
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Learning and Symbolic Regression for
Discovering Parametric Equations

Michael Zhang, Samuel Kim , Peter Y. Lu , and Marin Soljačić

Abstract— Symbolic regression is a machine learning technique
that can learn the equations governing data and thus has the
potential to transform scientific discovery. However, symbolic
regression is still limited in the complexity and dimensionality
of the systems that it can analyze. Deep learning, on the other
hand, has transformed machine learning in its ability to analyze
extremely complex and high-dimensional datasets. We propose
a neural network architecture to extend symbolic regression to
parametric systems where some coefficient may vary, but the
structure of the underlying governing equation remains constant.
We demonstrate our method on various analytic expressions and
partial differential equations (PDEs) with varying coefficients and
show that it extrapolates well outside of the training domain.
The proposed neural-network-based architecture can also be
enhanced by integrating with other deep learning architectures
such that it can analyze high-dimensional data while being
trained end-to-end. To this end, we demonstrate the scalability
of our architecture by incorporating a convolutional encoder to
analyze 1-D images of varying spring systems.

Index Terms— Deep learning, equation discovery,
high-dimensional, partial differential equation (PDE).

I. INTRODUCTION

COMPLEX systems can often be described by relatively
simple and interpretable mathematical equations, ranging

from Maxwell’s equations for electrodynamics [1] to Hooke’s
law for harmonic oscillators. Thus, the discovery of the

Manuscript received 28 February 2023; revised 31 May 2023;
accepted 4 July 2023. This work was supported in part by the Massachusetts
Institute of Technology (MIT) Undergraduate Research Opportunities Program
(UROP), in part by the National Science Foundation (The NSF Artificial
Intelligence Institute for Artificial Intelligence and Fundamental Interactions,
http://iaifi.org/) under Grant PHY-2019786, in part by the National Defense
Science and Engineering Graduate (NDSEG) Fellowship Program, in part
by the Air Force Office of Scientific Research under Award FA9550-21-1-
0317, and in part by the U.S. Air Force Research Laboratory and the U.S.
Air Force Artificial Intelligence Accelerator under Grant FA8750-19-2-1000.
(Michael Zhang and Samuel Kim are co-first authors.) (Corresponding author:
Samuel Kim.)

Michael Zhang is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA.

Samuel Kim was with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA. He is now with the Department of Research and Exploratory
Development, Johns Hopkins University Applied Physics Laboratory, Laurel,
MD 20723 USA (e-mail: samkim@mit.edu).

Peter Y. Lu was with the Department of Physics, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA. He is now with the Data Science
Institute, The University of Chicago, Chicago, IL 60637 USA.

Marin Soljačić is with the Department of Physics, Massachusetts Institute
of Technology, Cambridge, MA 02139 USA (e-mail: soljacic@mit.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3297978.

Digital Object Identifier 10.1109/TNNLS.2023.3297978

governing equations for natural and artificial systems from data
is key to many scientific and engineering disciplines. While
scientists and engineers have often spent years developing
insights to discover such equations, machine learning has
become alluring in its potential to tackle and automate
extremely complex tasks. In particular, symbolic regression is
a machine learning technique that searches for mathematical
expressions that best fit the data, ideally resulting in a model
that is interpretable and explains the underlying dynamics of
the data. In one of the most popular works in this direction,
Schmidt and Lipson [2] used symbolic regression to discover
Hamiltonians, Lagrangians, and conservation laws for various
physical systems, thus demonstrating its potential in scientific
discovery.

Symbolic regression is often implemented through genetic
programming, which searches through the space of mathe-
matical expressions using evolutionary algorithms [3]. The
equations are pieced together through basic building blocks
known as primitives, which may include constants and simple
functions (e.g., addition, multiplication, sine). However, these
approaches do not typically scale well to high-dimensional
problems and often require numerous hand-built heuristics and
rules to ensure that the equation is simple to interpret and
viable as a model.

There have been numerous approaches at introducing
the power of deep learning into symbolic regression to
enable learning equations in more complex settings. For
example, AI-Feynman checks for a number of physics-
inspired invariances and symmetries using both hand-built
rules and neural networks to simplify the data [4]. Sparse
identification of nonlinear dynamical systems (SINDy) [5],
a system for discovering the governing equations of dynamical
systems, has been combined with a neural network to
enable discovery on high-dimensional dynamical systems [6].
PDE-Net 2.0 incorporates a symbolic network to discover
partial differential equations (PDEs) using convolutional
networks with constrained filters [7]. Lu et al. [8] incorporate
a symbolic network with an encoder network to discover
differential equation systems from partial observations.
Cranmer et al. [9] perform traditional symbolic regression on
graph neural network weights after training in a two-step
process to discover the dynamics of many-body systems.

In particular, a neural network architecture called the
equation learner (EQL) was proposed to perform symbolic
regression, which takes a fully connected neural network
and replaces the activation functions with the primitive

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8248-2346
https://orcid.org/0000-0001-6183-5237
https://orcid.org/0000-0002-7184-5831

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

functions [10], [11]. Kim et al. [12] expand upon the
EQL network by integrating it with other deep learning
architectures (including convolutional networks and recurrent
networks) such that the entire model can be trained end-
to-end through backpropagation, thus enabling symbolic
regression on complex datasets including high-dimensional
and dynamical systems where the relevant parameters may
not be known ahead of time. Costa et al. [13] extend the
EQL for recursive programs, implicit functions, and image
classification.

One type of complexity we explore in this work are datasets
described by parametric equations in which the underlying
equation structure may stay the same but coefficients may
vary along one or more dimensions. PDEs are ubiquitous
in describing the dynamics of many systems, but even
the most simple settings can require varying coefficients.
For example, solving for electromagnetic modes or electron
wave function in a material requires solving Maxwell’s
equation with spatially varying permittivity or the Schrödinger
equation with varying potential [14], respectively. Parameters
may be influenced or even controlled by external factors
that are not captured in the data [15]. The nonlinear
Schrödinger equation with varying coefficients has found
applications in describing the Bose–Einstein condensates [16].
In addition, the varying coefficients may change in complex
ways that are not easily expressible symbolically, which
would result in standard symbolic regression tools failing
to discover interpretable equations. Various approaches have
been proposed to discover specifically parametric PDEs,
including group sparsity combined with SINDy [17], genetic
algorithms combined with averaging over local windows [18],
and linear regression with kernel smoothing over adjacent
coefficients [19].

In this work, we propose to discover a more general class of
parametric equations where the equation structure is constant,
but the coefficients may vary in complex ways. We extend
the approach from Kim et al. [12] and enable neural-network-
based symbolic regression on datasets governed by parametric
equations. To this end, we propose two novel architectures: the
stacked EQL (SEQL) network and the hyper EQL (HEQL)
network. We demonstrate our method on various analytic
equations, PDEs, and a dataset consisting of 1-D images of
particles. In the last example, we combine the architectures
with a convolutional neural network to analyze the images
and demonstrate symbolic regression on high-dimensional
datasets.

II. BACKGROUND

A. EQL Network

The EQL network is a neural network architecture that
can perform symbolic regression by replacing the nonlinear
activation functions with primitive functions. The architecture
was initially proposed in [10] and [11] and further expanded
in [12]. In Section II-A1, we briefly review the base EQL
architecture for symbolic regression, while more details can
be found in [12]. We also propose several modifications
to the EQL network that improve its training behavior.

In Sections III-A and III-B, we propose two variants of
the EQL architecture that can discover parametric equations.
Note that our discussion and notation below assume that the
coefficients are parameterized with respect to time as this
provides a convenient intuition applicable to many systems.
However, the parameterization could also be with respect to
other quantities (e.g., space).

1) Base Architecture: The EQL network architecture
closely resembles a fully connected neural network in which
the output h(i) of the i th layer can be described as

g(i) = W(i)h(i−1) (1)

h(i) = f
(
g(i)

)
(2)

where W is a weight matrix of the i th layer, f is the nonlinear
activation function, g(i) is a vector of the preactivation units,
and h0 = x is the input data. A schematic of a single layer is
shown in Fig. 1(b). In regression tasks, the activation function
for the final layer is typically omitted, so the output of the
neural network with L hidden layers is y = W(L+1)h(L).

While conventional neural networks typically use activation
functions such as ReLU or sigmoid, the EQL network uses
a set of functions that correspond to primitive functions
in symbolic regression, which represent the building blocks
for more complex equations. As shown in Fig. 1(b), each
component of g may go through a different primitive function,
and a primitive function may also take multiple inputs (e.g.,
multiplication). The primitive functions may be duplicated to
reduce the sensitivity of training to random initialization. The
network is trained using the same techniques as conventional
neural networks, i.e., stochastic gradient descent, and once it
is trained, the discovered equation can simply be read off of
the weights.

2) Sparsity: To ensure the interpretability of symbolic
regression, we need to force the system to learn the simplest
expression that describes the data. In genetic-programming-
based approaches, this is typically done by limiting the number
of terms in the expression. For the EQL network, we enforce
this through the use of sparsity regularization on the network
weights such that as many of the weights are set to 0 as
possible. While Kim et al. [12] primarily use a smoothed
L0.5 regularization, in this work we use a relaxed form of
L0 regularization [20]. We briefly review the details here and
refer the reader to [12] and [20] for more details.

The weights of the neural network are reparameterized as

W = W̃ ⊙ z

where z has the same dimensions as W and can be interpreted
as a gate variable, and the multiplication is componentwise.
Ideally, each element of z is a binary “gate” such that z ∈

{0, 1}. However, this is not differentiable and so we allow
z to be a stochastic variable drawn from the hard concrete
distribution [20]

u ∼ U(0, 1)
s = sigmoid

([
log u − log(1 − u)+ logα

]/
β
)

s̄ = s(ζ − γ)+ γ)

z = min(1,max(0, s̄))

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 3

Fig. 1. EQL architectures and variants for parametric equations. (a) Architecture of the base EQL network with relaxed L0 regularization. The weights W
are reparameterized as an elementwise product of the gate variables z and the weight values W̃. (b) Core of the symbolic layer, where the activation functions
consist of the primitive functions for symbolic regression, where each element may contain a different primitive function and primitive functions may take
multiple inputs. (c) Architecture of the SEQL network. Note that the indexing x (j) is for the time step. Each horizontal row represents an EQL network for
each time step. The gate z is shared across time steps. (d) Architecture of the HEQL network. Note that in all the schematics, the final (linear) layer is omitted
for visual simplicity.

where u is a random variable drawn from the uniform
distribution U , α is a trainable variable that describes the
location of the hard concrete distribution, and β, ζ, γ are the
hyperparameters that describe the distribution. The random
variable s is distributed as a binary concrete distribution, which
is a continuous relaxation of a binary random variable [21].
Finally, the distribution is stretched out to the (γ, ζ) interval
and “folded” to delta peaks at 0 and 1 to achieve the hard
concrete distribution.

In the case of binary gates, the regularization penalty would
simply be the sum of z (i.e., the number of nonzero elements
in W). However, in the case of the hard concrete distribution,
an analytical form for the expectation of the regularization
penalty over the distribution parameters can be calculated [20].
The sparsity regularization loss is then

LR =

∑
j

sigmoid
(

logα j − β log
−γ

ζ

)
where j is indexing through all the weight components. While
Louizos et al. [20] apply group sparsity to the rows of the
weight matrices with the goal of computational efficiency,
we apply parameter sparsity (to individual elements) with the
goal of simplifying the expression in symbolic regression.

The advantage of L0 regularization is that it enforces
sparsity without placing a penalty on the magnitude of the
weights by placing a penalty on the expected number of
nonzero weights. In addition, it lends itself to a straightforward
definition of group sparsity across time steps as we will see in
Section III-A. In our experiments, we use the hyperparameters
for the L0 regularization suggested by Louizos et al. [20].

3) Skip Connections: In this work, we also add skip
connections to the EQL network to introduce an inductive
bias toward simpler equations while simultaneously enabling
the discovery of more complex equations. The most well-
known type of skip connections were introduced in ResNets,
which take the output of a layer and add it to the layer ahead
with the goal of allowing gradient information to efficiently
propagate through many layers and enabling extremely deep
architectures [22]. While these would be feasible to implement
in the EQL network, they would increase the complexity
of the equation as information flows through the network.
In contrast, we turn to the skip connections introduced by
DenseNets which concatenates, rather than sums, the output
of the previous layer with that of the next layer [23]. More
specifically, we modify (2) as

h(i) =
[

f
(
g(i)

)
;h(i−1)]. (3)

Skip connections introduce a slight inductive bias toward
learning simpler functions, since functions can route “directly”
to the output without needing to go through the identity
primitive function of successive layers. In addition, skip
connections minimize instabilities during training that can
arise as a result of gradients exploding as they pass through the
primitive functions. Thus, skip connections allow us to train
EQL networks with more layers, which in turn can enable
learning more complex equations.

B. Parametric Equations

In this work, we focus specifically on learning equations
where the structure of the equation (i.e., terms and operators)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Learning parametric equations. (a) and (b) Learning the function f1 which contains a discontinuity at t = 0. (c) and (d) Learning the function
f2 which corresponds to a sinusoid with a frequency that varies nonsmoothly as a function of t . (a) and (c) Predictions after training the EQL, SEQL, and
HEQL networks in the range −3 < x < 3 for various values of t . Values outside of this range (highlighted in red) are extrapolated. (b) and (d) Learned
functions for the varying coefficients.

TABLE I
LEARNED EQUATIONS BY THE EQL NETWORK AFTER

TRAINING ON SIMPLE PARAMETRIC EQUATIONS

remains constant, but the value of the numerical coefficients
or constants may vary over the dataset. Prior works have
focused specifically on learning PDEs where the differential
terms are fixed but the coefficients vary over space or time,
termed parametric PDEs [17], [18], [19]. Here, we generalize
symbolic regression to parametric equations. The ability to
learn parametric equations may greatly expand the scope of
symbolic regression, especially in cases where the coefficients
may vary over the dataset in arbitrarily complex ways
that are difficult to express symbolically. Such behavior
would greatly impede the performance of traditional symbolic
regression approaches that attempt to find the simplest
equation describing the dataset. To illustrate this, we train the
EQL network on two simple parametric equations listed in
Table I.

The first function is a parabolic curve described as

f1(x, t) = t x2
+ 3 sgn(t)x

where sgn is the sign function (also known as the signum
function)

sgn(t) =


−1, if t < 0
0, if t = 0
1, if t > 0.

The function notably contains a discontinuity at t = 0 and
thus cannot be described in terms of smooth functions.

As seen in Table I, the EQL network learns an overly
complicated and incorrect equation with over a dozen terms
that likely signify its attempt to fit the discontinuity. It is
difficult to interpret and thus fails the goal of discovery.
In addition, the results of fitting the EQL network to the data
are shown in Fig. 2(a). While the EQL network seems to
fit reasonably well inside the training regime (in the range
−3 < x < 3), it fails to extrapolate well since it has not
learned the correct equation. (In principle, the function f1 is
simple enough such that an EQL network with sigmoidal
activation functions could approximate it with reasonable
accuracy, but we choose this example to illustrate some of
the difficulties of symbolic regression.)

In the second example, we look at a sinusoidal curve where
the frequency varies nonsmoothly as a function of time

f2(x, t) = sin(j (t)x)

where we have defined a “jagged” function

j (t) =


0.5t + 2.5, if t < 0
−0.5t + 2.5, if 0 ≤ t < 1.5
t + 0.25, otherwise.

The jagged function j (t) is illustrated in Fig. 2(d). As seen
in Table I, the EQL network is unable to learn the parametric
form of the sinusoidal frequency and thus fits poorly.

In contrast, the proposed architectures in Section III are able
to learn the correct equations as shown in Table II, as we will
discuss next.

III. PARAMETRIC EQL VARIANTS

In this work, we propose two variants of the EQL network
to learn parametric equations: the SEQL and the HEQL.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 5

A. Stacked Architecture (SEQL)

The first extension we propose to analyze parametric
equations is to train a separate EQL network for each time
step, an architecture that we call the SEQL network. Suppose
we have a dataset that is indexed by the time step j

D =

{{
x (i, j), y(i, j)}N (j)

i=1

}Nt

j=1
(4)

where Nt is the number of time steps and N (j) is the number
of data points in the j th time step (note that N (j) does not
need to be constant across time steps). For layer i of the
SEQL network, we can construct Nt separate weight matrices,
{W̃(i, j)

}
Nt
j=1, such that (1) and (2) are modified as

g(i, j)
= W(i, j)h(i−1, j) (5)

h(i, j)
= f

(
g(i, j)). (6)

In other words, we parameterize a separate EQL network for
each time step, as shown in Fig. 1(c).

If we naïvely train Nt separate EQL networks, then it is
possible that each network may learn a different equation
in each time step. In addition, each network would only
see approximately 1/Nt of the total data, thus reducing data
efficiency. To counteract this, we enforce that the different
networks learn the same equation by implementing group
sparsity through weight sharing of the gate variable z. For
the i th layer of the j th time step, we further modify (6) as

h(i, j)
= f

((
W̃(i, j)

⊙ z(i)
)
h(i−1, j)). (7)

Note that z is not parameterized with respect to the time step j .
For an architecture with L hidden layers, there are (L +1) ·Nt

weight matrices and L + 1 gate matrices.
Another modification we make to the architecture is

weight regularization across time steps to introduce an
inductive bias toward smoothness in the coefficients. We use
L2 regularization loss between adjacent time steps. Looking at
just a single element wk,l of W in a single layer for notational
simplicity, the interlayer L2 loss is simply

L S,k,l =

Nt−1∑
j=1

(
w
(j+1)
k,l − w

(j)
k,l

)2
(8)

and the total interlayer regularization loss is

LS =

∑
i,k,l

L(i)S,k,l (9)

where i indexes the layer. This regularization pushes
coefficients in adjacent time steps closer together and can more
effectively counteract noisy datasets.

B. HEQL Architecture

We also propose a second variant of the EQL network, the
HEQL network, in which the weights W̃ are reparameterized
as a function of the varying coefficient, i.e., W̃(t). While a
number of models can be used to parameterize the weights,
we use a fully connected neural network as it is a flexible
model that can fit arbitrary functions and can be trained with
backpropagation, allowing the entire system to be trained

end-to-end. We call this fully connected neural network
the meta-weight unit (MWU). The architecture is shown in
Fig. 1(d).

This idea is similar to that of hypernetworks, in which a
neural network is used to generate the weights of another
neural network [24]. The general idea of using a network to
parameterize or interact with the weights of another network
has been most notably leveraged for meta-learning [25],
[26], [27], [28] and has also been applied to a variety
of other architectures, including the neural ODE [29] and
HyperPINN [30].

The HEQL has a separate MWU in each layer (including
the linear output layer) which takes the parametric variable
t as an input and outputs the weight matrix W̃(i)(t) for that
layer. The gate variables z are not modified and are thus not a
function of t . As a result, all the “time steps” share the same
sparsity regularization, thus avoiding the need for any further
modifications to implement group sparsity.

The advantage of this architecture compared with the SEQL
is that the HEQL does not replicate the EQL network for each
time step, thus saving on computational memory especially
for large Nt . The architecture can also make predictions on
a continuous domain of t and does not need require the
data to align along a fixed grid in time, unlike the prior
work on discovering parametric PDEs [17], [18], [19]. More
specifically, rather than viewing the dataset as (4), we have
greater flexibility and can view the dataset as

D =
{

x (i), y(i), t (i)
}N

i=1. (10)

Although we do not explicitly regularize the functional
space of the parametric coefficients, neural networks tend
to generalize well despite typically being overparameterized,
which is a topic of significant interest [31], [32], [33],
[34]. In practice, this means that the predictions of neural
networks for regression tasks tend to be smooth, and so the
function of the parametric coefficient will also tend to be
smooth.

IV. RESULTS

We now look at several different problem settings with
parametric quantities that can be analyzed by our system.
For simplicity, we highlight some of the results here, and
the remainder can be found in the appendix. Section IV-A
demonstrates some simple benchmarks to highlight the aspects
of learning parametric equations. Section IV-B shows results
on the PDE datasets taken from other works. Finally,
Section IV-C presents results on 1-D images of a spring system
to demonstrate the ability to perform symbolic regression on
higher dimensional systems.

Our datasets and code are made publicly available at
https://github.com/samuelkim314/parametric-eql.

A. Analytic Expressions

To verify the ability of the SEQL and HEQL networks to
discover parametric equations, we benchmark the networks on
the analytical expressions discussed in Section II-B and listed
in Table I. While we train the networks on data drawn from

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
RESULTS FOR TRAINING ON PARAMETRIC ANALYTIC EXPRESSIONS. LEARNED EQUATIONS ARE EXTRACTED FOR VARIOUS VALUES OF t

the domain x ∈ [−3, 3], we test the networks on a wider
domain x ∈ [−5, 5] to evaluate extrapolation performance.
In Appendix B, we also provide benchmarks for additional
analytic expressions.

Fig. 2 shows the results for learning f1 and f2 using
the SEQL and HEQL networks. The true function and the
predicted function are plotted for various values of t . In all the
cases, the SEQL/HEQL predictions are visually indiscernible
from the true function in both the training regime and the
test regime, demonstrating that the architectures are able to
extrapolate. As in the case of the original EQL network, the
learned equations can be extracted from the trained network
by simply processing the learned weights with software for
symbolic mathematics. In particular, we use SymPy, a Python
package for symbolic mathematics, to simplify the resulting
expression [35]. For clarity, we also omit negligible terms
(i.e., those with coefficient magnitudes < 0.01) in the final
expression. The extracted equations found by the SEQL and
HEQL for the parametric function f1 and f2 at various time
steps are shown in Table II. The mean squared error (mse) on
the test datasets can be found in Appendix B.

Upon inspection of the extracted equations over multiple
time steps for learning f1, we see that the architectures have
successfully discovered the function f̂ 1 = a(t)x2

+b(t)x+ϵ(t)
where a(t) and b(t) are the varying coefficients and ϵ is
a small number that can be either eliminated with further
training or ignored upon inspection. The predicted parametric
coefficients a(t) and b(t) match the true coefficients extremely
closely, as seen in Fig. 2(b). Note that the SEQL/HEQL
networks are able to learn the discontinuous sgn function
without any apparent smoothing at t = 0. Discontinuous
coefficients would be difficult to learn using other methods
for parametric equations that rely on local averaging [18] or
smoothing [19]. This also contrasts with the original EQL
network which was unable to learn the parametric equation
as shown in Table I.

For learning the sinusoidal function f2, both the SEQL and
HEQL networks have learned the equation f̂ 2 = sin(a(t)x)
as seen in Table II where a(x) is plotted in Fig. 2(d).
Again, the predictions match the true function extremely
well across time steps and outside of the training regime.
Although sinusoidal functions are typically difficult to learn
through linear regression techniques, the SEQL and HEQL
networks are able to learn this function across multiple spatial
frequencies.

Fig. 3. Results for learning (a) advection–diffusion equation using the HEQL
network and (b) Burgers’ equation using the SEQL network. Left-hand plots
show the predicted values of ut , and the right-hand plots illustrate the varying
coefficient functions.

Note that because the varying coefficient is inside the sgn
and sin functions for f1 and f2, respectively, other methods
for learning parametric equations such as those proposed
in [5] or [19] that rely on linear regression techniques
would not be able to discover these types of equations.
In contrast, the multilayer architecture of the SEQL and HEQL
networks allows for the varying coefficients to be inside
nested functions, enabling discovery of much more complex
parametric equations.

The results for additional benchmark equations are listed in
Appendix B. Interestingly, there is no clear trend on whether
the SEQL or HEQL tends to perform better.

B. Partial Differential Equations

Next, we investigate learning PDEs with varying coefficients
from data. In this setting, a quantity of interest u(x, t) can be
defined by a function of its partial derivatives (e.g., ut , ux ,
ux x) and a parametric dependence on time, µ(t)

ut = N (u, ux , ux x, . . . , µ(t))

where N is the evolution function that we wish to learn. For
notational convenience, we drop the explicit dependence of u
on x and t .

Prior works in discovering parametric equations have
focused on the setting of PDEs [17], [18], [19], as PDEs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 7

TABLE III
MSE AFTER TRAINING ON THE PDE DATASETS

are ubiquitous in describing dynamics in a variety of fields.
For ease of comparison, we benchmark our architectures
on two of the datasets provided by Rudy et al. [17]: the
advection–diffusion equation and Burgers’ equation with
varying coefficients. The partial differential terms (e.g.,
ux , uxx) are precomputed from the dataset and concatenated
with the input u.

We note that SINDy is not able to automatically calculate
cross terms (e.g., uux) and so the cross terms were also
precomputed and fed into SINDy in the original work [17].
We label this approach as “with cross terms” in Table III.
In contrast, the SEQL and HEQL architectures are able to
automatically discover cross terms as necessary, and so we
also carry out experiments that omit the cross terms in the
input, labeled “no cross terms.”

1) Advection–Diffusion Equation: The advection–diffusion
equation describes numerous physical transport systems and
has been applied to describe the movement of pollutants,
reservoir flow, heat, and semiconductors. We use an adaptation
of the equation that includes a spatially dependent velocity
field, as in [17]

ut = f ′(x)u + f (x)ux + ϵuxx (11)

where f (x) = −1.5 + cos(2πx/5) and ϵ = 0.1. Note
that the parametric quantities vary with respect to space
rather than time. Thus, for our experiments, we modify the
SEQL and HEQL architectures to parameterize the varying
coefficient with respect to space (in practice this simply
involves relabeling the dataset).

Table III lists the mse for both the predicted ut and the
learned coefficient functions. Unsurprisingly, SINDy achieves
the lowest mse on ut since it reduces the problem to a
linear system that can be solved efficiently. Interestingly,
SEQL and HEQL achieve better predictions on the coefficient
functions, which is perhaps due to the implicit regularization
in the architectures. Without cross terms, the SEQL and
HEQL achieve an even lower error, which may be due to
the reduced dimensionality of the input. Table IV shows the
equations that the SEQL and HEQL have learned after training
for select values of x . Both the networks have learned an
equation of the form ût = f̂ ′(x)u + f̂ (x)ux + ϵ̂(x)uxx and
have thus successfully discovered the equation structure. The
predicted ût along with the learned parametric coefficients
[i.e., f̂ ′(x), f̂ (x), ϵ̂(x)] are shown in Fig. 3(a) for the HEQL
network, which match the actual values very closely. The
results for the SEQL (not shown) are visually very similar.

2) Burgers’ Equation: Burgers’ equation is an important
differential equation originally proposed to model turbulent

flow that has also been applied to other processes such as
traffic flow and boundary layer behavior. Here, we analyze
Burgers’ equation with an oscillating coefficient for the
nonlinear term, as in [17]

ut = f (t)uux + ϵuxx (12)

where f (t) = −(1 + (sin(t)/4)) and ϵ = 0.1.
Note that this equation contains a cross term, uux . When

including the cross term in the input, SINDy correctly learns
the equation and achieves a low error, as shown in Table III.
However, when the cross term is omitted from the input,
SINDy is unable to learn the correct equation and adds
incorrect terms (i.e., ux , uxxx) to compensate. In contrast,
the SEQL and HEQL are able to achieve low errors in both
the cases and achieve the correct equation form as shown in
Table IV. Fig. 3(b) shows that the SEQL network is able to
accurately predict the function and the parametric coefficients.
Thus, our system is able to automatically learn these cross
terms using the multiplication primitive and, more generally,
can learn the form of a nonlinear PDE.

C. Spring System

Finally, we demonstrate the ability of the parametric EQL
networks to perform symbolic regression on structured, high-
dimensional data by integrating our architectures with other
deep learning architectures and training the entire model end-
to-end.

We consider a dataset that consists of pairs of 1-D images
of point particles that interact through a spring-like force. The
input data are a 1-D grayscale image with 64 pixels which
represents a 1-D spatial domain ψ ∈ [−4, 4]. Each image
contains a single particle, represented by a Gaussian with mean
centered at its position ψi and a fixed variance of 0.1. We look
at two different targets for symbolic regression: the spring
force

F = −k(t)(ψ2 − ψ1) (13)

and the spring energy

E =
k(t)

2
(ψ2 − ψ1)

2 (14)

where k(t) = (5 − t)/2. These are interpretable equations in
that we know that the spring force and potential only depend
on the spring constant, k(t), and the distance between the
two particles. The spring constant decreases over time, which
we can imagine represents a spring degrading with use. The
manner in which the spring degrades may or may not be
analytical, and so we treat this as a parametric quantity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
LEARNED EQUATIONS ON SELECT x OR t VALUES (DEPENDING ON THE VARYING PARAMETER) FOR THE PDE DATASETS WITHOUT CROSS TERMS

Fig. 4. Combined architecture used for high-dimensional system tasks
involving a convolutional encoder followed by an EQL network.

To approach this problem, we use the architecture shown in
Fig. 4. Each image is fed into a separate encoder, where the
two encoders share the same weights. The encoder consists
of two convolutional layers followed by three fully connected
layers and a batch normalization layer. Each encoder outputs
a single-dimensional latent variable (either ẑ1 or ẑ2) which
is then fed into the parametric EQL network (which can be
either the SEQL or the HEQL). The batch normalization layer
serves to constrain the range of the latent variable so that the
SEQL/HEQL network does not need to scale to arbitrarily
sized inputs when training end-to-end. The SEQL/HEQL
network has a single scalar output, which is trained to match
either the spring force or the spring energy. The entire network
is trained end-to-end and is only shown the inputs and
the output, but must learn an appropriate representation ẑi .
While there are no constraints on the latent representation ẑi ,
we expect it to have a one-to-one mapping to the true position
of the particle, ψi .

For all the tests, 512 training data points with
ψ1, ψ2 ∈ [−3, 3] were sampled for each of 128 fixed
values of t ∈ [−3, 3]. To evaluate the extrapolation ability
of these architectures, training data points were restricted
to pairs with |ψ2 − ψ1| ≤ 4, while no such restriction was
imposed on testing data. In addition, we compare against
a baseline test of a model consisting of the same encoder
architecture with a dense ReLU network replacing EQL
network. We call this baseline the ReLU network.

The results for learning the spring force are shown in
Fig. 5. All three of the SEQL, HEQL, and ReLU architectures
accurately predict the force inside the training domain, but
only the SEQL and HEQL networks are able to extrapolate
outside of the training regime, whereas the ReLU network
fails to extrapolate. In addition, the SEQL network learns the
governing equation as shown in Table V, with the learned
parametric coefficient plotted in Fig. 5(b) (results for the

Fig. 5. Results for learning the spring force F . (a) Predictions
for select values of t . Outputs with |ψ2 − ψ1| > 4 (highlighted
in red) are extrapolated. (b) Coefficient functions in the equation
F̂(t, ẑ1, ẑ2) = k̂1(t) · ẑ1 − k̂2(t) · ẑ2 learned by the SEQL network. (c) Latent
variable encodings for the force function F learned by (left) convolutional
SEQL network and (right) ReLU network.

TABLE V
LEARNED EQUATIONS OF THE SEQL ON SELECT t VALUES FOR THE

SPRING FORCE FUNCTION F(t, ψ1, ψ2) = −(5 − t)/2 · (ψ2 − ψ1)
IN THE LATENT SPACE AND TRANSFORMED TO THE

ORIGINAL PARAMETER SPACE

HEQL are similar). The equations that the SEQL network
learns are fairly simple and interpretable and can be written
as F̂ = k̂1(t)ẑ1 − k̂2(t)ẑ2. Upon inspection, we see that
k̂1(t) ≈ k̂2(t) and so we can simplify the learned expression to
F̂ = k̂(t)ẑ1 − k̂(t)ẑ2. Thus, the SEQL network has discovered
the true force equation underlying the system.

In addition, while the SEQL network discovers an equation
in terms of ẑ1,2, it also learns a linear mapping of the latent
variable to the true position as shown in Fig. 5(c). While
there is no explicit constraint or regularization placed on the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 9

TABLE VI

LEARNED EQUATIONS OF THE HEQL NETWORK ON SELECT t VALUES FOR THE FUNCTION E(t, ψ1, ψ2) = (5 − t)/4 · (ψ2 − ψ1)
2 IN

THE LATENT SPACE AND TRANSFORMED TO THE ORIGINAL PARAMETER SPACE

Fig. 6. Results for learning the spring energy E . (a) Pre-
dictions for select values of t . Outputs with |ψ2 − ψ1| > 4
(highlighted in red) are extrapolated. (b) Coefficient functions in
f (t, ẑ1, ẑ2) = k̂1(t) · ẑ2

1 + k̂2(t) · ẑ2
2 − 2k̂3(t) · ẑ1 ẑ2 learned by the HEQL

network.

latent space, because the EQL network must learn to use the
latent variable to form the equation, the end-to-end training
of the architecture forces the mapping to be an analytical
transformation of the original variable, which in this case
is a linear mapping. In contrast, while it is one-to-one, the
latent variable mapping for the ReLU network is not linear
since there is no bias to make the mapping linear. Using this
linear mapping, we can perform a linear regression to find
the approximate relationship between ẑ and ψ̂ and reconstruct
the discovered equation in terms of ψ̂ , which is shown in the
right-most column of Table V.

We see similar results for the spring potential data, this
time using the HEQL network, in Fig. 6 and Table VI. Again,
the SEQL and HEQL architectures are able to extrapolate
outside of the training regime, whereas the ReLU network
fails to extrapolate. Note that in this case, the HEQL learns
Ê(t, ẑ1, ẑ2) = k̂1(t)ẑ2

1 + k̂2(t)ẑ2
2 − 2k̂3(t)ẑ1 ẑ2 + ϵ(t) where

k̂1 ≈ k̂2 ≈ k̂3 and ϵ is small. Thus, the HEQL network has
discovered the correct equation.

V. DISCUSSION

All the results for both the architectures can be found in
the appendix. Comparing the two architectures, for a moderate
number of time steps (e.g., Nt < 512) the SEQL has fewer
parameters than the HEQL; despite this, however, the HEQL
trains on each minibatch 3.7× faster than the SEQL on the
analytic equations for our settings of hyperparameters and
network sizes. This is likely because the limiting factor is
the computation of the activation functions, which must be

processed separately for each component of the layer output
h (whereas in a conventional neural network the use of a single
activation function is able to take advantage of vectorization
optimizations). For a larger number of time steps, (e.g.,
Nt > 512), the HEQL is more memory-efficient as well since
the SEQL parameters scale linearly with the number of time
steps. Thus, the HEQL is able to scale to larger datasets. Future
work can include reducing the memory requirements of the
MWU inside the HEQL, perhaps by parameterizing the EQL
network using lower rank matrices so that the dimensionality
of the MWU output can be reduced.

In terms of the data format, prior methods rely on gridded
data [17], [18] while both the SEQL and the HEQL allow
a variable grid along the varying dimension. The HEQL
architecture takes this flexibility a step further in that it is able
to interpolate in time and make predictions at arbitrary time
points, whereas the stacked architecture is fixed to certain time
points. On the other hand, we find that the stacked architecture
is less sensitive to the random initialization and converges
more quickly to the solution. Thus, the two architectures trade
off between performance and flexibility. One possible direction
for future work to bridge this gap is to introduce different
learning rate schedules for the EQL network and the MWU in
the HEQL architecture, as the EQL network typically requires
large learning rates to escape local minima and converge,
whereas large learning rates may be detrimental to the MWU.

As mentioned in Section IV, the SEQL and HEQL
architectures are also more flexible than previous approaches
in the types of equations that can be discovered. For example,
the previous approaches rely on variants of linear regression
and are thus not able to discover varying coefficients that
are inside other functions such as sin(f (t)x). In addition,
our approach is able to automatically discover cross terms,
whereas the SINDy framework relies on these terms being
precomputed.

VI. CONCLUSION

We have proposed two different variants of the EQL
network—the SEQL architecture and the HEQL architecture—
to enable neural-network-based symbolic regression of
parametric equations where coefficients may vary. We have
demonstrated our system on simple analytic equations, PDEs,
and a dataset encoded as images and have found that we are
able to discover interpretable equations that can extrapolate
outside of the training regime. Our method has the potential to
combine the power of deep learning and symbolic regression to
enable scientific discovery on complex and high-dimensional
datasets.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

We note that in our experiments we used simple functions
for the varying coefficients for simplicity. However, our
method is not constrained to these types of expressions, and
the parametric coefficient can more generally be any arbitrary
function. Thus, our method can be applied to systems that
we know are partially governed by an analytic equation, but
partially governed by some other mechanism that may be too
complex or noisy to capture. This is similar in spirit to methods
for solving PDEs that replace part of the equation with a neural
network, often to correct for discretization errors [36], [37].

The HEQL architecture can be viewed as implementing
functional regularization. Functional regularization, which
imposes regularization on the learned function rather than on
the parameters, is attractive as it is much more intuitive and
can lead to more natural methods for tasks such as continual
learning [38], [39]. It has been explored in neural networks
through regularizing the predictions on batches of data [38] or
through defining the prior over functions rather than weights
in the case of Bayesian neural networks [40], [41]. In the case
of the EQL network, the coefficients of the resulting equation
are typically very simple functions (oftentimes the identity
function) of the weights themselves. This means that in
practice, the L2 smoothing regularization in the SEQL network
architecture often implicitly applies to the function space, even
though we are explicitly applying the regularization in the
weight space. In the case of the HEQL architecture, the output
of fully connected neural networks will tend to be smooth
due to modern training methods such as stochastic gradient
descent (which is a topic of great interest in itself), and so the
MWU itself acts as a regularization on the function space of
the EQL network. Given this inherent regularization, another
interesting direction for future work would be to characterize
the data efficiency of our proposed architectures, especially
for sparse datasets, as large datasets are not always available
in science and engineering applications.

While the proposed architectures in this work aim to address
the challenge of discovering parametric equations, they still
share some of the limitations of the original EQL network
proposed by Kim et al. [12] including sensitivity to random
initializations and difficulties with converging when using
nonconventional activation functions. The skip connections
and L0 regularization in this work improve the convergence
behavior compared with the original EQL network, but there
is still further room for improvement. For example, the Snake
function, defined as x + (1/a) sin2(ax) where a is a learnable
parameter, could be used to learn periodic functions while
maintaining monotonicity and thus improve convergence [42].
Padé activation units (PAUs) [43] or the neural arithmetic
logic unit (NALU) [44], [45] could be used to learn rational
functions, since the discontinuity of the division operator
makes it difficult to straightforwardly incorporate as an
activation function. These limitations have not hampered most
of the existing proposed models for discovering differential
equations, as known differential equations rarely include such
terms. However, since such functions are widely prevalent
in science and engineering equations, a future direction
should explore a more robust way to learn these types of
functions.

Fig. 7. (Left) Learning rate and (right) regularization weight schedules during
training relative to base_lr and base_rw.

APPENDIX A
ARCHITECTURE DETAILS

Each of the SEQL and HEQL consists of two hidden layers.
The activation functions in each hidden layer consist of

[1(×2), g(×4), g2(×4), sin(2πg)(×2), g1 ∗ g2(×2)]

where (×i) indicates the number of times each activation
function is duplicated. The sin function has a multiplier inside
so that the functions more accurately represent their respective
shapes inside the input domain of x ∈ [−1, 1]. The exact
number of duplications is arbitrary and does not have a
significant impact on the system’s performance.

For the HEQL, the MWU consists of a fully connected
neural network with three hidden layers of 64, 64, and
256 hidden units, respectively. The hidden layers in the MWU
use the ReLU function as the activation.

The network is trained using the RMSProp optimizer and
a sum of the mse loss and regularization. For the HEQL
architecture, the regularization is simply the L0 regularization,
whereas the SEQL has an additional regularization across time
steps to induce smooth functions as described in Section III-A

For both learning rate and regularization weight schedules,
we use a one cycle policy, as shown in Fig. 7. We start off
with a small learning rate and regularization to ensure the EQL
network settles into a stable configuration containing many
different terms such that the network weights do not explode.
The learning rate is ramped up to allow the EQL network
escape local minima in search of global minima, and the
regularization is likewise increased to pare down the number
of terms. Finally, we expect the EQL network to have learned
the correct equation structure partway through training, and so
we decrease the learning rate and regularization to fine-tune
the weights and optimize primarily for mse.

To extract the learned equation from the trained EQL
network, we can simply multiply the weights by the primitive
functions using symbolic mathematics. We implement this
using SymPy, which can automatically simplify the expres-
sion [35]. In addition, we use a threshholding procedure in the
final expression where we drop terms where the coefficient is
smaller than a threshold, which we set to 0.01.

All the experiments were run on an NVIDIA GeForce
RTX 2080 Ti graphics card. On average, the SEQL took 1490 s
while the HEQL took 413 s to perform 34 800 mini-batch
gradient steps on the analytic tasks for our settings of the
architecture and training details. As mentioned in Section V,
the HEQL is able to scale more efficiently than the SEQL to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 11

TABLE VII
LEARNED EQUATIONS FOR ADDITIONAL ANALYTIC EXPRESSIONS

TABLE VIII
RESULTS FOR ANALYTIC EXPRESSION BENCHMARKS

larger number of time steps, and thus, larger datasets, since
the SEQL scales linearly with the number of time steps.

APPENDIX B
ADDITIONAL RESULTS

A. Analytic Expression

For all the tests, 512 training data points with x ∈ [−3, 3]
are randomly sampled for each of 128 fixed, equally
spaced, values of t ∈ [−3, 3] for a total of
512× 128 = 65 536 training examples. To test generalization,
the parametric EQL architectures are evaluated on 256 test
data points with x ∈ [−5, 5] across the same 128 fixed values
of t .

Due to sensitivity of the parametric EQL architectures to
the random initialization of network weights, 40 trials were
run for each function. In practice, the networks only need to
learn the correct equation once over a reasonable number of
trials, since it is possible to construct a validation method that
selects the best equation from a set of learned equations. For
all the results in this article, we simply select the trial with
the lowest generalization error. Other considerations that can
be integrated in the validation process are equation simplicity
and prior beliefs about the equation form, for example.

Additional analytical expression benchmarks and the
discovered equations for f3, f4, and f5 by the SEQL and
HEQL architectures are listed in Table VII. Both the SEQL
and HEQL match the true equations very closely. We also
list various quantitative metrics for these benchmarks in
Table VIII, including the mse on the training and test datasets,
as well as the mean and standard deviation of the test mse over
all the trials. The aggregate metrics over all the trials tend to be
similar in magnitude to the metric of the best trial for many of

the benchmarks, which signifies that the model has learned the
correct equation is a large majority of the trials. When a model
fails to learn the correct equation, the mse on the test dataset
tends to be several orders of magnitude larger than that of the
best trial, which would skew the mean and standard deviation
of the mse. Interestingly, there is no clear trend on whether
the SEQL or the HEQL performs better.

For simple benchmarks such as f3 = t x , both the SEQL
and HEQL architectures are able to find the correct equation
structure nearly 100% of the time, even if the accuracy of the
varying coefficients may vary slightly. However, in other cases
such as f4, the HEQL will sometimes learn the equation

f̂ 4,HEQL = a(t)x2
+ b(t)x + c(t) sin(d(t)x + e(t))

where d(t) is small. This is likely because the architecture
is using the approximately linear region of the low-frequency
sinusoid, and adding it to the b(t)x term. We also note that the
SEQL is able to find the correct equation more often. Another
interesting failure mode is in the case of the sinusoid functions
(i.e., f2 and f5) where the HEQL will sometimes learn the
equation

f̂ 5,HEQL = a(t) sin(b(t)x)+ c(t) sin(d(t)x)

where b(t) ≈ d(t) and a(t) + c(t) ≈ 1. The symbolic
manipulation is unable to combine the two terms, but one can
see upon inspection that the HEQL has learned the correct
form of the varying parameters.

B. Partial Differential Equations

For the advection–diffusion equation, data were sampled
from 256 different points in the x-domain and 512 different
points in the t-domain, for a total of 256 × 512 = 131 072

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

examples. The equation is solved numerically using a spectral
method on the domain x ∈ [−5, 5] and t ∈ [0, 5] with
f (x) = −1.5+cos(2πx/5) and ϵ = 0.1 using code from [17].

For Burgers’ equation, data were sampled from 512 different
points in the x-domain and 256 different points in the
t-domain, for a total of 512 × 256 = 131 072 examples. The
equation was solved numerically using a spectral method on
the domain x ∈ [−8, 8] and t ∈ [0, 10] using code from [17].
Similar to the analytic expression experiments, 80 trials were
run for each equation, and the trial with the lowest training
error was selected.

ACKNOWLEDGMENT

The authors would like to thank Rumen Dangovski,
Anka Hu, and Amber Li for insightful discussions and work
on related projects. The views and conclusions contained
in this document are those of the authors and should
not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Air Force or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] D. J. Griffiths, Introduction to Electrodynamics, 4th ed. Boston,
MA, USA: Pearson, 2013. [Online]. Available: https://cds.cern.ch/
record/1492149

[2] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science, vol. 324, no. 5923, pp. 81–85, Apr. 2009.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19342586

[3] J. Koza, “Genetic programming as a means for programming computers
by natural selection,” Statist. Comput., vol. 4, no. 2, pp. 87–112,
Jun. 1994, doi: 10.1007/BF00175355.

[4] S.-M. Udrescu and M. Tegmark, “AI Feynman: A physics-inspired
method for symbolic regression,” Sci. Adv., vol. 6, no. 16, Apr. 2020,
Art. no. eaay2631.

[5] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937,
Apr. 2016.

[6] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven
discovery of coordinates and governing equations,” Proc. Nat. Acad. Sci.
USA, vol. 116, no. 45, pp. 22445–22451, Nov. 2019.

[7] Z. Long, Y. Lu, and B. Dong, “PDE-Net 2.0: Learning PDEs from
data with a numeric-symbolic hybrid deep network,” J. Comput. Phys.,
vol. 399, Dec. 2019, Art. no. 108925.

[8] P. Y. Lu, J. Ariño, and M. Soljačić, “Discovering sparse interpretable
dynamics from partial observations,” 2021, arXiv:2107.10879.

[9] M. Cranmer et al., “Discovering symbolic models from deep learning
with inductive biases,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 17429–17442.

[10] G. Martius and C. H. Lampert, “Extrapolation and learning equations,”
2016, arXiv:1610.02995.

[11] S. Sahoo, C. Lampert, and G. Martius, “Learning equations for
extrapolation and control,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 4442–4450.

[12] S. Kim et al., “Integration of neural network-based symbolic regression
in deep learning for scientific discovery,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 9, pp. 4166–4177, Sep. 2021.

[13] A. Costa et al., “Fast neural models for symbolic regression at scale,”
2020, arXiv:2007.10784.

[14] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics,
3rd ed. New York, NY, USA: Cambridge Univ. Press, 2018.

[15] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving
Sylvester equation with time-varying coefficients,” IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1053–1063, Sep. 2002.

[16] Z. Yan and V. Konotop, “Exact solutions to three-dimensional
generalized nonlinear Schrodinger equations with varying potential
and nonlinearities,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 80, no. 3, 2009, Art. no. 036607.

[17] S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven
identification of parametric partial differential equations,” SIAM J.
Appl. Dyn. Syst., vol. 18, no. 2, pp. 643–660, Jan. 2019, doi:
10.1137/18M1191944.

[18] H. Xu, D. Zhang, and J. Zeng, “Deep-learning of parametric partial
differential equations from sparse and noisy data,” Phys. Fluids, vol. 33,
no. 3, Mar. 2021, Art. no. 037132.

[19] Y. Luo, Q. Liu, Y. Chen, W. Hu, and J. Zhu, “KO-PDE: Kernel optimized
discovery of partial differential equations with varying coefficients,”
2021, arXiv:2106.01078.

[20] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through L0 regularization,” 2017, arXiv:1712.01312.

[21] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribu-
tion: A continuous relaxation of discrete random variables,” 2016,
arXiv:1611.00712.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[24] D. Ha, A. Dai, and Q. V. Le, “HyperNetworks,” 2016, arXiv:1609.09106.
[25] M. Andrychowicz et al., “Learning to learn by gradient descent by

gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 3981–3989.

[26] T. Munkhdalai and H. Yu, “Meta networks,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 2554–2563.

[27] S. Ravi and H. Larochelle, “Optimization as a model for few-
shot learning,” in Proc. Int. Conf. Learn. Represent., 2017. [Online].
Available: https://openreview.net/forum?id=rJY0-Kcll

[28] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” 2020, arXiv:2004.05439.

[29] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 6571–6583.

[30] F. de Avila Belbute-Peres, Y.-f. Chen, and F. Sha, “HyperPINN:
Learning parameterized differential equations with physics-informed
hypernetworks,” in The Symbiosis of Deep Learning and Differential
Equations, 2021.

[31] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,” J. Stat.
Mech., Theory Exp., vol. 2021, no. 12, Dec. 2021, Art. no. 124003.

[32] J. Liu, G. Jiang, Y. Bai, T. Chen, and H. Wang, “Understanding why
neural networks generalize well through GSNR of parameters,” 2020,
arXiv:2001.07384.

[33] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A ConvNet for the 2020s,” 2022, arXiv:2201.03545.

[34] D. Jakubovitz, R. Giryes, and M. R. Rodrigues, “Generalization error
in deep learning,” in Compressed Sensing and Its Applications. Cham,
Switzerland: Springer, 2019, pp. 153–193.

[35] A. Meurer et al., “SymPy: Symbolic computing in Python,” PeerJ
Comput. Sci., vol. 3, p. e103, Jan. 2017, doi: 10.7717/peerj-cs.103.

[36] J. Pathak, M. Mustafa, K. Kashinath, E. Motheau, T. Kurth, and M. Day,
“Using machine learning to augment coarse-grid computational fluid
dynamics simulations,” 2020, arXiv:2010.00072.

[37] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and
S. Hoyer, “Machine learning–accelerated computational fluid dynamics,”
Proc. Nat. Acad. Sci. USA, vol. 118, no. 21, 2021, Art. no. e2101784118.

[38] A. S. Benjamin, D. Rolnick, and K. Kording, “Measuring and
regularizing networks in function space,” 2018, arXiv:1805.08289.

[39] P. Pan, S. Swaroop, A. Immer, R. Eschenhagen, R. Turner, and
M. E. E. Khan, “Continual deep learning by functional regularisation
of memorable past,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 4453–4464.

[40] S. Sun, G. Zhang, J. Shi, and R. Grosse, “Functional variational Bayesian
neural networks,” 2019, arXiv:1903.05779.

[41] T. G. Rudner, Z. Chen, and Y. Gal, “Rethinking function-space
variational inference in Bayesian neural networks,” in Proc. 3rd Symp.
Adv. Approx. Bayesian Inference, 2020.

[42] L. Ziyin, T. Hartwig, and M. Ueda, “Neural networks fail to learn
periodic functions and how to fix it,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 1583–1594.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/BF00175355
http://dx.doi.org/10.1137/18M1191944
http://dx.doi.org/10.7717/peerj-cs.103

ZHANG et al.: DEEP LEARNING AND SYMBOLIC REGRESSION FOR DISCOVERING PARAMETRIC EQUATIONS 13

[43] A. Molina, P. Schramowski, and K. Kersting, “Padé activation units:
End-to-end learning of flexible activation functions in deep networks,”
2019, arXiv:1907.06732.

[44] A. Trask, F. Hill, S. Reed, J. Rae, C. Dyer, and P. Blunsom, “Neural
arithmetic logic units,” in Proc. Adv. neural Inf. Process. Syst., vol. 31,
2018, pp. 8035–8044.

[45] D. Schlör, M. Ring, and A. Hotho, “INALU: Improved neural arithmetic
logic unit,” Frontiers Artif. Intell., vol. 3, p. 71, Sep. 2020.

Michael Zhang received the B.S. degree in com-
puter science and mathematics (minor in physics)
from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in 2023, where he
is currently pursuing the Master of Engineering
degree.

He is currently a Teaching Assistant with the
Department of Electrical Engineering and Computer
Science (EECS), MIT. His research interests include
machine learning and physics.

Samuel Kim received the A.B. degree in physics
from Harvard University, Cambridge, MA, USA,
in 2015, and the Ph.D. degree in electrical
engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
in 2023.

In 2021, he co-founded Kyber Photonics,
Cambridge, a spinoff from his research on silicon
photonics devices for optical beam steering. He is
currently the Research Scientist of the Applied
Physics Laboratory, Johns Hopkins University,

Laurel, MD, USA. His research interests include photonics, computational
electromagnetics, optimization, deep learning, and scientific machine
learning.

Dr. Kim was a recipient of the National Defense Science and Engineering
Graduate (NDSEG) Fellowship in 2019.

Peter Y. Lu received the A.B. degree in physics and
mathematics from Harvard University, Cambridge,
MA, USA, in 2016, and the Ph.D. degree in physics
from the Massachusetts Institute of Technology
(MIT), Cambridge, in 2022.

He was the National Defense Science and
Engineering Graduate (NDSEG) Fellow of MIT.
He is currently an Eric and Wendy Schmidt AI in
Science Post-Doctoral Fellow with The University
of Chicago, Chicago, IL, USA, working at the inter-
section of physics and machine learning. He aims

to develop new computational methods for modeling and understanding
physical systems with an emphasis on incorporating physics-informed
priors and identifying relevant and interpretable latent representations. His
research interests include physics-informed machine learning and interpretable
representational learning with applications in nonlinear dynamics, condensed
matter physics, photonics, fluid dynamics, and biophysics.

Marin Soljačić was the Founder of WiTricity Cor-
poration, Watertown, MA, USA, in 2007, LuxLabs,
Boston, MA, USA, in 2017, and Lightelligence,
Boston, in 2017. He is currently a Professor
of physics with the Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA. His main
research interests include artificial intelligence and
electromagnetic phenomena, focusing on nanopho-
tonics, nonlinear optics, and wireless power transfer.

Prof. Soljačić has been an International Member of
the Croatian Academy of Engineering since 2009.

He was a recipient of the Adolph Lomb Medal from the Optical Society of
America in 2005 and the TR35 Award of the Technology Review Magazine
in 2006. He has received the MacArthur Fellowship “Genius” Grant in 2008;
the Blavatnik National Award as well as Invented Here! (Boston Patent Law
Association) in 2014; and “The Order of the Croatian Daystar, with the image
of Rud̄er Bošković,” the Croatian President’s Top Medal for science, in 2017.
In 2011, he became the Young Global Leader (YGL) of the World Economic
Forum. In 2017, the Croatian President also awarded him with “The Order of
the Croatian Interlace” medal. He was a Highly Cited Researcher according
to WoS from 2019 to 2022. In 2023, he has received the Max Born Award
from Optica.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on May 08,2024 at 02:39:09 UTC from IEEE Xplore. Restrictions apply.

