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Introduction: Brain imaging genetics aims to explore the genetic architecture
underlying brain structure and functions. Recent studies showed that the
incorporation of prior knowledge, such as subject diagnosis information and
brain regional correlation, can help identify significantly stronger imaging genetic
associations. However, sometimes such information may be incomplete or even
unavailable.

Methods: In this study, we explore a new data-driven prior knowledge that
captures the subject-level similarity by fusing multi-modal similarity networks. It
was incorporated into the sparse canonical correlation analysis (SCCA) model,
which is aimed to identify a small set of brain imaging and genetic markers that
explain the similarity matrix supported by both modalities. It was applied to amyloid
and tau imaging data of the ADNI cohort, respectively.

Results: Fused similarity matrix across imaging and genetic data was found
to improve the association performance better or similarly well as diagnosis
information, and therefore would be a potential substitute prior when the
diagnosis information is not available (i.e., studies focused on healthy controls).

Discussion: Our result confirmed the value of all types of prior knowledge in
improving association identification. In addition, the fused network representing
the subject relationship supported by multi-modal data showed consistently the
best or equally best performance compared to the diagnosis network and the
co-expression network.
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1. Introduction

Brain imaging genetics studies the influence of genetic variation on brain structure and
function. Its major task is to examine the association between genetic markers such as single
nucleotide polymorphisms (SNPs) and quantitative traits (QTs) extracted from multi-modal
neuroimaging data (e.g., MRI and PET scans). Although both gene and imaging phenotype
are two well-known factors contributing to brain function, exploring their underlying
connections would lead to a better mechanistic understanding of normal or disordered
brain functions.

Early studies in brain imaging genetics associations typically adopt a univariate approach
(Shen et al., 2010), where each pair of SNP and brain phenotype were examined individually
for the association. Based on the assumption that a real imaging genetic association typically
involves a small subset of SNPs and QTs, bi-multivariate association models, such as sparse
canonical correlation analysis (SCCA), have been increasingly used later to identify the best
linear transformation for imaging and genetics features so that the correlation between
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imaging and genetic components can be maximized (Chi et al,
2013; Lin et al, 2014). Recently, to further improve the
performance, various prior knowledge, such as diagnosis group,
linkage disequilibrium block in SNPs, and brain co-expression
networks, have been incorporated into the SCCA model. These
prior knowledge mitigates the effect of limited sample size and
all of them have helped yield much improved performance over
the traditional SCCA model. However, these prior knowledge are
not always available or sometimes not applicable. For example, the
brain co-expression network used by Yan et al. (2014) requires a
predefined subset of genes related to brain imaging, which would
not be available for structural MRI. Some imaging genetics studies
may have to deal with data without diagnosis information or with a
single diagnosis group. In both cases, diagnosis information cannot
be used as prior. Data-driven subject similarity network has been
previously explored but was derived from a single modality with
limited guidance (Du et al., 2016).

To address this problem, we propose a multi-modal subject
similarity network as a new prior knowledge using the similarity
network fusion (SNF) approach. In particular, we aim to build
a subject similarity network that is supported by both brain
imaging phenotype and genetic variants. Then, we will employ a
discriminative SCCA model (Yan et al., 2017) to identify a subset of
SNPs and brain imaging ROIs that are not only highly correlated
but also can best explain the shared similarity network. When
applied to the real brain imaging (including amyloid and tau
PET) and genetic data in the ADNI cohort, we found that SCCA
guided by the fused similarity network showed similar performance
as that guided by diagnosis information and both outperformed
those guided by other prior knowledge. Taken together, our results
suggested the value of a fused similarity network as a great
alternative prior in case of the absence of diagnostic network,
particularly when the study focuses only on one group (like the
aging process of healthy older adults).

2. Data

Amyloid and tau PET imaging data, together with the
imputed genotype data, were downloaded from the Alzheimer’s
disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/)
database. The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
For up-to-date information, see www.adni-info.org. In this study,
we have 800 subjects with both genotype data and amyloid imaging,
including 158 cognitive normals (CN), 90 with significant memory
concern (SMC), 279 early mild cognitive impairment (EMCI), 143
late MCI (LMCI), and 130 AD patients. For Tau, we have 291
subjects with both genotype data and tau imaging data, including 75
CN, 135 SMC, 30 EMCI, 32 LMCI, and 19 AD patients. The detailed
demographic information of gender, age, and education years are
shown in Table 1.
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2.1. Imaging data preprocessing

Both amyloid and tau imaging data have been downloaded
from the ADNI website as preprocessed. Briefly, amyloid PET
used florbetapir (18F) as a tracer to measure amyloid-8 (AfB)
plaques (Okamura and Yanai, 2010). For each subject, brain regions
of interest (ROIs) were defined from structural MRI through
segmentation and parcellation using Freesurfer (Fischl, 2012).
Then, each florbetapir scan was coregistered to the corresponding
MRI and calculated the mean florbetapir uptake within the
predefined ROIs. All the regional amyloid deposition was re-
normalized using the whole cerebellum as a reference region. Tau
PET used flortaucipir as a tracer to detect the aggregated tau
(Fleisher etal., 2020), and the regional tau aggregation was obtained
similarly as amyloid. All the regional tau tangle accumulation
was re-normalized using inferior cerebellar as reference region.
Finally, we have amyloid measurement in 68 cortical ROIs and
tau measurement in 73 ROIs. More detailed image processing
information can be found in Landau et al. (2013) and Landau
et al. (2016). To remove potential bias, both amyloid and tau
measures were pre-adjusted using baseline age, gender, and the
weight derived from healthy controls. Finally, they were normalized
to zero mean and unit variance for subsequent analysis.

2.2. Genotype data processing

Genotype data of both ADNI-1 and ADNI-2/GO phases
were also obtained from the ADNI cohort (adniloni.usc.edu).
We focused our analysis on top SNPs from the International
Genomics of Alzheimer’s Project (IGAP), a large-scale genome-
wide association study of AD (Schellenberg and IGAP, 2012). It
tested the association of 7,055,881 single nucleotide polymorphisms
(SNPs) of 17,008 Alzheimer’s disease cases and 37,154 controls.
SNPs with p < 5 x 107 in their meta analysis were used as our
candidates and their genotypes were extracted based on the quality
controlled and imputed genetic data in the ADNI using PLINK
(Purcell et al., 2007). Finally, we have 1,080 SNPs for the subsequent
imaging genetics association.

3. Methods

To evaluate the proposed prior knowledge, we apply it
to amyloid and tau imaging and genetic data in the study
of Alzheimer’s disease (AD). Deposition of amyloid-8 and
abnormal accumulations of tau protein are two major hallmarks
in AD pathogenesis. Prior knowledge tested in this analysis for
comparison include (1) subject diagnosis information, (2) brain
co-expression network using amyloid- and tau-related genes,
respectively (Zeng et al., 2012), and (3) fused similarity network
built on imaging and genetics data.

3.1. Fused similarity network

In this study, we proposed to use a fused similarity network
as a new prior knowledge, as inspired by Wang et al. (2014)
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TABLE 1 Demographic information of ADNI image data.

10.3389/fdata.2023.1151893

Subjects NC SMC EMCI LMCI AD
Amyloid Number 158 90 279 143 130
Gender (M/F) 79179 36/54 158/121 79/64 78/52
Age (mean £ SD) 73.25 £ 6.05 71.62 £ 5.45 71.05 £7.27 71.41 £7.49 73.95 £ 8.03
Educ (mean + SD) 16.62 & 2.50 16.79 & 2.62 16.09 & 2.66 16.71 £ 2.51 15.72 £ 2.69
TAU Number 75 135 30 32 19
Gender (M/F) 27/48 55/80 18/12 20/12 12/7
Age (mean =+ SD) 69.25 £ 5.40 70.96 £ 6.15 70.2£7.23 71.97 £ 8.64 73.42 £ 10.80
Edu (mean + SD) 17.12 £2.14 16.84 £2.21 16.03 £ 2.68 1594 £2.23 16.16 £ 2.75

and hypothesize that it will help improve the performance of
imaging genetics association. First, we have original SNP data
and imaging data showed in Figure 1A, we build a sample-
sample similarity matrix for imaging and genetic data, respectively
(Figure 1B) and their subject similarity network look like in
Figure 1C. This similarity matrix can be seen as a similarity network
G = (V,E,W), where nodes V represent subjects {x1,%2,..., %4},
the weighted edges E represent similarities of a subject to others
and W is a n x n similarity weighted matrix representing
the similarity between subjects x; and x;. Suppose p (x;.x;) is
euclidean distance between subjects x; and x;. Then a scaled
exponential similarity kernel was used to determine the weight of
the edge:

2 (y: x:
W(ij) = exp (—p e ) ) 1)

WEij

where p is a hyper parameter that can be empirically
set. It was recommended from [0.3, 0.8], and we
set it as 0.5 by default (Wang et al, 2014). and e;;
is used to eliminate the scaling problem. Here we
define:

mean (p (xj, N;j)) + mean (p (xj,Nj)) +p (xi,xj)
3

&ij = (2)
where N; denote a set of x;’s neighbors including x; in G, and
p(xi,N;) is the average value of the distance between x; and
each of its neighbors. Each row of W was then normalized as

below:
P(i,j) = TWaWaR ) F “

Given a graph G, we use K nearest neighbors (KNN) to measure
local affinity as:

W) oy
EkENiw(i’ k) : 1 (4)

0 otherwise

S(i,j) =

P offers the similarity information of each subject to all others
and S encodes the similarity to the K most similar neighbors
for each subject. In this article, we have two types of data,
genomics data and imaging data. We first calculated the status
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matrices P and P following equation (3), and then the kernel
matrices S and S? following in equation (4). For both amyloid
and tau data, we tested the model performance with varying
K values from 5 to 50. Association performance was found
highly stable across varying K values, therefore we set K = 20
as default.

Next, we performed the network fusion of two kernel matrices
using a message-passing theory (Pearl, 1988) non-linear method.
This is an iterative process where both networks keep getting
updated until they converge (i.e., not change much). The final
network, known as the fused network, is expected to represent
the subject relationships supported by both brain image data and
genotype data. Let PEI:)O = PW and Pgi)o = P® be the initial
two status matrices when ¢ = 0. The fusion process will iteratively
update two similarity matrices corresponding to two data types

as follows:
T
Pgr)l =sW x sz) X (S(l)) (5)
T
P2, =5 x B x (s?) (©)
where Pg_l,_)l and Pg_)l are the status matrix of these two data
types after t iterations. After each iteration, we performed

normalization on Pf_l,_)l and Pg_)l as in equation (3). This step

ensures that subject self-similarity is always higher than the
similarity to other neighbors. Here, the alternating multiplication
of the squared KNN similarity of the two modalities essentially
combines the local information of the two modalities in a
way that reinforces their shared information. By multiplying
the initial similarity matrix of one modality with the squared
KNN similarity matrix of the other modality, the shared
information between the two modalities is amplified and the
unique information in each modality is retained. This process
is then repeated in an alternating manner to ensure that both
modalities contribute equally to the final similarity matrix, thereby
achieving a balanced fusion of the two modalities (The fused
network as showed in Figure 1D). This approach is expected
to result in a more informative similarity matrix that captures
the shared and unique features of both modalities, which in
turn can improve the performance of downstream analysis
such as association identification between brain imaging and
genetic features.
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FIGURE 1
Workflow of similarity network fusion. (A) Original SNP data and imaging data. (B) Subject similarity matrix generated using normalized mutual
information (NMI). (C) Subject similarity network (equivalent to the subject by subject matrix). (D) Fused network by integrating information from both
imaging and genotype data.

3.2. Prior knowledge for comparison

3.2.1. Diagnosis network

A similarity matrix based on diagnosis was built by assigning 1
s between samples in the same diagnosis and 0 s otherwise. In other
words, we build a complete graph for all the subjects belonging
to the same diagnosis group. To ensure ¥;P(i,j) = 1, it was
then normalized by setting the diagonal entries as 0.5, and other
elements as 0.5 divided by the group size.

1 . .
P = | TG j 7: z @)

where Length(Group(k)) means the size of diagnosis group, and
there are totally five groups in this article.

3.2.2. Brain co-expression network

We use amyloid as an example to demonstrate the co-
expression network construction process. We first identified 15
genes related to amyloid pathways according to previous studies
(Swaminathan et al., 2012). We then extracted the expression level
of these genes across 1,210 brain samples in the Allen Human
Brain Atlas (AHBA) database. A partial correlation analysis was
performed on the brain expression data, and generated a 1,210 x
1,210 matrix indicating the ROI-ROI similarity based on the
expression of selected genes. This matrix was later down-sampled
to 68 x 68, where all 1,210 brain samples were mapped to amyloid
ROIs and the median value was applied to aggregate the similarity
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measures. For tau, there are eight genes found involved in tau
phosphorylation pathway (Bekris et al., 2012). We went through
the same process and generated a 73 x 73 co-expression matrix
for tau. These two matrices were used as the prior knowledge in
subsequent analysis.

3.3. Discriminative SCCA

In this part, let X = {x;,%3,..,x,} C R’ be the imaging data
and Y = {y,,¥,,...¥,} € R be the genotype data, where n is the
number of patients, p and q are the numbers of ROIs and SNPs,
respectively. Sparse canonical correlation analysis (SCCA) aims to
find the maximal correlation between Xu and Yv by adjusting these
two weights, u and v, which indicates the significance of each feature
of the imaging genetic associations. As shown in this formula:

maxu’ X Yv
®)
stu'X'Xu = 1,vTYTYv =1,P1(u) < cl,Py(v) <2

where Pi(u) < clandPy(v)
control the sparsity of selected features. In this study, we used
the PMA package (Witten et al., 2009) that applied the L; norm
penalty for P; and P, constraints to perform the SCCA method.

< 2 are two penalty terms to

To ensure the selection of disease-relevant features, we used a
novel discriminative SCCA (DSCCA) algorithm (Yan et al., 2017)
to integrate imaging data, SNPs data and the prior knowledge for
imaging genetics association. Prior knowledge can be diagnosis
network, fusion network or ROI-ROI co-expression network.
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As such, we can not only identify disease-relevant multi-modal
biomarkers, but also reveal a strong association between them.
Finally, we compare the performance of multiple DSCCA models
guided by different prior knowledge.

For the original DSCCA algorithm, there are two constraints,
Py and P,, which are added for the multi-class discrimination,
inspired by the application of locality preserving projection (LPP)

in linear discriminative analysis (Ghamisi et al., 2018).
Pi(w) = [lulp = u"X"L,Xu
ot 9)
Py(v)=|vlp=v Y L,Yv

Here, L,, is the Laplacian graphs of prior knowledge graph.
The final objective function of DSCCA can be written as

A
2
st X Xu=1,vY'w=1, lalli < e, IV < 2

follows:

maxu! X Yv —
wv

B2
Pi(u) — 7P2(V) (10)

Using Lagrange multipliers, Equation (10) can be reformulated

as follows:
T T 14} R 2 B B2
maxu X' Yv— — | Xu||5 — = |1 — —Pi(u) — =P
naxu"X Y — 2 Xul} - 21wl - SLpiw) - 2P

= Allully = A21vll (11)

Equation (11) is known as a bi-convex problem, which can be
solved using an alternating algorithm as discussed in Witten et al.
(2009). By fixing u and v, respectively, we will have the following
two minimization problems shown in Equations (12) and (13).

min —u"X"¥s + Zu"X o+ 2pyw) 4 aluly (12
u
. T<~T Y2 ToT B>

min —u! X'Yv + SV Yivw + 7P2(v)+)»z||V||1 (13)
A4

We used the Nesterovs accelerated proximal gradient
optimization algorithm to solve this objective function following
original DSCCA paper (Liu et al., 2012; Yan et al, 2017). The
convergence is based on the value changes of the objective function
and we use 107° as stop criteria. A five-fold nested cross-validation
was applied to automatically tune the parameters B, fB,, A1,
and A,. According to Chen et al. (2012), the learned pattern and
performance are insensitive to y; and y, settings. Therefore, in
this article, we set both of them to 1 for simplicity.

4. Results

To test the effect of different prior knowledge on the
performance of imaging genetics association, we performed four

TABLE 2 Test performance of brain imaging genetics association on AV45.

Prior knowledge

10.3389/fdata.2023.1151893

groups of experiments including the DSCCA algorithm with
different prior knowledge (fusion network, diagnosis network,
and ROI-ROI network) and the simple SCCA method as the
baseline. For SCCA, the parameters were automatically tuned using
a permutation method provided in the PMA package. For DSCCA
algorithm, we applied a five-fold nested cross-validation to tune the
parameters that can also help avoid the overfitting problem. For
a fair comparison, the training/test partition was kept exactly the
same across methods and ratios of diagnosis groups inside each
partition are also identical. All methods went through the same
nested cross-validation for parameter tuning.

4.1. Imaging genetic associations for AV45

We first tested the association between brain-wide amyloid
deposition and top AD-risk SNPs. The performance of test data
including the DSCCA algorithm with fused network, diagnosis
network, co-expression network as prior knowledge, and the
original SCCA method are shown in Table2. As expected,
DSCCA algorithms with the guidance of prior knowledge
all outperformed traditional SCCA, confirming that prior
knowledge does help reveal stronger brain imaging genetics
associations. More specifically, out of all three types of prior,
fused network and diagnosis network led to similar association
performance, which is much better than the co-expression
network.

For all ROIs and SNPs, we averaged their weights across
five-folds for feature selection. Figure 2 shows the top 10 ROIs
selected by DSCCA guided by the fused network, including left
precentral, right parahippocampal, right rostral middle frontal,
right precentral, right bankssts, left rostral anterior gingulate, right
caudal middle frontal, left postcentral, right postcentral, and left
parstriangularis. Among these, right bankssts, right caudal middle
frontal, parstriangularis, and left rostral anterior gingulate are part
of the default mode network (DMN), and right rostral middle
frontal is part of the frontoparietal network. Both of them have
consistently shown early accumulation of cortical Ag fibrils in
previous studies (Palmqvist et al., 2017). Amyloid deposition of
these regions is strongly associated with only one SNP, APOE SNP
(rs429358), which is known as the major risk factor for Alzheimer’s
disease. There are strong evidences suggesting that APOE could
inhibit amyloid-B (AB) clearance and promote A aggregation to
increase AD risk (Polvikoski et al., 1995; Kim et al., 2009; Kok et al.,
2009; Wirths, 2010).

Testing results

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Fused network 0.4872 0.5844 0.5959 0.5586 0.5043 0.5461
Diagnosis network 0.4863 0.5848 0.5919 0.5655 0.4945 0.5446
Co-expression network 0.3486 0.4401 0.4185 0.4203 0.37 0.3995
SCCA (no prior) 0.2838 0.4041 0.4015 0.3588 0.3865 0.367
Bold values denote the best performance.
Frontiersin Big Data 05 frontiersin.org
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Top 10 brain regions with amyloid deposition associated with APOE SNP rs429358.

TABLE 3 Tau 5-fold cross-validation results.

Prior knowledge

Testing results

Fold 1 Fold 2 Fold 3 Fold4  Fold5  Average |

Fused network 0.4186 0.3948
Diagnosis network 0.4237 0.3786
Co-expression network 0.4251 0.4246
SCCA (no prior) 0.3084 0.2674

Bold values denote the best performance.

0.4882 0.1725 0.5443 0.4025
0.4809 0.1722 0.5458 0.4002
0.4785 0.1775 0.5424 0.4096

0.321 0.1491 0.581 0.3254
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FIGURE 3
Top tau brain regions selected by DSCCA guided by fused network.
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4.2. Imaging genetic associations for tau

We next tested the association between brain-wide tau
deposition and top AD risk SNPs. The performance on test
data across all the methods is shown in Table 3. Similar to
amyloid, DSCCA guided by three types of prior knowledge
performed significantly better than SCCA. Also, all tree DSCCA
models showed very similar performance. Considering that the co-
expression network only showed moderate performance in amyloid
data, we speculate that the selection of candidate genes has a major
effect on the prior co-expression network and later lead to the
fluctuation of association performance.

Frontiersin Big Data

After averaging the weight across 5-folds, we found the tau
deposition in the left and right amygdala are strongly associated
with 56 SNPs (Figure 3). Amygdala is one of the earliest sites
showing tau deposition and neurofibrillary tangles, as reported
in previous post-mortem and neuroimaging studies (Vogt et al.,
1990; Abiose et al., 20205 Insel et al., 2020). Early tau position in
Amygdala is associated with reduced volume and worse cognition
performance as well in the preclinical stage of AD (Abiose et al.,
20205 Berron et al., 2021). Selected 56 SNPs associating with the
amygdala tau deposition are located in or near genes TOMMA40,
AC011481.3, NECTIN2, APOCI, AC011481.2, AC015687.1, CLU.
TOMM40 poly-T lengths have a significant relationship with
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the higher medial temporal plaque and tangle burden in the
living brain of non-demented older adults within individuals not
carrying the APOE-4 allele (Siddarth et al, 2018). We further
performed pathway enrichment analysis of these genes using
EnrichR (Kuleshov et al., 2016). Top enriched biological process in
gene ontology include regulation of receptor-mediated endocytosis
(adjusted p = 0.01) and cholesterol transport (adjusted p = 0.01).

5. Discussion

We proposed a new data-driven prior knowledge and tested
whether it could help improve the performance of association
between brain imaging and genetic features. Our result confirmed
the value of all types of prior knowledge in improving association
identification. In addition, the fused network representing the
subject relationship supported by multi-modal data showed
consistently the best or equally best performance compared
to the diagnosis network and the co-expression network. By
incorporating information from multiple modalities, the fused
network more accurately captures the similarity of subjects in
disease severity. With the guidance of such a network, it is more
likely to reveal the imaging genetic associations related to AD. Co-
expression network showed moderate performance in amyloid but
was among the top performers in Tau, suggesting the potential
effect of gene selection. The construction of the co-expression
network relies on a careful selection of gene set that is specific
to certain aspects of AD. While our knowledge of the biological
mechanism underlying AD is still very limited, there is no optimal
strategy to select relevant genes and different selection processes
may lead to varying performance in association. Therefore, the
value of co-expression network as prior is compromised. Finally,
considering fused network and diagnosis network consistently
demonstrated similarly good performance, fused network can be
valuable prior knowledge to leverage when there is no diagnosis
information or in case of studies using a single diagnosis group,
e.g., control only or case only.
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