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ABSTRACT: The achievement of sufficient substrate−metal catalyst affinity is a fundamental challenge for the development of
synthetically useful C−H activation reactions of weakly coordinating native substrates. While hydrogen bonding has been harnessed
to bias site selectivity in existing C(sp2)−H activation reactions, the potential for designing catalysts with hydrogen bond donors
(HBDs) to enhance catalyst−substrate affinity and, thereby, facilitate otherwise unreactive C(sp3)−H activation remains to be
demonstrated. Herein, we report the discovery of a ligand scaffold containing a remote amide motif that can form a favorable meta-
macrocyclic hydrogen bonding interaction with the aliphatic acid substrate. The utility of this ligand scaffold is demonstrated
through the development of an unprecedented C(sp3)−H bromination of α-tertiary and α-quaternary free carboxylic acids, which
proceeds in exceedingly high mono-selectivity. The geometric relationship between the NHAc hydrogen bond donor and the
coordinating quinoline ligand is crucial for forming the meta-macrocyclophane-like hydrogen bonding interaction, which provides a
guideline for the future design of catalysts employing secondary interactions.

Despite significant developments in transition-metal-
catalyzed C(sp3)−H functionalization over the past

decade, performing directed C−H metalation with native
functional groups rather than exogenous directing groups
(DGs) remains challenging.1 In this context, the activation of
alkyl C−H bonds directed by carboxylic acids on the basis of
weak cation coordination has been the main platform to
demonstrate the feasibility of this approach. While innovation
in ligand design has enabled a wide range of free-acid-directed
C(sp2)−C and C(sp3)−X bond formations (X = N, O),2 the
bromination of C(sp3)−H still requires the installation of
external directing groups.3 Considering the broad utility of
alkyl bromides as versatile intermediates in synthetic organic
chemistry,4 the invention of new methods for mono-selective β-
C−H bromination of readily available carboxylic acids lags
behind the wide range of enzymatic C−H halogenation
reactions.5

The unique proficiency of bidentate ligands containing
internal proton acceptors, such as acetamides and pyridones,
for the facilitation of a wide range of C−H bond activation
reactions of free acid has been demonstrated in numerous
previous reports from our lab and others.6 However, despite
repeated attempts, we have found that bidentate ligands fail to
promote the C−H bromination of free carboxylic acids
(Scheme 1A, vide infra). Conversely, we have previously
observed that monodentate pyridine-type ligands enable the
C(sp3)−H bromination of α-quaternary free carboxylic acid in
modest yield.3d Unfortunately, no reactivity was observed with
more challenging α-tertiary acids, and efforts to optimize this
reactivity through routine screening have proved futile
(Scheme 1B, vide infra). Intriguingly, the latter class of ligands

has proved effective when the analogous transformation is
directed by a more strongly coordinating electron-deficient
amide instead of a free carboxylic acid,3d which suggests that
the poor reactivity observed with free acids may be the result of
insufficient affinity of the catalyst for a carboxyl group in the
presence of the interfering brominating reagent.7 In light of
these results, we hypothesized that the desired transformation
could be enabled through the design of a new type of
monodentate pyridine ligand with an additional function:
enhancement of the interaction between carboxylic acid
substrates and the Pd(II) catalyst.
It is well established that enzymes and metalloproteins can

facilitate catalysis through remote hydrogen bonding with their
substrates.8 For example, in the active site of cytochrome
P450-BM3, a fatty acid hydroxylase, hydrogen bond donors
interact with the carboxylate group of the acid substrate,
thereby directing site-selective C−H bond oxidation (Scheme
1C).8 Although hydrogen-bonding-directed catalysis9 has been
successfully harnessed to bias site selectivity in C−H
activation,10 the development of ligands involving a hydro-
gen-bonding interaction to promote the C(sp3)−H activation
of free acid by increasing the binding affinity of the carboxyl
group for the metal center remains to be demonstrated. We
were particularly interested in the possibility of using our
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established meta-macrocyclophane geometry11 to assemble the
hydrogen bonding interaction and help to promote the desired
interaction through control over distance and geometry while
suppressing undesired chelation of the hydrogen bonding
donor motif to the metal center. Herein, we report the
development of a β-C(sp3)−H bromination and chlorination
of free carboxylic acids enabled by a novel quinoline ligand
bearing a pendant NHAc group that forms a hydrogen-

bonding interaction with the carboxylate in a meta-macro-
cyclophane structure (Scheme 1D).
Bearing in mind our earlier effort to achieve β-bromination

of pivalic acid using a quinoline ligand only gave 40% yield,3d

we began to test various ligands using pivalic acid 1a as the
model substrate (Table 1). While no product was observed in
the absence of ligand, monodentate pyridine-type ligand L1′
provided 26% yield of the desired product, which is consistent

Scheme 1. Pd(II)-Catalyzed C(sp3)−H Bromination of Free Aliphatic Acids
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with our previous report.3d Further screening with this ligand
(L1′) did not improve the yield. Most importantly, L1′ failed
to show any reactivity with α-hydrogen-containing acids,
thereby highlighting the need for novel ligands. As anticipated,
bidentate ligands such as mono-acetyl-protected aminoalkylpyr-
idine (MPAPy) ligands (L2, L3) also gave poor yields. We
next tried to extend the linker between the pyridine and the
NHAc group (L4−L6) in the hope of disfavoring bidentate
coordination and enabling macrocyclic hydrogen-bonding
interactions to enhance the binding affinity of the substrate.
Unfortunately, we did not observe any improvement, which is
most likely the result of the highly flexible linker either
allowing for undesired chelation by the NHAc moiety or
entropically disfavoring the desired H-bonding interaction. On
the basis of our previous understanding of the favorable
assembly of meta-macrocyclophane transition states in remote
C−H activation,11 we incorporated one phenyl ring bearing
the NHAc moiety at the meta-position into the ligand scaffold
and adjusted the ring size (L7−L11) to prevent the potential
bidentate coordination. We found that L9 significantly
increased the yield to 62%. The poor performance of L8

(eight-membered ring size) or L10 (10-membered ring size)
suggests that the precise ring size of the macrocyclophane
hydrogen-bonding interaction is crucial for enabling catalysis.
The poor yields observed with ortho- and para-substituted
ligands L12 and L13 further confirmed the favorable assembly
of the meta-cyclophane structures.
Seeking to optimize ligand L9, we observed that further

modification of the ligand backbone (L11−L18) did not
significantly improve the reactivity. Switching from pyridine to
isoquinoline (L19) resulted in a small increase in yield of up to
68%. The comparatively poor performance of one-carbon
homologated L20 further highlighted the importance of the
ring size of the macrocyclic H-bonding interactions in this
system. To promote angle-compression through the Thorpe−
Ingold effect, we introduced a gem-dimethyl in L21, which
gratifyingly led to a modest improvement in yield. A similar
result was also observed with L22, which might result from the
constrained environment provided by the 2,6-dimethoxy-1,1′-
biphenyl moiety. Importantly, the possibility that the active
species is a palladacycle formed through isoquinoline-directed
intramolecular C−H activation of the ligand was excluded by

Table 1. Investigation of Ligands for the β-C(sp3)−H Bromination of Free Aliphatic Acidsa

aConditions: 1a (0.1 mmol), 2a (0.2 mmol), Pd(OAc)2 (10 mol %), ligand (15 mol %), PhI(OAc)2 (0.1 mmol), AcOH (0.1 mmol),
hexafluoroisopropanol (HFIP) (1.0 mL), 100 °C, air, 24 h. 1H NMR yields obtained using CH2Br2 as an internal standard.
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the high activity observed with bis-ortho-substituted L22. In
support of the crucial role of the proposed hydrogen bond
donor, the methylated analogue of L18 (L18′) and
phthalimide-protected analogue of L19 (L24), both incapable
of the proposed hydrogen-bonding interaction, gave poor
yields similar to the simple monodentate pyridine ligand L1.
Consistent with our hypothesis, L23 containing a free alcohol
as an alternate hydrogen bond donor (HBD) remained highly
effective, thereby affording the brominated product in 63%
yield. Similarly, the importance of the pyridine or isoquinoline

motif was highlighted by the failure of thiol-based ligand L25
and aniline-based ligand L26 to promote the reaction.
Having identified highly reactive ligands and reaction

conditions, we next sought to examine the scope of the
bromination reaction (Table 2A). α-gem-Dimethyl carboxylic
acids with a range of aliphatic chains all proved compatible and
afforded the β-brominated products in high yields (3a−3f). A
variety of functional groups, such as fluoro, chloro,
trifluoromethyl, and ketone, were tolerated (3g−3j). These
functionalities are useful synthetic handles for subsequent

Table 2. β-C(sp3)−H Halogenation of Free Aliphatic Acidsa

aL22 was applied to 3a, 3g−3k, and 3u−3x. bConditions: 1 (0.1 mmol), 2a (2.0 equiv), Pd(OAc)2 (10 mol %), ligand (15 mol %), PhI(OAc)2
(0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h. cConditions: 1 (0.1 mmol), 2b (2.0 equiv), Pd(OAc)2 (10 mol %), ligand (15
mol %), PhI(OAc)2 (0.1 mmol), AcOH (0.1 mmol), HFIP (1.0 mL), 100 °C, air, 24 h. dConditions for derivatization: (i) PhSH (2.0 equiv),
NaOH (2.0 equiv), EtOH, 40 °C, 12 h; (ii) AgNO3 (2.0 equiv), EtOAc, 80 °C, 24 h; (iii) NaN3 (4.0 equiv), MeOH, 40 °C, 24 h; (iv) NH3H2O
(1.0 mL), 80 °C, 12 h.
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derivatization, thereby demonstrating the practicality of this
methodology. Notably, in contrast with other β-C(sp3)−H
functionalization reactions,2a this protocol displayed exclusive
selectivity for monofunctionalization despite the presence of
two α-methyl groups (see the Supporting Information for
more discussion). Aliphatic carboxylic acids bearing cyclic
rings with four- and six-membered rings were tolerated (3f,
3k). Phenyl groups were also compatible with these reaction
conditions (3l−3n) and remained intact despite the potential
for reactivity of the aryl or benzylic C−H bonds. Even
electron-rich phenolic ethers (3o and 3v) were compatible
despite the use of NBS and phenyliodine(III) diacetate
(PIDA) oxidants. Gemfibrozil, an oral drug that is used to
decrease lipid levels, could be converted to the corresponding
β-brominated product in useful yield (3o). In addition,
quaternary substrates containing a single α-methyl group
consistently afforded good yields (3p−3t). Likewise, α-tertiary
aliphatic carboxylic acids afforded the desired monobromina-
tion products in moderate to good yield (3u−3x). These
substrates are typically challenging because of the lack of a
favorable Thorpe−Ingold effect, as well as the potential for
side reactions, due to the acidic α-C−H bond. In addition, we
examined the ability of our novel ligand to promote the Pd(II)-
catalyzed β-C(sp3)−H chlorination of free carboxylic acids
because of the bioactivity of alkyl halides in drug discovery
(Table 2B).12 To our delight, both the quaternary carboxylic
acids and α-tertiary acid substrates were chlorinated under
these reaction conditions to afford the desired products in
41%−52% yields (4a−4c).
The synthetic utility of this C(sp3)−H bromination was

demonstrated by converting 3a to a wide range of β-
substituted aliphatic acids via nucleophilic substitutions

(Table 2C). A diverse array of chemical bonds, including
C−S, C−O, and C−N bonds, were easily forged, thereby
providing straightforward access to compounds that might be
challenging to access from the free acid using other methods.
Notably, this methodology could be applied to the synthesis of
valuable β-amino acid (8).
To probe our mechanistic hypothesis experimentally, we first

looked at the complexation of L21, one of our optimal ligands,
with Pd(OAc)2 (Scheme 2). X-ray crystallographic analysis
confirmed that this ligand binds to palladium in a monodentate
fashion via the quinoline nitrogen and engages in a macrocyclic
intramolecular hydrogen-bonding interaction between the
amide and a palladium-bound carboxylate in the solid state.
To highlight the remarkable specificity of this ligand
framework, we also examined L23, a slightly less reactive
ligand bearing an alcohol HBD. In the complex formed from
L23, we did not observe an intramolecular macrocyclic
hydrogen-bonding interaction, but the alcohol instead
participated in an intermolecular hydrogen-bonding interaction
with a carboxylate bound to a second equivalent of palladium,
which demonstrated the electronic viability of the proposed
interaction. To gain additional insight into the optimal distance
and geometry for the positioning of the NHAc group, we also
considered L20, which has a longer carbon chain and lacks the
gem-dimethyl group present in L21. In this case, the same
macrocyclic hydrogen bonding interaction was observed as
with L21, but structural parameters (H−O distance and N−
H−O angle) suggested that the interaction was weakened, an
observation consistent with the reduced yield observed with
L20 (Table 1). To the best of our knowledge, there is no
report of similar intramolecular macrocyclic distal hydrogen
bonding motifs in transition metal complexes, as demonstrated

Scheme 2. Preparation and Solid-State Structure of Pd-L20, Pd-L21, and Pd-L23 Complexesa

aConditions: Pd(OAc)2 (0.11 mmol), ligand (0.12 mmol), and N-methylmorpholine (0.12 mmol), DCM (5.0 mL), rt, overnight.
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by a careful search of the Cambridge Crystallographic Data
Centre (CCDC). These observations and additional com-
parative DFT studies (detailed in the Supporting Information)
support our hypothesis that a hydrogen-bonding interaction
between the ligand and the carboxylate directing group can be
leveraged to enable increased reactivity.
In summary, we have discovered a new class of pyridine-

based ligands containing a hydrogen bond donor that interacts
with a carboxyl directing group in substrates, thereby enabling
the Pd(II)-catalyzed β-C(sp3)−H bromination and chlorina-
tion of free carboxylic acids. The broad substrate scope, as well
as the ease of valuable downstream transformations of the
halogenated products, demonstrates the synthetic potentiality
of this strategy. Importantly, our bioinspired ligand design
employing a secondary coordination sphere hydrogen-bonding
interaction was the key to the success of this C(sp3)−H
halogenation. On the basis of DFT calculations, the free energy
of the reaction pathway using L21 or L23ligands possessing
pendant hydrogen bond donorsis lower than that for L1, a
ligand incapable of hydrogen bonding. X-ray crystallographic
analysis of palladium−ligand complexes provides additional
support for the proposed interaction through meta-macro-
cyclophane hydrogen-bonding interaction. We expect that this
new ligand design concept will be broadly applicable within the
field of C−H activation and guide future ligand development
efforts.
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