

pubs.acs.org/JACS Communication

Enhancing Substrate—Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β -C(sp³)—H Bromination of Free Carboxylic Acids

Liang Hu, Guangrong Meng, Xiangyang Chen, Joseph S. Yoon, Jing-Ran Shan, Nikita Chekshin, Daniel A. Strassfeld, Tao Sheng, Zhe Zhuang, Rodolphe Jazzar,* Guy Bertrand,* K. N. Houk,* and Jin-Quan Yu*

Cite This: J. Am. Chem. Soc. 2023, 145, 16297-16304

ACCESS

Metrics & More

s Supporting Information

ABSTRACT: The achievement of sufficient substrate—metal catalyst affinity is a fundamental challenge for the development of synthetically useful C–H activation reactions of weakly coordinating native substrates. While hydrogen bonding has been harnessed to bias site selectivity in existing $C(sp^2)$ —H activation reactions, the potential for designing catalysts with hydrogen bond donors (HBDs) to enhance catalyst—substrate affinity and, thereby, facilitate otherwise unreactive $C(sp^3)$ —H activation remains to be demonstrated. Herein, we report the discovery of a ligand scaffold containing a remote amide motif that can form a favorable *meta*-macrocyclic hydrogen bonding interaction with the aliphatic acid substrate. The utility of this ligand scaffold is demonstrated through the development of an unprecedented $C(sp^3)$ —H bromination of α -tertiary and α -quaternary free carboxylic acids, which proceeds in exceedingly high *mono*-selectivity. The geometric relationship between the NHAc hydrogen bond donor and the coordinating quinoline ligand is crucial for forming the *meta*-macrocyclophane-like hydrogen bonding interaction, which provides a guideline for the future design of catalysts employing secondary interactions.

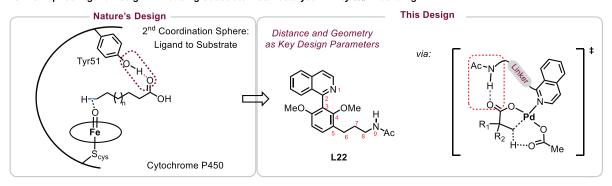
espite significant developments in transition-metalcatalyzed C(sp³)-H functionalization over the past decade, performing directed C-H metalation with native functional groups rather than exogenous directing groups (DGs) remains challenging. In this context, the activation of alkyl C-H bonds directed by carboxylic acids on the basis of weak cation coordination has been the main platform to demonstrate the feasibility of this approach. While innovation in ligand design has enabled a wide range of free-acid-directed $C(sp^2)$ -C and $C(sp^3)$ -X bond formations (X = N, O), the bromination of C(sp³)-H still requires the installation of external directing groups.³ Considering the broad utility of alkyl bromides as versatile intermediates in synthetic organic chemistry, 4 the invention of new methods for *mono*-selective β -C-H bromination of readily available carboxylic acids lags behind the wide range of enzymatic C-H halogenation reactions.5

The unique proficiency of bidentate ligands containing internal proton acceptors, such as acetamides and pyridones, for the facilitation of a wide range of C–H bond activation reactions of free acid has been demonstrated in numerous previous reports from our lab and others.⁶ However, despite repeated attempts, we have found that bidentate ligands fail to promote the C–H bromination of free carboxylic acids (Scheme 1A, vide infra). Conversely, we have previously observed that monodentate pyridine-type ligands enable the $C(sp^3)$ –H bromination of α -quaternary free carboxylic acid in modest yield.^{3d} Unfortunately, no reactivity was observed with more challenging α -tertiary acids, and efforts to optimize this reactivity through routine screening have proved futile (Scheme 1B, vide infra). Intriguingly, the latter class of ligands

has proved effective when the analogous transformation is directed by a more strongly coordinating electron-deficient amide instead of a free carboxylic acid, ^{3d} which suggests that the poor reactivity observed with free acids may be the result of insufficient affinity of the catalyst for a carboxyl group in the presence of the interfering brominating reagent. In light of these results, we hypothesized that the desired transformation could be enabled through the design of a new type of monodentate pyridine ligand with an additional function: enhancement of the interaction between carboxylic acid substrates and the Pd(II) catalyst.

It is well established that enzymes and metalloproteins can facilitate catalysis through remote hydrogen bonding with their substrates. For example, in the active site of cytochrome P450-BM3, a fatty acid hydroxylase, hydrogen bond donors interact with the carboxylate group of the acid substrate, thereby directing site-selective C–H bond oxidation (Scheme 1C). Although hydrogen-bonding-directed catalysis has been successfully harnessed to bias site selectivity in C–H activation, he development of ligands involving a hydrogen-bonding interaction to promote the C(sp³)–H activation of free acid by increasing the binding affinity of the carboxyl group for the metal center remains to be demonstrated. We were particularly interested in the possibility of using our

Received: April 24, 2023 Published: July 24, 2023

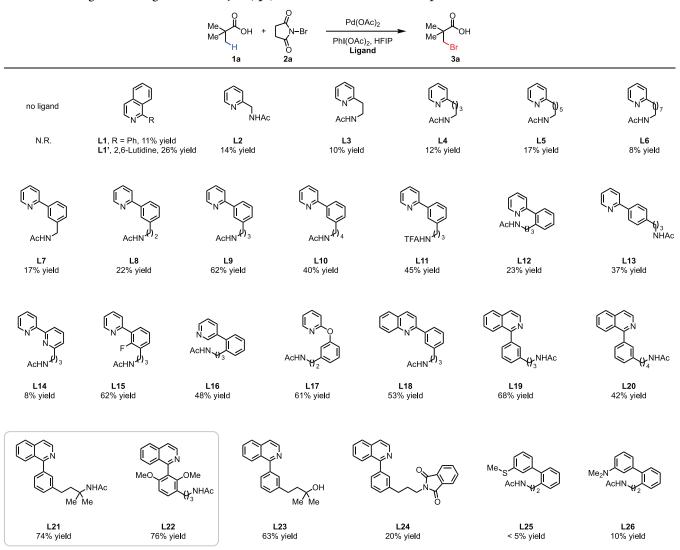

Scheme 1. Pd(II)-Catalyzed C(sp³)-H Bromination of Free Aliphatic Acids

A Performance of Bidentate Ligands on Pd-Catalyzed C(sp³)-H Bromination of Free Carboxylic Acids

Selected Examples:

B Early Results of Pd-Catalyzed C(sp³)-H Bromination of Free Carboxylic Acids

C Bioinspired Ligand Design: Enhancing Substrate-Metal Catalyst Affinity via H-bonding

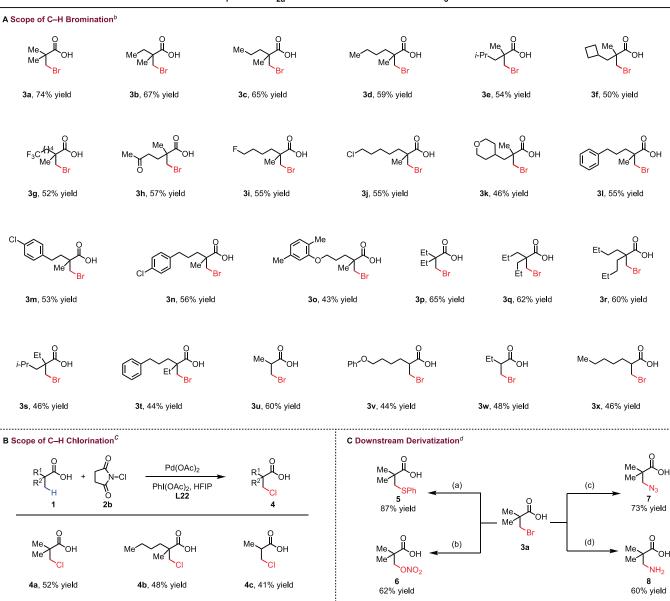

D New Ligand Enabled β -C(sp³)–H Bromination of Free Carboxylic Acids (This Work)

established *meta*-macrocyclophane geometry ¹¹ to assemble the hydrogen bonding interaction and help to promote the desired interaction through control over distance and geometry while suppressing undesired chelation of the hydrogen bonding donor motif to the metal center. Herein, we report the development of a β -C(sp³)-H bromination and chlorination of free carboxylic acids enabled by a novel quinoline ligand bearing a pendant NHAc group that forms a hydrogen-

bonding interaction with the carboxylate in a *meta*-macro-cyclophane structure (Scheme 1D).

Bearing in mind our earlier effort to achieve β -bromination of pivalic acid using a quinoline ligand only gave 40% yield, we began to test various ligands using pivalic acid 1a as the model substrate (Table 1). While no product was observed in the absence of ligand, monodentate pyridine-type ligand L1' provided 26% yield of the desired product, which is consistent

Table 1. Investigation of Ligands for the β -C(sp³)-H Bromination of Free Aliphatic Acids^a


"Conditions: 1a (0.1 mmol), 2a (0.2 mmol), Pd(OAc)₂ (10 mol %), ligand (15 mol %), PhI(OAc)₂ (0.1 mmol), AcOH (0.1 mmol), hexafluoroisopropanol (HFIP) (1.0 mL), 100 °C, air, 24 h. ¹H NMR yields obtained using CH₂Br₂ as an internal standard.

with our previous report.^{3d} Further screening with this ligand (L1') did not improve the yield. Most importantly, L1' failed to show any reactivity with α -hydrogen-containing acids, thereby highlighting the need for novel ligands. As anticipated, bidentate ligands such as mono-acetyl-protected aminoalkylpyridine (MPAPy) ligands (L2, L3) also gave poor yields. We next tried to extend the linker between the pyridine and the NHAc group (L4-L6) in the hope of disfavoring bidentate coordination and enabling macrocyclic hydrogen-bonding interactions to enhance the binding affinity of the substrate. Unfortunately, we did not observe any improvement, which is most likely the result of the highly flexible linker either allowing for undesired chelation by the NHAc moiety or entropically disfavoring the desired H-bonding interaction. On the basis of our previous understanding of the favorable assembly of meta-macrocyclophane transition states in remote C-H activation, 11 we incorporated one phenyl ring bearing the NHAc moiety at the meta-position into the ligand scaffold and adjusted the ring size (L7-L11) to prevent the potential bidentate coordination. We found that L9 significantly increased the yield to 62%. The poor performance of L8

(eight-membered ring size) or L10 (10-membered ring size) suggests that the precise ring size of the macrocyclophane hydrogen-bonding interaction is crucial for enabling catalysis. The poor yields observed with ortho- and para-substituted ligands L12 and L13 further confirmed the favorable assembly of the meta-cyclophane structures.

Seeking to optimize ligand L9, we observed that further modification of the ligand backbone (L11-L18) did not significantly improve the reactivity. Switching from pyridine to isoquinoline (L19) resulted in a small increase in yield of up to 68%. The comparatively poor performance of one-carbon homologated L20 further highlighted the importance of the ring size of the macrocyclic H-bonding interactions in this system. To promote angle-compression through the Thorpe-Ingold effect, we introduced a gem-dimethyl in L21, which gratifyingly led to a modest improvement in yield. A similar result was also observed with L22, which might result from the constrained environment provided by the 2,6-dimethoxy-1,1'biphenyl moiety. Importantly, the possibility that the active species is a palladacycle formed through isoquinoline-directed intramolecular C-H activation of the ligand was excluded by

Table 2. β -C(sp³)-H Halogenation of Free Aliphatic Acids^a

"L22 was applied to 3a, 3g–3k, and 3u–3x.
Conditions: 1 (0.1 mmol), 2a (2.0 equiv), Pd(OAc)₂ (10 mol %), ligand (15 mol %), PhI(OAc)₂ (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h.
Conditions: 1 (0.1 mmol), 2b (2.0 equiv), Pd(OAc)₂ (10 mol %), ligand (15 mol %), PhI(OAc)₂ (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h.
Conditions for derivatization: (i) PhSH (2.0 equiv), NaOH (2.0 equiv), EtOH, 40 °C, 12 h; (ii) AgNO₃ (2.0 equiv), EtOAc, 80 °C, 24 h; (iii) NaN₃ (4.0 equiv), MeOH, 40 °C, 24 h; (iv) NH₃H₂O (1.0 mL), 80 °C, 12 h.

the high activity observed with bis-ortho-substituted L22. In support of the crucial role of the proposed hydrogen bond donor, the methylated analogue of L18 (L18') and phthalimide-protected analogue of L19 (L24), both incapable of the proposed hydrogen-bonding interaction, gave poor yields similar to the simple monodentate pyridine ligand L1. Consistent with our hypothesis, L23 containing a free alcohol as an alternate hydrogen bond donor (HBD) remained highly effective, thereby affording the brominated product in 63% yield. Similarly, the importance of the pyridine or isoquinoline

motif was highlighted by the failure of thiol-based ligand L25 and aniline-based ligand L26 to promote the reaction.

Having identified highly reactive ligands and reaction conditions, we next sought to examine the scope of the bromination reaction (Table 2A). α -gem-Dimethyl carboxylic acids with a range of aliphatic chains all proved compatible and afforded the β -brominated products in high yields (3a-3f). A variety of functional groups, such as fluoro, chloro, trifluoromethyl, and ketone, were tolerated (3g-3j). These functionalities are useful synthetic handles for subsequent

Scheme 2. Preparation and Solid-State Structure of Pd-L20, Pd-L21, and Pd-L23 Complexes

^aConditions: Pd(OAc)₂ (0.11 mmol), ligand (0.12 mmol), and N-methylmorpholine (0.12 mmol), DCM (5.0 mL), rt, overnight.

derivatization, thereby demonstrating the practicality of this methodology. Notably, in contrast with other β -C(sp³)–H functionalization reactions, 2a this protocol displayed exclusive selectivity for monofunctionalization despite the presence of two α -methyl groups (see the Supporting Information for more discussion). Aliphatic carboxylic acids bearing cyclic rings with four- and six-membered rings were tolerated (3f, 3k). Phenyl groups were also compatible with these reaction conditions (3l-3n) and remained intact despite the potential for reactivity of the aryl or benzylic C-H bonds. Even electron-rich phenolic ethers (30 and 3v) were compatible despite the use of NBS and phenyliodine(III) diacetate (PIDA) oxidants. Gemfibrozil, an oral drug that is used to decrease lipid levels, could be converted to the corresponding β -brominated product in useful yield (30). In addition, quaternary substrates containing a single α -methyl group consistently afforded good yields (3p-3t). Likewise, α -tertiary aliphatic carboxylic acids afforded the desired monobromination products in moderate to good yield (3u-3x). These substrates are typically challenging because of the lack of a favorable Thorpe-Ingold effect, as well as the potential for side reactions, due to the acidic α -C-H bond. In addition, we examined the ability of our novel ligand to promote the Pd(II)catalyzed β -C(sp³)-H chlorination of free carboxylic acids because of the bioactivity of alkyl halides in drug discovery (Table 2B). 12 To our delight, both the quaternary carboxylic acids and α -tertiary acid substrates were chlorinated under these reaction conditions to afford the desired products in 41%-52% yields (4a-4c).

The synthetic utility of this $C(sp^3)$ –H bromination was demonstrated by converting 3a to a wide range of β -substituted aliphatic acids via nucleophilic substitutions

(Table 2C). A diverse array of chemical bonds, including C–S, C–O, and C–N bonds, were easily forged, thereby providing straightforward access to compounds that might be challenging to access from the free acid using other methods. Notably, this methodology could be applied to the synthesis of valuable β -amino acid (8).

To probe our mechanistic hypothesis experimentally, we first looked at the complexation of L21, one of our optimal ligands, with Pd(OAc)₂ (Scheme 2). X-ray crystallographic analysis confirmed that this ligand binds to palladium in a monodentate fashion via the quinoline nitrogen and engages in a macrocyclic intramolecular hydrogen-bonding interaction between the amide and a palladium-bound carboxylate in the solid state. To highlight the remarkable specificity of this ligand framework, we also examined L23, a slightly less reactive ligand bearing an alcohol HBD. In the complex formed from L23, we did not observe an intramolecular macrocyclic hydrogen-bonding interaction, but the alcohol instead participated in an intermolecular hydrogen-bonding interaction with a carboxylate bound to a second equivalent of palladium, which demonstrated the electronic viability of the proposed interaction. To gain additional insight into the optimal distance and geometry for the positioning of the NHAc group, we also considered L20, which has a longer carbon chain and lacks the gem-dimethyl group present in L21. In this case, the same macrocyclic hydrogen bonding interaction was observed as with L21, but structural parameters (H-O distance and N-H-O angle) suggested that the interaction was weakened, an observation consistent with the reduced yield observed with L20 (Table 1). To the best of our knowledge, there is no report of similar intramolecular macrocyclic distal hydrogen bonding motifs in transition metal complexes, as demonstrated

by a careful search of the Cambridge Crystallographic Data Centre (CCDC). These observations and additional comparative DFT studies (detailed in the Supporting Information) support our hypothesis that a hydrogen-bonding interaction between the ligand and the carboxylate directing group can be leveraged to enable increased reactivity.

In summary, we have discovered a new class of pyridinebased ligands containing a hydrogen bond donor that interacts with a carboxyl directing group in substrates, thereby enabling the Pd(II)-catalyzed β -C(sp³)-H bromination and chlorination of free carboxylic acids. The broad substrate scope, as well as the ease of valuable downstream transformations of the halogenated products, demonstrates the synthetic potentiality of this strategy. Importantly, our bioinspired ligand design employing a secondary coordination sphere hydrogen-bonding interaction was the key to the success of this $C(sp^3)$ -H halogenation. On the basis of DFT calculations, the free energy of the reaction pathway using L21 or L23—ligands possessing pendant hydrogen bond donors—is lower than that for L1, a ligand incapable of hydrogen bonding. X-ray crystallographic analysis of palladium-ligand complexes provides additional support for the proposed interaction through meta-macrocyclophane hydrogen-bonding interaction. We expect that this new ligand design concept will be broadly applicable within the field of C-H activation and guide future ligand development efforts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c04223.

Experimental details and full characterization of new compounds, including ¹H and ¹³C NMR spectra and HRMS data (PDF)

Accession Codes

CCDC 2261815–2261816 and 2270324 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Rodolphe Jazzar — UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; © orcid.org/0000-0002-4156-7826; Email: rjazzar@ucsd.edu

Guy Bertrand – UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Email: gbertrand@ucsd.edu

K. N. Houk — Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States; Ocid.org/0000-0002-8387-5261; Email: houk@chem.ucla.edu

Jin-Quan Yu − Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; oorcid.org/0000-0003-3560-5774; Email: yu200@ scripps.edu

Authors

Liang Hu — Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States;
occid.org/0000-0002-2960-9560

Guangrong Meng — Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; orcid.org/0000-0002-3023-0654

Xiangyang Chen – Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States; orcid.org/ 0000-0002-6981-7022

Joseph S. Yoon – UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

Jing-Ran Shan – Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States

Nikita Chekshin — Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; orcid.org/0000-0002-9687-3310

Daniel A. Strassfeld – Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States

Tao Sheng — Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States;
orcid.org/0000-0001-5339-9834

Zhe Zhuang — Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States; orcid.org/0000-0001-6679-0496

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c04223

Author Contributions

These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the NIH (NIGMS, R01GM084019) and The Scripps Research Institute for financial support. D.A.S. was supported by NIH National Institute of General Medical Science grant F32 GM143921. K.N.H. is grateful to the National Science Foundation (CHE-2153972) for funding. Calculations were performed on the Hoffman2 cluster at UCLA and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1548562. This work was also supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program, under Award No. DESC0009376 (G.B.) and the Agence Nationale de la Recherche Award No. ANR-20-CE07-0000-cResolu (R.J.).

■ REFERENCES

(1) (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. *Chem. Rev.* **2017**, *117*, 8754–8786. (b) Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. *Chem. Rev.* **2010**, *110*, 1147–1169. (c) Dalton, T.; Faber, T.; Glorius, F. C–H activation: toward sustainability and applications. *ACS Cent. Sci.* **2021**, 7, 245–261. (d) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, Monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. *Acc. Chem. Res.* **2015**, *48*, 1053–1064. (e) Rej, S.; Ano, Y.;

Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. *Chem. Rev.* **2020**, *120*, 1788–1887.

- (2) (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. Palladium-catalyzed methylation and arylation of sp² and sp³ C-H bonds in simple carboxylic acids. J. Am. Chem. Soc. 2007, 129, 3510-3511. (b) Zhu, Y.; Chen, X.; Yuan, C.; Li, G.; Zhang, J.; Zhao, Y. Pd-catalyzed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids. Nat. Commun. 2017, 8, 14904-14911. (c) Ghiringhelli, F.; Uttry, A.; Ghosh, K. K.; van Gemmeren, M. Direct β - and γ -C(sp³)-H alkynylation of free carboxylic acids. Angew. Chem., Int. Ed. 2020, 59, 23127-23131. (d) Dolui, P.; Das, J.; Chandrashekar, H. B.; Anjana, S. S.; Maiti, D. Ligand-enabled Pd^{II} -catalyzed iterative γ - $C(sp^3)$ -Harylation of free aliphatic acid. Angew. Chem., Int. Ed. 2019, 58, 13773-13777. (e) Zhuang, Z.; Yu, C.-B.; Chen, G.; Wu, Q.-F.; Hsiao, Y.; Joe, C. L.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Ligand-enabled β -C(sp³)-H olefination of free carboxylic acids. J. Am. Chem. Soc. 2018, 140, 10363-10367. (f) Zhuang, Z.; Yu, J.-Q. Lactonization as a general route to β -C(sp³)-H functionalization. *Nature* **2020**, 577, 656-659. (g) Zhuang, Z.; Herron, A. N.; Fan, Z. L.; Yu, J.-Q. Ligandenabled monoselective beta-C(sp³)-H acyloxylation of free carboxylic acids using a practical oxidant. J. Am. Chem. Soc. 2020, 142, 6769-6776. (h) Ghosh, K. K.; Uttry, A.; Koldemir, A.; Ong, M.; van Gemmeren, M. Direct β -C(sp³)-H acetoxylation of aliphatic carboxylic acids. Org. Lett. 2019, 21, 7154-7157. (i) Novak, P.; Correa, A.; Gallardo-Donaire, J.; Martin, R. Synergistic palladiumcatalyzed $C(sp^3)$ -H activation/ $C(sp^3)$ -O bond formation: a direct, step-economical route to benzolactones. Angew. Chem., Int. Ed. 2011, 50, 12236-12239.
- (3) (a) Giri, R.; Chen, X.; Yu, J.-Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. *Angew. Chem., Int. Ed.* **2005**, *44*, 2112–2115. (b) Rit, R. K.; Yadav, M.; Ghosh, R. K.; Shankar, M.; Sahoo, A. K. Sulfoximine assisted Pd(II)-catalyzed bromination and chlorination of primary β -C(sp³)–H bond. *Org. Lett.* **2014**, *16*, 5258–5261. (c) Yang, X.; Sun, Y.; Sun, T.-Y.; Rao, Y. Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp³)–H bonds at room temperature. *Chem. Commun.* **2016**, *52*, 6423–6426. (d) Zhu, R.-Y.; Saint-Denis, T. G.; Shao, Y.; He, J.; Sieber, J. D.; Senanayake, C. H.; Yu, J.-Q. Ligand-enabled Pd(II)-catalyzed bromination and iodination of C(sp³)–H bonds. *J. Am. Chem. Soc.* **2017**, *139*, 5724–5727. (e) Wasa, M.; Yu, J.-Q. Synthesis of β -, γ -, and δ -lactams via Pd(II)-catalyzed C–H activation reactions. *J. Am. Chem. Soc.* **2008**, *130*, 14058–14059.
- (4) (a) Kambe, N.; Iwasaki, T.; Terao, J. Pd-catalyzed cross-coupling reactions of alkyl halides. *Chem. Soc. Rev.* **2011**, *40*, 4937–4947. (b) Saikia, I.; Borah, A. J.; Phukan, P. Use of bromine and bromoorganic compounds in organic synthesis. *Chem. Rev.* **2016**, *116*, 6837–7042.
- (5) (a) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Nature's inventory of halogenation catalysts: oxidative strategies predominate. *Chem. Rev.* **2006**, *106*, 3364–3378. (b) Romero, E.; Jones, B. S.; Hogg, B. N.; Casamajo, A. R.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymatic late-stage modifications: better late than never. *Angew. Chem., Int. Ed.* **2021**, *60*, 16824–16855.
- (6) (a) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S. Q.; Yu, J.-Q. From $Pd(OAc)_2$ to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. *Acc. Chem. Res.* **2020**, 53, 833–851. (b) Wang, Z.; Hu, L.; Chekshin, N.; Zhuang, Z.; Qian, S.; Qiao, J. X.; Yu, J.-Q. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. *Science* **2021**, 374, 1281–1285. (c) Meng, G.; Hu, L.; Tomanik, M.; Yu, J.-Q. β and γ -C(sp³)–H heteroarylation of free carboxylic acids: a modular synthetic platform for diverse quaternary carbon centers. *Angew. Chem., Int. Ed.* **2023**, 62, No. e202214459. (d) Hu, L.; Meng, G.; Yu, J.-Q. Ligand-enabled Pd(II)-catalyzed β -methylene C(sp³)–H arylation of free aliphatic acids. *J. Am. Chem. Soc.* **2022**, 144, 20550–20553. (e) Uttry, A.; Mal,

- S.; van Gemmeren, M. Late-stage β -C(sp³)–H deuteration of carboxylic acids. *J. Am. Chem. Soc.* **2021**, *143*, 10895–10901.
- (7) The succinimide formed in situ can work as ligand to coordinate with Pd(II), which will outcompete the binding of the carboxylic acid substrates. See: Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.; Sánchez, G.; López, G.; Serrano, J. L.; García, L.; Pérez, J.; Pérez, E. Mono- and binuclear cyclometallated palladium(ii) complexes containing bridging (N,O-) and terminal (N-) imidate ligands: Air stable, thermally robust and recyclable catalysts for cross-coupling processes. *Dalton Trans* **2004**, 3970–3981.
- (8) (a) Whitehouse, C. J. C.; Bell, S. G.; Wong, L.-L. P450_{BM3} (CYP102A1): connecting the dots. *Chem. Soc. Rev.* **2012**, *41*, 1218–1260. (b) Li, H.; Poulos, T. L. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. *Nat. Struct. Biol.* **1997**, *4*, 140–146. (c) Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Pivotal role of water in the mechanism of P450BM-3. *Biochemistry* **2001**, *40*, 13456–13465. (d) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Reetz, M. T. Tuning a P450 enzyme for methane oxidation. *Angew. Chem., Int. Ed.* **2011**, *50*, 2720–2724.
- (9) (a) Reek, J. N. H.; Bruin, B. D.; Pullen, S.; Mooibroek, T. J.; Kluwer, A. M.; Caumes, X. Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere. *Chem. Rev.* **2022**, *122*, 12308–12369. (b) Davis, H. J.; Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. *Chem. Sci.* **2017**, *8*, 864–877. (c) Knowles, R. R.; Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. *Proc. Natal. Acad. Sci.* **2010**, *107*, 20678–20685. (d) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Exploiting non-covalent π interactions for catalyst design. *Nature* **2017**, *543*, 637–646.
- (10) (a) Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C-H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 2017, 139, 7745-7748. (b) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science 2006, 312, 1941-1943. (c) Goswami, N.; Sinha, S. K.; Mondal, P.; Adhya, S.; Datta, A.; Maiti, D. Distal meta-alkenylation of formal amines enabled by catalytic use of hydrogen-bonding anionic ligands. Chem. 2023, 9, 989-1003. (d) Mondal, A.; Diaz-Ruiz, M.; Deufel, F.; Maseras, F.; van Gemmeren, M. Charge-controlled Pd catalysis enables the meta-C-H activation and olefination of arenes. Chem. 2023, 9, 1004-1016. (e) Li, G.; Yan, Y.; Zhang, P.; Xu, X.; Jin, Z. Palladium-catalyzed metaselective C-H functionalization by noncovalent H-bonding interaction. ACS Catal. 2021, 11, 10460-10466. (f) Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A meta-selective C-H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 2015, 7, 712–717. (g) Genov, G. R.; Douthwaite, J. L.; Lahdenpera, A. S. K.; Gibson, D. C.; Phipps, R. J. Enantioselective remote C-H activation directed by a chiral cation. Science 2020, 367, 1246-1251. (h) Frost, J. R.; Huber, S. M.; Breitenlechner, S.; bannwarth, C.; Bach, T. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex. Angew. Chem., Int. Ed. 2014, 54, 691-695.
- (11) Meng, G.; Lam, N. Y. S.; Lucas, E. L.; Saint-Denis, T. G.; Verma, P.; Chekshin, N.; Yu, J.-Q. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter's approach. J. Am. Chem. Soc. 2020, 142, 10571–10591.
- (12) (a) Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S. W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J.-M.; Grotzfeld, R. M.; Hassan, A. Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P. W.; Pelle, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A. A.; Zoller, T.; Marzinzik, A. L.; Furet, P. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. *J. Med. Chem.* 2018, *61*, 8120–8135. (b) Chiodi, D.; Ishihara, Y. Magic

Chloro": profound effects of the chlorine atom in drug discovery. *J. Med. Chem.* **2023**, *66*, 5305–5331.