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1 Introduction

Despite possibly being one of the most intricate quantum field theory, our practical knowledge
of closed string field theory (CSFT) and its possible solutions, yet alone our understanding of
its quantum effects, is still limited after almost three decades from its initial formulation (for
reviews see [1-4]). Although there were some attempts towards understanding the classical
tachyon potential in the case of bosonic CSF'T in the past [5-17], the closed string tachyon
vacuum (or lack thereof) hasn’t revealed itself entirely yet. This is primarily due to CSFT
being a non-polynomial theory. For the lack of better formulation and the absence of analytical
techniques that can overcome these difficulties,! the most straightforward way to progress
appears to truncate the theory to some order/level and perform numerical computations. It
is possible such approach will yield results sufficiently close to the results of the full theory,
just like it does in open string field theory [25-34].

In the past, Nicolas Moeller has taken this approach to CSFT first by truncating classical
bosonic CSFT (in the minimal-area parametrization) up to quartic order [8], then up to
quintic order [13-15], and he numerically calculated the tachyon potential and its minimum
by level truncation. Even though there has been some progress this way, the fate of closed

! Although see the recent developments in hyperbolic string field theory [18—24].



string tachyon condensation in the bosonic CSFT remains unclear; indicating including
terms from higher orders/levels (and understanding their interplay) may be necessary to
produce precise results.

In order to truncate the classical bosonic CSFT up to sextic and higher orders, it is
necessary to solve the geometry of string contact interactions on six-and higher-punctured
spheres. This involves finding Strebel quadratic differentials,? obtaining their associated local
coordinates to calculate off-shell string amplitudes and finally finding the relevant sub-region
(so-called wvertex region) in the moduli space of the punctured spheres where the moduli
integration has to be performed.

Performing all of these numerically was feasible for four-and five-punctured spheres using
classical numerical methods, such as Newton’s method. However, they seem to fall short and
become unfeasible when there are six or more punctures. The basic roadblock is that the
equations one needs to solve begin depending on the shape of the so-called critical graph of
Strebel differential, which is impossible to obtain without knowing the Strebel differential itself.
This informs us that the numerical methods have to be modified in a way that the algorithm
should produce Strebel differentials without referring to their critical graphs a priori.

In this paper we precisely do this by representing Strebel differentials on four-punctured
spheres as a artificial neural network. We obtain such a network by performing unsupervised
learning using a custom-built loss function which gets minimized when a quadratic differential
is Strebel. Such loss function is, by construction, agnostic of the critical graph and this is the
reason it overcomes the hurdle mentioned above. Machine learning algorithms, such as the
one we use, have already found their place in string theory, from exploring the landscape of
string theory [36-39] to obtaining information regarding Calabi-Yau manifolds [40-48] and
its overall relation to quantum field theory [49-51]. In particular, we would like to point out
that our algorithm has been partially inspired by the methods described in [46, 47]. For a
recent review on the applications of data science to string theory see [52].

We note that four-punctured sphere is the first case leading to a non-trivial string contact
interaction and reemphasize that it has already been solved by Moeller in [8]. Here we just
use it as a test ground for our ideas. Even so, since we obtain Strebel differentials as a neural
network, our approach is an improvement as once the network is properly trained it can be
used to find the Strebel differential for any four-punctured sphere practically immediately. 1t is
also philosophically different from Moeller’s approach as we are solving for the function itself,
instead of just finding the solutions at specific moduli. While one can use a (polynomial) fit
to approximate the function, neural networks are more flexible and expressive. In particular,
they may be used for non-parametric regression [53, 54] and they can extrapolate outside the
training region [55, 56]. Let us further note that Moeller stressed that he did not succeed
in finding a simple fit in the case of 5-punctured spheres [13].

We make sure every step of our algorithm is manifestly independent of the number of
punctures. In subsequent work [57], we plan to characterize the string contact interactions
for higher-punctured spheres, where benefits of constructing the algorithm this fashion would
be apparent. Once the Strebel differential is obtained, we can find the local coordinates by
expanding it around the punctures. This alone doesn’t specify the so-called mapping radii, but

2Quadratic differentials are reviewed in section 2. For a comprehensive mathematical account, see [35].



one can easily solve it for by numerically evaluating a specific integral [5, 8]. In this step we
make an observation which renders this calculation independent of the critical graph as well.

On top of the local coordinates, we also need to solve for the region Vy, C Moy,
where the moduli integration has to be performed. Here My, is the moduli space of n-
punctured spheres, while V) ,, is so-called vertex region, implicitly determined by taking the
lengths of all non-contractible curves greater than or equal to certain value in the metric
associated with Strebel differential [1, 58-61], which we take 27 by convention.> These
lengths can be computed given Strebel differential and once computed, we can generate a
dataset to train a neural network to distinguish punctured-spheres in Vj,, from those outside.
That is, we can train a network for the indicator function that outputs 1 if the surface is
part of the vertex region and 0 otherwise. In this work we obtain the indicator function
O04 : Mpa ~ C\ {0,1} — {0,1} defined by,

1 it £€Vou

S ") =
0,4(§,€%) 0 it E¢V

as a neural network. Here £ denotes the moduli. This allows us to replace

/V - /M O04(6,£7), (1.2)

and it simplifies the moduli integration in practical terms by eliminating the need for describing
the region Vy 4 explicitly. We argue an analogous construction for the indicator function
would work for higher-punctured spheres and it would be particularly superior, especially in
the view of Monte-Carlo integration may be required for higher dimensional moduli integrals.

Lastly, we test our algorithm by computing the coefficient of the 4-tachyon contact
interaction. In the conventions of [8], we report this value to be vy = 72.396. Comparing
with values obtained based on various different techniques, we observe that our results are
consistent with those in the literature, see table 1 for summary. This supports the validity
of our algorithm.

The rest of the paper is organized as follows. In section 2, we review Strebel differentials,
local coordinates, mapping radii, and the indicator function. In particular, we analytically
solve Strebel differentials on 4-punctured spheres when all punctures are real and introduce
a loss function for Strebel differentials which forms the central part of our algorithm. In
section 3, we describe the specifics of our neural networks and their training. In particular
we show that the first trained network has learned the relevant symmetries of the Strebel
differential and produced the analytic results correctly. Moreover, we show that our results
are consistent with the fits provided by Moeller in [8]. In the last section we conclude our
paper and discuss possible future directions, especially we argue that scaling the algorithm
to higher-punctured spheres is expected to be feasible. In appendix A and B, we provide
some details on numerical evaluations in our work.

3We only focus on surfaces of genus 0, i.e. punctured spheres, so that this definition for vertex region can
be used. In other words, we only consider classical CSFT.



Average NN (Trapezoid) 72.320 £ 0.146
Best NN (Trapezoid) 72.396

Best NN (Monte-Carlo) 72.366 £+ 0.096
Belopolsky (1994) [6] 72.39

Moeller (2004) [8] 72.390 £ 0.003
Yang & Zwiebach (2005) [12] 72.414

Table 1. Values for the 4-tachyon contact interaction vy. The first line (“Average NN”) represents the
value obtained by 4 networks (of each type) and computing the integral using the trapezoid method.
The second and third lines (“Best NN”) show the value for the best result using the trapezoid and
Monte Carlo methods. We also add the results in the literature obtained by various authors. The
computations are explained in section 3.

2 The geometry of string contact interaction

In this section we review Strebel differentials, local coordinates, mapping radius, and the
indicator function. For more details, reader can refer to [5, 6, 8, 35]. The novel features are
complete analytic characterization of Strebel differentials for 4-punctured sphere when all
punctures lie on a great circle and introduction of a loss function for Strebel differentials as
well as few simplifying observations on the calculation of mapping radii.

2.1 Strebel quadratic differential

Imagine a n-punctured sphere ¥ ,, with punctures placed at P = {{1,...,&,} assuming
none of the punctures are at infinity. We always fix the positions of the last three punctures
to pre-determined positions by appropriate PSL(2,C) transformations. We are interested
in quadratic differentials that have a double pole at each puncture with residue equal to
—1.% In general they can be written as

n ¢ )
= Z { C=6) z—& dz*, (2.1)

=1

where ¢; € C, ¢ = 1,...n are a priori undetermined variables which we call accessory
parameters. These are unconstrained and they are only going to be fixed upon demanding (2.1)
to be a special type of quadratic differential, Strebel differential. The double pole structure
with residues equal to —1 can be motivated by demanding that the metric associated with
the quadratic differential ds = /|¢(2)]|dz| (so-called p—metric) is that of a flat cylinder of
circumference 27 when sufficiently close to a puncture [35]. The flat cylinders here correspond
to external strings.

Given we have the punctures at P = {{1,...,&,}, the point at infinity z = co has to be
regular in general for string contact interactions. Inverting the coordinates by w = 1/z it is
easy to see that the quadratic differential ¢ takes the following form around z = oo (or w = 0)

1 1 s = —l4el =264 € 0 2
(pzuﬂ(ﬁ(w)dw zzlngu + L O] dw?.  (2.2)

2
i=1 w w

4The residues can be chosen different from each other in principle as long as they are still negative, but
this situation is not relevant for the current formulation of CSFT.
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Figure 1. The trajectory structure of the Strebel differential when punctures are at P = {0,1,0.8734—
0.6242i, 00} (left). We marked the positions of punctures and zeros by crosses and plusses respectively.
The inaccuracies around the zeros are due to evaluating the trajectories as an expansion after (2.18).
The critical graph is a tetrahedron whose sketch on CP' is shown on the right.

This leads to following three linear conditions among accessory parameters c;

n n n

dei=0, D (-1+c&) =0, > (-25+ac&)=0. (2.3)

i=1 i=1 i=1
Notice this still leaves us with n — 3 undetermined accessory parameters ¢;. Also notice
this explains why we haven’t included regular terms in (2.1): it just leads to more singular
terms around z = oo.

Notice there are no undetermined accessory parameters when n = 3. If we place the
punctures at P = {0,1, 00}, we find the quadratic differential (2.1) to be
—1 -1 -1 1 Z2—z+1 (2= (-D)Y3)(z— (-1)713)

R P e R ) 2z~ 172

(2.4)

It is well known that such differential leads to Witten’s vertex for closed strings [62, 63].

Before we introduce Strebel differentials, let us introduce some nomenclature. Define a
horizontal trajectory as a path such that ¢ > 0 along it. A critical trajectory is a horizontal
trajectory that begins and ends on a zero of . It is easy to argue that n+2 critical trajectories
would emanate from a n-th order zero, and that the orders of the zeros would add up to
2n — 4 [35]. The union of critical trajectories of ¢, together with their endpoints, is called the
critical graph. A Strebel differential is then defined as a quadratic differential with double
poles of residue —1 whose critical graph forms a non-empty measure zero set and is connected.
Horizontal trajectories of such a differential foliate the entire surface [35]. An example of
the trajectory structure of a Strebel differential is shown in figure 1.

The Strebel differential exists and is unique for every punctured sphere (see Theorem
23.5 in [35]). From this, and the fact that double poles with negative residues give closed



horizontal trajectories sufficiently close to the punctures, there exists a set of accessory
parameters, unique up to relations given in (2.3), such that the quadratic differential (2.1) is
Strebel given punctures at P. Our goal is to find such accessory parameters ¢; as a function
of the position of punctures.

We remark that ¢—metric associated with Strebel differential ¢ is the metric of minimal-
area and it looks like flat cylinders grafted to each other dictated by the critical graph of
¢ [1, 35, 58, 59]. However, CSFT in minimal-area parametrization actually demands solving
for minimal-area metrics for which the lengths of all non-contractible curves are greater
than or equal to 27 for consistency. While the latter condition certainly fails for Strebel
differentials when surfaces are sufficiently close to degeneration, for surfaces that are part of
the classical elementary interaction (that is, those in the vertex region V) this condition is
satisfied by definition. So after finding Strebel differential everywhere on the moduli space
Mo, (or in any region containing V), it is possible to map out the vertex region Vo,
by checking the lengths of non-contractible curves. Furthermore, once Strebel differential
is known it is possible to find the local coordinates characterizing the geometry of n-string
contact interaction. We explain these in subsequent subsections.

We finally note that for the quadratic differentials on the surfaces outside the vertex
region, that is, those in the so-called Feynman region Fo, = Mon \ Von, Strebel differential
is not the right type of quadratic differential from the perspective of CSFT: we have to use a
quadratic differential of the form (2.1) whose associated metric is of minimal-area under the
condition that the lengths of all of its non-contractible curves is greater than or equal to 27.°
We call such differentials Zwiebach differentials (see Theorem 3.2 in [59]). In the vertex region
Vo,» the definition of Zwiebach differentials coincides with the definition of Strebel differential,
but in the Feynman region Fy , they differ: the critical graph of Zwiebach differential becomes
disconnected [59]. Geometrically this corresponds having internal cylinders corresponding
to string propagators. In fact, Zwiebach differentials are examples of more general type
of differentials called Jenkins-Strebel (JS) differential for which the critical graph forms a
non-empty measure zero set but not necessarily connected. Zwiebach differentials can be
shown to exist and be unique (see Theorem 5.1 in [59]). We emphasize that the accessory
parameters for Strebel and Zwiebach differentials are distinct functions of the moduli in the
Feynman region Fg,. In this study, we only consider Strebel differentials.%

2.2 Complex length and loss function

It is hard to work with the definition of Strebel differential given in previous subsection.
Here we provide an equivalent characterization more amenable to analytical and numerical
investigations. Begin with defining the complex length between zeros z;, zj of ¢ as

Uz, 25) = /: \/Wz)dz. (2.5)

5Even though Strebel differentials in Feynman region do not seem to be relevant for CSFT, we would like
to point out that it has found applications in worldsheet approaches to AdS/CFT correspondence, see [64-67].
Although see section 4 for the discussion on how ideas here can be extended to obtain Zwiebach differential

as a neural network.



The path of integration here is chosen so that it avoids any branch cuts. Since the branch
structure of 1/¢(2) is hard to keep track numerically, we are going to replace the square
root with the continuous square root ¥/, just like in [8]. That is, we are going to define
the domain of square root in the double cover of complex plane without the origin, where
it is holomorphic. This would make the overall sign of the continuous square root, hence
complex length, ambiguous. But, as we shall see, the problems of this sort would be of
technical natural and they can be easily overcome. More details on numerical evaluation
of continuous square root are given in appendix A.
With such replacement the complex length is now taken to be

0z, 2) = / 7 o=z (2.6)

Assuming the integrand doesn’t vanish on the path of integration and the path is non self-
intersecting, the integrand is holomorphic around some neighborhood of the path and the
integral is equal to (2.5) up to overall sign (with appropriate choice of branch cut for \/) Hence
we can deform the path of integration for (2.6) freely without changing the value of the integral
as long as the endpoints are fixed, the path doesn’t cross any punctures and/or intersects
itself. Therefore, for convenience, we evaluate the integral in (2.6) always on the straight line
2tz Zj — %4
2 2

z(t)

The details on numerical evaluations the complex length can be found in appendix A.

t for te[-1,1]. (2.7)

But notice, regardless of where the path lies relative to the punctures, the (absolute
value of) imaginary part of the complex length would be the same. To see this, just note that
deforming the path of integration over the puncture would pick up the residue of 3/¢(z) and
this is always purely imaginary by having a residue equal to —1 for the double poles (2.1).
This makes the shift real and equal to 27, leading to no change for the imaginary part
of the complex length.

This reasoning implies the complex length is real for Strebel differentials, as we can
deform the path of integration (2.7) to a critical trajectory between z;, z;, which has ¢ > 0.
This makes the integrand equal to the line element ds = \/|$(2)[|dz| up to sign and manifestly
real. We remark that the (absolute value of) complex length may not always give the geodesic
distance between zeros z;, zj in the p—metric for Strebel differentials due to the sign ambiguity
and the placement of the punctures relative to the path of integration.

Above we essentially provide a necessary condition for a quadratic differential (2.1) to
be Strebel: if ¢ is Strebel then the complex length is real between all zeros of . In fact
the other direction is true as well. That is, if z;, z; are zeros of a quadratic differential of
the form (2.1), ¢(z;) = ¢(2;) = 0, then we have

@ is Strebel <= V z;, z;, Im({(z;,2)) = 0. (2.8)

In order to argue for the sufficient condition, we just have to show that the integrand of
the complex length, 3/¢(2)dz, is real throughout some path among all zeros and then its
square, ¢(z)dz? would define a Strebel differential as it is going to be a single-valued quadratic
differential of the form (2.1) and its critical graph would be measure zero and connected.



This is easy to accomplish, as we can deform the path between each zeros to the path that
would make the integrand real by beginning from one zero and moving in the direction that
sets the imaginary part to zero. Since Im(¢(z;, z;)) = 0 for all 4, j, we would be guaranteed to
hit another zero after this procedure and this makes ¢(z)dz? a Strebel differential.

The condition (2.8) gives an alternative formulation for Strebel differentials. In fact
this is the condition solved by Moeller using Newton’s method [8, 13, 15]. Observe that the
existence and uniqueness of Strebel differentials translate to the existence and uniqueness of
the solution of the equations in the right-hand side of (2.8) in terms of accessory parameters
up to the relations in (2.3). Note that there are (**

2
side of (2.8). However, it is actually sufficient to demand vanishing of dim(My,,) = 2n —6

) distinct equations in the right-hand

imaginary parts of complex lengths by dimensional counting. This shows the set of equations
in the right-hand side of (2.8) is in fact over-determined.

Now, define the following function of quadratic differentials of the form (2.1) motivated
by the conditions in the right-hand side of (2.8)

1
Lon(p) = (2”2_ 4) S (Im £z, 2))? (2.9)

i<j

Here i,j = 1,...,2n—4 runs over the zeros of ¢ (accounting degeneracy) and the overall factor
is for normalization. We call this function loss function for reasons that is going to be apparent
in section 3. Observe this function can be unambiguously evaluated using the integral (2.6)
and taking the path of integration to be the straight line (2.7), as we square each imaginary
part such that their sign ambiguity becomes irrelevant. By construction we have £, > 0.

The loss function (2.9) has a unique global minimum as a function of accessory parameters
¢; (up to relations (2.3)) at fixed positions of punctures &; by the existence and uniqueness
of Strebel differentials and its value is equal to zero. So, it is in principle possible to obtain
Strebel differentials by minimizing the loss function (2.9) in the space of accessory parameters
given the positions of punctures. This optimization problem is perfectly suited to machine
learning and it is how we are going to approach finding Strebel differentials in section 3.
In particular, the advantage of this approach is clear from the fact that the loss function
constructed out of (2.1) is totally agnostic of the shape of critical graphs, which made the
previous approaches to solving Strebel differential slightly convoluted as we mentioned.

It is an interesting question whether the loss function (2.9) has another extremum. Our
experimental investigation in the case of 4-punctured sphere informs us that even if there is,
it hasn’t made an appearance in our algorithm. So we assume there is no other extremum
of the loss function (2.9) for all intents and purposes. It may be interesting to rigorously
establish this is the case.

2.3 Strebel differential on 4-punctured sphere

Since we are going to test our algorithm for 4-string contact interaction, let us focus on Strebel
differentials on 4-punctured spheres more. Begin with placing punctures at P = {0,1,{, 00}
by performing PSL(2, C) transformation. We see £ here is the moduli. Since there is single
accessory parameter after solving the modified version of conditions in (2.2) when one of



the punctures is at z = oo, it can be shown that the quadratic differential (2.3) can be
put into the following form:
b(2) = —2t+ a2+ (26 - (1+8a)2® +alz— & (2= 2)(z — 22)(2 — 23) (2 — 2a)
a 2(z = 1)%(z = ¢)? a (2= 1)%(2=¢) ’
(2.10)

where a = a(&,£*) is the single accessory parameter and z;, i = 1,2,3,4 are the zeros of
the quadratic differential.” As we have emphasized earlier, finding Strebel differential is
equivalent to finding the function a = a(§,£¥).

There are certain symmetries the accessory parameter a = a(§,£*) enjoys. These are:

e The involution symmetry. The complex conjugate of Strebel differential on the surface

20,4 would be the Strebel differential for the conjugated Riemann surface X 4. That
is, if the accessory parameter corresponding to the moduli £ is a, then the accessory
parameter corresponding to the moduli £* is a*. In particular this shows that we have
a € R for £ € R. Clearly, similar symmetry holds for n-punctured spheres.

o PSL(2,C) symmetries permuting {0, 1,00}. There are 6 such transformations but they

are generated by the following two transformations
/ / 1
z—z=1—2z and z—2z2 =—, (2.11)
z

and the position of the puncture at z = £ as well as the quadratic differential changes
accordingly. These transformations shouldn’t change a quadratic differential being
Strebel, so it can be shown performing (2.11) induces following transformations for the
moduli and the accessory parameter of a Strebel differential

1
E—=1-¢ = a— —a+4 and §—>f:>a—>9. (2.12)

§ £

These symmetries can be generalized to higher-punctured spheres in an obvious fashion.

We can use these symmetries to solve for the accessory parameter for certain values of &.
For example, for £ = 1/2 + (v/3/2)i = ¢"/3 we have 1/¢ = 1 — £, which shows

—a+4—Z:>a—14_E£—2+\2/%. (2.13)
In fact the symmetries fix the critical graph to be a regular tetrahedron whose sides have
lengths equal to 27/3 in this case [6]. We can also find the Strebel differential when & = 1/2.
The moduli satisfies £ =1 — £ so we have a = —a + 4, which shows a = 2. This subsequently
shows a = 4,0 for £ = 2, —1 respectively. Furthermore, it is actually possible to find the
Strebel differentials for the moduli between 0 < £ < 1. Our claim is a = 4€ for 0 < £ < 1.
In order to argue for this, recall that the critical graph of a Strebel differential on 4-
punctured sphere has to be topologically a planar tetrahedron on z-plane in general [6, 60]-one

"In this work, we used analytical expressions for the zeros of quadratic differentials. Obviously, this wouldn’t
work in higher-punctured sphere, but we think this is just a technical issue which we aim to confront in our
future work [57].



example has been already shown in figure 1. Now recall that the critical graph in the complex
conjugated surface has to be the mirror image of the original graph around the real axis by
the involution symmetry. Combining these two facts and taking £ € R, we see the mirror
image of the critical graph has to be itself. However for planar tetrahedral graphs this is
impossible: the graph should degenerate. That means at least two of the zeros coincide
and the other two zeros coincide as well by the involution symmetry. Pair of double zeros
zero emanates 4 critical trajectories each now.

In the language of quadratic differentials that means we now have a pair of double zeros
that are complex conjugates of each other. That is, Strebel differential has to take the form

z—21)2%(z — 71)?
o= —22(2 _11)2(2 _gzd%, (2.14)

when ¢ € R. Comparing with the form in (2.10), solving for a, and using the fact that a = 2
when £ = 1/2 it can be shown that a = 4 for 0 < £ < 1 after some algebra. Using the
symmetries in (2.12) we can further show a =4 for £ > 1 and a = 0 for £ < 0.

The situation when punctures collide is more subtle. Demanding continuity of a suggests
we should have a = 0,4 for £ = 0,1. Indeed, if this is the case, we see the quadratic
differentials become

I
80_ (2—1)2 a 30_ 227

(2.15)
for £ = 0,1 respectively. But notice these are the quadratic differentials describing an infinite
flat cylinders whose punctures are at z = 1,00 and z = 0, co respectively. This is exactly
what it should be expected from the degeneration of Strebel differentials when we take
& — 0,1: the residue condition forces having a single cylinder. The situation at £ = oo
is similar to & = 0, only difference being that we have to perform this calculation after
inversion z — 1/z. In particular, it can be shown that the limit doesn’t depend on which
value of a we use (0 or 4). Summarizing, we find the following expression for the accessory
parameter a when the moduli is real:

0 £<0
a(§=¢) =44 0<€E<1 . (2.16)
4 1<¢

The plot of this function is shown in figure 8.

With the accessory parameter is available for Strebel differentials when £ € R, we can
find the lengths of the sides of the critical graph as a function of the moduli. In order to
do that recall the length of the geodesics homotopic to a puncture is always equal to 2.
Then, since the critical graph is degenerated in the way described above, we only need to
calculate the length of a single side, £, and the lengths of the other sides would be either
equal to this or 2 — . We can find ¢ by carefully evaluating (2.6) using (2.10) with the

,10,



accessory parameter a given in (2.16) for £ € R. The result is

21 — 4arctan(y/—=§) £€<0 — cot? (ﬁ) £<0
L(E=¢")= 4arctan<\/T—i—%) 0<¢<1 or &= COSQ(g) 0<E<T .
4arctan(y/€ — 1) 1<¢ sec? (ﬁ) 1<
(2.17)

It is clear that the limits make sense from this expression. For example for £ = 1/2, we have
¢ = 7 and this can be alternatively argued by the symmetry of this case. In fact, notice 2¢ and
47 — 20 are the lengths of the non-contractible geodesics non-homotopic to punctures and they
are equal to 27 only when & = —1,1/2,2 and less than 27 otherwise. In other words, these
are the only real moduli that are in the vertex region Vy 4. This result is consistent with [60].

Before closing off this subsection, we note that our argument for degenerate Strebel
differentials on four-punctured spheres may not generalize to every type of degeneration of
higher-punctured spheres. This is mostly due to the symmetry of the critical graph when all
(or some) moduli taken to be real may not be as restrictive as it does for the four-punctured
spheres. Still, it may be possible to find exact solutions for specific type of degenerations.
Since we don’t need them immediately, we plan to investigate the degeneration behavior
in more detail in our upcoming work [57].

2.4 Local coordinates, mapping radii, and vertex region

Calculating off-shell string amplitudes on any Riemann surface requires a choice of local
coordinates up to an overall phase around the punctures [1]. Our case of interest, the local
coordinates for the n-string contact interactions, can be obtained using Strebel differential
on n-punctured spheres as they are described through how n flat semi-infinite cylinders are
grafted at the critical graph of Strebel differential [5, 8, 58]. Following the conventions of [8],

this means one can find n analytic maps h; of the form (i = 1,2,--- ,n)
o
z= h,-(wi) =&+ piw;+ Z di@_l(piwi)a (2.18)
a=2
=&+ (powi) +di g (powi)* +dia(piws)®+-++ . with  p;, din €C,a=1,2,---,

from the punctured disks D; = {w; € C | 0 < |w;| < 1} to the n-punctured sphere for which
the Strebel differential takes the form it takes for the flat cylinders in w; coordinates

o= -2 (2.19)

and the unit circles |w;| = 1 are mapped to its critical graph. Here w; would be the local
coordinates for the string contact interactions (sometimes called natural coordinates) for
which vertex operators are inserted. It can be shown that such coordinates always exist [35].

Notice how we have organized the expansion (2.18). This was because of convenience: as
the overall phase of the local coordinates is irrelevant for CSFT we chose p; € R without loss of
generality and we defined the rest of the coefficients accordingly. Here p; = |dh;(w;)/dw;|w,—o0
is called mapping radius associated with the puncture &;.
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Our primary goal is to find the maps (2.18), i.e. to find d;, and p;. Except for the
mapping radius, the coefficients in the expansion (2.18) can be found by expanding the
Strebel differential around the puncture z = &;

1 bi.—1

= se)y + 227—5' +bio+bin(z—&) 4 | d2?, (2.20)

and setting it equal to (2.19), along with using the expansion for z = h;(w;) in (2.18).

Comparing term by term in w, we can solve the d coefficients in terms of the b coefficients.
First few terms are

1

din = ibi,—ly (2.21a)
1

dis = 75 (701 +4bio), (2.21b)
1

diz = @(2317?,_1 +28b;, —1bi0 + 8bi 1), (2.21c)

Note that the b coefficients, therefore d coefficients, are determined by the accessory parameters
¢i, so knowing the latter is sufficient to construct the maps z = h;(w;) up to mapping radius.
For example, we see b; -1 = ¢;, hence d;1 = ¢;/2.

Finding mapping radii associated with the punctures takes more effort. To that end,
begin by writing the local coordinate around z = &; by equating (2.1) and (2.19) as [5]

w;(z) = exp (—i /2: y gb(z’)dz') , (2.22)

where z. is some point on the critical trajectory surrounding the puncture z = §; and the path
of integration here is the straight line from the puncture to z = z.. The lower bound of the
integral makes sure |w;| = 1 when z lies on the critical trajectory surrounding the puncture,
as the integral just evaluates to real number in this case by repeating the arguments made
below (2.7). We implicitly adjust the choice of sign of the exponent to guarantee |w;| < 1.

Here we make a small observation that has apparently gone unnoticed in the literature.
We demanded z. to lie on the critical trajectory surrounding the puncture z = &; above,
but actually this can be relaxed and one can choose z. to be lying anywhere on the critical
graph. To argue for this, let z. to be any point on the critical graph and notice the integral
in the exponent of (2.22) can be deformed as shown in figure 2. But then the contribution
to the integral from this “outside” part becomes real following a similar argument made
below (2.7) and this just results in an irrelevant phase for the local coordinate. In particular,
notice that we can take z. to be any zero of the quadratic differential. With this choice,
the dependence of the local coordinates (2.22) (and in extension, the mapping radii (2.23))
to the shape of the critical graph drops out.

Using (2.22) we can obtain an integral expression for the mapping radii. It is [5]

— 1 ze /
log p; = lg% (Im /&-Jre \ ¢(#')dz" + log \e[) . (2.23)

Note that such limit exists with our choice of sign in the exponent of (2.22) and assuming
& + € lies on the straight path from the puncture at z = £ to z = z.. Details on numerical
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Figure 2. Part of the path of integration in (2.22) can be deformed to the dotted path. The
integration over the dotted path produces a real number, resulting in an irrelevant phase for the local
coordinates (2.22). In extension, this part also doesn’t contribute to the mapping radii (2.23) below.

evaluation of such an integral are relegated to appendix A. In passing we note that it is
possible to obtain local coordinates for 4-punctured spheres analytically when £ € R. However,
as we have stated earlier, these surfaces are not relevant from the perspective of CSFT, so
we opt out reporting them here.

Calculating off-shell string amplitudes on Riemann surfaces not only requires a choice
of local coordinates around the punctures, but also suitable choice of vertex region in the
associated moduli space [1]. Instead of trying to describe the vertex region explicitly we can
consider its associated indicator function. Such function is already defined in the introduction
in (1.1) for the case of 4-punctured spheres. Here we give a general definition for the case
of n-punctured sphere

. 1 it £€Von
O0n(£,&7) = : (2.24)
0 if £¢Von

The criteria for £ € Vy , is having all non-contractible curves in the ¢-metric to be greater
than or equal to 27 [1, 58-60]. For the case of ¢-metric this means that it is sufficient to
check the lengths of the critical trajectories separating 2 or more punctures from the rest,
i.e. geodesics that are not homotopic to a puncture.

These lengths can be computed by finding the geodesic lengths between each zero of
Strebel differential then combining them up suitably. Since the critical graph of a Strebel
differential is an undirected graph and we can assign geodesic length to an edge of such graph,
it is useful to arrange the associated data into (weighted) adjacency matrix M as follows:

v ¢;; when there is an edge of length ¢;; begins at ith zero and ends at jth zero
ij =
0  otherwise

(2.25)

Here M is a symmetric (2n — 4) x (2n — 4) matrix as there are 2n — 4 zeros of ¢ (including
degeneracy). Elements in the diagonal are zero (hence M is traceless) and each row and
column contains at most 3 non-zero elements as zeros of ¢ emit 3 critical trajectories for a
generic moduli. Notice there are certain nonzero co-dimension loci in the moduli space where
some zeros of ¢ may coincide. In this case we would set the elements of M corresponding
to their connections to zero.
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Once such matrix is constructed, it is a simple matter to extract the length of all non-
contractible curves: this is what we have done in the case of n = 4. But notice for the
purposes of the indicator function (2.24) we just need to check the length of the shortest
non-contractible geodesic and this can be found with relative ease given M, such as using
Dijkstra’s shortest path algorithm [68].

So the only really contention here is to find the lengths associated with each edge.
This can be done by solving the critical trajectories and calculating their lengths. Recall
a critical trajectory is a horizontal trajectory begins and ends on a zero of ¢. So given a
zero, it is possible to construct a critical trajectory emanating from it by taking small steps
so that ¢ > 0 at each step, until we hit another zero. While we do this we can add the
line elements ds = /|$(2)[|dz| and that would generate the lengths, hence the adjacency
matrix M, we are looking for.

In passing, we note that the condition of having all non-contractible curves greater than
or equal to 27 is equivalent the length of each edge of the critical graph to be smaller than 7
for the case of 4-and 5-punctured spheres [60]. This fact has been exploited in previous works
by Moeller [8, 13]. However this condition is not sufficient for higher-punctured spheres, so
we opt out to use the generic method described above to make the algorithm manifestly
independent of the number of punctures.

3 Neural networks for accessory parameter and indicator function

In this section, we describe the neural networks for the accessory parameter a = a(&,£*) and
the indicator function ©(&,£&*) in the case of 4-punctured sphere. We show the accessory
parameter neural network has successfully learned the analytic behavior for the real moduli
described in (2.16) and the symmetry properties described in (2.12). We emphasize these
behaviors haven’t been explicitly programmed into our neural network — they appear as a
consequence of the training process. We additionally compare our result for the accessory
parameter with the polynomial fit provided by Moeller [8] and observe a good agreement
between our results.

Similarly, we test the indicator function neural network by plotting the vertex region Vp 4
in the moduli space My 4 and show our results are consistent with those in the literature [6, 8].
In particular, even though the indicator function neural network outputs values between 0
and 1, we observe a sharp transition from Feynman region to vertex region and it is almost
always 1 or 0 — as it should be the case for the actual indicator function in (1.1).

Lastly, we compute the 4-tachyon contact term in the closed string tachyon potential by
performing moduli integration over the vertex region using both trapezoid and Monte-Carlo
methods. As mentioned in introduction, we get a good agreement with the results in the
literature, providing extra support for our method based on machine learning.

3.1 Accessory parameter neural network

Artificial neural networks are computing systems inspired by biological neural networks. They
consist of number of layers and each layer consists of number of nodes. A node in a given
layer is connected to the nodes in the previous and subsequent layer. An example of a neural
network we consider in this work is shown in figure 3.
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Figure 3. An example of an artificial neural network with 3 hidden layers containing n; nodes each. It
inputs the position of unfixed punctures (moduli) and outputs the (independent) accessory parameters.

At each node, based on the input received from the nodes in the previous layer, a
mathematical operation is performed. More specifically, if we denote the collection of inputs
received from the (i — 1)-th layer containing n;_1 nodes to a node in the i-th layer containing
n; nodes as a column vector a*~1 of length n;_;, the nodes in the i-th layer would perform

non-linear transformation
a1 = 0 = (W=D 4 p)y | (3.1)

and transmit this to the nodes in the (i 4+ 1)-th layer. Here W is a n; x n;_ matrix, b® is
column vector of length n;, and the function ¢ is some non-linear function called activation
function. In the operation above the function ¢ acts on column vectors element-wise. The
collection of all W@ and b(® for all layers is called weights and biases respectively and
we collectively denote them by W and b. Figure 4 summarizes this procedure. It can
be shown that artificial neural networks can approximate class of arbitrarily complicated
continuous functions [69-73] for which accessory parameters as a function of moduli are
expected to belong.

We are interested to approximate the collection of accessory parameters ci,- - ,cp—3
uniquely specifying the Strebel differentials on n-punctured spheres as a function of mod-
uli &1, -+ ,&,—3 using neural networks such as the one shown in figure 3. Since this problem
is inherently about complex numbers, we take weights and biases to be complex numbers and
use complex neural networks [74-76]. For similar reasons, we take the activation function o
to be complex exponential linear unit (CELU), which is defined for u € C by

CELU(u) = ELU(Re(u)) + i ELU (Im(u)) (3.2)
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Figure 4. The summary of mathematical operations performed by artificial neural networks.

where ELU is the usual exponential linear unit activation function defined for x € R as

x forx >0

ELU(z) = (3.3)

a(exp(z) — 1) forx <0 ‘

Here « is a hyperparameter of the network, and the activation function becomes ReLU for
a = 0. See appendix B for more details on the architecture of the network.

We have implicitly fix the positions of 3 punctures (&,-2,&,—1,&,) using PSL(2,C)
transformation already. We pick these fixed punctures to be at £, = 0, £{,-1 = 1, and
&, = 0o. Moreover, we solved for three accessory parameters in terms of other parameters
and the moduli using (2.3). We did these out of convenience for numerical calculations and in
order to have a unique answer after training. In terms of 4-punctured sphere, this means we
can use the parametrization given in (2.10). In this case the network inputs are the position
of the unfixed punctures (moduli) £ and outputs are the accessory parameters a = a(§, £*).

In order to approximate accessory parameters using neural networks we need to adjust
the weights W and biases b of the network appropriately. Per usual in machine learning, this
can be done using iterative (stochastic) gradient descent in the space of weights and biases
based on an appropriate averaged loss function. Averaging here is made over finite number of
points in the moduli space called training set S, an example of which is shown in figure 5. At
the end of the gradient descent we end up in some local minima of the averaged loss function
in the space of weights and bias. The hope is that the resulting network from such local
minima would be generic enough to approximate the behavior of accessory parameters, not
only for the points in S, but everywhere on a subset of My ,, containing the training set S. If
this is the case, we say the neural network learned the accessory parameters.
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Figure 5. An example of training set S for 4-puncture spheres with |S| = 10°. Notice we have
excluded small circles centered at 0,1, 00 where 4-punctured sphere is close to degeneration and only
sampled points from the remaining triply-connected region (training region).

Before we delve into the specifics of the averaged loss function, let us describe the training
set S. For us, the set S consists of random collection of points uniformly sampled over the
moduli space My, excluding the regions where punctures are about to collide. We call
this region training region. The exclusion condition here is to make sure that the learned
behavior for the accessory parameters doesn’t get affected by the degeneration behavior
of surfaces as our numerical evaluations get unreliable for them.® Recall that we are not
interested in Strebel differentials on surfaces arbitrarily close to degeneration in the view
of CSF'T, as it is sufficient to obtain Strebel differentials on the vertex region V,, which
doesn’t contain such surfaces by construction. Hence, as long as we guarantee the training
region to cover the vertex region Vy, and successfully train, we are supposed to be able
to get all the geometric data relevant to CSFT.

As mentioned earlier, gradient descent should be performed based on an appropriate
averaged loss function. In the case at hand, this is constructed by averaging the func-
tion (2.9) over S

Lon(W,b;S) ZEOn c«(W,b),g)) . (3.4)

1S ics

It is useful to comment on the dependence of indices here. As we have indicated in (2.9),
the loss function depends on the quadratic differential , which in turn determined by the

8This numerical failure can be understood as follows. As the surface degenerates, some zeros and punctures
get closer to each other. This makes evaluating the integral (2.6) numerically unstable and leads to failure in
the training.
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Figure 6. Training curve (left) and the distribution of loss over the test points in the training region
(right) for “best NN”. As one can observe from the curves on left training was successful and the curve
on right informs most points have relatively small losses, except for few outliers.

choice of accessory parameters (collectively denoted as ¢) and moduli (collectively denoted as
€), that is ¢ = ¢ (¢,€). But notice that the accessory parameters ¢ are determined by the
parameters of the network (weights and bias), hence we have ¢ = ¢(W,b). When we average
over the points in S, we see the averaged loss function indeed has the dependence shown
in (3.4). Note that we have not provided any labels for the points in the training set S. So in
essence we perform unsupervised learning for the accessory parameters using the loss (3.4).

Now we have all the ingredients to train an accessory parameter neural network for
4-punctured spheres. Before we give an example of a training run, let us summarize our
strategy to confirm our results. We can test how well the network performs by investigating
the loss function Lo 4 over the training region. This involves sampling two new sets of points
over the training region, called validation set if it is used during training or hyperparameter
optimization and test set for subsequent calculations. If we observe the loss is small not
only for the training set, but also over the validation/test sets, we conclude the network
interpolates and declare it has learned the accessory parameter successfully over the training
region. We evaluate the loss function to be 8.5 x 10714 for the exact solution for & = /3
given in (2.13), so we see there is a scale associated with the loss function and its smallness
indeed characterizes how close we are to Strebel differential.

An example of a training based on (3.4) is shown in figure 6 and some of its statistics
shown in tables 2 and 3.% This particular network has 3 hidden layers with [512, 128, 1028]
nodes each respectively. Training was performed in Python using Google Jax [77] by sampling
10° points in the training region shown in figure 5. We confirm our results with the test set,
but also evaluated the loss on the training and validation sets for comparison, and find that
they are small and have the same order of magnitude, indicating that the network doesn’t
overfit and interpolates other points in the training region. Expanded details on the training
and the architecture of network can be found in appendix B.

Observe from figure 6 that almost all points in the training region have relatively small

9We characterize the stochastic error of our training procedure after we calculate the off-shell 4-tachyon
contact term v4. For clarity of presentation, we just focus on “best NN” as a generic example. This particular
choice is explained at the end of this subsection.
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Mean | 8.86 x 1078 | Min | 1.32 x 1011
Median | 3.81 x 1078 | Max | 1.54 x 107°

Table 2. The mean, median, minimum, and maximum values for the training loss of the “best NN”.

Moduli Acc. Param. Loss NN Acc. Param. NN Loss
£ =em/3 a=2+2/\/3i 8.5 x 1071 | 1.9997 4+ 1.1548 | 6.1 x 1078
£=1/2 a=2 7.8 x 10712 | 1.9995 —0.00017 | 6.6 x 1077
£=—-02+15i | a=1.12245+1.2394i | 1.7 x 10710 | 1.12250 + 1.23965¢ | 7.4 x 10~

Table 3. Comparison of the losses and accessory parameters for previously known solutions with the
results “best NN” produced. The last point is solved using Newton’s Method and is taken from [8].

le-5

loss

Figure 7. The distribution of the loss over the training region. Network underperforms close to the

real line.

loss except for few outliers. In fact, by plotting the behavior of the loss function over the
training region (figure 7) we see these outlier points primarily lie close to the real line — the
region we don’t need for CSFT. The reason for this behavior is actually clear: when the
moduli is real, some of the terms in the sum given in (2.9) becomes zero and some of them
imposes the equivalent condition as the critical graph degenerates. So relative to other points
on the moduli space, the loss function close to the real line is less constrained leading to
relatively larger loss. Even if the network relatively underperforms for the real moduli, it
correctly generates the analytic behavior described in (2.16). This, along with the behavior
of the accessory parameter over the training region, is shown in figure 8.

Already from figure 8, it is apparent that the network has learned the involution symmetry
of a. We can quantify this, along with the shift and inversion symmetries given in (2.12)
by comparing network’s result for a pair of moduli related by symmetry. In order to do
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Figure 8. The behavior of the accessory parameter compared with the exact solution (top left) and its
loss (top right) for the real moduli. Notice the exact and trained behaviors are almost indistinguishable
and differ slightly only when the moduli is close to 0 or 1 or outside of the training region. Even if
this is the case, we see the network was still able to extrapolate away from the training region. The
overall behavior of the accessory parameter a = a(§,£*) is plotted below.

that, define the error by

€g(§,67) = lalg(£),9(€7)) — g(a) (& €I, (3.5)

where g represents the symmetry transformations. For example, ¢g(§) = £* and g(a) = a*
for the involution symmetry. Figure 9 shows the distribution of ¢, for points sampled over
the training region for three distinct symmetries. As one can see, the errors are quite small
and we can conclude the network has learned the symmetries of the accessory parameter
without being explicitly programmed.

Finally we compare our network’s result for the accessory parameter with the polynomial
fit provided for a = a(&,&*) by Moeller [8]. Again, we define the error between our results as

6Moeller(§7€*) = |a(§a£*) - aMoeller(€7€*)| ) (36)
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Figure 9. Distributions of errors corresponding to involution (top left), shift (top right), and inversion
(bottom left) symmetries as well as the comparison of our results with the fit provided by Moeller
in [8] (bottom right) over relevant regions.

where apjoeller 1S given by the equation (6.9) in [8]. Since the fit in [8] is provided for a subset
of the vertex region, we only consider the errors for the points sampled in this subset.!”
Again, we see our results and Moeller’s fit are consistent with each other from figure 9.

We have listed various evidences for our approach above and they show that using
machine learning to solve for accessory parameters is sound and the results one gets this
way are consistent with the exact solutions as well as with the literature. We have worked
with 4-punctured sphere, but we emphasize everything in this subsection admits a trivial
generalization to higher-punctured spheres in principle. Thus the results here should be
viewed as a proof of principle.

Before closing off this subsection, we note that the trained network always interpolates in
the training region, but one can ask whether it extrapolates to outside of the training region.
We observed extrapolation of our networks is not quite as good as their interpolations as
it is already somewhat evident from figures 8. However we also observed that the better
the network extrapolates, the better our results become. So if we would like to specialize
to networks among the trained networks, it seems reasonable to us doing this based on how

10We used the indicator function neural network to do this, see next subsection for the details.
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well the network extrapolates for the real moduli and discard the rest of the runs.!! This
further defines the “best NN” for us: it is the network that extrapolates farthest away on the
positive real line and it was the one we chose to report here. In higher-punctured spheres an
analogous procedure can be repeated by investigating specific degeneration limits.

3.2 Indicator function neural network

As we have described in the previous subsection, it is possible to obtain accessory parameters
as a neural network. Once such a representation is in our possession we can solve for the local
coordinates and mapping radii as described in section 2. So all it remains for constructing
classical CSF'T action is to solve for the explicit description of the vertex region Vy , over
which the moduli integration has to be performed. In this subsection, we train a neural
network for the indicator function for the vertex region Vy 4, which has already been defined
n (1.1). This provides an explicit characterization after (1.2). Again, we emphasize that the
methods here can be trivially extended to the situation in higher-punctured spheres.

We train the indicator function neural network by performing supervised learning. In
order to do that, we begin by uniformly sampling points over the training region. However,
unlike before, we label these points based on whether they are in the vertex region or not.
Remember, a point in the moduli space is in the vertex region if and only if all non-contractible
curves in its associated p-metric has length greater than or equal 27. Since the accessory
parameter is known, we can compute these lengths using the method described in section 2 and
use them to label points: 1 if all such lengths are greater than or equal to 27 and 0 otherwise.

Randomly sampled points in the training region, together with their labels, would form
the training set &’ is given by

= {(67 @(true)) ‘5 e MO,m @(true) c {O, 1}} . (3.7)

Now the problem of solving for the indicator function (2.24) transforms into a binary
classification problem. In the view of this, let us call the indicator function neural network

G)é],\,iN). Its inputs are the moduli and it outputs some value between 0 and 1, i.e. @(()];;N) :

Mo — [0,1]. So strictly speaking @( N is a probability distribution for a given point in
My, to be element of the vertex reglon Vo,n- In any case, we are going to observe transition
from 0 to 1 is relatively sharp when n = 4. We comment more on this below.

The network QS{YLN) can be trained to learn the indicator function for Vy ,, after performing
gradient descent in the space of its weights and biases using the cross-entropy loss

|s/\Z[ U, €7)10g 0, (6,€7) + (1 - 0 (¢, %)) log(1 — O, (€,6))]

£es’
(3.8)

Like in the accessory parameter neural network, we are going to focus only on four-punctured
spheres as a testing ground.

"We quantify this by investigating the behavior when the real moduli between 2 > ¢ > 4, comparing to the
solution (2.16) and keeping the networks that has order of magnitude smaller average loss. See section 3.3 for
more details.
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Figure 11. The probabilities obtained from the neural network @fﬁ’v).

The training curve, along with the progression of accuracy during the training, for @((){XN)

is shown in figure 10. For this particular network, we have used the training set S’ constructed
using the best NN. Again, the behavior we obtain was generic and such a choice was purely
for the presentation purposes. We used 10° points for training. The weights and biases of
this networks was chosen to be real and we input the complex moduli as a two-dimensional
vector. We confirmed our results by checking the loss, as well as accuracy, for both training
and validation sets. We have achieved 99.34% accuracy for the training set, 99.27% for the
validation set, and 99.68% for the test set.!> We observed no overfitting as is evident from
figure 11. These results show the training was successful. Expanded details on the training
and the architecture can be found in appendix B.

Figure 11 shows the probabilities produced by @((ﬁN)' Note that the shape of the region
Vo,4 shown in 11 is consistent with the literature [6, 8]. Moreover, we see the transition
from 0 to 1 is quite sharp: @((){XN) provides a good approximation for the indicator function.
Since this is the case, we declare a point in My 4 is an element of 1y, when the generated

12Tt is not common for the test accuracy to be higher than the training and validation accuracy. This may
indicate an underfit. However, the test loss is much higher, see table 6.
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Figure 12. The comparison of 9V 4 restricted to Re(¢) < 1/2, Im(&) > 0, and [£] > 1 between our
results and the fit provided by Moeller in [8] (left) and the integrand of the integral (3.11) (right).

probability is greater than or equal to 1/2. That is, we declare our indicator function to be

Oun(.€) = H (0066 -3 ) . (3.9)

where H(x) is Heaviside step function.

More quantitatively, we can compare the fit provided by Moeller for the boundary of the
vertex region 0V 4 restricted to Re(§) < 1/2, Im( ) >0, and [£] > 1 (equation (6.5) in [8])
with the corresponding curve we obtain, i.e. @0 4 (5 &) =~ 1/2 restricted in similar way.
This is shown in figure 12. Again we see a perfect agreement between our results.

3.3 Off-shell 4-tachyon contact term

With an explicit description for the vertex region in terms of (3.9), we now have all the
ingredients to find terms in the classical closed string tachyon potential. This is given by [6, 8]

V(t,--) :—42 qun e (3.10)

Here dots represents the terms involving fields other than the tachyon ¢t. We are only
interested in vy whose expression can be read from

n

2 1
Vp = (—1)”77”_3 /M d*¢ 00 (&, ] R (3.11)
O i=1Fi

where O, is the indicator function for Vy , and p;’s are the mapping radii associated with
punctures. The convention for the measure is d?¢ = d(Re¢)d(Im&). Derivation of (3.11)
can be found in [6]. Note that everything in the integrand of (3.11) can be expressed in
terms of two neural networks of previous subsections, so all we need to do at this point is to
perform this integration over the moduli space. The integrand of (3.11) for n = 4 is shown
in figure (12). Our results are already presented in table (1).

The integral is first computed using the trapezoid method along the imaginary and real
dimensions, with a grid of 700 x 700 points for Re(¢) € [—1.1,2.1] and Im(¢) € [-2.1,2.1].
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In order to assess the stochastic deviations, we have run the full pipeline (training of the
accessory parameter and indicator function networks, and computations of vs) 10 times.
As we mentioned earlier, we observed that networks which perform best are those which
generalize well outside the training region on the real axis (as in figure 8). As a consequence,
we kept only the 4 networks whose mean loss for { € [2.5,4] is below 0.1. This allows
determining how v4 varies when we change the random seed, which consists of using different
training points, network initializations, and stochastic gradient descent. From the scale of
uncertainty of our result for this (v4 = 72.320 £ 0.146) we see our algorithm is sufficiently
stable and produced results consistent with the literature. For the best NN we report
vy = 72.396 using trapezoid method.

For the best NN, we additionally perform a Monte Carlo integration with 2 x 10® points
in the vertex region. We report its mean and standard deviation to be vy = 72.366 4 0.096
by evaluating it 5 times. We stress that we use the sharpened indicator function (3.9) in
both methods. Of course, trapezoid method provides a deterministic result for v4 so one may
question the point of using Monte-Carlo integration here. However, we note that the moduli
integration would be higher dimensional for higher-punctured spheres for which Monte-Carlo
integration would be superior to any deterministic method. Here we would like to imitate
that case and see how large the resulting errors was due to integration, while still having a
baseline for the expected result. We observe our result for vy is still sufficiently precise even
if we use Monte-Carlo integration. The convergence of this integral can be further improved
using more points or employing importance sampling.

4 Discussion and future directions

In this paper we have characterized 4-string string contact interaction using machine learning
by constructing neural networks for the accessory parameter for Strebel differentials and the
indicator function for the vertex region in the moduli space. Doing so allowed us to construct
the local coordinates associated with the 4-string contact interaction. We tested our pipeline
by computing the off-shell 4-tachyon contact term in the tachyon potential. We obtained
a good agreement with the results in the literature.

We would like to emphasize few advantages of using machine learning over traditional
numerical methods to characterize the local coordinates in CSFT:

1. The algorithm presented here is manifestly independent of the number of punctures.
So it is in principle possible to repeat the similar construction for n-punctured spheres.

2. Having a neural network representation for the accessory parameters would help to
explore properties of Strebel differentials and uncover hidden patterns as neural networks
are just approximations to the actual function.

3. Building string interactions using machine learning would eventually simplify the

technical aspects of CSF'T calculations, as all the geometric data needed for this is

encoded in the neural networks. The complete code will be made public in the future.'?

13See https://github.com/melsophos/pysft-nn for the architecture and weights. The code will be made
available as a package together with [57].
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Of course, providing fits for the relevant functions, like Moeller did in [8], achieves the
same goal. However, even in the case of 5-punctured sphere, there is no polynomial fits
for all of these functions [13], and even if we are able to construct one, it is a general
wisdom that neural network representation of functions are superior to fits.

We want to briefly comment on the precision of our results. Even though we get quite
close to the results in the literature [6, 8], they differ in the third significant digit and there
is still room for improvement. We think this is primarily due to the training for the accessory
parameter being not sufficiently precise. Even though we have reached quite low losses during
the training, as is evident in figure 6, it is not as low as one would get using Newton’s method.
This indicates the training precision has to be improved, at least until we reach the same
order for the loss as Newton’s method [8]. Indeed, the accessory parameters are used in rest
of the computations so it is crucial to minimize its error as much as possible.

This type of problem is unconventional from the perspective of machine learning since
high precision is rarely needed (although see the recent work [78]). The tendency is to
decrease the float precision. Having a loss plateau around 107 in the training shown in
figure (8) motivates that we need to use double precision float64 instead of simple precision
float32. Still, this is not sufficient as the usual optimization techniques have not been
designed to handle such scenarios. For instance, both the gradients and learning rate are
around 10~7 at the end of the training which implies that weight updates are effectively
frozen. Another instance is that the use of regularization (such as L) can dominate the
loss (2.9) in later epochs. One may try to circumvent these problems by turning off/decaying
the regularization and/or using learning rate restart, that is increasing the learning rate
to counter-balance the vanishing gradients for later epochs. We have made a preliminary
study on using some of these techniques which resulted in smaller loss. We note that the
hyperparameter optimization is difficult for these techniques as one needs to train networks
over extended periods to find the long-time effects.

In any case, we think such level of precision, at least for the purpose of establishing
existence of closed string tachyon vacuum by level /order truncation, won’t be needed. Because
if the tachyon vacuum happens to be finely-tuned and requires terms in the tachyon potential
to be evaluated precisely, the whole procedure for searching the vacuum by truncating the
theory won’t work; as it would presumably require all orders of CSFT to be considered.*

There are numerous natural directions one can take in future. Here we list some of
them seem to us of utmost importance:

1. An obvious direction is to generalize this approach to higher-order string contact
interactions which we are currently working on [57]. As we have emphasized numerous
times throughout the paper, there are no conceptual obstruction doing so, as long as
the algorithm, especially the training for the accessory parameters, scales favorably.

Observe that the number of distinct integrals in (2.9) scales as O(n?) and evaluating
all of them may slow down the training for higher-punctured spheres. To remedy this

14We thank Martin Schnabl for this argument.
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problem, consider following modification to the loss function'®

- g (e 5 (1)
ij

EO,n (90) — EO,n (90)

Here sum over (ij) means the following. We first construct an ordered list of zeros and
only compute the complex lengths between zeros adjacent to each other in this list. It
is easy to argue this new function preserves the properties of (2.9). However, compared
to (2.9), we use just enough condition to specify Strebel differential at the function’s
global minimum while being agnostic of the shape of the critical graph. The number of
integrals in (4.1) scales as O(n) and this may speed up the training, possibly at the
expense of precision due to imposing less condition on the differential.

Scaling the algorithm for higher-punctured spheres may also require using more advanced
architectures, for example, by including equivariant layers for the unitary group U(n)
and complex translations C" [79-81]. Furthermore we may also want to represent the
local coordinates themselves by a new neural network (and more generally, it would
be interesting to understand how to compute conformal maps as neural networks) or
use graph neural networks [82] to extract properties from the critical graphs as they
become more complicated with increasing number of punctures.

2. We have trained a neural network for the indicator function distinguishing the vertex
region from the Feynman region. It is also possible to train a network that would
distinguish distinct type of degeneration of punctured-spheres from each other. For
4-punctured spheres, this means we can train a network that takes different values for
s, t,-and u-type degenerations.

Such networks allow us to sample points just from the relevant parts of the Feynman
region and based on these points it may be possible to train a network for the Zwiebach
differentials using the following modified loss function

L7(p) =Im(l(21, 22))? + Im(0(23, 24))?
+ (Re(l(z1,22))? — 72)? + (Re(£(z3, 24))* — 7%)?, (4.2)

and variations thereof (i.e. zo <> 23 and z3 <> 2z4). Remember Zwiebach differentials have
a disconnected critical graph in Feynman region (that is, zeros (z1, 22) and (23, 24) no
longer connected to each other by a critical trajectory) and this is reflected by eliminating
terms such as Im(/(z1, 23)) and replacing them with terms such as (Re({(z1, 22))? —72)2.
Assuming such network can be trained, we can find the local coordinates associated
with Feynman diagrams as well. This is interesting for few reasons. First, all off-shell
string amplitudes will be characterized using neural networks. But more interestingly,
this gives an alternative way to plumbing fixture to obtain such local coordinates. It
might be interesting to cross-compare these two methods.

3. Since we approximated functions relevant to the geometry of 4-string contact interaction
as neural networks, we can try performing symbolic regression to get an analytic insight

15We thank Barton Zwiebach for suggesting this modification.
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into the nature of these functions. In particular, it may be interesting to search for
closed form expressions for the accessory parameter and 9V 4 shown in figure 12.

4. Generalizing the ideas in this paper to the case of higher genera, especially using
minimal-area vertices, would possibly take a non-trivial effort: it is known not all
minimal-area metrics in higher genera arises from Strebel differentials while our loss
function is intrinsically about the latter. Still, it may be possible to exploit convex
optimization approach to minimal-area problem [83-85] to construct a suitable loss
function.

Better yet, one may try solving a version of accessory parameter problem appearing in
the case of hyperbolic string vertices [22] using machine learning to construct quantum
CSFT. In this case the loss function ought to impose the solutions of Fuchsian equation
to have a real monodromy on each non-contractible cycle of a Riemann surface at its
minimum. We expect the natural loss function for this problem to be independent of
the number of punctures and genera. This approach may even provide novel insights to
Fuchsian uniformization considering these two problems are continuously connected.
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A Some details on numerical evaluations

In this appendix we give some details on numerical evaluations. In particular we describe the
implementation of continuous square root /5 and the numerical evaluations of the integrals
for the complex length (2.6) as well as the mapping radii (2.23).

A.1 Continuous square root

Square root y/z has a branch cut on z-plane and it usually placed along the negative real
axis. However, for numerical evaluations of the integrals, such as the one given in (2.5), it is
advantageous to define a continuous square root (denoted by %/) by taking the domain of
the complex square root to be the double cover of C\ {0} rather than the complex plane
with a branch cut. In this domain 3/ is a holomorphic function. This way of evaluating
square root is inspired by [8].

Note that the global sign of ¢/ is ambigious. That is for 21 = 22, we have /21 = £ /22
depending on which sheet of the domain we are evaluating /- As we have stated in the main
text, this only leads to technical issues in our numerical evaluations which we overcome by
simply squaring the resulting expressions and/or correcting the global sign a posteriori.
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In practice, the continuous square root 3/z is evaluated on a given path z(t) by discretizing
it as {z}*_, and comparing the complex square roots V/zi and /z;11. More precisely, one
is instructed to compute the difference |,/z;y1 — \/zi| at each step and choose the sign for
{/ziv1 = £4/Zi+1 such that the said difference is minimum. This way we compensate any
branch crossing for complex square root by flipping its sign and get continuous square root
instead. As long as the step size is small relative to the distances between z; and the branch
points, the resulting sequence { ¥/z;}7_, provides a good approximation to 3/z(t).

A.2 The integral for the complex length
The complex length (2.6) in the case of n-punctured sphere takes the following form

—(z—21) X -+ X (2 — 22n-4)
U(zi, zj) / \/7 / = 1) z—lfl) T (z—2§n4_3)dz' (A1)

Here z1, - - - z95,—4 are (not-necessarily distinct) zeros of the quadratic differential determined

by the accessory parameters ¢; and the moduli &1, - - - &,_3. For convenience we have fixed
the positions of three punctures to {0, 1,00} and solved their accessory parameters using
a version of (2.3).

We take the integration path to be the straight line between the zeros z;, z; (2.7) and
this gives

(2, 2)) = (Zj 5 Z">2/11 m\ﬂ — 2t (A.2)

Above we defined the following polynomials

2n—4 n—1
pij(2) = [] (== =), qz)=[[(z—&). (A.3)
iy k=l

In order to make the discussion uniform we have further defined &, o = 0 and &,_1 = 1 above.
Note that we have taken out the factors (z — z;) and (2 — z;) from the product in p(z) and
we have used the usual square root for v1 —t2as 1 —t>>0for —1 <t < 1.

The goal now is to numerically evaluate the integral (A.2). In order to do this accurately
we have to subtract possible pole contributions and add their analytic expressions. That
is, we have to evaluate

(7% 2 1 ipij(z(t)) ! SkTk
ten) = (35 )[/1( IO YO )”1‘%]

k=1

_ 2n—-1 _

(Z] zl> stk/ \/1) tgcit (A.4)
where

n—1 1
= i -, A5
Tk p](gk)jl—[lfk_gj ( )

J#k
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and si’s are signs that should be chosen so that

V/pij(2(t)  nd SETE
TG -6 (4.6)

k=1

is minimal. This additional step was necessary: the sign of the integral (A.2) is ambigious
due to continuous square root. Notice there are 2"~! combinations to check.

Once si’s are determined the first line of the integral (A.4) can be evaluated by trapezoid
method using 201 grid points. It is possible to have cancellation errors for this integral, as we
may need to subtract two large quantities close to the punctures, but we have observed this
has not caused any problems during the training of the accessory parameter neural network.

The second line of the integral (A.4) can be analytically evaluated as

/ ”1_t2 _Z/ Vi-¢ 2 (u—ivu— IWu+ 1), (A.7)

t+u Zj — %
where
y= Gt 2k (A.8)
;j——zi

In these expressions the square root is taken on the principal branch. After doing these
one has to take the imaginary part of the complex length, square it, and sum over all pairs
of zeros for the loss function (2.9).

A.3 The integral for the mapping radii

The mapping radii integral (2.23) isn’t amenable to numerical evaluations. In order to put
it into a better form let us first consider the following identity

1 5/
lim |log e — [ ———e &l
=0 Vzi — &k Jete 2 — §k

Here € € C is assumed lying on the straight line from the puncture at z = & to the zero

“dr + 2(log2 —1) + log|z; — §k\>] =0. (A9

at z = z; and the branch of square root is adjusted so that this limit exists. Using this
in (2.23) drops out any need for ¢ — 0 limit as

o Vi
logpk—lg%llm/gk%(\/ 2) \/TZ §k>dz

_ zif B 1 Vzi—2 B -
e (W Vzi—&r 2= >d"’+2(10g2 1)+log |2 — &l - (A.10)

Parametrizating the straight line by z(t) = z; + t(§ — z;) for 0 < ¢t < 1 and exponenti-

+2(log2—1)+log|z; —&k|

ating we get

v/ uk,i(2(1)) i
pr = gl &l exp [Im (( e [ ( qué)()) e @) ﬂdt)] (A

The polynomial ¢(z) is defined in (A.3) and we further define

2n—4

Vgi(2) = — (& — 2i) H (z —zj). (A.12)
yor
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Map. Rad. Zel Ze,2 Ze,3 Zea Mean | Std. dev.
01 0.8139 | 0.8126 | 0.8132 | 0.8120 | 0.8129 0.0007
P2 0.4832 | 0.4825 | 0.4821 | 0.4829 | 0.4827 | 0.0004
03 0.5176 | 0.5184 | 0.5188 | 0.5180 | 0.5182 0.0004
04 0.7575 | 0.7569 | 0.7581 | 0.7563 | 0.7572 0.0007

Table 4. The mapping radii when punctures are placed at P = {0,1,0.8734 — 0.6242i, co}.

With the choice of sign for continuous square root made below (2.22) the integral (A.11) is
finite. In practice though, we would impose this choice by demanding the mapping radii
has to be finite as it is more convenient to do numerically.

The integral (A.11) computes the mapping radii associated wit the finite punctures.
For the mapping radius associated with the puncture at z = oo, we invert the position
of punctures to 1/&, adjust the accessory parameters (akin to (2.12)) and calculate the
mapping radius associated with the puncture at the origin. Since the mapping radii associated
with the origin is invariant under inversion, we obtain the mapping radii associated with
the puncture at z = oo.

The integral (A.11) numerically evaluated using Chebyshev-Gauss method [86] after
changing variables ¢t = 1 — 22 using 500 grid points. Notice that given py, different choices
for z; must give the same result as explained below (2.22). We observed this is indeed the
case. For example, the mapping radii and their uncertainties are reported in table 4 when
punctures are placed at {0,1,0.8734 — 0.6242,c0}. The behavior of the (mean) mapping
radii is shown in figure (13).

It was possible to have cancellation errors in the numerical evaluation of the inte-
gral (A.11), but having small standard deviation for the results above indicates that it does
not actually pose a threat to the accuracy of our computation. We indeed observed that it
doesn’t cause any issue during our evaluations. In fact, we have used the mean value for
the mapping radii in our evaluations and since their associated uncertainties are small we
opt to not include them into our final result for vy.

B Machine learning details

In this appendix, we present more details on our neural networks and their training. We
build the training, validation and test sets by randomly sampling 10° points on the complex
plane, restricted to the disk of radius 2 centered at 1/2 with two disks of radius 0.2 centered
at 0 and 1 excised. We use different sets for both networks and each run we sampled new
sets. The test sets are left aside until the end of the training to evaluate the performance.
The integrals for vy are computed using yet another set, a grid for trapezoid method and
random points in the vertex region for Monte-Carlo.

Both neural networks are fully connected. Training is performed using the eponymous
set employing AdamW and we use early stopping: metrics are evaluated on the validation set
at the end of each epoch, and training stops when there is no improvement of the loss (resp.
accuracy) using the accessory neural network (resp. indicator function neural network) after
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Figure 13. The behavior of the mapping radii p; associated with the punctures {0,1,{,00}. Small
regions around {0, 1,00} excised as the evaluation gets unreliable when punctures are about to collide.

Hyperarameter Accessory parameter NN | Indicator function NN
hidden layers [512,128,1028] [512,32,8, 8]
activation function CELU(a = 0) ELU(a = 0.25)
batch size 32 64
clip 6 4
Lo regularization 8 x 1076 4 %1072
weight decay 8 x 107° 1.5 x 1073
base learning rate 4x 1074 7x107°
warm-up steps 20 5
decay factor 0.94 0.99
decay period steps ) )

Table 5. Hyperparameters of our neural networks.

100 epochs. Gradients are clipped by the global norm. We employ the following learning rate
scheduler: a warm-up period increases the learning rate linearly from 0 to the base learning
rate during a given number of epochs; then, the learning rate is decayed exponentially with
some period. The hyperparameters are presented in table 5 and were found using BOHB
hyperparameter optimization [87]. The statistics for the loss of our runs are shown in table 6.
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Set Metric Mean Std

loss (accessory) 711 x 1078 | 6.21 x 107?

Train loss (vertex) 5.05 x 1072 | 5.89 x 1073
accuracy (vertex) 99.05% 0.20%

loss (accessory) 8.63 x 107 | 6.19 x 1079

Validation | loss (vertex) 5.16 x 1072 | 4.86 x 1073
accuracy (vertex) 98.99% 0.18%

loss (accessory) 9.39 x 107% | 6.12 x 1079

Test loss (vertex) 3.29 x 1071 | 1.27 x 1072
accuracy (vertex) 99.34% 0.18%

Table 6. Mean and standard deviations of the metrics for the different datasets, averaged over 4

runs. The full pipeline takes 294 4+ 29 minutes to run on Google Colab.
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