).

(i) Example 3.6(vi) yields prox, = Z,le Wy prox,, (see [10, Theorem 6.7]).
(iii) Proposition 5.3(v) yields f* = (Zf=1 wi (g 0 294))* — 24 (see [10, Theorem 5.1]).
(iv) Proposition 5.4 yields (30, wrg{)* < f < YF_, wigk (see [10, Theorem 5.4]).
(v) Theorem 5.5(ii) yields dom f = 21’::1 wrdom g (see [10, Theorem 4.6]).
(vi) Theorem 5.5(v) yields f 02y = Z,le wk (g 0 21¢) (see [10, Theorem 6.2(1)]).

(vii) Theorem 5.5(vi) yields Argmin(fO02y) = Argmin Z,f:l wi(gr 0 29) (see [10,
Corollary 6.4]).

(viii) Suppose that the functions (g )<< are strongly convex. Then it follows from Propo-
sition 5.6(i) that f is strongly convex (see [4, Corollary 3.23], where the strong
convexity of f is shown to hold more generally under the assumption that one of
the functions (gx)1<k<p is strongly convex).

6 Application to Monotone Inclusion Models

On the numerical side, in monotone inclusion problems, the advantage of the resolvent com-
position over compositions such as (1.2) or (1.3) is that its resolvent is readily available
through Proposition 1.2. Hence, processing it efficiently in an algorithm does not require
advanced splitting techniques. In particular, in minimization problems, one deals with mono-
tone operators which are subdifferentials and handling a proximal composition L ¢ g is more
straightforward than the compositions g o L or L* > g thanks to Example 3.6(vi). On the
modeling side, while these compositions are not interchangeable in general, replacing the
standard composition (1.2) by a resolvent composition, may also be of interest. For instance,
in the special case of the basic proximal average (5.14), replacing g o L = Z,‘le Wk 8k by
Log= (Z,’(’: | wr(gf 0 23))* — 24 in variational problems has been advocated in [38,
54]. More generally, the computational and modeling benefits of employing resolvent com-
positions in place of classical ones in concrete applications is a natural topic of investigation,
and it will be pursued elsewhere.
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The focus of this section is on the use of resolvent and proximal compositions in the
context of the following constrained inclusion problem.

Problem 6.1 Suppose that L € B (H, G) satisfies 0 < ||L|| < 1, let B: G — 29 be maxi-
mally monotone, and let V # {0} be a closed vector subspace of H. The task is to

find x € V suchthat 0 € B(Lx). 6.1)

As will be illustrated in the examples below, (6.1) models a broad spectrum of problems
in applied analysis. Of special interest to us are situations in which, due to modeling errors,
L(V) N zerB = (}, which means that Problem 6.1 has no solution. As a surrogate to it with
adequate approximate solutions in such instances, we propose the following formulation. Itis
based on the resolvent composition and will be seen to be solvable by a simple implementation
of the proximal point algorithm.

Problem 6.2 Suppose that L € B (H, G) satisfies 0 < ||L|| < I, let B: G — 29 be max-
imally monotone, let V' # {0} be a closed vector subspace of H, let y €]0, +oo[, and set
A = Le(yB). The task is to

find x € H such that 0 € (proj, o A)x. (6.2)

A justification of the fact that Problem 6.2 is an adequate relaxation of Problem 6.1 is
given in item (v) below.

Theorem 6.3 Consider the settings of Problems 6.1 and 6.2, and let S| and S, be their
respective sets of solutions. Then the following hold:

(i) projy © A is maximally monotone.
(i) Jproj,0a = projy o (Idyy — L* o L + L* o J,p o L) o projy.
(ii1) Sy and Sy are closed convex sets.
(iv) S» = Fix (projy o (Idyy — L*o L + L* o J,p o L)).
(v) Problem 6.2 is an exact relaxation of Problem 6.1 in the sense that S| # @ = Sy = ;.
(vi) S = zer(Ny + L*o (YB)o L).

Proof (i): Theorem 4.5(ii) asserts that A is maximally monotone. In view of Theorem 4.5(i),
this makes proj;, ¢ A maximally monotone.
(ii): It follows from Proposition 1.2 and Proposition 4.1(v) that

Jprojy o A = Projy o Jr ¢y By © Projy
= projy o (Idy —L* o L + L* 0 J, g o L) o projy. (6.3)
(iii): The maximal monotonicity of B implies that zer B is closed and convex [9, Propo-
sition 23.39]. Hence, since L is continuous and linear, L~!( zerB) is closed and convex, and
so is therefore S| = V N L~!(zerB). Likewise, it follows from (i) that S, = zer(projy < A)

is closed and convex.
(iv): It results from Lemma 2.3(iii) and (ii) that

Sy = Zer(projvoA) = FixJ proj, o4 = Fix(projvo(IdH—L*oL—i—L*oJ],BoL)). (6.4)

(v): Suppose that X € S; and x € S. Then X = projyx and 0 € B(LX), i.e., by
Lemma 2.3(iii), Lx = J, p(LX) and therefore X = (Idyy — L* o L)x + L*(LX) = (Idy —
L* o L)x + L*(J,,p(LX)). Altogether, bringing into play (iv), we get

X = projy X = projy ((Idy — L* o L)X + (L* o J, g 0 L)X) € S). (6.5)
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It remains to show that x € Sy, i.e., as (iv) yields x € V, that 0 € B(Lx). Since Lx € zerB,
Lemma 2.3(iii) entails that YB(Lx) = 0. Hence,

(Vv eV) (vIL*("B(LX)))=0. (6.6)
On the other hand, we derive from (iv) that
x = projy (x = L*((1dw = Jy ) (L)) = (Ny + 1dpe) "' (x = yL*(B(LD)). (67)
Thus, —L*(YB(Lx)) € Nyx = V1, ie.,
(Vv e V) (vIL*("B(Lx)))=0. (6.8)
Since x —x € V, we deduce from (6.6) and (6.8) that
(x =x|L*("B(Lx) — "B(LX))) = 0. (6.9)
Thus,
(Lx — LX |"B(Lx) — YB(LX)) =0 (6.10)
and, since 7B is y-cocoercive [9, Corollary 23.11(iii)], we obtain
yI"B(LOI? = y|I"B(Lx) — "BLD)|> < (Lx — LX|"B(Lx) — "B(LY) = 0. (6.11)

We conclude that YB(Lx) = 0 and hence that Lx € zer "B = FixJ,p = zer B.
(vi): Let x € H. Then, arguing as in (6.7),
x €8 & x— L*(Lx — Jyp(Lx)) € (Ny + Idy)x
& 0 € Nyx + L*((dg — Jyp)(Lx))
& x € zer(Ny + L*o ("B)o L), (6.12)

which provides the desired identity. O

Remark 6.4 (isometry) Suppose that L is an isometry in Theorem 6.3 (see Remark 4.2). In
view of Proposition 4.1(iii) and Proposition 4.3, the relaxed problem (6.2) is then to find a
zero of

projy ¢ A = projy © (L o (yB)) = (L o projy) ¢ (yB), (6.13)
and it follows from Theorem 6.3(iv) that its set of solutions is S» = Fix (projy, oL*oJ,goL).
Next, we propose an algorithm for solving Problem 6.2 which is based on the most

elementary method for solving monotone inclusions, namely the proximal point algorithm
[51].

Proposition 6.5 Suppose that Problem 6.2 has a solution, let (Ay)nen be a sequence in 10, 2[
such that ), .y An (2 — Ay) = 400, and let xo € V. Iterate

forn=0,1,...
yn = Lx,
qn = JyB)’n — Vn (6.14)
n = L¥qn

Xn+1 = Xp + AnProjy zn-

Then (x;)neN converges weakly to a solution to Problem 6.2.
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Proof Set M = projy ¢ (Le(y B)). Since (xp),en lies in V, it follows from Theorem 6.3
(1)—(ii) that (x,),en is generated by the proximal point algorithm, to wit,

(Vn e N) X1 = Xp + Ay (I Xp — Xp). (6.15)

Therefore, we derive from [26, Lemma 2.2(vi)] that (x,),en converges weakly to a point in
zer M, i.e., a solution to (6.2). O

Remark 6.6 (weak convergence) The weak convergence of (xj),en in Proposition 6.5
cannot be improved to strong convergence in general. Indeed, suppose that, in Problem 6.2,
G =H, L = Idy, and B = N¢, where C is a nonempty closed convex subset of H. Then,
if we take the parameters (A,),enN to be 1, the proximal point algorithm (6.14) reduces to the
alternating projection method (Vn € N) x4 = projy (projcx,). In [35], a hyperplane V and
a cone C are constructed for which (x,),en fails to converge strongly. Note, however, that
using the strongly convergent modifications of (6.15) discussed in [8, 53], it is straightforward
to obtain strongly convergent methods to solve Problem 6.2. Let us add that, as shown in
[26, Lemma 2.2(vi)], the weak convergence result in Proposition 6.5 remains valid if g, is
defined as g, = Jy, pyn—+cn—yn in (6.14), where (c,)nen 1S a sequence modeling approximate
implementations of J, p and satisfies D, .y Anllcall < +00.

Henceforth, we specialize Problems 6.1 and 6.2 to scenarios of interest.

Example 6.7 (feasibility problem) Let 0 %= m € N and let (C;);<;<m be nonempty closed
convex subsets of a real Hilbert space H. Set H = EB;”ZI H, V ={(,...,x) € H|x € H},
and C = Cy x --- x . Since V is isomorphic to H, Problem 6.1 with G = H, L = Idy,
and B = N¢ = A amounts to finding a point in V N C, i.e., a point in (/L C;, while
Theorem 6.3(iv) asserts that the relaxation given in Problem 6.2 amounts to finding a fixed
point of projy o projc, i.e.,of (1/m) > /L, projc, or, equivalently, a minimizer of p dél_.
This product space framework for relaxing inconsistent feasibility problems was proposed
in [46, Section II.2] and re-examined in [5, 23].

Example 6.8 (resolvent mixtures) Let 0 £ p € N, let y €]0, +o0[, and let V # {0} be
a closed vector subspace of H. For every k € {1, ..., p}, let G be a real Hilbert space, let
Li € B(H, Gi), let wy €10, 400, and let By : G — 2% be maximally monotone. Suppose
that 0 < Z,’;:l willLill> < 1 and define G, L, and B as in Example 3.4. Then the objective
of Problem 6.1 is to

find x € V suchthat (Vk € {1,...,p}) 0€ Br(Lrx). (6.16)

Now let M be the resolvent mixture of the operators ((y Bk)_l)lgkg p (see Example 3.4).
Then the relaxed Problem 6.2 is to

find x € H such that 0 € (proj, o M~")x (6.17)

or, equivalently, upon invoking Theorem 6.3(vi), to

p
find x € M suchthat 0 € Nyx + Y an L ("Be(Lix)). (6.18)
k=1
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In addition, it follows from Proposition 6.5 that, given xo € V and a sequence (A,),eN in
10, 2[ such that Zn eN An(2—Ay) = +o00, the sequence (x,),en constructed by the algorithm

forn=0,1,...
fork=1,...,p
\\yk,n = kan (619)
Gk,n = JyBk}’k,n — Yk,n

P
in = Zk:l ka]tqk,n
Xptl = Xp + A Projy zn

converges weakly to a solution to the relaxed problem if one exists.

Example 6.9 (common zero problem) Suppose that, in Example 6.8, we have (Vk €
{1,..., p}) Gx = H and Ly = Idy. Then (6.16) consists of finding x € V N ﬂ,le zer By,
and its relaxation (6.17)/(6.18) consists of finding a zero of Ny + 211;:1 wy VBy. This relax-
ation was proposed in [25] and it originates in Legendre’s method of least-squares [36] to
relax inconsistent systems of linear equations (see [27, Example 4.3]).

Example 6.10 (Wiener systems) In Example 6.8, suppose that, for every k € {1,..., p},
By = (Idg, — Fi + ) — Idg, , where Fy: Gx — Gy is firmly nonexpansive and p; € Gi.
Then we recover the Wiener system setting investigated in [32]. Specifically, (6.16) reduces
to the nonlinear reconstruction problem [32, Problem 1.1]

find x € V suchthat (Vk e {1,..., p}) Fi(Lkx) = pi (6.20)
and (6.17) yields the relaxed problem [32, Problem 1.3]

P
find x € V suchthat (Vy € V) Zwk(ka — Lix | Fr(Lgx) — pr) = 0. (6.21)
k=1

In addition, given xo € V and asequence (A,),enin]0, 2[suchthat) ", An(2—A,) = 400,
the sequence (x,),en constructed by the algorithm

forn=0,1,...
fork=1,...,p
Yikon = Lixp
’ 6.22
le,n = Pk — FiYin 6.22)

in = Z]le ka]tqk,n

Xn+1 = Xp + Ay PIOjy Zn
converges weakly to a solution to the relaxed problem if one exists (see [32, Proposition 4.3]
for existence conditions).

Proof For every k € {1,..., p}, it follows from (2.5) that Idg, — Fx + pi: Gk — Gk is
firmly nonexpansive and therefore from Lemma 2.2 that By is maximally monotone, with
Jp, = Idg, — Fx + px and B, = F, — pr- In addition, we observe that this choice of the
operators (By)1<k<p makes (6.20) a realization of (6.16), and (6.22) a realization of (6.19).
At the same time, (6.17)/(6.18) with y = 1 becomes

p
find x € H suchthat 0 € Nyx + Za)kLZ (Fk(ka) — pk), (6.23)

k=1

which is precisely (6.21). O
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Example 6.11 (proximal composition) In Problem 6.1, suppose that B = dg, where g €
I'g(G). Then (6.1) becomes

find x € V suchthat Lx € Argming. (6.24)
Now set f = Le(yg). Then the relaxation (6.2) becomes

S . P
mlgle‘r;l_[lle (prO_]V 3 f)(x) (6.25)

or, equivalently,
minimize (Vg) (Lx). (6.26)
xeV

In addition, givenxg € V andasequence (A,),enin 0, 2[suchthat )", .y An(2—2,) = 400,
the algorithm

forn=0,1,...
Yn = Lxp
Gn = PrOX,Yn — Yn 6.27)
in = L*Qn

Xntl = X + Ay prOjVZVl

produces a sequence (x,),eN that converges weakly to a solution to the relaxed problem if
one exists.

Proof The fact that (6.1) yields (6.24) is a consequence of Fermat’s rule (2.13). Next, we
derive from Example 3.10(iv) that, in Problem 6.2,

A=Le(yB)=Led(yg) =3(Le(yg)=20f. (6.28)
Thus, by Example 3.6(v),
projy ¢ A = projy ¢ 0 f = d(projy ¢ f). (6.29)
Therefore, by Fermat’s rule (2.13), the solution set of Problem 6.2 is
zer (projv ¢ A) = Argmin (projv o f). (6.30)
On the other hand, since dom g = G, [9, Example 23.3 and Theorem 16.47(i)] yield
Ny +L*o ("(9g)) o L = dty + L* o (Vig) o L = 3(1y + () o L). (6.31)
Thus, we deduce from Theorem 6.3(vi) and (2.13) that
zer (projv S A) = zer (NV + L*o Ydg) o L) = Argmin (LV +(%)o L). (6.32)

In view of (6.29), this confirms the equivalence between (6.25) and (6.26). The last claim is
an application of Proposition 6.5 using (2.14). O

Example 6.12 (proximal mixture) In the context of Example 6.11, choose G, L, and g as
in Example 5.9. Then the initial problem (6.24) is to

find x € V suchthat (Vk € {1,..., p}) Lyx € Argmin g. (6.33)

Now let i be the proximal mixture of the functions ((y gx)*)1<k<p (see Example 5.9). Then
the relaxation of (6.33) given by (6.25) is to

inimi j * 6.34
mlggn{lze (prOJV om )(x) ( )
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or, equivalently, via (6.26), to

p

_ Yo VL), 6.35
mlglgrglze;wk(gk)( kx) (6.35)

This problem can be solved via (6.19), where J, p, is replaced by prox,,, .

Remark 6.13 (proximal average) In Example 6.11, suppose that V = H and that L is an
isometry. Then it follows from Proposition 5.3(vii) that the relaxed problem (6.25) consists of
minimizing the proximal composition f = Lo(y g).In particular, if f is the proximal average
of the functions (gx) 1<k < p (see (5.14)), it follows from Example 6.12 that minimizing itis an
exact relaxation of the problem of finding a common minimizer of the functions (gx)1<k<p-
This provides a principled interpretation for methodologies adopted in [38, 54].

Example 6.14 (split feasibility) Suppose that, in Example 6.12, for every k € {1,..., p},
gk = Lp,, where Dy is a nonempty closed convex subset of Gi. Then (6.33) is the split
feasibility problem [49]

find x € V suchthat (Vk € {1,..., p}) Lix € Dy, (6.36)

while the relaxation (6.34)/(6.35) is to

14

L 2
mlr;len‘}lze ]; wrdp, (Lgx). (6.37)

This problem can be solved via (6.19), where J,, g, is replaced by projp, .
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