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Abstract
We introduce the resolvent composition, a monotonicity-preserving operation between a
linear operator and a set-valued operator, as well as the proximal composition, a convexity-
preserving operation between a linear operator and a function. The two operations are linked
by the fact that, under mild assumptions, the subdifferential of the proximal composition of a
convex function is the resolvent composition of its subdifferential. The resolvent and proximal
compositions are shown to encapsulate known concepts, such as the resolvent and proximal
averages, as well as new operations pertinent to the analysis of equilibrium problems. A
large core of properties of these compositions is established and several instantiations are
discussed. Applications to the relaxation of monotone inclusion and convex optimization
problems are presented.
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algorithm · Relaxed monotone inclusion · Resolvent average · Resolvent composition ·
Resolvent mixture.
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1 Introduction

Throughout, H and G are real Hilbert spaces, 2H is the power set of H, IdH is the identity
operator of H, and B(H,G) is the space of bounded linear operators from H to G. Let
B : G → 2G be a set-valued operator and denote by JB its resolvent, that is,

JB = (B + IdG)−1. (1.1)

The resolvent operator is a central tool in nonlinear analysis [2, 9, 14, 28, 51], largely
owing to the fact that its set of fixed points {y ∈ G | y ∈ JB y} coincides with the set of
zeros {y ∈ G | 0 ∈ By} of B, which models equilibria in many fields; see for instance
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[3, 15, 18, 21, 29, 30, 33, 34, 40, 52, 57]. A standard operation between B and a linear
operator L ∈ B(H,G) that induces an operator from H to 2H is the composition

L∗ ◦ B ◦ L. (1.2)

Early manifestations of this construct can be found in [17, 50]. A somewhat dual operation
is the parallel composition L∗ � B : H → 2H defined by [9, 13] (see [16, 28] for further
applications)

L∗ � B = (
L∗ ◦ B−1 ◦ L

)−1
. (1.3)

The objective of the present article is to investigate alternative compositions, which we call
the resolvent composition and the resolvent cocomposition.

Definition 1.1 Let L ∈ B(H,G) and B : G → 2G . The resolvent composition of B with L is
the operator L � B : H → 2H given by

L � B = L∗ � (B + IdG) − IdH (1.4)

and the resolvent cocomposition of B with L is L �B = (L � B−1)−1.

The terminology in Definition 1.1 stems from the following composition rule, which
results from (1.1), (1.4), and (1.3).

Proposition 1.2 Let L ∈ B(H,G) and B : G → 2G . Then JL � B = L∗ ◦ JB ◦ L.

The resolvent composition will be shown to encapsulate known concepts as well as new
operations pertinent to the analysis of equilibrium problems. As an illustration, we recover
below the resolvent average.

Example 1.3 (resolvent average) Let 0 �= p ∈ N and, for every k ∈ {1, . . . , p}, let
Bk : H → 2H and ωk ∈ ]0,+∞[. Additionally, let G be the standard product vector space
Hp , with generic element y = (yk)1�k�p , equipped with the scalar product ( y, y′) �→∑p

k=1 ωk〈yk | y′
k〉, and set L : H → G : x �→ (x, . . . , x) and B : G → 2G : y �→ B1y1 ×

· · · × Bpyp . Then L∗ : G → H : y �→ ∑p
k=1 ωk yk and we derive from (1.4) that

L � B =
( p∑

k=1

ωk
(
Bk + IdH

)−1

)−1

− IdH =
( p∑

k=1

ωk JBk

)−1

− IdH. (1.5)

In particular, if
∑p

k=1 ωk = 1, then (1.5) is the resolvent average of the operators (Bk)1�k�p.
This operation is studied in [4, 12], while

∑p
k=1 ωk JBk = JL � B shows up in common zero

problems [24, 37].

Given L ∈ B(H,G) and a proper convex function g : G →]−∞,+∞] with subdiffer-
ential ∂g, a question we shall address is whether the resolvent composition L � ∂g is itself
a subdifferential operator and, if so, of which function. Answering this question will lead
to the introduction of the following operations, where � denotes infimal convolution and
where QH = ‖ · ‖2H/2 and QG = ‖ · ‖2G/2 are the canonical quadratic forms of H and G,
respectively (see Section2 for notation).

Definition 1.4 Let L ∈ B(H,G) and let g : G →]−∞,+∞] be proper. The proximal com-
position of g with L is the function L � g : H →]−∞,+∞] given by

L � g = (
(g∗ �QG) ◦ L

)∗ − QH (1.6)

and the proximal cocomposition of g with L is L �g = (L � g∗)∗.
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In connection with the above question, if ‖L‖ � 1 and if g is lower semicontinuous and
convex in Definition 1.4, the proximal composition will be shown to be linked to the resolvent
composition through the subdifferential identity

∂(L � g) = L � ∂g, (1.7)

and its proximity operator to be decomposable as proxL � g = L∗ ◦proxg ◦ L , which explains
the terminology in Definition 1.4. Furthermore, we shall see that the proximal composition
captures notions such as the proximal average of convex functions.

We provide notation and preliminary results in Section 2. Examples of resolvent composi-
tions are presented in Section 3. In Section 4, various properties of the resolvent composition
are investigated. Section 5 is devoted to the proximal composition and its properties. Appli-
cations to monotone inclusion and variational problems are discussed in Section 6.

2 Notation and Preliminary Results

We refer to [9] for a detailed account of the following elements of convex and nonlinear
analysis. In addition to the notation introduced in Section 1, we designate the direct Hilbert
sum ofH and G byH ⊕ G. The scalar product of a Hilbert space is denoted by 〈· | ·〉 and the
associated norm by ‖ · ‖.

Let A : H → 2H be a set-valued operator. We denote by gra A = {(x, x∗) ∈ H ×
H | x∗ ∈ Ax} the graph of A, by dom A = {x ∈ H | Ax �= ∅} the domain of A, by ran
A = {x∗ ∈ H | (∃ x ∈ H) x∗ ∈ Ax} the range of A, by zer A = {x ∈ H | 0 ∈ Ax} the set
of zeros of A, by Fix A = {x ∈ H | x ∈ Ax} the set of fixed points of A, and by A−1 the
inverse of A, which is the set-valued operator with graph {(x∗, x) ∈ H×H | x∗ ∈ Ax}. The
parallel sum of A and B : H → 2H is

A� B = (
A−1 + B−1)−1

. (2.1)

The resolvent of A is JA = (A + IdH)−1 = A−1 � IdH and the Yosida approximation of A
of index γ ∈ ]0,+∞[ is γA = γ −1(IdH − Jγ A). Furthermore, A is injective if

(∀x1 ∈ H)(∀x2 ∈ H) Ax1 ∩ Ax2 �= ∅ ⇒ x1 = x2, (2.2)

monotone if
(∀(x1, x

∗
1 ) ∈ gra A

)(∀(x2, x
∗
2 ) ∈ gra A

) 〈x1 − x2 | x∗
1 − x∗

2 〉 � 0, (2.3)

α-strongly monotone for some α ∈ ]0,+∞[ if A−α IdH is monotone, andmaximally mono-
tone if

(∀x1 ∈ H)(∀x∗
1 ∈ H)

[
(x1, x

∗
1 ) ∈ gra A ⇔ (∀(x2, x

∗
2 ) ∈ gra A) 〈x1 − x2|x∗

1 − x∗
2 〉 � 0

]
.

(2.4)
Let D be a nonempty subset of H and let T : D → H. Then T is nonexpansive if it is

1-Lipschitzian, firmly nonexpansive if

(∀x1 ∈ D)(∀x2 ∈ D) ‖T x1−T x2‖2 + ‖(IdH−T )x1−(IdH−T )x2‖2 � ‖x1−x2‖2, (2.5)

and strictly nonexpansive if

(∀x1 ∈ D)(∀x2 ∈ D) x1 �= x2 ⇒ ‖T x1 − T x2‖ < ‖x1 − x2‖. (2.6)

Let β ∈ ]0,+∞[. Then T is β-cocoercive if βT is firmly nonexpansive.
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A function f : H →]−∞,+∞] is proper if dom f = {x ∈ H | f (x) < +∞} �= ∅,
in which case the set of global minimizers of f is denoted by Argmin f ; if Argmin f is
a singleton, its unique element is denoted by argminx∈H f (x). The conjugate of f : H →
[−∞,+∞] is the function

f ∗ : H → [−∞,+∞]: x∗ �→ sup
x∈H

(〈x | x∗〉 − f (x)
)
. (2.7)

The infimal convolution of f : H →]−∞,+∞] and g : H →]−∞,+∞] is
f � g : H → [−∞,+∞]: x �→ inf

z∈H
(
f (z) + g(x − z)

)
(2.8)

and the Moreau envelope of f of index γ ∈ ]0,+∞[ is
γ f = f �

(
γ −1QH

)
. (2.9)

The infimal postcomposition of f : H → [−∞,+∞] by L ∈ B(H,G) is

L � f : G → [−∞,+∞]: y �→ inf f
(
L−1{y}) = inf

x∈H
Lx=y

f (x), (2.10)

and it is denoted by L ·� f if, for every y ∈ L(dom f ), there exists x ∈ H such that
Lx = y and (L � f )(y) = f (x)∈ ]−∞,+∞]. We denote by �0(H) the class of proper
lower semicontinuous convex functions f : H →]−∞,+∞]. Now let f ∈ �0(H). The
subdifferential of f is

∂ f : H → 2H : x �→ {x∗ ∈ H | (∀z ∈ H) 〈z − x | x∗〉 + f (x) � f (z)} (2.11)

and its inverse is
(∂ f )−1 = ∂ f ∗. (2.12)

Fermat’s rule states that
Argmin f = zer ∂ f . (2.13)

The proximity operator of f is

prox f = J∂ f : H → H : x �→ argmin
z∈H

(
f (z) + 1

2
‖x − z‖2

)
, (2.14)

and we have
Argmin f = Fix prox f . (2.15)

We say that f is α-strongly convex for some α ∈ ]0,+∞[ if f − αQH is convex.
Let C be a subset of H. The interior of C is denoted by int C , the indicator function of

C by ιC , and the distance function to C by dC . If C is nonempty, closed, and convex, the
projection operator onto C is denoted by projC , i.e., projC = proxιC

= JNC , and the normal
cone operator of C is NC = ∂ιC .

Next, we state a few technical facts that will assist us in our analysis.

Lemma 2.1 Let L ∈ B(H,G), let β ∈ ]0,+∞[, let D be a nonempty subset of G, and let
T : D → G be β-cocoercive. Then the following hold:

(i) Suppose that L �= 0. Then L∗ ◦ T ◦ L is β‖L‖−2-cocoercive.
(ii) Suppose that T is firmly nonexpansive and that ‖L‖ � 1. Then L∗ ◦ T ◦ L is firmly

nonexpansive.
(iii) Suppose that D = H, T is firmly nonexpansive, and ‖L‖ � 1. Then L∗ ◦ T ◦ L is

maximally monotone.
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Proof (i): Set R = L∗ ◦ T ◦ L and take x1 and x2 in dom R = L−1(D). Then

〈x1 − x2 | Rx1 − Rx2〉 = 〈Lx1 − Lx2 | T (Lx1) − T (Lx2)〉
� β‖T (Lx1) − T (Lx2)‖2
� β‖L‖−2‖Rx1 − Rx2‖2. (2.16)

(ii): The firm nonexpansiveness is clear when L = 0, and it otherwise follows from (i) with
β = 1.

(iii): This follows from (ii) and [9, Example 20.30]. ��
The following result, essentially due to Minty [41], illuminates the interplay between

nonexpansiveness and monotonicity.

Lemma 2.2 ([9, Proposition 23.8]) Let D be a nonempty subset of H, let T : D → H, and
set A = T−1 − IdH. Then the following hold:

(i) T = JA.
(ii) T is firmly nonexpansive if and only if A is monotone.
(iii) T is firmly nonexpansive and D = H if and only if A is maximally monotone.

Lemma 2.3 Let A : H → 2H. Then the following hold:

(i) Let γ ∈ ]0,+∞[. Then γA = (
γ IdH + A−1

)−1 = (
Jγ −1A−1

) ◦ γ −1IdH.
(ii) IdH � A = JA−1 = IdH − JA.
(iii) zer A = Fix JA.

(iv) (A − IdH)−1 = (IdH − A−1)−1 − IdH.
(v) Suppose that A is monotone and let α ∈ ]0,+∞[. Then A is α-strongly monotone if

and only if JA is (α + 1)-cocoercive.

Proof (i): See [9, Proposition 23.7(ii)].
(ii): Apply (i) with γ = 1.
(iii): zer A = {x ∈ H | x ∈ (A + IdH)x} = {x ∈ H | x ∈ (A + IdH)−1x}.
(iv): By (ii), A−1 = JA−IdH = IdH − J(A−IdH)−1 = IdH − (IdH + (A − IdH)−1)−1. So

(IdH − A−1)−1 = IdH + (A − IdH)−1 as claimed.
(v): See [9, Proposition 23.13]. ��

Lemma 2.4 ([1, Theorem 2.1]) Let A : H → 2H be a maximally monotone operator and let
B : H → 2H be a monotone operator such that dom B = H and A − B is monotone. Then
A − B is maximally monotone.

Lemma 2.5 ([45, Theorem 5]) Let L ∈ B(H,G) and let B : G → 2G be 3∗ monotone, that
is,

(∀(y1, y
∗
1 ) ∈ dom B × ran B

)
sup{〈y1 − y2|y∗

2 − y∗
1 〉|(y2, y∗

2 ) ∈ gra B} < +∞. (2.17)

Suppose that L∗ ◦ B ◦ L is maximally monotone. Then the following hold:

(i) int L∗(ran B) ⊂ ran (L∗ ◦ B ◦ L).
(ii) L∗(ran B) ⊂ ran (L∗ ◦ B ◦ L).

Lemma 2.6 Let f ∈ �0(H). Then the following hold:

(i) [9, Theorem 9.20] f admits a continuous affine minorant.
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(ii) [9, Corollary 13.38] f ∗ ∈ �0(H) and f ∗∗ = f .

Lemma 2.7 [9, Theorem 18.15] Let f : H → R be continuous and convex, and let β ∈
]0,+∞[. Then the following are equivalent:

(i) f is Fréchet differentiable on H and ∇ f is β-Lipschitz continuous.
(ii) f ∗ is β−1-strongly convex.

Lemma 2.8 (Moreau [44]) Let T : H → H be nonexpansive. Then T is a proximity operator
if and only if there exists a differentiable convex function h : H → R such that T = ∇h. In
this case, T = prox f , where f = h∗ − QH.

Lemma 2.9 (Moreau [44]) Let f ∈ �0(H). Then the following hold:

(i) ∂ f is maximally monotone.
(ii) f �QH : H → R is convex and Fréchet differentiable.
(iii) ( f �QH)∗ = f ∗ + QH and ( f + QH)∗ = f ∗ �QH.
(iv) prox f = ∇( f ∗ �QH).
(v) prox f is firmly nonexpansive.
(vi) f �QH + f ∗ �QH = QH.
(vii) prox f + prox f ∗ = IdH.
(viii) ∂( f + QH) = ∂ f + IdH.

3 Examples of Resolvent Compositions

We provide a few examples that expose various facets of the resolvent composition. The first
one describes a scenario in which the compositions (1.2), (1.3), and (1.4) happen to coincide.

Example 3.1 Suppose that L ∈ B(H,Q) is a surjective isometry and let B : G → 2G . Then
L � B = L∗ ◦ B ◦ L = L∗ � B.

Proof Since L−1 = L∗, (1.4) yields L � B = L∗ � (B+ IdG)− IdH = (L−1 ◦ (B+ IdG)−1 ◦
L)−1− IdH = L−1 ◦(B+ IdG)◦ L− IdG = L−1 ◦ B ◦ L = (L−1 ◦ B−1 ◦ L)−1 = L−1 � B =
L∗ � B. ��
Example 3.2 Let α ∈ R � {0}, let B : H → 2H, and set L = α−1IdH. Then L � B =
(α2 − 1)IdH + αB ◦ (αIdH).

The broad potential of Definition 1.1 is illustrated below by deploying it in product spaces.

Example 3.3 (multivariate resolvent mixture) Let 0 �= m ∈ N and 0 �= p ∈ N. For
every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , p}, let Hi and Gk be real Hilbert spaces, let
Lki ∈ B(Hi ,Gk), let ωk ∈]0,+∞[, and let Bk : Gk → 2Gk . Let H be the standard product
vector space H1 × · · · × Hm , with generic element x = (xi )1�i�m , and equipped with
the scalar product (x, x′) �→ ∑m

i=1 〈xi |x ′
i 〉. Let G be the standard product vector space

G1 × · · · × Gp , with generic element y = (yk)1�k�p , and equipped with the scalar product
( y, y′) �→ ∑p

k=1 ωk〈yk | y′
k〉. Set

L : H → G : x �→
(

m∑

i=1

L1i xi , . . . ,
m∑

i=1

L pi xi

)

(3.1)
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and
B : G → 2G : y �→ B1y1 × · · · × Bpyp. (3.2)

Then Proposition 1.2 yields

JL � B : H → 2H : x �→
( p∑

k=1

ωk L
∗
k1

(
JBk

( m∑

i=1

Lki xi

))
, . . . ,

p∑

k=1

ωk L
∗
km

(
JBk

( m∑

i=1

Lki xi

)))
(3.3)

and we call L � B = (JL � B)−1 − IdH a multivariate resolvent mixture.

When m = 1 in Example 3.3, we obtain the following construction.

Example 3.4 (resolvent mixture) Let 0 �= p ∈ N and, for every k ∈ {1, . . . , p}, let Gk be a
real Hilbert space, let Lk ∈ B(H,Gk), let ωk ∈ ]0,+∞[, and let Bk : Gk → 2Gk . Define G
and B as in Example 3.3, and set L : H → G : x �→ (L1x, . . . , L px). Then we obtain the
resolvent mixture

L � B =
( p∑

k=1

ωk L
∗
k ◦ JBk ◦ Lk

)−1

− IdH =
( p∑

k=1

ωk JLk � Bk

)−1

− IdH (3.4)

and JL � B = ∑p
k=1 ωk L∗

k ◦ JBk ◦ Lk . In particular, if, for every k ∈ {1, . . . , p}, Gk = H
and Lk = IdH, then (3.4) reduces to Example 1.3, which itself encompasses the resolvent
average.

Example 3.5 (linear projector) Let V be a closed vector subspace ofH and let B : H → 2H.
Then projV � B = (projV ◦ JB ◦ projV )−1 − IdH. Here are noteworthy special cases of this
construction:

(i) Let C be a nonempty closed convex subset of H and suppose that B = NC . Then
projV � B = (projV ◦ projC ◦ projV )−1 − IdH. This operator was employed in [19] to
construct an instance of weak – but not strong – convergence of the Douglas-Rachford
algorithm.

(ii) Define G, (Bk)1�k�p, and B as in Example 1.3, with
∑p

k=1 ωk = 1. In addition, define
V = { y ∈ G | y1 = · · · = yp}, let A = (

∑p
k=1 ωk JBk )

−1 − IdH be the resolvent average
of (Bk)1�k�p (see (1.5)), let y ∈ G, and set y = ∑p

k=1 ωk yk . Thenwe derive fromPropo-
sition 1.2 and [9, Propositions 23.18 and 29.16] that JprojV � B y =(

∑p
k=1 ωk JBk y, . . .,∑p

k=1 ωk JBk y) =(JAy, . . . , JAy). In the case of convex feasibility problems, where each
Bk is the normal cone to a nonempty closed convex set, this type of construction was first
proposed in [47, 48].

The next example places the subdifferential identity (1.7) in a rigorous framework.

Example 3.6 (subdifferential) Suppose that L ∈ B(H,G) satisfies 0 < ‖L‖ � 1 and let
g : G → ]−∞,+∞] be a proper function that admits a continuous affine minorant. Then the
following hold:

(i) g∗ ∈ �0(G).
(ii) L � g ∈ �0(H).
(iii) L � ∂g∗∗ = ∂(L � g).
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(iv) proxL � g = L∗ ◦ proxg∗∗ ◦ L .
(v) Suppose that g ∈ �0(G). Then L � ∂g = ∂(L � g).
(vi) Suppose that g ∈ �0(G). Then proxL � g = L∗ ◦ proxg ◦ L .

Proof Set h = ((g∗ �QG) ◦ L)∗ − ‖L‖−2QH. On the one hand, by [9, Proposition 13.13],
g∗ is lower semicontinuous and convex. On the other hand, by [9, Propositions 13.10(ii) and
13.12(ii)], g∗ is proper. Thus,

g∗ ∈ �0(G) (3.5)

and it follows from Lemma 2.9 that g∗ �QG : G → R is Fréchet differentiable on G with
nonexpansive gradient IdG − proxg∗ . In turn,

∇(
(g∗ �QG) ◦ L

) = L∗ ◦ (IdG − proxg∗) ◦ L (3.6)

has Lipschitz constant ‖L‖2 and we derive from Lemma 2.7 that
(
(g∗ �QG) ◦ L

)∗ is ‖L‖−2-strongly convex, (3.7)

We also record the fact that (3.5) and Lemma 2.6(ii) imply that g∗∗ ∈ �0(G).

(i): See (3.5).
(ii): We infer from (3.7) that h ∈ �0(H). Hence, since ‖L‖−2 > 1, we conclude that

L � g = h + (‖L‖−2 − 1
)
QH ∈ �0(H). (3.8)

(iii): Note that, on account of Lemma 2.6(i), g∗∗ admits a continuous affine mino-
rant. Using (1.4), (1.3), (2.12), Lemma 2.9(viii), Lemma 2.9(iii), [9, Proposi-
tion 13.16(iii) and Corollary 16.53(i)], we get

L � ∂g∗∗ + IdH = L∗ � (∂g∗∗ + IdG)

= (
L∗ ◦ (

∂g∗∗ + IdG
)−1 ◦ L

)−1

= (
L∗ ◦ (

∂(g∗∗ + QG)
)−1 ◦ L

)−1

= (
L∗ ◦ ∂(g∗∗ + QG)∗ ◦ L

)−1

= (
L∗ ◦ ∂(g∗∗∗ �QG) ◦ L

)−1

= (
L∗ ◦ ∂(g∗ �QG) ◦ L

)−1

= ∂
(
(g∗ �QG) ◦ L

)∗
. (3.9)

Since 0 < ‖L‖ � 1, we deduce from (3.7) that ((g∗ �QG)◦L)∗−QH ∈ �0(H).
Hence, appealing to Lemma 2.9(viii) and (1.6), we obtain

∂
(
(g∗ �QG) ◦ L

)∗ = ∂
((

(g∗ �QG) ◦ L
)∗ − QH + QH

)

= ∂
((

(g∗ �QG) ◦ L)∗ − QH
)

+ ∂QH

= ∂(L � g) + IdH. (3.10)

The sought identity follows by combining (3.9) and (3.10).
(iv): In view of (ii), proxL � g is well defined and, combining (iii) and Proposition 1.2,

we obtain proxL � g = J∂(L � g) = JL � ∂g∗∗ = L∗ ◦ J∂g∗∗ ◦ L = L∗ ◦ proxg∗∗ ◦ L .

(v)–(vi): These identities follow from Lemma 2.6(ii), (iii), and (iv). ��
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Example 3.7 (proximity operator) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1 and
let g ∈ �0(G). Then we derive from Lemma 2.9(iv) and Example 3.6(v) that

L � proxg = ∂
(
L � (g∗ �QG)

)
. (3.11)

Example 3.8 (projection operator) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1, let
C be a nonempty closed convex subset of G, and set g = ιC . Then g�QG = d2C/2 and
Lemma 2.9(vi) yields g∗ �QG = QG − d2C/2. Altogether, we derive from Example 3.7 and
Lemma 2.9(vii) that

L � projC = ∂
(
L � (QG − d2C/2)

)
and L � (IdG −projC ) = ∂

(
L � (d2C/2)

)
. (3.12)

Example 3.9 (frames) Suppose that (ek)k∈N is a frame inH [22], i.e., there existα ∈ ]0,+∞[
and β ∈ ]0,+∞[ such that

(∀x ∈ H) α‖x‖2 �
∑

k∈N
|〈 x | ek〉 |2 � β‖x‖2. (3.13)

We set G = 	2(N), denote by L : H → G : x �→ (〈x |ek〉)k∈N the frame analysis operator,
and let (φk)k∈N be functions in �0(R) such that (∀k ∈ N) φk � φk(0) = 0. Further, we set
B : G → 2G : (ηk)k∈N �→ {(νk)k∈N ∈ G | (∀k ∈ N) νk ∈ ∂φk(ηk)}. Then

L � B =
( ∑

k∈N

(
proxφk

〈· | ek〉
)
ek

)−1

− IdH. (3.14)

Proof Set ϕ : G → ]−∞,+∞] : (ηk)k∈N �→ ∑
k∈N φk(ηk) and note that L∗ : G →

H : (ηk)k∈N �→ ∑
k∈N ηkek . As shown in [31], ϕ ∈ �0(G), B = ∂ϕ, and JB : (ηk)k∈N �→

(proxφk
ηk)k∈N. Thus, (L∗ � (B + IdG))−1 = L∗ ◦ JB ◦ L = ∑

k∈N
(
proxφk

〈· | ek〉
)
ek . ��

Our last example parallels Example 3.6 in the case of the proximal cocomposition of
Definition 1.4.

Example 3.10 (subdifferential) Suppose that L ∈ B(H,G) satisfies 0 < ‖L‖ � 1 and let
g : G → ]−∞,+∞] be a proper function that admits a continuous affine minorant. Then the
following hold:

(i) L �g ∈ �0(H).
(ii) L �∂g∗∗ = ∂(L �g).
(iii) proxL �g = IdH −L∗ ◦ L + L∗ ◦ proxg∗∗ ◦ L .
(iv) Suppose that g ∈ �0(G). Then L �∂g = ∂(L �g).
(v) Suppose that g ∈ �0(G). Then proxL �g = IdH −L∗ ◦ L + L∗ ◦ proxg ◦ L .

Proof Byvirtue of Example 3.6(i) andLemma2.6(i), g∗ is in�0(G) and it admits a continuous
affine minorant. As a consequence of Example 3.6(ii), we record the fact that

L � g∗ ∈ �0(H). (3.15)

(i): We invoke (3.15) and Lemma 2.6(ii) to deduce that L �g = (L � g∗)∗ ∈ �0(H).
(ii): It follows from Lemma 2.6(ii) that g∗∗ ∈ �0(G). Hence, using Definition 1.1, (3.15),

(2.12), and Definition 1.4, we obtain

L �∂g∗∗ =(
L � (∂g∗∗)−1)−1 = (

L � ∂g∗∗∗)−1 = (
∂(L � g∗)

)−1 = ∂(L � g∗)∗ = ∂(L �g).
(3.16)
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(iii): Property (i) ensures that proxL �g is well defined. Further, we deduce from (3.15),
Lemma 2.9(vii), and Example 3.6(iv) that

proxL �g = IdH −proxL � g∗ = IdH −L∗ ◦ proxg∗∗∗ ◦ L = IdH −L∗ ◦ (IdG −proxg∗∗) ◦ L.

(3.17)
(iv)–(v): Since g = g∗∗ by Lemma 2.6(ii), these follow from (ii) and (iii). ��

4 Properties of the Resolvent Composition

We start with basic facts.

Proposition 4.1 Let L ∈ B(H,G) and let B : G → 2G . Then the following hold:

(i) L � B = (L∗ ◦ JB ◦ L)−1 − IdH.
(ii) L �B = (IdH −L∗ ◦ L + L∗ ◦ JB ◦ L)−1 − IdH.
(iii) Suppose that L is an isometry. Then L � B = L �B.
(iv) (L � B)−1 = L �B−1 = (IdH −L∗ ◦ JB ◦ L)−1 − IdH.
(v) JL �B = IdH −L∗ ◦ L + L∗ ◦ JB ◦ L .
(vi) gra (L � B) = {

(x, x∗) ∈ H × H
∣∣ (x + x∗, x) ∈ gra (L∗ ◦ JB ◦ L)

}
.

(vii) gra (L �B)={
(x, x∗)∈H×H

∣∣ (x+x∗, (L∗ ◦ L)(x+x∗)−x∗)∈gra (L∗ ◦ JB ◦ L)
}
.

(viii) dom (L � B) ⊂ L∗(dom B).
(ix) ran (L � B) ⊂ ran (IdH − L∗ ◦ L) + L∗(ran B).
(x) dom (L �B) ⊂ ran (IdH − L∗ ◦ L) + L∗(dom B).
(xi) ran (L �B) ⊂ L∗(ran B).
(xii) zer (L � B) = Fix(L∗ ◦ JB ◦ L).
(xiii) L−1(zer B) ⊂ zer (L �B).
(xiv) (L � B)� IdH + L∗ ◦ (B−1 � IdG) ◦ L = IdH.
(xv) (L �B)� IdH = L∗ ◦ (B � IdG) ◦ L .

Proof (i): A consequence of (1.1) and Proposition 1.2.
(ii): In view of (i), Lemma 2.3(iv), and Lemma 2.3(ii), L �B = (L � B−1)−1 = ((L∗ ◦

JB−1 ◦ L)−1− IdH)−1 = (IdH −L∗ ◦ JB−1 ◦ L)−1− IdH = (IdH −L∗ ◦ (IdG −JB)◦ L)−1−
IdH.

(iii): Since L∗ ◦ L = IdH, this follows from (i) and (ii).
(iv): The first identity is clear by inspecting Definition 1.1. To establish the second, note

that (i) and Lemma 2.3(iv) yield

(L � B)−1 = (
(L∗ ◦ JB ◦ L)−1 − IdH

)−1 = (IdH − L∗ ◦ JB ◦ L)−1 − IdH. (4.1)

(v): A consequence of (ii).
(vi): Let (x, x∗) ∈ H × H. Then (i) yields (x, x∗) ∈ gra(L � B) ⇔ x∗ ∈ (L∗ ◦ JB ◦

L)−1x − x ⇔ x ∈ (L∗ ◦ JB ◦ L)(x + x∗).
(vii): Let (x, x∗) ∈ H×H. By (vi) and Lemma 2.3(ii), (x, x∗) ∈ gra (L �B) ⇔ (x∗, x) ∈

gra (L � B−1) ⇔ x + x∗ ∈ (L∗ ◦ JB−1 ◦ L)−1x∗ ⇔ x∗ ∈ (L∗ ◦ JB−1 ◦ L)(x + x∗) =
(L∗ ◦ L)(x + x∗)− (L∗ ◦ JB ◦ L)(x + x∗) ⇔ (L∗ ◦ L)(x + x∗)− x∗ ∈ (L∗ ◦ JB ◦ L)(x + x∗).

(viii): In view of (i) and Proposition 1.2,

dom (L � B) = dom (L∗◦JB◦L)−1 = ran (L∗◦JB◦L) ⊂ L∗(ran JB) = L∗(dom B). (4.2)
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(ix): We invoke (iv) and Lemma 2.3(ii) to get

ran (L � B) = dom (L � B)−1

= dom
(
IdH − L∗ ◦ JB ◦ L

)−1

= ran
(
IdH − L∗ ◦ JB ◦ L

)

= ran
(
IdH − L∗ ◦ L + L∗ ◦ ( IdG − JB) ◦ L

)

= ran
(
IdH − L∗ ◦ L + L∗ ◦ JB−1 ◦ L

)
(4.3)

⊂ ran (IdH − L∗ ◦ L) + ran (L∗ ◦ JB−1 ◦ L)

⊂ ran (IdH − L∗ ◦ L) + L∗(ran JB−1)

= ran (IdH − L∗ ◦ L) + L∗(dom B−1)

= ran (IdH − L∗ ◦ L) + L∗(ran B), (4.4)

which furnishes the desired inclusion.
(x): In view of (ix), dom (L �B) = ran (L � B−1) ⊂ ran (IdH −L∗ ◦ L)+ L∗(ran B−1) =

ran (IdH −L∗ ◦ L) + L∗(dom B).
(xi): In view of (viii), ran (L �B) = dom (L � B−1) ⊂ L∗(dom B−1) = L∗(ran B).
(xii): Combine Lemma 2.3(iii) and Proposition 1.2.
(xiii): Let x ∈ H. With the help of Lemma 2.3(ii)–(iii) and Proposition 1.2, we derive that

x ∈ L−1(zer B) ⇔ 0 ∈ Lx − JB(Lx)

⇒ 0 ∈ L∗((IdG −JB)Lx
)

⇔ 0 ∈ L∗(JB−1Lx
)

⇔ 0 ∈ JL � B−1x

⇔ x ∈ (
IdG −JL � B−1

)
x

⇔ x ∈ J(L � B−1)−1x

⇔ x ∈ zer
(
L �B

)
. (4.5)

(xiv): It follows from Lemma 2.3(ii) that (L � B)� IdH + (L � B)−1 � IdH = IdH. On
the other hand, Proposition 1.2 yields (L � B)−1 � IdH = JL � B = L∗ ◦ (B−1 � IdH) ◦ L .

(xv): It follows from (1.1), (iv), and Proposition 1.2 that (L �B)� IdH = J(L �B)−1 =
JL � B−1 = L∗ ◦ JB−1 ◦ L = L∗ ◦ (B � IdG) ◦ L . ��
Remark 4.2 (isometry) In connection with Proposition 4.1(iii), here are some important
settings in which L is an isometry:

(i) Example 3.4 under the assumption that
∑p

k=1 ωk L∗
k ◦ Lk = IdH.

(ii) The resolvent average of Example 1.3, as a realization of (i).
(iii) Example 3.9 under the assumption that (ek)k∈N is a Parseval frame, i.e., α = β = 1

in (3.13).

Proposition 4.3 Let K be a real Hilbert space, let Q ∈ B (H,G), let L ∈ B (G,K), and let
B : K → 2K. Then Q � (L � B) = (L ◦ Q)� B.

Proof It follows fromProposition 4.1(i) and Proposition 1.2 that Q � (L � B) = (Q∗◦ JL � B◦
Q)−1− IdH = (Q∗ ◦ L∗ ◦ JB ◦ L ◦ Q)−1− IdH = ((L ◦ Q)∗ ◦ JB ◦ (L ◦ Q))−1− IdH =
(L ◦ Q)� B. ��
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The next results bring into play monotonicity. A key fact is that, if L is nonexpansive,
then the resolvent composition preserves monotonicity and maximal monotonicity.

Proposition 4.4 Let L ∈ B(H,G) and let B : G → 2G be monotone. Then the following hold:

(i) Suppose that ‖L‖ � 1. Then L � B is monotone.
(ii) Suppose that ‖L‖ � 1. Then L �B is monotone.
(iii) Suppose that L �= 0, let α ∈ [0,+∞[ be such that B − α IdG is monotone, set

β = (α + 1)‖L‖−2 − 1, and suppose that one of the following is satisfied:

(a) ‖L‖ <
√

α + 1.
(b) ‖L‖ � 1 and α > 0, i.e., B is α-strongly monotone.
(c) ‖L‖ < 1.

Then L � B is β-strongly monotone.

Proof (i): We set R = L∗ ◦ JB ◦ L and note that R is single-valued on its domain
since Lemma 2.2(i)-(ii) states that JB is. Now take (x1, x∗

1 ) ∈ gra (L � B) and (x2, x∗
2 ) ∈

gra (L � B). By Proposition 4.1(iv), (x1 + x∗
1 , x1) ∈ gra R and (x2 + x∗

2 , x2) ∈ gra R, i.e.,
x1 = R(x1 + x∗

1 ) and x2 = R(x2 + x∗
2 ). However, since R is firmly nonexpansive by

Lemma 2.1(ii), we get

〈x1 − x2 | x∗
1 − x∗

2 〉 = 〈R(x1 + x∗
1 ) − R(x2 + x∗

2 ) | (x1 + x∗
1 ) − (x2 + x∗

2 )〉 − ‖x1 − x2‖2
� ‖R(x1 + x∗

1 ) − R(x2 + x∗
2 )‖2 − ‖x1 − x2‖2

= 0, (4.6)

which establishes (2.3).
(ii): Since monotonicity is preserved under inversion, B−1 is monotone, and so is L � B−1

by (i). In turn, if L �B = (L � B−1)−1 is monotone as well.
(iii): We consider only property (iii)(a), which implies that β > 0, since (iii)(b) and (iii)(c)

are special cases of it. In view of Lemma 2.2(ii) (for α = 0) and Lemma 2.3(v) (for α > 0),
JB is (α + 1)-cocoercive and L∗ ◦ JB ◦ L is therefore (α + 1)‖L‖−2-cocoercive on account
of Lemma 2.1(i). This shows that (L∗ ◦ JB ◦ L)−1 is (α + 1)‖L‖−2-strongly monotone.
Appealing to Proposition 4.1(i), we conclude that L � B = (L∗ ◦ JB ◦ L)−1− IdH is β-
strongly monotone. ��

The theorembelowsignificantly improvesProposition4.4(i)-(ii) andProposition 4.1(viii)–
(xi) in the case of maximally monotone operators.

Theorem 4.5 Let L ∈ B(H,G) be such that ‖L‖ � 1 and let B : G → 2G be maximally
monotone. Then the following hold:

(i) L � B is maximally monotone.
(ii) L �B is maximally monotone.
(iii) Suppose that L is injective and that B is at most single-valued. Then L � B is at most

single-valued.
(iv) Suppose that L and B are injective. Then L � B is injective.
(v) int dom (L � B) = int L∗(dom B).
(vi) dom (L � B) = L∗ (dom B).
(vii) int ran (L � B) = int (ran (IdH − L∗ ◦ L) + L∗(ran B)).
(viii) ran (L � B) = ran (IdH − L∗ ◦ L) + L∗(ran B).
(ix) int dom (L �B) = int (ran (IdH −L∗ ◦ L) + L∗(dom B)).
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(x) dom (L �B) = ran (IdH −L∗ ◦ L) + L∗(dom B).
(xi) int ran (L �B) = int L∗(ran B).
(xii) ran (L �B) = L∗(ran B).

Proof It follows from Lemma 2.2(iii) that JB : G → G is firmly nonexpansive. Hence, we
derive from Lemma 2.1(iii) that

L∗ ◦ JB ◦ L is maximally monotone. (4.7)

(i): It follows from (4.7) that (L∗ ◦ JB ◦ L)−1 is maximally monotone. In view of
Proposition 4.1(i), Proposition 4.4(i), and Lemma 2.4, we conclude that L � B is maximally
monotone.

(ii): Since maximal monotonicity is preserved under inversion, B−1 is maximally mono-
tone. In view of (i), this renders L � B−1 maximally monotone. We then infer that L �B =
(L � B−1)−1 is maximally monotone.

(iii): Let us first recall that a maximally monotone operator is at most single-valued if and
only if its resolvent is injective [11, Theorem 2.1(iv)]. Hence, JB is injective and, appealing
to (i) and Proposition 1.2, it is enough to show that L∗ ◦ JB ◦ L is injective. Let x1 ∈ H and
x2 ∈ H be such that (L∗ ◦ JB ◦ L)x1 = (L∗ ◦ JB ◦ L)x2. Then, since Lemma 2.2(iii) asserts
that JB is firmly nonexpansive,

0 = 〈(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2 | x1 − x2〉
= 〈JB(Lx1) − JB(Lx2) | Lx1 − Lx2〉
� ‖JB(Lx1) − JB(Lx2)‖2. (4.8)

Therefore JB(Lx1) = JB(Lx2) and, since JB is injective, Lx1 = Lx2. Finally, the injectivity
of L yields x1 = x2.

(iv): Using the fact that a maximally monotone operator is injective if and only if its resol-
vent is strictly nonexpansive [11, Theorem 2.1(ix)], we obtain the strict nonexpansiveness of
JB . Furthermore, according to (i) and Proposition 1.2, it is enough to show that L∗ ◦ JB ◦ L
is strictly nonexpansive. To this end, we let x1 ∈ H and x2 ∈ H be such that

‖(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2‖ = ‖x1 − x2‖. (4.9)

Then, since ‖L∗‖ = ‖L‖ � 1,

‖x1 − x2‖ = ‖(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2‖
� ‖JB(Lx1) − JB(Lx2)‖
� ‖Lx1 − Lx2‖
� ‖x1 − x2‖. (4.10)

Thus, ‖JB(Lx1) − JB(Lx2)‖ = ‖Lx1 − Lx2‖ and, since JB is strictly nonexpansive, we
obtain Lx1 = Lx2. In view of the injectivity of L , this means that x1 = x2. As Lemma 2.2(iii)
and Lemma 2.1(ii) imply that L∗ ◦ JB ◦ L is nonexpansive, we conclude that it is strictly
nonexpansive.

(v)–(vi): Arguing as in (4.2), we observe that

ran (L∗ ◦ JB ◦ L) = dom (L � B) ⊂ L∗(dom B). (4.11)
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On the other hand, [9, Example 25.20(ii)] asserts that JB is 3∗ monotone. Therefore, we
derive from (4.7) and Lemma 2.5(i) that

int L∗(dom B) = int L∗(ran JB) ⊂ ran (L∗ ◦ JB ◦ L) = dom (L � B) ⊂ L∗(dom B),

(4.12)
which yields (v). Let us turn to (vi). Proceeding as above and invoking Lemma 2.5(ii), (4.11)
yields

L∗(dom B) = L∗(ran JB) ⊂ ran (L∗ ◦ JB ◦ L) = dom (L � B) ⊂ L∗(dom B) (4.13)

and, therefore, dom (L � B) = L∗(dom B).
(vii)–(viii): Set

⎧
⎪⎨

⎪⎩

A = IdH − L∗ ◦ L

L : H → H ⊕ G : x �→ (x, Lx)

B : H ⊕ G → 2H × 2G : (x, y) �→ Ax × {JB−1 y}.
(4.14)

Since L∗ : H ⊕ G → H : (x∗, y∗) �→ x∗ + L∗y∗, we deduce from (4.3) and (4.4) that

ran (L∗ ◦ B ◦ L)= ran (A+ L∗ ◦ JB−1 ◦ L)= ran (L � B)⊂ ran A+ L∗(ran B)=L∗(ran B).

(4.15)
In addition, since

(∀x ∈ H) 〈x |L∗(Lx)〉 = ‖Lx‖2 � ‖L‖2 ‖Lx‖2 � ‖L∗(Lx)‖2, (4.16)

the operator L∗ ◦ L is firmly nonexpansive and so is therefore A = IdH − L∗ ◦ L , which is
thus maximally monotone by virtue of [9, Example 20.30]. In view of [9, Proposition 25.16],
this means that A is 3∗ monotone. On the other hand, since B−1 is maximally monotone,
we derive from [9, Example 25.20(iii)] that JB−1 is 3∗ monotone. Thus, B is 3∗ monotone.
Moreover, since [9, Proposition 20.23] implies that B is maximally monotone and since
dom B = H⊕G, it follows from [9, Corollary 25.6] that L∗ ◦ B ◦ L is maximally monotone.
We can therefore invoke Lemma 2.5(i) to obtain

int L∗(ran B) ⊂ ran (L∗ ◦ B ◦ L). (4.17)

In view of (4.15), this proves (vii). Similarly, Lemma 2.5(ii) guarantees that

L∗(ran B) ⊂ ran (L∗ ◦ B ◦ L) (4.18)

and, using (4.15), we arrive at (viii).
(ix): Using (vii), we obtain

int dom L �B = int ran L � B−1

= int
(
ran (IdH −L∗ ◦ L) + L∗(ran B−1)

)

= int
(
ran (IdH −L∗ ◦ L) + L∗(dom B)

)
. (4.19)

(x): Using (viii), we obtain

dom L �B = ran L � B−1

= ran (IdH −L∗ ◦ L) + L∗(ran B−1)

= ran (IdH −L∗ ◦ L) + L∗(dom B). (4.20)

(xi): Using (v), we obtain int ran L �B = int dom L � B−1 = int L∗(dom B−1) =
int L∗(ran B).

(xii): Using (vi), we obtain ran L �B = dom L � B−1 = L∗(dom B−1) = L∗(ran B). ��
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Corollary 4.6 Suppose that L ∈ B(H,G) satisfies ‖L‖ � 1 and let B : G → 2G be maximally
monotone. Then the following hold:

(i) Suppose that L∗(dom B) = H. Then dom (L � B) = H.
(ii) Suppose that ran (IdH − L∗ ◦ L) + L∗(ran B) = H. Then L � B is surjective.
(iii) Suppose that ran (IdH − L∗ ◦ L) + L∗(dom B) = H. Then dom (L �B) = H.
(iv) Suppose that L∗(ran B) = H. Then L �B is surjective.

Proof We deduce (i) from Theorem 4.5(v), (ii) from Theorem 4.5(vii), (iii) from Theo-
rem 4.5(ix), and (iv) from Theorem 4.5(xi). ��
Example 4.7 Going back to Example 3.5, let B : H → 2H be maximally monotone and
suppose thatV �= {0} is a closed vector subspace ofH such that (∀v ∈ V ) (v+V⊥)∩ ran B �=
∅. Then projV � B is surjective.

Proof Set L = projV . Then ‖L‖ = 1 and ran (IdH − L∗ ◦ L) = ran (IdH − projV ) = V⊥.
On the other hand, (∀v ∈ V )(∃x∗ ∈ ran B) x∗ ∈ v+V⊥ = proj−1

V v. Therefore L∗(ran B) =
projV (ran B) = V . Thus, ran (IdH − L∗ ◦ L) + L∗(ran B) = V + V⊥ = H and the result
follows from Corollary 4.6(ii). ��
Proposition 4.8 Suppose that L ∈ B (H,G), let β ∈ ]0 + ∞[, let D be a nonempty subset
of G, let B : D → G be β−cocoercive, suppose that 0 < ‖L‖ <

√
β + 1, and set α =

(β + 1)‖L‖−2 − 1. Then L �B is α−cocoercive.

Proof Since B−1 is β-strongly monotone, Lemma 2.3(v) entails that JB−1 is (β + 1)-
cocoercive. In turn, by Lemma 2.1(i), L∗ ◦ JB−1 ◦ L is (β + 1)‖L‖−2-cocoercive, which
makes (L∗ ◦ JB−1 ◦ L)−1 a (β + 1)‖L‖−2-strongly monotone operator. In view of Proposi-
tion 4.1(iv) and Proposition 4.1(i), we conclude that

(L �B)−1 = L � B−1 = (
L∗ ◦ JB−1 ◦ L

)−1 − IdH (4.21)

is α−strongly monotone and hence that L �B is α−cocoercive. ��
Proposition 4.9 Let L ∈ B(H,G) be such that ‖L‖ � 1, let D be a nonempty subset of G, and
let B : D → G be monotone and nonexpansive. Then L �B is monotone and nonexpansive.

Proof The monotonicity of L �B is established in Proposition 4.4(ii). Let us show its nonex-
pansiveness. Since B is nonexpansive, it follows from [9, Proposition 4.4] and Lemma 2.2(ii)
that there exists a monotone operator E : G → 2G such that B = 2JE− IdG . Now set
M = IdH − L∗ ◦ L + L∗ ◦ E ◦ L . Since ‖L‖ � 1, IdH − L∗ ◦ L is monotone, while
L∗ ◦ E ◦ L is monotone by [9, Proposition 20.10]. The sum M of these two operators is
therefore monotone, which renders JM firmly nonexpansive by Lemma 2.2(ii), and hence
2JM− IdH nonexpansive. On the other hand, Proposition 4.1(v) yields

JL �B = IdH −L∗ ◦ L + L∗ ◦ (B + IdG)−1 ◦ L

= IdH −L∗ ◦ L + L∗ ◦ (2JE )−1 ◦ L

= (
2 IdH −2L∗ ◦ L + L∗ ◦ (E + IdG) ◦ L

) ◦ (IdH /2)

= (IdH +M) ◦ (IdH /2)

= (2JM )−1. (4.22)

We have thus verified that L �B = 2JM − IdH is nonexpansive. ��
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Remark 4.10 (resolvent average) Consider the setting of Example 1.3,where
∑p

k=1 ωk = 1,
and let A be the resolvent average of the operators (Bk)1�k�p defined in (1.5). Then, as
discussed in Example 1.3, Remark 4.2(ii), and Proposition 4.1(iii), A = L � B = L �B,
where L : x �→ (x, . . . , x) is an isometry with adjoint L∗ : (yk)1�k�p �→ ∑p

k=1 ωk yk and
B : (yk)1�k�p �→ B1y1 × · · · × Bpyp . We can therefore establish at once from the above
results various properties of the resolvent average, such as the following:

(i) Proposition 4.1(iv) yields A−1 = L � B−1 = (
∑p

k=1 ωk(B
−1
k + IdH)−1)−1− IdH (see

[4, Theorem 2.2]).
(ii) Suppose that the operators (Bk)1�k�p are monotone. Then Theorem 4.5(i) asserts

that A is maximally monotone if the operators (Bk)1�k�p are. In addition, Propo-
sition 4.1(viii) asserts that dom A ⊂ ∑p

k=1 ωkdom Bk and Proposition 4.1(xi) that
ran A ⊂ ∑p

k=1 ωkran Bk (see [4, Proposition 2.7] and note that maximality is not
required in the last two properties).

(iii) Suppose that the operators (Bk)1�k�p are maximally monotone. Then Theorem 4.5(v)–

(vi) yields int dom A = int
∑p

k=1 ωk dom Bk and dom A = ∑p
k=1 ωk dom Bk ,

while Theorem 4.5(xi)–(xii) yields int ran A = int
∑p

k=1 ωk ran Bk , and ran A =
∑p

k=1 ωk ran Bk (see [4, Theorem 2.11]).
(iv) Suppose that the operators (Bk)1�k�p are maximally monotone and strongly monotone.

Then it follows from Proposition 4.4(iii)(b) that A is strongly monotone (see [4, The-
orem 3.20], where the strong monotonicity of A is established under the more general
assumption that only one of the operators (Bk)1�k�p is strongly monotone).

(v) Suppose that, for every k ∈ {1, . . . , p}, Bk : Gk → Gk is monotone and nonexpansive.
Then it follows from Proposition 4.9 that A is monotone and nonexpansive (see [4,
Theorem 4.16]).

Remark 4.11 (parametrization) A parameter γ ∈ ]0,+∞[ can be introduced in Defini-
tion 1.1 by putting

L
γ

�B = L∗ � (B + γ −1 IdG) − γ −1 IdH. (4.23)

In the special case of the resolvent average discussed in Example 1.3, (4.23) leads to

the parametrized version of (1.5) considered in [4], namely L
γ� B = (

∑p
k=1 ωk(Bk +

γ −1 IdH)−1)−1 − γ −1 IdH. In general, with the assistance of Lemma 2.3(i) and Proposi-
tion 1.2, we obtain

J
γ (L

γ�B)
= L∗ ◦ Jγ B ◦ L = JL�(γ B). (4.24)

This shows that the parametrized version (4.23) is closely related to the original one (1.4)

since γ (L
γ�B) = L �(γ B). The proximal composition of Definition 1.4 can be parametrized

similarly by putting L
γ� g = ((g∗ � (γQG)) ◦ L)∗ − γ −1QH.

Remark 4.12 (warping) An extension of Definition 1.1 can be devised using the theory
of warped resolvents [20]. Let X and Y be reflexive real Banach spaces, let KY : Y ⊃
DY → Y∗, let L ∈ B (X ,Y), and let B : Y → 2Y

∗
. Then, under suitable conditions,

the warped resolvent of B with kernel KY is J
KY
B = (B + KY )−1 ◦ KY (for instance, if

h : Y → ]−∞,+∞] is a Legendre function such that dom B ⊂ int dom h and KY = ∇h,

then J
KY
B is the D-resolvent of B [6]). For a suitable kernel KX : X ⊃ DX → X ∗, we then

define the warped resolvent composition L � B = KX ◦ (L∗ � (K−1
Y ◦ (B + KY ))) − KX ,

which yields J KX
L � B = L∗ ◦ J

KY
B ◦ L .
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5 The Proximal Composition

This section is dedicated to the study of some aspects of the proximal composition operations
introduced in Definition 1.4 and further discussed in Examples 3.6 and 3.10.

Remark 5.1 The proximal composition was linked to the resolvent composition in Exam-
ple 3.6(v).We can also motivate this construction viaMoreau’s theory of proximity operators
and envelopes [42–44]. Indeed, let g ∈ �0(G), suppose that L ∈ B(H,G) satisfies 0 < ‖L‖ �
1, and set T = L∗ ◦ proxg ◦ L . Then T is nonexpansive since proxg and L are. On the other
hand, we infer from Lemma 2.9(iv) that T = L∗ ◦ ∇(g∗ �QG) ◦ L = ∇((g∗ �QG) ◦ L).
Altogether, Lemma 2.8 implies that T = prox f , where f = ((g∗ �QG) ◦ L)∗ − QH. The
function f is precisely the proximal composition L � g. Thus, up to an additive constant,
L � g is the function the proximity operator of which is L∗ ◦ proxg ◦ L .

Let us now establish some properties of proximal compositions.

Proposition 5.2 Let L ∈ B(H,G), let g : G → ]−∞,+∞] and h : G → ]−∞,+∞] be
proper functions such that h � g, and let ğ be the largest lower semicontinuous convex
function majorized by g. Then the following hold:

(i) L � h � L � g.
(ii) Suppose that h � ğ and that g admits a continuous affine minorant. Then L � g = L � h.
(iii) Suppose that g admits a continuous affine minorant. Then L � g = L � g∗∗.

Proof (i): In view of (2.7) and (2.8), h∗ � g∗ and hence h∗ �QG � g∗ �QG . Thus,
(h∗ �QG) ◦ L � (g∗ �QG) ◦ L and therefore ((h∗ �QG) ◦ L)∗ � ((g∗ �QG) ◦ L)∗.
Appealing to (1.6), we conclude that L � h � L � g.

(ii): Let a be a continuous affine minorant of g. Then−∞ < a = ă � ğ � g �≡ +∞ and
ğ is therefore proper. In addition, ğ � h � g. Hence, [9, Proposition 13.16] yields h∗ = g∗
and the conclusion follows from (1.6).

(iii): Since ğ = g∗∗ [9, Proposition 13.45], the assertion follows from (ii). ��
Proposition 5.3 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1 and let g : G →
]−∞,+∞] be a proper function that admits a continuous affineminorant. Then the following
hold:

(i) L � g = L∗ ·� (g∗∗ + QG) − QH.
(ii) dom (L � g) = L∗(dom g∗∗).
(iii) (L � g)∗ = (QH − (g∗ �QG) ◦ L)∗ − QH.
(iv) (L � g)∗ = L �g∗.
(v) (L �g)∗ = L � g∗.
(vi) (L � g)�QH + (L �g∗)�QH = QH.
(vii) Suppose that L is an isometry. Then L � g = L �g.

Proof By Example 3.6(i) and Lemma 2.6(i), g∗ is in �0(G) and it admits a continuous affine
minorant. In turn, we deduce from Lemma 2.9(ii) that g∗ �QG ∈ �0(G) and hence that
(g∗ �QG)◦L ∈ �0(H).We then deduce fromLemma 2.6(ii) that ((g∗ �QG)◦L)∗ ∈ �0(H).

(i): Since dom (g∗ �QG) = G and g∗ �QG ∈ �0(G), it follows from [9, Corol-
lary 15.28(i)] andLemma2.9(iii) that L � g+QH = ((g∗ �QG)◦L)∗ = L∗ ·� (g∗ �QG)∗ =
L∗ ·� (g∗∗ + QG).

(ii): We invoke (i) and [9, Proposition 12.36(i)] to get dom (L � g) = dom (L∗ ·� (g∗∗ +
QG)) = L∗(dom (g∗∗ + QG)) = L∗(dom g∗∗).
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(iii): Since ((g∗ �QG) ◦ L)∗ ∈ �0(H), it follows from Definition 1.4 and [9, Proposi-
tion 13.29] that

(L � g)∗ =
((

(g∗ �QG) ◦ L
)∗ − QH

)∗

=
(
QH − (

(g∗ �QG) ◦ L
)∗∗)∗ − QH

= (
QH − (g∗ �QG) ◦ L

)∗ − QH. (5.1)

(iv): Proposition 5.2(iii) yields L �g∗ = (L � g∗∗)∗ = (L � g)∗.
(v): Example 3.6(i)–(ii) implies that L � g∗ ∈ �0(G). In turn, Lemma 2.6(ii) yields

(L �g)∗ = (L � g∗)∗∗ = L � g∗.
(vi): Combine Example 3.6(ii), Lemma 2.9(vi), and (iv).
(vii): Since QH = QG ◦ L , we derive from Lemma 2.9(vi) and (iii) that

L � g = (
(g∗ �QG) ◦ L

)∗ − QH,

= (
(QG − g∗∗ �QG) ◦ L

)∗ − QH
= (

QH − (g∗∗ �QG) ◦ L
)∗ − QH

= (L � g∗)∗

= L �g, (5.2)

as claimed. ��
The next result concerns the case when L is an isometry.

Proposition 5.4 Suppose that L ∈ B(H,G) is an isometry and let g : G → ]−∞,+∞] be a
proper function that admits a continuous affine minorant. Then (g∗ ◦ L)∗ � L � g � g ◦ L.

Proof We recall from Example 3.6(ii) that L � g ∈ �0(H). Fix x ∈ H and recall that g∗∗ � g
[9, Proposition 13.16(i)]. By Proposition 5.3(i),

(L � g)(x) = inf
y∈G

L∗ y=x

(
g∗∗(y)+QG(y)

)−QH(x) � inf
y∈G

L∗y=x

(
g(y)+QG(y)

)−QH(x). (5.3)

Now set y = Lx . Then L∗y = L∗(Lx) = x andQG(Lx) = QH(x). Therefore, (5.3) yields

(L � g)(x) � g(Lx) + QG(Lx) − QH(x) = (g ◦ L)(x), (5.4)

which provides the second inequality. To prove the first one, we recall from Example 3.6(i)
that g∗ ∈ �0(G). Therefore, g∗ admits a continuous affineminorant by Lemma 2.6(i). In turn,
(5.4) yields L � g∗ � g∗ ◦ L and hence (L � g∗)∗ � (g∗ ◦ L)∗. We then invoke successively
Proposition 5.2(i), Proposition 5.3(iv), and Proposition 5.3(vii) to obtain

L � g � L � g∗∗ = (
L � g∗)∗ �

(
g∗ ◦ L

)∗
, (5.5)

as announced. ��
Let us take a closer look at the proximal composition for functions in �0(G).

Theorem 5.5 Suppose that L ∈ B(H,G) satisfies 0 < ‖L‖ � 1 and let g ∈ �0(G). Then the
following hold:

(i) L � g = L∗ ·� (g + QG) − QH.
(ii) dom (L � g) = L∗(dom g).
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(iii) Argmin (L � g) = Fix(L∗ ◦ proxg ◦ L).
(iv) (L � g)�QH = QH − (g∗ �QG) ◦ L.
(v) (L �g)�QH = (g�QG) ◦ L.
(vi) L−1(Argmin g) ⊂ Argmin (L �g) = Argmin ((g�QG) ◦ L).

Proof We recall from Lemma 2.6(i) that g admits a continuous affine minorant and from
Example 3.6(ii) that L � g ∈ �0(H).

(i)–(ii): These follow from Proposition 5.3(i)–(ii) and Lemma 2.6(ii).
(iii): Example 3.6(vi) and (2.15) yield Argmin(L � g) = Fix proxL � g = Fix(L∗ ◦

proxg ◦ L).
(iv): It follows from (i) that (L � g) + QH = L∗ ·� (g + QG). Therefore, using Exam-

ple 3.6(ii), Lemma 2.9(iii), and [9, Proposition 13.24(iv)], we derive that

(L � g)∗ �QH = (
(L � g)+QH

)∗ = (
L∗ ·� (g+QG)

)∗ = (g+QG)∗◦L = (g∗ �QG)◦L.

(5.6)
Hence, it follows from Lemma 2.9(vi) that

(L � g)�QH + (g∗ �QG) ◦ L = (L � g)�QH + (L � g)∗ �QH = QH. (5.7)

(v): We use Example 3.10(i), Lemma 2.9(vi), Proposition 5.3(v), (iv), and Lemma 2.6(ii)
to obtain

(L �g)�QH = QH − (L �g)∗ �QH
= QH − (L � g∗)�QH
= QH − (

QH − (g∗∗ �QG) ◦ L
)

= (g�QG) ◦ L. (5.8)

(vi): We derive from (2.13), Proposition 4.1(xiii) with B = ∂g, and Example 3.10(iv) that

L−1(Argmin g) = L−1(zer ∂g) ⊂ zer (L �∂g) = zer ∂(L �g) = Argmin (L �g). (5.9)

Next, since L �g ∈ �0(H) by Example 3.10(i), [9, Proposition 17.5] and (v) yield
Argmin (L �g) = Argmin ((L �g)�QH) = Argmin ((g�QG) ◦ L). ��
Proposition 5.6 Suppose that L ∈ B(H,G), satisfies 0 < ‖L‖ � 1, let α ∈ [0,+∞[, let
g ∈ �0(G) be such that g − αQG is convex, and set β = (α + 1)‖L‖−2 − 1. Suppose that
one of the following is satisfied:

(i) α > 0, i.e., g is α-strongly convex.
(ii) ‖L‖ < 1.

Then L � g is β-strongly convex.

Proof By assumption, g − αQG ∈ �0(G) and hence, by Lemma 2.9(i), ∂(g − αQG) is
maximally monotone. However, by Lemma 2.9(viii),

∂g = ∂
(
(g − αQG) + αQG

) = ∂(g − αQG) + αIdG (5.10)

and therefore ∂g − α IdG = ∂(g − αQG) is monotone. Moreover, by [55, Remark 3.5.3],
∂g is α-strongly monotone in (i). Altogether, it follows from Example 3.6(v) and Proposi-
tion 4.4(iii) that ∂(L � g) = L � ∂g is β-strongly monotone. Appealing to [55, Remark 3.5.3]
again, we conclude that L � g is β-strongly convex. ��
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Proposition 5.7 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1, let α ∈ ]0,+∞[, let
g : G → R be convex and differentiable, with a α−1-Lipschitzian gradient, and set β =
(α + 1)‖L‖−2 − 1. Then L �g is differentiable on H and its gradient is β−1-Lipschitzian.

Proof Wederive fromLemma 2.7 that g∗ isα-strongly convex. In turn, Proposition 5.3(v) and
Proposition 5.6(ii) imply that (L �g)∗ = L � g∗ is β-strongly convex. Invoking Lemma 2.7
once more, we obtain the assertion. ��

The remainder of this section is devoted to examples of proximal compositions.

Example 5.8 (linear projection) Let V be a closed vector subspace of H and let g : H →
]−∞,+∞] be a proper function that admits a continuous affine minorant. Then projV � g =
ιV + (

g∗ + d2V /2
)∗.

Proof Let x ∈ H. By Proposition 5.3(ii), dom (projV � g) = projV (dom g∗∗) ⊂ V . There-
fore, if x /∈ V , then (projV � g)(x) = +∞. Now suppose that x ∈ V and note that, by
Pythagoras’ identity, (∀v ∈ V⊥) QH(x − v) = QH(x) + QH(v). Hence, using Proposi-
tion 5.3(i) and basic conjugation calculus [9, Chapter 13], we get

(
projV � g

)
(x) = min

y∈H
projV y=x

g∗∗(y) + QH(y) − QH(x)

= min
y∈x+V⊥

g∗∗(y) + QH(y) − QH(x)

= min
v∈V⊥

g∗∗(x − v) + QH(x − v) − QH(x)

= min
v∈H g∗∗(x − v) + ιV⊥(v) + QH(v)

= (
g∗∗ � (ιV⊥ + QH)

)
(x)

= (
(g∗)∗ � (d2V /2)∗

)
(x)

= (
g∗ + d2V /2

)∗
(x), (5.11)

which establishes the identity. ��
Example 5.9 (proximal mixture) Let 0 �= p ∈ N and, for every k ∈ {1, . . . , p},
let Gk be a real Hilbert space, let Lk ∈ B (H,Gk), let ωk ∈ ]0,+∞[, and let gk ∈
�0(Gk). Suppose that 0 <

∑p
k=1 ωk‖Lk‖2 � 1 and let G be the standard product vec-

tor space G1 × · · · × Gp , with generic element y = (yk)1�k�p, and equipped with the
scalar product ( y, y′) �→ ∑p

k=1 ωk〈yk | y′
k〉. Set L : H → G : x �→ (Lkx)1�k�p and

g : G → ]−∞,+∞]: y �→ ∑p
k=1 ωkgk(yk). Then QG : G → R : y �→ ∑p

k=1 ωkQGk (yk),
L∗ : G → H : y �→ ∑p

k=1 ωk L∗
k yk , proxg : G → G : y �→ (proxgk yk)1�k�p , and

g∗ : G → ]−∞,+∞]: y∗ �→ ∑p
k=1 ωkg∗

k (y
∗
k ). Thus, g ∈ �0(G), 0 < ‖L‖ � 1, (1.6)

produces the proximal mixture

L � g =
( p∑

k=1

ωk
(
g∗
k �QGk

) ◦ Lk

)∗
− QH, (5.12)

and Example 3.6 yields

L � g ∈ �0(H) and proxL�g =
m∑

k=1

ωk L
∗
k ◦ proxgk ◦ Lk . (5.13)
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In particular if, for every k ∈ {1, . . . , p}, Gk = H and Lk = IdH, then (5.12) is the proximal
average

L � g =
( p∑

k=1

ωk
(
g∗
k �QH

)
)∗

− QH, (5.14)

which has been studied in [10] (see also [39] for illustrations and numerical aspects). The
fact that

∑m
k=1 ωkproxgk is a proximity operator was first observed by Moreau [43, 44] as a

consequence of Lemma 2.8.

Remark 5.10 (proximal sum) In Example 5.9, if
∑p

k=1 ωk‖Lk‖2 > 1, the proximal mixture
(5.12) may not be a function in �0(H). In the case of (5.14) with p = 2 and ω1 = ω2 = 1,
conditions under which the proximal sum L � g = (g∗

1 �QH+g∗
2 �QH)∗ −QH is in �0(H)

are provided in [7, 28, 56].

Remark 5.11 (proximal average) As in Remark 4.10, we can specialize the above results to
establish in a straightforward fashion various properties of the proximal average (5.14). In this
context, we define G and g as in Example 5.9 with G1 = · · · = Gp = H and

∑p
k=1 ωk = 1,

and set L : H → G : x �→ (x, . . . , x). Then L is an isometry and the resulting proximal
average f = L � g = L �g of (5.14) (see Proposition 5.3(vii)) possesses in particular the
following properties:

(i) Example 3.6(ii) yields f ∈ �0(H) (see [10, Corollary 5.2]).
(ii) Example 3.6(vi) yields prox f = ∑p

k=1 ωk proxgk (see [10, Theorem 6.7]).
(iii) Proposition 5.3(v) yields f ∗ = (

∑p
k=1 ωk(gk �QH))∗−QH (see [10, Theorem 5.1]).

(iv) Proposition 5.4 yields (
∑p

k=1 ωkg∗
k )

∗ � f �
∑p

k=1 ωkgk (see [10, Theorem 5.4]).
(v) Theorem 5.5(ii) yields dom f = ∑p

k=1 ωkdom gk (see [10, Theorem 4.6]).
(vi) Theorem 5.5(v) yields f �QH = ∑p

k=1 ωk(gk �QH) (see [10, Theorem 6.2(i)]).
(vii) Theorem 5.5(vi) yields Argmin( f �QH) = Argmin

∑p
k=1 ωk(gk �QH) (see [10,

Corollary 6.4]).
(viii) Suppose that the functions (gk)1�k�p are strongly convex. Then it follows fromPropo-

sition 5.6(i) that f is strongly convex (see [4, Corollary 3.23], where the strong
convexity of f is shown to hold more generally under the assumption that one of
the functions (gk)1�k�p is strongly convex).

6 Application toMonotone InclusionModels

On the numerical side, in monotone inclusion problems, the advantage of the resolvent com-
position over compositions such as (1.2) or (1.3) is that its resolvent is readily available
through Proposition 1.2. Hence, processing it efficiently in an algorithm does not require
advanced splitting techniques. In particular, in minimization problems, one deals with mono-
tone operators which are subdifferentials and handling a proximal composition L � g is more
straightforward than the compositions g ◦ L or L∗ � g thanks to Example 3.6(vi). On the
modeling side, while these compositions are not interchangeable in general, replacing the
standard composition (1.2) by a resolvent composition, may also be of interest. For instance,
in the special case of the basic proximal average (5.14), replacing g ◦ L = ∑p

k=1 ωkgk by
L � g = (

∑p
k=1 ωk(g∗

k �QH))∗ − QH in variational problems has been advocated in [38,
54]. More generally, the computational and modeling benefits of employing resolvent com-
positions in place of classical ones in concrete applications is a natural topic of investigation,
and it will be pursued elsewhere.
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The focus of this section is on the use of resolvent and proximal compositions in the
context of the following constrained inclusion problem.

Problem 6.1 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1, let B : G → 2G be maxi-
mally monotone, and let V �= {0} be a closed vector subspace of H. The task is to

find x ∈ V such that 0 ∈ B(Lx). (6.1)

As will be illustrated in the examples below, (6.1) models a broad spectrum of problems
in applied analysis. Of special interest to us are situations in which, due to modeling errors,
L(V ) ∩ zerB = ∅, which means that Problem 6.1 has no solution. As a surrogate to it with
adequate approximate solutions in such instances, we propose the following formulation. It is
based on the resolvent composition andwill be seen to be solvable by a simple implementation
of the proximal point algorithm.

Problem 6.2 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ � 1, let B : G → 2G be max-
imally monotone, let V �= {0} be a closed vector subspace of H, let γ ∈ ]0,+∞[, and set
A = L �(γ B). The task is to

find x ∈ H such that 0 ∈ (
projV � A

)
x . (6.2)

A justification of the fact that Problem 6.2 is an adequate relaxation of Problem 6.1 is
given in item (v) below.

Theorem 6.3 Consider the settings of Problems 6.1 and 6.2, and let S1 and S2 be their
respective sets of solutions. Then the following hold:

(i) projV � A is maximally monotone.
(ii) JprojV �A = projV ◦ (IdH − L∗ ◦ L + L∗ ◦ Jγ B ◦ L) ◦ projV .
(iii) S1 and S2 are closed convex sets.
(iv) S2 = Fix (projV ◦ (IdH − L∗ ◦ L + L∗ ◦ Jγ B ◦ L)).
(v) Problem 6.2 is an exact relaxation of Problem 6.1 in the sense that S1 �= ∅ ⇒ S2 = S1.
(vi) S2 = zer(NV + L∗ ◦ (γB) ◦ L).

Proof (i): Theorem 4.5(ii) asserts that A is maximally monotone. In view of Theorem 4.5(i),
this makes projV � A maximally monotone.

(ii): It follows from Proposition 1.2 and Proposition 4.1(v) that

JprojV � A = projV ◦ JL �(γ B) ◦ projV

= projV ◦ (
IdH −L∗ ◦ L + L∗ ◦ Jγ B ◦ L

) ◦ projV . (6.3)

(iii): The maximal monotonicity of B implies that zer B is closed and convex [9, Propo-
sition 23.39]. Hence, since L is continuous and linear, L−1( zerB) is closed and convex, and
so is therefore S1 = V ∩ L−1(zerB). Likewise, it follows from (i) that S2 = zer(projV � A)

is closed and convex.
(iv): It results from Lemma 2.3(iii) and (ii) that

S2 = zer
(
projV �A

) = FixJ projV �A = Fix
(
projV ◦(

IdH−L∗◦L+L∗◦ Jγ B ◦L))
. (6.4)

(v): Suppose that x ∈ S1 and x ∈ S2. Then x = projV x and 0 ∈ B(Lx), i.e., by
Lemma 2.3(iii), Lx = Jγ B(Lx) and therefore x = (IdH − L∗ ◦ L)x + L∗(Lx) = (IdH −
L∗ ◦ L)x + L∗(Jγ B(Lx)). Altogether, bringing into play (iv), we get

x = projV x = projV
(
(IdH − L∗ ◦ L)x + (L∗ ◦ Jγ B ◦ L)x

) ∈ S2. (6.5)
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It remains to show that x ∈ S1, i.e., as (iv) yields x ∈ V , that 0 ∈ B(Lx). Since Lx ∈ zerB,
Lemma 2.3(iii) entails that γB(Lx) = 0. Hence,

(∀v ∈ V )
〈
v | L∗(γB(Lx)

)〉 = 0. (6.6)

On the other hand, we derive from (iv) that

x = projV
(
x − L∗(( IdH − Jγ B)(Lx)

)) = (
NV + IdH

)−1
(
x − γ L∗(γ

B(Lx)
))

. (6.7)

Thus, −L∗(γB(Lx)) ∈ NV x = V⊥, i.e.,

(∀v ∈ V )
〈
v|L∗(γB(Lx)

)〉 = 0. (6.8)

Since x − x ∈ V , we deduce from (6.6) and (6.8) that
〈
x − x | L∗(γB(Lx) − γB(Lx)

)〉 = 0. (6.9)

Thus,
〈Lx − Lx |γB(Lx) − γB(Lx)〉 = 0 (6.10)

and, since γB is γ -cocoercive [9, Corollary 23.11(iii)], we obtain

γ ‖γB(Lx)‖2 = γ ‖γB(Lx) − γB(Lx)‖2 � 〈Lx − Lx | γB(Lx) − γB(Lx) = 0. (6.11)

We conclude that γB(Lx) = 0 and hence that Lx ∈ zer γB = FixJγB = zer B.
(vi): Let x ∈ H. Then, arguing as in (6.7),

x ∈ S2 ⇔ x − L∗(Lx − JγB(Lx)
) ∈ (NV + IdH)x

⇔ 0 ∈ NV x + L∗((IdG − JγB)(Lx)
)

⇔ x ∈ zer
(
NV + L∗ ◦ (γB) ◦ L

)
, (6.12)

which provides the desired identity. ��
Remark 6.4 (isometry) Suppose that L is an isometry in Theorem 6.3 (see Remark 4.2). In
view of Proposition 4.1(iii) and Proposition 4.3, the relaxed problem (6.2) is then to find a
zero of

projV � A = projV � (
L � (γB)

) = (L ◦ projV ) � (γB), (6.13)

and it follows fromTheorem 6.3(iv) that its set of solutions is S2 = Fix (projV ◦L∗◦ JγB ◦L).

Next, we propose an algorithm for solving Problem 6.2 which is based on the most
elementary method for solving monotone inclusions, namely the proximal point algorithm
[51].

Proposition 6.5 Suppose that Problem 6.2 has a solution, let (λn)n∈N be a sequence in ]0, 2[
such that

∑
n∈N λn(2 − λn) = +∞, and let x0 ∈ V . Iterate

for n = 0, 1, . . .⎢⎢⎢⎢⎢
⎣

yn = Lxn
qn = Jγ B yn − yn
zn = L∗qn
xn+1 = xn + λnprojV zn .

(6.14)

Then (xn)n∈N converges weakly to a solution to Problem 6.2.
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Proof Set M = projV � (L �(γ B)). Since (xn)n∈N lies in V , it follows from Theorem 6.3
(i)–(ii) that (xn)n∈N is generated by the proximal point algorithm, to wit,

(∀n ∈ N) xn+1 = xn + λn(JMxn − xn). (6.15)

Therefore, we derive from [26, Lemma 2.2(vi)] that (xn)n∈N converges weakly to a point in
zer M , i.e., a solution to (6.2). ��

Remark 6.6 (weak convergence) The weak convergence of (xn)n∈N in Proposition 6.5
cannot be improved to strong convergence in general. Indeed, suppose that, in Problem 6.2,
G = H, L = IdH, and B = NC , where C is a nonempty closed convex subset of H. Then,
if we take the parameters (λn)n∈N to be 1, the proximal point algorithm (6.14) reduces to the
alternating projectionmethod (∀n ∈ N) xn+1 = projV (projC xn). In [35], a hyperplane V and
a cone C are constructed for which (xn)n∈N fails to converge strongly. Note, however, that
using the strongly convergentmodifications of (6.15) discussed in [8, 53], it is straightforward
to obtain strongly convergent methods to solve Problem 6.2. Let us add that, as shown in
[26, Lemma 2.2(vi)], the weak convergence result in Proposition 6.5 remains valid if qn is
defined asqn = Jγ B yn+cn−yn in (6.14),where (cn)n∈N is a sequencemodeling approximate
implementations of Jγ B and satisfies

∑
n∈N λn‖cn‖ < +∞.

Henceforth, we specialize Problems 6.1 and 6.2 to scenarios of interest.

Example 6.7 (feasibility problem) Let 0 �= m ∈ N and let (Ci )1�i�m be nonempty closed
convex subsets of a real Hilbert space H. Set H = ⊕m

i=1 H, V = {(x, . . . , x) ∈ H | x ∈ H},
and C = C1 × · · · × Cm . Since V is isomorphic to H, Problem 6.1 with G = H, L = IdH,
and B = NC = A amounts to finding a point in V ∩ C , i.e., a point in

⋂m
i=1 Ci , while

Theorem 6.3(iv) asserts that the relaxation given in Problem 6.2 amounts to finding a fixed
point of projV ◦ projC , i.e., of (1/m)

∑m
i=1 projCi or, equivalently, a minimizer of

∑m
i=1 d

2
Ci
.

This product space framework for relaxing inconsistent feasibility problems was proposed
in [46, Section II.2] and re-examined in [5, 23].

Example 6.8 (resolvent mixtures) Let 0 �= p ∈ N, let γ ∈ ]0,+∞[, and let V �= {0} be
a closed vector subspace of H. For every k ∈ {1, . . . , p}, let Gk be a real Hilbert space, let
Lk ∈ B(H,Gk), let ωk ∈ ]0,+∞[, and let Bk : Gk → 2Gk be maximally monotone. Suppose
that 0 <

∑p
k=1 ωk‖Lk‖2 � 1 and define G, L , and B as in Example 3.4. Then the objective

of Problem 6.1 is to

find x ∈ V such that (∀k ∈ {1, . . . , p}) 0 ∈ Bk(Lkx). (6.16)

Now let M be the resolvent mixture of the operators ((γ Bk)
−1)1�k�p (see Example 3.4).

Then the relaxed Problem 6.2 is to

find x ∈ H such that 0 ∈ (
projV � M−1)x (6.17)

or, equivalently, upon invoking Theorem 6.3(vi), to

find x ∈ H such that 0 ∈ NV x +
p∑

k=1

ωk L
∗
k

(γ
Bk(Lkx)

)
. (6.18)
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In addition, it follows from Proposition 6.5 that, given x0 ∈ V and a sequence (λn)n∈N in
]0, 2[ such that

∑
n∈N λn(2−λn) = +∞, the sequence (xn)n∈N constructed by the algorithm

for n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

for k = 1, . . . , p⌊
yk,n = Lkxn
qk,n = Jγ Bk yk,n − yk,n

zn = ∑p
k=1 ωk L∗

kqk,n
xn+1 = xn + λn projV zn

(6.19)

converges weakly to a solution to the relaxed problem if one exists.

Example 6.9 (common zero problem) Suppose that, in Example 6.8, we have (∀k ∈
{1, . . . , p}) Gk = H and Lk = IdH. Then (6.16) consists of finding x ∈ V ∩ ⋂p

k=1 zerBk

and its relaxation (6.17)/(6.18) consists of finding a zero of NV + ∑p
k=1 ωk

γBk . This relax-
ation was proposed in [25] and it originates in Legendre’s method of least-squares [36] to
relax inconsistent systems of linear equations (see [27, Example 4.3]).

Example 6.10 (Wiener systems) In Example 6.8, suppose that, for every k ∈ {1, . . . , p},
Bk = (IdGk − Fk + pk)−1 − IdGk , where Fk : Gk → Gk is firmly nonexpansive and pk ∈ Gk .
Then we recover the Wiener system setting investigated in [32]. Specifically, (6.16) reduces
to the nonlinear reconstruction problem [32, Problem 1.1]

find x ∈ V such that (∀k ∈ {1, . . . , p}) Fk(Lkx) = pk (6.20)

and (6.17) yields the relaxed problem [32, Problem 1.3]

find x ∈ V such that (∀y ∈ V )

p∑

k=1

ωk〈Lk y − Lkx | Fk(Lkx) − pk〉 = 0. (6.21)

In addition, given x0 ∈ V and a sequence (λn)n∈N in ]0, 2[ such that
∑

n∈N λn(2−λn) = +∞,
the sequence (xn)n∈N constructed by the algorithm

for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢
⎣

for k = 1, . . . , p⌊
yk,n = Lkxn
qk,n = pk − Fk yk,n

zn = ∑p
k=1 ωk L∗

kqk,n
xn+1 = xn + λn projV zn

(6.22)

converges weakly to a solution to the relaxed problem if one exists (see [32, Proposition 4.3]
for existence conditions).

Proof For every k ∈ {1, . . . , p}, it follows from (2.5) that IdGk − Fk + pk : Gk → Gk is
firmly nonexpansive and therefore from Lemma 2.2 that Bk is maximally monotone, with
JBk = IdGk − Fk + pk and 1Bk = Fk − pk . In addition, we observe that this choice of the
operators (Bk)1�k�p makes (6.20) a realization of (6.16), and (6.22) a realization of (6.19).
At the same time, (6.17)/(6.18) with γ = 1 becomes

find x ∈ H such that 0 ∈ NV x +
p∑

k=1

ωk L
∗
k

(
Fk(Lkx) − pk

)
, (6.23)

which is precisely (6.21). ��
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Example 6.11 (proximal composition) In Problem 6.1, suppose that B = ∂g, where g ∈
�0(G). Then (6.1) becomes

find x ∈ V such that Lx ∈ Argmin g. (6.24)

Now set f = L �(γ g). Then the relaxation (6.2) becomes

minimize
x∈H

(
projV � f

)
(x) (6.25)

or, equivalently,
minimize

x∈V
(
γg

)
(Lx). (6.26)

In addition, given x0 ∈ V and a sequence (λn)n∈N in ]0, 2[ such that
∑

n∈N λn(2−λn) = +∞,
the algorithm

for n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎣

yn = Lxn
qn = proxγ g yn − yn
zn = L∗qn
xn+1 = xn + λn projV zn

(6.27)

produces a sequence (xn)n∈N that converges weakly to a solution to the relaxed problem if
one exists.

Proof The fact that (6.1) yields (6.24) is a consequence of Fermat’s rule (2.13). Next, we
derive from Example 3.10(iv) that, in Problem 6.2,

A = L �(γ B) = L �∂(γ g) = ∂
(
L �(γ g)

) = ∂ f . (6.28)

Thus, by Example 3.6(v),

projV � A = projV � ∂ f = ∂
(
projV � f

)
. (6.29)

Therefore, by Fermat’s rule (2.13), the solution set of Problem 6.2 is

zer
(
projV � A

) = Argmin
(
projV � f

)
. (6.30)

On the other hand, since dom γg = G, [9, Example 23.3 and Theorem 16.47(i)] yield

NV + L∗ ◦ (γ
(∂g)

) ◦ L = ∂ιV + L∗ ◦ (∇γg
) ◦ L = ∂

(
ιV + (γg) ◦ L

)
. (6.31)

Thus, we deduce from Theorem 6.3(vi) and (2.13) that

zer
(
projV � A

) = zer
(
NV + L∗ ◦ γ(∂g) ◦ L

) = Argmin
(
ιV + ( γg) ◦ L

)
. (6.32)

In view of (6.29), this confirms the equivalence between (6.25) and (6.26). The last claim is
an application of Proposition 6.5 using (2.14). ��
Example 6.12 (proximal mixture) In the context of Example 6.11, choose G, L , and g as
in Example 5.9. Then the initial problem (6.24) is to

find x ∈ V such that (∀k ∈ {1, . . . , p}) Lkx ∈ Argmin gk . (6.33)

Now letm be the proximal mixture of the functions ((γ gk)∗)1�k�p (see Example 5.9). Then
the relaxation of (6.33) given by (6.25) is to

minimize
x∈H

(
projV � m∗)(x) (6.34)
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or, equivalently, via (6.26), to

minimize
x∈V

p∑

k=1

ωk
(
γgk

)
(Lkx). (6.35)

This problem can be solved via (6.19), where Jγ Bk is replaced by proxγgk .

Remark 6.13 (proximal average) In Example 6.11, suppose that V = H and that L is an
isometry. Then it follows from Proposition 5.3(vii) that the relaxed problem (6.25) consists of
minimizing the proximal composition f = L�(γ g). In particular, if f is the proximal average
of the functions (gk)1�k�p (see (5.14)), it follows fromExample 6.12 that minimizing it is an
exact relaxation of the problem of finding a common minimizer of the functions (gk)1�k�p.
This provides a principled interpretation for methodologies adopted in [38, 54].

Example 6.14 (split feasibility) Suppose that, in Example 6.12, for every k ∈ {1, . . . , p},
gk = ιDk , where Dk is a nonempty closed convex subset of Gk . Then (6.33) is the split
feasibility problem [49]

find x ∈ V such that (∀k ∈ {1, . . . , p}) Lkx ∈ Dk, (6.36)

while the relaxation (6.34)/(6.35) is to

minimize
x∈V

p∑

k=1

ωkd
2
Dk

(Lkx). (6.37)

This problem can be solved via (6.19), where Jγ Bk is replaced by projDk
.
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