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Introduction: Brain imaging genetics aims to explore the genetic architecture

underlying brain structure and functions. Recent studies showed that the

incorporation of prior knowledge, such as subject diagnosis information and

brain regional correlation, can help identify significantly stronger imaging genetic

associations. However, sometimes such information may be incomplete or even

unavailable.

Methods: In this study, we explore a new data-driven prior knowledge that

captures the subject-level similarity by fusing multi-modal similarity networks. It

was incorporated into the sparse canonical correlation analysis (SCCA) model,

which is aimed to identify a small set of brain imaging and genetic markers that

explain the similaritymatrix supported by bothmodalities. It was applied to amyloid

and tau imaging data of the ADNI cohort, respectively.

Results: Fused similarity matrix across imaging and genetic data was found

to improve the association performance better or similarly well as diagnosis

information, and therefore would be a potential substitute prior when the

diagnosis information is not available (i.e., studies focused on healthy controls).

Discussion: Our result confirmed the value of all types of prior knowledge in

improving association identification. In addition, the fused network representing

the subject relationship supported by multi-modal data showed consistently the

best or equally best performance compared to the diagnosis network and the

co-expression network.

KEYWORDS
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1. Introduction

Brain imaging genetics studies the influence of genetic variation on brain structure and

function. Its major task is to examine the association between genetic markers such as single

nucleotide polymorphisms (SNPs) and quantitative traits (QTs) extracted frommulti-modal

neuroimaging data (e.g., MRI and PET scans). Although both gene and imaging phenotype

are two well-known factors contributing to brain function, exploring their underlying

connections would lead to a better mechanistic understanding of normal or disordered

brain functions.

Early studies in brain imaging genetics associations typically adopt a univariate approach

(Shen et al., 2010), where each pair of SNP and brain phenotype were examined individually

for the association. Based on the assumption that a real imaging genetic association typically

involves a small subset of SNPs and QTs, bi-multivariate association models, such as sparse

canonical correlation analysis (SCCA), have been increasingly used later to identify the best

linear transformation for imaging and genetics features so that the correlation between
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imaging and genetic components can be maximized (Chi et al.,

2013; Lin et al., 2014). Recently, to further improve the

performance, various prior knowledge, such as diagnosis group,

linkage disequilibrium block in SNPs, and brain co-expression

networks, have been incorporated into the SCCA model. These

prior knowledge mitigates the effect of limited sample size and

all of them have helped yield much improved performance over

the traditional SCCA model. However, these prior knowledge are

not always available or sometimes not applicable. For example, the

brain co-expression network used by Yan et al. (2014) requires a

predefined subset of genes related to brain imaging, which would

not be available for structural MRI. Some imaging genetics studies

may have to deal with data without diagnosis information or with a

single diagnosis group. In both cases, diagnosis information cannot

be used as prior. Data-driven subject similarity network has been

previously explored but was derived from a single modality with

limited guidance (Du et al., 2016).

To address this problem, we propose a multi-modal subject

similarity network as a new prior knowledge using the similarity

network fusion (SNF) approach. In particular, we aim to build

a subject similarity network that is supported by both brain

imaging phenotype and genetic variants. Then, we will employ a

discriminative SCCAmodel (Yan et al., 2017) to identify a subset of

SNPs and brain imaging ROIs that are not only highly correlated

but also can best explain the shared similarity network. When

applied to the real brain imaging (including amyloid and tau

PET) and genetic data in the ADNI cohort, we found that SCCA

guided by the fused similarity network showed similar performance

as that guided by diagnosis information and both outperformed

those guided by other prior knowledge. Taken together, our results

suggested the value of a fused similarity network as a great

alternative prior in case of the absence of diagnostic network,

particularly when the study focuses only on one group (like the

aging process of healthy older adults).

2. Data

Amyloid and tau PET imaging data, together with the

imputed genotype data, were downloaded from the Alzheimer’s

disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/)

database. The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD.

The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological

assessments can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

For up-to-date information, see www.adni-info.org. In this study,

we have 800 subjects with both genotype data and amyloid imaging,

including 158 cognitive normals (CN), 90 with significant memory

concern (SMC), 279 early mild cognitive impairment (EMCI), 143

late MCI (LMCI), and 130 AD patients. For Tau, we have 291

subjects with both genotype data and tau imaging data, including 75

CN, 135 SMC, 30 EMCI, 32 LMCI, and 19 AD patients. The detailed

demographic information of gender, age, and education years are

shown in Table 1.

2.1. Imaging data preprocessing

Both amyloid and tau imaging data have been downloaded

from the ADNI website as preprocessed. Briefly, amyloid PET

used florbetapir (18F) as a tracer to measure amyloid-β (Aβ)

plaques (Okamura and Yanai, 2010). For each subject, brain regions

of interest (ROIs) were defined from structural MRI through

segmentation and parcellation using Freesurfer (Fischl, 2012).

Then, each florbetapir scan was coregistered to the corresponding

MRI and calculated the mean florbetapir uptake within the

predefined ROIs. All the regional amyloid deposition was re-

normalized using the whole cerebellum as a reference region. Tau

PET used flortaucipir as a tracer to detect the aggregated tau

(Fleisher et al., 2020), and the regional tau aggregation was obtained

similarly as amyloid. All the regional tau tangle accumulation

was re-normalized using inferior cerebellar as reference region.

Finally, we have amyloid measurement in 68 cortical ROIs and

tau measurement in 73 ROIs. More detailed image processing

information can be found in Landau et al. (2013) and Landau

et al. (2016). To remove potential bias, both amyloid and tau

measures were pre-adjusted using baseline age, gender, and the

weight derived from healthy controls. Finally, they were normalized

to zero mean and unit variance for subsequent analysis.

2.2. Genotype data processing

Genotype data of both ADNI-1 and ADNI-2/GO phases

were also obtained from the ADNI cohort (adni.loni.usc.edu).

We focused our analysis on top SNPs from the International

Genomics of Alzheimer’s Project (IGAP), a large-scale genome-

wide association study of AD (Schellenberg and IGAP, 2012). It

tested the association of 7,055,881 single nucleotide polymorphisms

(SNPs) of 17,008 Alzheimer’s disease cases and 37,154 controls.

SNPs with p ≤ 5 × 10−6 in their meta analysis were used as our

candidates and their genotypes were extracted based on the quality

controlled and imputed genetic data in the ADNI using PLINK

(Purcell et al., 2007). Finally, we have 1,080 SNPs for the subsequent

imaging genetics association.

3. Methods

To evaluate the proposed prior knowledge, we apply it

to amyloid and tau imaging and genetic data in the study

of Alzheimer’s disease (AD). Deposition of amyloid-β and

abnormal accumulations of tau protein are two major hallmarks

in AD pathogenesis. Prior knowledge tested in this analysis for

comparison include (1) subject diagnosis information, (2) brain

co-expression network using amyloid- and tau-related genes,

respectively (Zeng et al., 2012), and (3) fused similarity network

built on imaging and genetics data.

3.1. Fused similarity network

In this study, we proposed to use a fused similarity network

as a new prior knowledge, as inspired by Wang et al. (2014)
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TABLE 1 Demographic information of ADNI image data.

Subjects NC SMC EMCI LMCI AD

Amyloid Number 158 90 279 143 130

Gender (M/F) 79/79 36/54 158/121 79/64 78/52

Age (mean± SD) 73.25± 6.05 71.62± 5.45 71.05± 7.27 71.41± 7.49 73.95± 8.03

Educ (mean± SD) 16.62± 2.50 16.79± 2.62 16.09± 2.66 16.71± 2.51 15.72± 2.69

TAU Number 75 135 30 32 19

Gender (M/F) 27/48 55/80 18/12 20/12 12/7

Age (mean± SD) 69.25± 5.40 70.96± 6.15 70.2± 7.23 71.97± 8.64 73.42± 10.80

Edu (mean± SD) 17.12± 2.14 16.84± 2.21 16.03± 2.68 15.94± 2.23 16.16± 2.75

and hypothesize that it will help improve the performance of

imaging genetics association. First, we have original SNP data

and imaging data showed in Figure 1A, we build a sample-

sample similarity matrix for imaging and genetic data, respectively

(Figure 1B) and their subject similarity network look like in

Figure 1C. This similaritymatrix can be seen as a similarity network

G = (V,E,W), where nodes V represent subjects {x1, x2, ..., xn},

the weighted edges E represent similarities of a subject to others

and W is a n × n similarity weighted matrix representing

the similarity between subjects xi and xj. Suppose ρ (xi,xj) is

euclidean distance between subjects xi and xj. Then a scaled

exponential similarity kernel was used to determine the weight of

the edge:

W(i, j) = exp

(

−
ρ2

(

xi, xj
)

µεi,j

)

(1)

where µ is a hyper parameter that can be empirically

set. It was recommended from [0.3, 0.8], and we

set it as 0.5 by default (Wang et al., 2014). and εi,j

is used to eliminate the scaling problem. Here we

define:

εi,j =
mean (ρ (xi,Ni)) +mean

(

ρ
(

xj,Nj

))

+ ρ
(

xi, xj
)

3
(2)

where Ni denote a set of xi’s neighbors including xi in G, and

ρ(xi,Ni) is the average value of the distance between xi and

each of its neighbors. Each row of W was then normalized as

below:

P(i, j) =

{

W(i,j)
26k6=iW(i,k)

, j 6= i

1/2, j = i
(3)

Given a graphG, we useK nearest neighbors (KNN) tomeasure

local affinity as:

S(i, j) =











W(i, j)

6k∈Ni
W(i, k)

,j ∈ Ni

0 otherwise

(4)

P offers the similarity information of each subject to all others

and S encodes the similarity to the K most similar neighbors

for each subject. In this article, we have two types of data,

genomics data and imaging data. We first calculated the status

matrices P(1) and P(2) following equation (3), and then the kernel

matrices S(1) and S(2) following in equation (4). For both amyloid

and tau data, we tested the model performance with varying

K values from 5 to 50. Association performance was found

highly stable across varying K values, therefore we set K = 20

as default.

Next, we performed the network fusion of two kernel matrices

using a message-passing theory (Pearl, 1988) non-linear method.

This is an iterative process where both networks keep getting

updated until they converge (i.e., not change much). The final

network, known as the fused network, is expected to represent

the subject relationships supported by both brain image data and

genotype data. Let P
(1)
t=0 = P(1) and P

(2)
t=0 = P(2) be the initial

two status matrices when t = 0. The fusion process will iteratively

update two similarity matrices corresponding to two data types

as follows:

P
(1)
t+1 = S

(1) × P
(2)
t ×

(

S
(1)

)T
(5)

P
(2)
t+1 = S

(2) × P
(1)
t ×

(

S
(2)

)T
(6)

where P
(1)
t+1 and P

(2)
t+1 are the status matrix of these two data

types after t iterations. After each iteration, we performed

normalization on P
(1)
t+1 and P

(2)
t+1 as in equation (3). This step

ensures that subject self-similarity is always higher than the

similarity to other neighbors. Here, the alternating multiplication

of the squared KNN similarity of the two modalities essentially

combines the local information of the two modalities in a

way that reinforces their shared information. By multiplying

the initial similarity matrix of one modality with the squared

KNN similarity matrix of the other modality, the shared

information between the two modalities is amplified and the

unique information in each modality is retained. This process

is then repeated in an alternating manner to ensure that both

modalities contribute equally to the final similarity matrix, thereby

achieving a balanced fusion of the two modalities (The fused

network as showed in Figure 1D). This approach is expected

to result in a more informative similarity matrix that captures

the shared and unique features of both modalities, which in

turn can improve the performance of downstream analysis

such as association identification between brain imaging and

genetic features.
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FIGURE 1

Workflow of similarity network fusion. (A) Original SNP data and imaging data. (B) Subject similarity matrix generated using normalized mutual

information (NMI). (C) Subject similarity network (equivalent to the subject by subject matrix). (D) Fused network by integrating information from both

imaging and genotype data.

3.2. Prior knowledge for comparison

3.2.1. Diagnosis network
A similarity matrix based on diagnosis was built by assigning 1

s between samples in the same diagnosis and 0 s otherwise. In other

words, we build a complete graph for all the subjects belonging

to the same diagnosis group. To ensure 6jP(i, j) = 1, it was

then normalized by setting the diagonal entries as 0.5, and other

elements as 0.5 divided by the group size.

P(i, j) =

{

1
2·Length(Group(k))

, j 6= i

1/2, j = i
(7)

where Length(Group(k)) means the size of diagnosis group, and

there are totally five groups in this article.

3.2.2. Brain co-expression network
We use amyloid as an example to demonstrate the co-

expression network construction process. We first identified 15

genes related to amyloid pathways according to previous studies

(Swaminathan et al., 2012). We then extracted the expression level

of these genes across 1,210 brain samples in the Allen Human

Brain Atlas (AHBA) database. A partial correlation analysis was

performed on the brain expression data, and generated a 1, 210 ×

1, 210 matrix indicating the ROI–ROI similarity based on the

expression of selected genes. This matrix was later down-sampled

to 68 × 68, where all 1,210 brain samples were mapped to amyloid

ROIs and the median value was applied to aggregate the similarity

measures. For tau, there are eight genes found involved in tau

phosphorylation pathway (Bekris et al., 2012). We went through

the same process and generated a 73 × 73 co-expression matrix

for tau. These two matrices were used as the prior knowledge in

subsequent analysis.

3.3. Discriminative SCCA

In this part, let X = {x1, x2, ..., xn} ⊆ Rp be the imaging data

and Y = {y1, y2, ..., yn} ⊆ Rq be the genotype data, where n is the

number of patients, p and q are the numbers of ROIs and SNPs,

respectively. Sparse canonical correlation analysis (SCCA) aims to

find the maximal correlation between Xu and Yv by adjusting these

twoweights, u and v, which indicates the significance of each feature

of the imaging genetic associations. As shown in this formula:

max
u,v

u
T
X
T
Yv

s.t.uTXT
Xu = 1, vTYT

Yv = 1,P1(u) ≤ c1,P2(v) ≤ c2
(8)

where P1(u) ≤ c1andP2(v) ≤ c2 are two penalty terms to

control the sparsity of selected features. In this study, we used

the PMA package (Witten et al., 2009) that applied the L1 norm

penalty for P1 and P2 constraints to perform the SCCA method.

To ensure the selection of disease-relevant features, we used a

novel discriminative SCCA (DSCCA) algorithm (Yan et al., 2017)

to integrate imaging data, SNPs data and the prior knowledge for

imaging genetics association. Prior knowledge can be diagnosis

network, fusion network or ROI–ROI co-expression network.
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As such, we can not only identify disease-relevant multi-modal

biomarkers, but also reveal a strong association between them.

Finally, we compare the performance of multiple DSCCA models

guided by different prior knowledge.

For the original DSCCA algorithm, there are two constraints,

P1 and P2, which are added for the multi-class discrimination,

inspired by the application of locality preserving projection (LPP)

in linear discriminative analysis (Ghamisi et al., 2018).

P1(u) = ‖u‖D = u
T
X
T
LwXu

P2(v) = ‖v‖D = v
T
Y
T
LwYv

(9)

Here, Lw is the Laplacian graphs of prior knowledge graph.

The final objective function of DSCCA can be written as

follows:

max
u,v

u
T
X
T
Yv−

β1

2
P1(u)−

β2

2
P2(v)

s.t.uTXT
Xu = 1, vTYT

Yv = 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2

(10)

Using Lagrange multipliers, Equation (10) can be reformulated

as follows:

max
u,v

u
T
X
T
Yv−

γ1

2
‖Xu‖22 −

γ2

2
‖Yv‖22 −

β1

2
P1(u)−

β2

2
P2(v)

− λ1‖u‖1 − λ2‖v‖1 (11)

Equation (11) is known as a bi-convex problem, which can be

solved using an alternating algorithm as discussed in Witten et al.

(2009). By fixing u and v, respectively, we will have the following

two minimization problems shown in Equations (12) and (13).

min
u

−u
T
X
T
Yv+

γ1

2
u
T
X
T
Xu+

β1

2
P1(u)+ λ1‖u‖1 (12)

min
v

−u
T
X
T
Yv+

γ2

2
v
T
Y
T
Yv+

β2

2
P2(v)+ λ2‖v‖1 (13)

We used the Nesterovs accelerated proximal gradient

optimization algorithm to solve this objective function following

original DSCCA paper (Liu et al., 2012; Yan et al., 2017). The

convergence is based on the value changes of the objective function

and we use 10−6 as stop criteria. A five-fold nested cross-validation

was applied to automatically tune the parameters β1, β2, λ1,

and λ2. According to Chen et al. (2012), the learned pattern and

performance are insensitive to γ 1 and γ 2 settings. Therefore, in

this article, we set both of them to 1 for simplicity.

4. Results

To test the effect of different prior knowledge on the

performance of imaging genetics association, we performed four

groups of experiments including the DSCCA algorithm with

different prior knowledge (fusion network, diagnosis network,

and ROI–ROI network) and the simple SCCA method as the

baseline. For SCCA, the parameters were automatically tuned using

a permutation method provided in the PMA package. For DSCCA

algorithm, we applied a five-fold nested cross-validation to tune the

parameters that can also help avoid the overfitting problem. For

a fair comparison, the training/test partition was kept exactly the

same across methods and ratios of diagnosis groups inside each

partition are also identical. All methods went through the same

nested cross-validation for parameter tuning.

4.1. Imaging genetic associations for AV45

We first tested the association between brain-wide amyloid

deposition and top AD-risk SNPs. The performance of test data

including the DSCCA algorithm with fused network, diagnosis

network, co-expression network as prior knowledge, and the

original SCCA method are shown in Table 2. As expected,

DSCCA algorithms with the guidance of prior knowledge

all outperformed traditional SCCA, confirming that prior

knowledge does help reveal stronger brain imaging genetics

associations. More specifically, out of all three types of prior,

fused network and diagnosis network led to similar association

performance, which is much better than the co-expression

network.

For all ROIs and SNPs, we averaged their weights across

five-folds for feature selection. Figure 2 shows the top 10 ROIs

selected by DSCCA guided by the fused network, including left

precentral, right parahippocampal, right rostral middle frontal,

right precentral, right bankssts, left rostral anterior gingulate, right

caudal middle frontal, left postcentral, right postcentral, and left

parstriangularis. Among these, right bankssts, right caudal middle

frontal, parstriangularis, and left rostral anterior gingulate are part

of the default mode network (DMN), and right rostral middle

frontal is part of the frontoparietal network. Both of them have

consistently shown early accumulation of cortical Aβ fibrils in

previous studies (Palmqvist et al., 2017). Amyloid deposition of

these regions is strongly associated with only one SNP, APOE SNP

(rs429358), which is known as the major risk factor for Alzheimer’s

disease. There are strong evidences suggesting that APOE could

inhibit amyloid-β (Aβ) clearance and promote Aβ aggregation to

increase AD risk (Polvikoski et al., 1995; Kim et al., 2009; Kok et al.,

2009; Wirths, 2010).

TABLE 2 Test performance of brain imaging genetics association on AV45.

Prior knowledge Testing results

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Fused network 0.4872 0.5844 0.5959 0.5586 0.5043 0.5461

Diagnosis network 0.4863 0.5848 0.5919 0.5655 0.4945 0.5446

Co-expression network 0.3486 0.4401 0.4185 0.4203 0.37 0.3995

SCCA (no prior) 0.2838 0.4041 0.4015 0.3588 0.3865 0.367

Bold values denote the best performance.
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FIGURE 2

Top 10 brain regions with amyloid deposition associated with APOE SNP rs429358.

TABLE 3 Tau 5-fold cross-validation results.

Prior knowledge Testing results

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Fused network 0.4186 0.3948 0.4882 0.1725 0.5443 0.4025

Diagnosis network 0.4237 0.3786 0.4809 0.1722 0.5458 0.4002

Co-expression network 0.4251 0.4246 0.4785 0.1775 0.5424 0.4096

SCCA (no prior) 0.3084 0.2674 0.321 0.1491 0.581 0.3254

Bold values denote the best performance.

FIGURE 3

Top tau brain regions selected by DSCCA guided by fused network.

4.2. Imaging genetic associations for tau

We next tested the association between brain-wide tau

deposition and top AD risk SNPs. The performance on test

data across all the methods is shown in Table 3. Similar to

amyloid, DSCCA guided by three types of prior knowledge

performed significantly better than SCCA. Also, all tree DSCCA

models showed very similar performance. Considering that the co-

expression network only showedmoderate performance in amyloid

data, we speculate that the selection of candidate genes has a major

effect on the prior co-expression network and later lead to the

fluctuation of association performance.

After averaging the weight across 5-folds, we found the tau

deposition in the left and right amygdala are strongly associated

with 56 SNPs (Figure 3). Amygdala is one of the earliest sites

showing tau deposition and neurofibrillary tangles, as reported

in previous post-mortem and neuroimaging studies (Vogt et al.,

1990; Abiose et al., 2020; Insel et al., 2020). Early tau position in

Amygdala is associated with reduced volume and worse cognition

performance as well in the preclinical stage of AD (Abiose et al.,

2020; Berron et al., 2021). Selected 56 SNPs associating with the

amygdala tau deposition are located in or near genes TOMM40,

AC011481.3, NECTIN2, APOC1, AC011481.2, AC015687.1, CLU.

TOMM40 poly-T lengths have a significant relationship with
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the higher medial temporal plaque and tangle burden in the

living brain of non-demented older adults within individuals not

carrying the APOE-4 allele (Siddarth et al., 2018). We further

performed pathway enrichment analysis of these genes using

EnrichR (Kuleshov et al., 2016). Top enriched biological process in

gene ontology include regulation of receptor-mediated endocytosis

(adjusted p = 0.01) and cholesterol transport (adjusted p = 0.01).

5. Discussion

We proposed a new data-driven prior knowledge and tested

whether it could help improve the performance of association

between brain imaging and genetic features. Our result confirmed

the value of all types of prior knowledge in improving association

identification. In addition, the fused network representing the

subject relationship supported by multi-modal data showed

consistently the best or equally best performance compared

to the diagnosis network and the co-expression network. By

incorporating information from multiple modalities, the fused

network more accurately captures the similarity of subjects in

disease severity. With the guidance of such a network, it is more

likely to reveal the imaging genetic associations related to AD. Co-

expression network showed moderate performance in amyloid but

was among the top performers in Tau, suggesting the potential

effect of gene selection. The construction of the co-expression

network relies on a careful selection of gene set that is specific

to certain aspects of AD. While our knowledge of the biological

mechanism underlying AD is still very limited, there is no optimal

strategy to select relevant genes and different selection processes

may lead to varying performance in association. Therefore, the

value of co-expression network as prior is compromised. Finally,

considering fused network and diagnosis network consistently

demonstrated similarly good performance, fused network can be

valuable prior knowledge to leverage when there is no diagnosis

information or in case of studies using a single diagnosis group,

e.g., control only or case only.
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