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The umpolung functionalization of imines bears vast synthetic
potential, but polarity inversion s less efficient compared with the

carbonyl counterparts. Strong nucleophiles are often required to

react with the N-electrophiles without catalytic and stereochemical
control. Here we show an effective strategy to realize umpolung of

imines promoted by organocatalytic aromatization. The attachment

of strongly electron-withdrawing groups to imines could enhance the
umpolung reactivity by both electronegativity and aromatic character,
enabling the direct amination of (hetero)arenes with good efficiencies
and stereoselectivities. Additionally, the application of chiral Brgnsted
acid catalyst furnishes (hetero)aryl C-N atropisomers or enantioenriched

aliphatic amines via dearomative amination from N-electrophilic aromatic
precursors. Control experiments and density functional theory calculations
suggest an ionic mechanism for the umpolung reaction of imines. This
disconnection expands the options to forge C-N bonds stereoselectively on
(hetero)arenes, which represents animportant synthetic pursuit, especially

in medicinal chemistry.

Umpolungrefersto the reversal of the intrinsic polarity of functional
groups, the underlying reactivity principle of many useful chemi-
cal reactions otherwise inhibited by the mismatch of electronics'™®.
Electron-deficient carbonyl groups constitute the most illustrative
examples of reactivity umpolung that, under the auspices of N-het-
erocycliccarbene (NHC) catalysis, enable many important C-Cbond
formation reactions” ™. As a closely related class of functionality,
imines are engaged in wide array of transformations that proceed
through nucleophilic addition to the electrophilic carbon'*'°. Syn-
theticefforts to reverse the usual imine reactivity have, however, not
enjoyed the same level of success” >, The weaker electrophilicity of
imine carbons could obstruct complete polarity inversion, which
oftenreflects as imperfect site selectivity. Aninspirational advance
was introduced by Deng and co-workers'®, who designed chiral phase-
transfer catalysts to promote generation and reaction of 2-azaallyl
anions with enals with high efficiency and selectivities, charting new
pathway to chiral amines.

By comparison, Kagan and Fiaud characterized the reactivity
umpolung of imine nitrogen on electron-poor a-imine esters almost
half a century ago?. Successful exploration of this reactivity concept
was later achieved by Shimizu® mainly for N-alkylation, and Kiirti* in the
synthesis of diaryl-, arylalkyl-and dialkylamines. The reversed electronic
profile alsorenders the N-electrophilicimines to be well-suited precur-
sors of a-amino acid derivatives and amines”. Although these schemes
do not require transition metal catalysts, effective C-nucleophiles for
this chemistry are largely confined to moisture- and air-sensitive orga-
nometallicreagents. Moreover, chemoselective N-functionalization was
reinforced by the restricted access to C-site due to bulky substituents
(Fig. 1a), and the stereochemical control of this stoichiometric pro-
cess remains elusive. These restrictions provide a strong incentive to
develop a catalytic nitrogen umpolung strategy, which could operate
foranexpanded range of nucleophiles with rigorous control of chemo-
and stereoselectivity. The establishment of scuh an approach would
signify amajor conceptual advance with practical consequences.
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Fig.1|Motivation and design for umpolung ofimines. a, Inherent polarity
ofimines and developed strategies for imine umpolung. b, Our design for
polarity reversal of imine promoted by aromatization. Features: organocatalysis,
absolute chemoselectivity control at N atom, mild conditions and versatile
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asymmetric synthetic applications; EWG, electron-withdrawing group. Ar-P,
precursor of aromatic ring. ¢, This work: imine N-functionalization streamlines
the syntheses of N-aryl frameworks, aliphatic amines and N-(hetero)aryl
atropisomers fromindole-derived imines and iminoquinones.

By virtue of the tremendous thermodynamic driving force, an
aromatization event could empower challenging transformations that
involve C-C bond activation, which are unattainable by conventional
approaches®™', The enabling nature of this process led us to surmise
thatthe favourable thermodynamics of aromatization could best tackle
the reactivity challenge to achieve umpolung of imines (Fig. 1b). We
considered initiating the reaction through protonation of the Lewis
basic heteroatom on arene precursors with Brgnsted acid catalyst.
The delocalization of the developed positive charge to imine nitrogen
byresonanceis thenenhanced by aromatization. This would augment
the electrophilicity of imine nitrogen in readiness for nucleophilic
addition. The catalytic turnover is accomplished with the release of
proton upon formation of the C-N axis.

Of further importance, the strong aromatization-derived driv-
ing force should enable extension of the umpolung reactivity to
softer nucleophiles such as (hetero)arenes. This would strategically
complement the existing suite of transition metal-catalysed C-N
cross-coupling®* reactions to assemble aromatic amines, which
are ubiquitous substructures in biologically active natural products
and drugs®**. As more powerful chiral Brgnsted acids*** are being
developed to tackle increasingly challenging synthetic problems, we
alsolooked towards applying this catalytic tool to set the configuration
of the N-aryl axis. To this end, it is envisioned that bifunctional chiral
phosphoricacid (CPA)*>* catalysts will be well positioned to effect the
proton transfer and activate the reactants. Nonetheless, this polarity
inversionstrategy comes with the challenging tasks of identifying suit-
ablearomatic precursors and achieving regioselective localization of
positive charge on these reactants.

In this Article, we describe how these challenges are success-
fully addressed in our endeavours to realize the envisioned strategy.
As detailed below, imines found on indole and iminoquinones have
been developed as effective N-electrophilic heteroarene and arene
precursors (Fig. 1c). A variety of aromatic and heteroaromatic nucle-
ophiles could undergo this umpolung reaction, which yield chiral
amine frameworks via arene amination or dearomative amination with
exquisite stereoselectivity and absolute N-selectivity. The N-arylation
of indole-derived imines by 1-naphthols and 1-naphthylamines oper-
ated with excellent efficiency in the presence of phosphoric acid to
yield 4-aminonaphthalen-1-ols and naphthalene-1,4-diamines that
could harbour diverse substituents. The chiral acid catalyst directed
the C-N coupling stereoselectively with dearomatization of naphthol
nucleophiles, furnishing tertiary amines with attaching indole and
naphthalen-1(4H)-one moieties. Additionally, the C-Nlinkage between
iminoquinones and naphthylamines or benzoindoles was established
with well-defined axial configuration to generate N-(hetero)aryl atro-
pisomers. These catalytic asymmetric dearomatization (CADA) reac-
tions represent an efficient method to rapidly build up molecular
three-dimensionality from flat aromatic systems with stereoselectivity
upon C-Nbond formation*‘. As well as contributing an appealing addi-
tion to this toolbox, this chemistry reveals new disconnection for the
retrosynthesis of (hetero)aromatic and aliphatic amines in general.

Reaction optimization

The initial phase of the study was aimed at designing imines based on
indole as potential heteroaromatic precursors. As acompelling proof of
concept, wewere encouraged to observe the umpolungreactivity ofimine
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Table 1| Organocatalytic umpolung of imines to construct N-aryl frameworks®

Phe N C
Ph OO PA1 (10 mol%) N : . o._.0
+ -G A p o~ \OH
CH,Clp (4 ml), 25°C, 1 h d . 0
16 OH TN,
E-1a N-1a
(0.20 mmol) (0.30 mmol) OH  1,88% CCDC: 2092420 PA1
H H
Ph N 1,R=0H, 88% Ph N
Ts 5 \ 7 N\ 2,R = NHj, 90% Ts 5 O Me
— 3, R = NHBn, 88%
4, R = NHE, 90%
5, R = NHPh, 92%
= NH(o- .
! 6, R = NH(2-naphthyl), 92% OH 7 84%
L A O
R. //o
10, 86% 11, 85% 12, 90% P 15, 95% 16, 93% 17, 94%
4{ Yo, “ OO 4 Yu 4 N, 2
NMe,
13, 90% 14, 86% 18, 95% 19, 92% 20, 93%

3 @Y 550 &0 &Y

NMe, 21,92% NMe, 22, 95% NMe, 23,92% Hy,  24,93% OH 25, 90%
-§_©_Me _g_Q_tBu _§_© -g_QOMe -g_QPh
26, 82% 27, 82% 28, 85% 29, 84% 30, 85%
(CCDC: 2181572)
1
O TING | L e~ 4
r X
’i‘z Me S
31, 86% 32, 84% 33,83% 34, 85% 35, 85% 36, 86%
iPrO,C EtO,C H EtO,C H EtO,C H

NH,

OH 37, 86%

38, 85%

- ‘
N

R = 2-naphthyl

39, 85% Hy, 40,87% NHR 41, 90%

Reaction conditions: phosphoric acid PA1(10mol%), E-1 or E-2 (0.20 mmol) and N-1 or N-2 (0.30 mmol) were dissolved in CH,Cl, (0.05M, 4ml). The mixture was stirred at 25°C for 0.5-1h.

Isolated yield provided based on imine. Ts, p-toluenesulfonyl.

E-1aderived from2-phenylindole, which bears anelectron-withdrawing
N-tosyl imine group at C3 position. In the presence of phosphoric acid
(Table1), thereaction of E-lawith 1-naphthol N-1aforged the C-Naxisin
product1in88% yield under the optimal conditions. Having confirmed
the structure of 1by X-ray diffraction analysis, the substrate generality
of this catalyticumpolung reaction was investigated.

Aside from 1-naphthol N-1a, 1-naphthylamines were identified
as suitable nucleophiles. The free 1-naphthylamine (2) and different

N-substituted derivatives (3-6) reacted with N-electrophilic E-1ain excel-
lent yields (88-92%). The 2-phenylindoles equipped with 6-methyl or
7-ethyl substituent and benzoindole with additional fused ring afforded
the N-aryladducts7-9in 83-86%yield. Onthe other hand, the umpolung
reaction of1-naphtholN-1aand 2-phenylindoles bearing various arylsulfo-
nylimines proceeded ingood efficiencies (10-14, 85-90%). Besides phe-
nylsulfonyl with 4-phenyl, 4-tert-butyl, 4-bromo- or 4-nitro-substitution
(10-13),1-naphthylsulfonyl group (14) could be applied. Expectedly, the
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Table 2 | CADA of 1-naphthols via umpolung of imines

Ph “
N (o} \
»—ph tBu
CPA (10 mol%) Me™ @
+ 3 ; tBu
tBu .
Me S o Conditions O‘
o tBu
E-1m (0.10 mmol) N-1¢ (0.15 mmol) 42
o
Reaction development?
Entry CPA Solvent Temp. Time (min) Yield (%)b e.e. (%)° Ar
1 (R)-C1 CH,Cl, r.t. 5 98 0 OO
o .0
2 (R)-C2 CHCl, rt. 5 97 44 P
(o} OH
3 (R)-C3 CH,Cl, rt. 5 98 18 OO
4 (R)-C4 CH,Cl, rt. 5 94 74 Ar
5 (R)-C5 CH,Cl, r.t. 5 98 77 (R)-C1, Ar = 4-CF3CgH,
- HCI it
6 (R)-C5 CHClj3 rt 5 96 79 (R1-C2, Ar = 9-anthryl
7 (R)-C5 DCE rt. 5 97 82
(R)-C3, Ar = 2,4,6-Cy3CgH>
8 (R)-C5 toluene r.t. 5 97 84
9 (R)-C5 toluene 0°C 10 97 86 (R)-C4, Ar =2,4,6-CpsCeHz
10 (R)-C5 toluene -40°C 20 97 (92) 91 (R)-C5, Ar = 2,4,6-iPr3CgH,
Substrate generalityd H H H H
Ph N Ph N Ph N Ph N
1 T P T 1 T 1 T
Me Me Me Me
tBu
e} Me O F (0] Cl o
43, 88%, 90% e.e. 44, 90%, 81% e.e. 45, 86%, 81% e.e. 46, 88%, 95% e.e.
CCDC: 2252804
H H H H
Ph N Ph N MeO Ph N Ph N
(e} \ (e} \ (e} (e} \
nPr n-Hexyl N iPr
l I: tBu l I: tBu l IT tBu l I: tBu
Bu tBu I ' tBu I ' tBu I '
o (e} (e} (e}
47, 92%,93% e.e. 48, 92%, 90% e.e. 49, 90%, 94% e.e. 50, 90%, 92% e.e.
CCDC: 2261521
Ph “ Ph H Ph “
(e} 0}
| | Br
Cy S y O N
B \ H H
I I tBu ! I tBu I I tBu
Bu tBu I * tBu I !
O O O

51, 90%, 92% e.e.

52, 82%, 83% e.e.

53, 80%, 81% e.e. 54, 75%, 80% e.e.

Reaction conditions: CPA (10mol%), E-Im (0.10mmol) and N-1¢ (0.15mmol) in solvent (4 ml) at the specified temperature. Yields were determined by 'H nuclear magnetic resonance using
1,3,5-trimethoxybenzene as an internal standard. The isolated yield is provided in parentheses based on imine. “The e.e. value was determined by chiral stationary HPLC. “Reaction conditions:
(R)-C5 (10mol%), E-1(0.20 mmol) and N-1(0.30 mmol) were stirred at -40°C for 5min. Then toluene (4 ml) was added in one portion. The solution was stirred for 20 min at this temperature.
The isolated yield is provided based on imine, and the e.e. value was determined by chiral stationary HPLC.

hightolerance tosulfonyl group variations was observed when examined
inthe context of N,N-dimethyl-1-naphthylamine (15-20, 92-95%) while
substitution on 2-phenylindole or 1-naphthylamine also had a limited
influence on the reaction outcome (21-24). It was remarkable that the
replacement of N-tosyl with the N-acetyl group on imine did not affect
the smooth generation of N-aryl amide 25in 90%yield.

The method could extend beyond 2-phenylindole-based imines:
the C2 ester group also efficiently supported the umpolung reactivity

ofindole-based imines. As with previous cases, sulfonyl connected to
phenylrings of differentiated electronics (26-32), naphthalene (33),
thiophene (34) and alkyl entities (35-36) did notimpact the amination
efficiency with1-naphthol (82-86%). Other alkyl ester onindole-imines
also accommodated the formation of aryl amines 37-38 in similar
efficiencies. The umpolung reactivity was upheld in this class of imine
substrates to afford the amination products 39-41in 85-90% yield
when1-naphthylamine and the derivatives were screened.
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Table 3 | Catalytic asymmetric umpolung of iminoquinones to synthesize N-aryl atropisomers

cl
HO
Cl tBu O
Ts
o . OO CPA (5 mol%) cl N
Ts Toluene (0.05 M), 25 °C, 4 h tBu
Cl NHR (R =4-Me-CgHy)

E-3a (0.10 mmol) N-2i (0.10 mmol)

55 NHR

Reaction development?

(R)-C6, Ar = 4-PhCgH,
75%, 56% e.e.

(R)-C7, Ar = 4-tBuCgH,
87%, 59% e.e.

(R)-C8, Ar = 4-CF5CgH,
82%, 27% e.e.

(R)-C9, Ar = 3,5-(CF3),CgHs
85%, 82% e.e.

/N

(R)-C10, Ar = 1-naphthyl
94%, 90% e.e.

(R)-C11, Ar = 9-phenanthrenyl
93%, 84% e.e.

(R)-C10, Ar = 1-naphthyl
95%, 92% e.e. (7.5 mol%)°

(R)-C10, Ar = 1-naphthyl
97%, 94% e.e. (7.5 mol%)°©

oot
o .0
_P
CoC T
Ar

Substrate generality?
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HO —g@Me
o O N Ts 55, 97%, 94% e.e.
tBu
o e

59, 85%, 94% e.e.

e

56, 92%, 88% e.e.

e

60, 97%, 92% e.e.

Cl Cl Cl

NHR
65, 83%, 82% e.e.

NHR

64,90%, 91% e.e. 66, 70%, 81% e.e.

R = 4-Me-CgH, for 63-82 5 Q Me
- R
c. g

Ho &

77, 75%, 95% e.e.

L,

78, 85%, 93% e.e.

70,R=H, 86%, 95% e.e.
N _R! 71, R = Br, 86%, 94% e.e.
W\ 72, R = CF3, 92%, 96% e.e.

Bu 73, R=NOgy, 88%, 94% e.e.

(CCDC: 2153493)
NHR

Cl

74, R = OMe, 87%, 93% e.e.
75, R=Ph, 87%, 95% e.e.
76, R = tBu, 88%, 95% e.e.

‘&—‘j

o
0w~
[o XY

HO HO HO HO HO HO
O Ts O Ts O Ts O Ts O Ts O Ts
Cl N Cl N Cl N Cl N Cl N Cl W\
Cl ! I tBu Me l I tBu l I tBu ! I tBu MeO l I tBu l I tAmyl
Cl MeO MeO
NHR

Br
—g Bu —g Ph HO
57,92%, 92% e.e. O Ts

58, 91%, 94% e.e.

Br N
g\
o e
61, 80%, 94% e.e. 62, 67%, 92% e.e. NHR
63, 89%, 93% e.e.
Cl Cl Cl

NHR
68, 89%, 67% e.e.

NHR
67,63%, 78% e.e.

Annn Cl

OO (I:H3 i

79, 71%, 97% e.e.

L0 Y

80, 85%, 95% e.e.

81, 88%, 82% e.e.

82, 93%, 86% e.e. 83, 60%, 0% e.e.

“Reaction conditions: a solution of CPA (5mol%), E-3a (0.10 mmol) and N-2i (0.10mmol) in toluene (0.05M, 2ml) was stirred at 25°C under N, for 4 h, unless noted otherwise. The isolated
yield is provided based on imine, and the e.e. value was determined by chiral stationary HPLC. ®7.5 mol% of catalyst loading. °7.5mol% of catalyst loading and anhydrous toluene. “Reaction
conditions: a solution of (R)-€10 (7.5 mol%), E-3 (0.20 mmol) and N-2 (0.20 mmol) in anhydrous toluene (0.05M, 4ml) was stirred at 25°C under N, for about 4 h. The isolated yield is provided

based on imine, and the e.e. value was determined by chiral stationary HPLC.

Following this development and our findings on the construc-
tion of atropisomeric frameworks, we recognized that the new C-N
axis could be set stereoselectively in an adequate substitution envi-
ronment, hence offering a rapid avenue to aryl C-N atropisomers.
Organocatalysis has become areliable tool to acquire these axially
chiral compounds, whichencompass anilides**¢,imides", urazoles*®
and quinazolinones®. Nonetheless, implementing organocatalytic
control for direct formation of chiral C-N bond by atroposelective
cross-coupling of sulfonamides with arenes such as naphthols and
1-naphthylamines remains underexplored. As such, developing the
asymmetric variant of the outlined C-N cross-coupling protocol would
notonly expand the utility of this umpolung strategy but also diversify
the collection of (hetero)aryl frameworks with a chiral C-N axis".

As a starting point to examine this hypothesis, CPA catalyst
(R)-C1 was directed to the reaction of 3,7-di-tert-butylnaphthalen
-1-ol (N-1c) with 2-phenylindole-based imine E-1m, which bears a
C3-N-acetylimine. Intriguingly, this led in high yield to adearomatized
compound 42 instead of an atropisomeric N-aryl product in 5 min
(Table2, entry1). Asthearylside chains at the 3,3’ positions of CPA were
varied (entries 2-5), we identified that (R)-C5 with 2,4,6-triisopropyl
substituents afforded the best stereoselectivity control (entry 5,
77% enantiomeric excess (e.e.)). Subsequent optimization (entries
6-10) established that the stereoselectivity of this asymmetric
dearomative amination improved at lower temperature in tolu-
ene, providing 42 in 92% isolated yield with 91% e.e. at -40 °C after
20 min (entry 10).
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Fig.2|The synthesis of atropisomeric N-heteroaryls via catalytic asymmetric
umpolung reaction ofiminoquinones with C-2 substituted indoles.
a, Research status of axially chiral N-(hetero)aryl frameworks and initial
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HN

113, 83%, 91% e.e. 114, 86%, 89% e.e.

evaluation of axial stability. b, The established optimal conditions for catalytic
asymmetric umpolung reaction ofiminoquinones with C-2 substituted indoles.
¢, Substrate generality. Reaction scale: 0.25 mmol of Eand 0.20 mmol of N.

The generality of this umpolung transformation was then exam-
ined (Table 2). All tested 1-naphthols with alkyl or halogen substituent
achieved successful reactions with E-Im within 30 min, generating
chiralamines 43-46 in highyields (86-90%) and commendable enanti-
oselectivities (81-95%e.e.). This chemistry embraced a high tolerance
towards differing N-acyl components. The reaction yields (90-92%)
and stereoselectivities (90-93% e.e.) were unaffected by other alkyl
acylgroups (47-51) other than acetyl group, whereas N-arylacylimines
(52-54) led toinferior product yields (75-82%) and stereoselectivities
(80-83%e.e.).

As we sought to also extend this umpolung strategy to arene
precursors, the addition of C3-substituted 1-naphthylamine N-2i to
N-electrophilic iminoquinone E-3a was observed to have evolved
through an atroposelective manifold to form N-naphthylsulfonamide
55 that features a C-N stereogenic axis. This discovery prompted an
optimization study where the 3,3’ sidearm of CPA had notable influ-
ence on reaction efficiency and atroposelectivity (Table 3, C6-C11).
A refinement of other parameters (Supplementary Table 3) showed
that the reaction with increased catalyst loading (7.5 mol%) in anhy-
drous toluene offered the most optimal outcome (97% and 94% e.e.),
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Fig.3|Mechanistic investigations. The evaluation of the necessity of the
driving force from aromatization and the examination of the possibility
ofaradical pathway, as well as the proposed reaction pathway for the
asymmetric dearomatization process. a, Control experiments forimine
substrates without driving force from aromatization. Equiv., equivalent.

b, Radical trapping experiments with conventional radical scavengers. TEMPO,
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl; BHT, butylated hydroxytoluene;

DPPH, 2,2-diphenyl-1-picrylhydrazyl; duroquinone, 2,3,5,6-tetramethyl-1,4-
benzoquinone. ¢, Proposed mechanism for CADA amination based on DFT
calculations. Energy differences are given in kcal mol ™.

and these conditions were applied to survey the substrate scope. It
was first determined that the modification of amine substituent on
1-naphthylamines (55-62) did not affect the formation of N-aryl axis
at C4 positionwith high atroposelectivities (88-94%e.e.) and ingood
to excellentyields (67-97%). The compatibility of bromo-substituted
iminoquinone (63) was also validated. However, the substitution pat-
tern (64 versus 66 or 67 versus 68) and electronics (64 versus 65), as
well as their interplay on the naphthalene core modulated the selec-
tivity control. As anillustration, the e.e. values varied from 91% to 82%
and 81% as the 6-Cl (64) was replaced by 6-Me (65) or 7-Cl group (66).
Atert-amyl group could be installed in place of C3-tert-butyl group on
the 1-naphthylamine to deliver atropisomerically enriched sulfona-
mide 69. Theinfluence of sulfonyl entity onimine was examined next.
It could be discerned from products 70-80 that the stereocontrol of
this umpolung reaction was again not impacted by the decoration
pattern and electronic property of the tethered aromatic ring. More
substantial variation to the N-mesyl (81) or N-cyclopropyl sulfonyl
group (82) did not affect the product yields, but enantioselectivities
saw slight diminution. It should be noted that dearomatized product 83
was obtained in 60% yield with no enantiopurity when C3-substituted
1-naphthol N-1c instead of 1-naphthylamine derivatives was used to
react with E-3a under standard conditions.

Compared with the benzene derivatives, a constituent
five-membered pyrrole would labilize the connecting C-N axis, thereby
hampering the chirality control in the related atropisomers (Fig. 2a)*.
Before initiating the atroposelective synthesis, the potential occur-
rence of axial chirality in indole sulfonamides 84 and 85 was evalu-
ated with high-performance liquid chromatography (HPLC) analysis
on chiral stationary phase, which indicated that compound 84 was
achiral while 85 could display atropisomerism. The subsequent asym-
metric synthesis attempts nonetheless revealed the low rigidity of this

axis, leading to rapid racemization at room temperature in solution
(Supplementary Table 5). This issue was adequately addressed by
imposing steric encumbrance at the C4 position of indole and the
atroposelective preparation of 86 was set to study the umpolung
heteroarylation of imines E-4a with 1,1’-bi-2-naphthol-derived CPAs
ascatalysts (Supplementary Table 4). The secured optimal conditions
(Fig. 2b) were employed to probe the substrate scope with respect
to iminoquinones E-4 (Fig. 2¢). In analogy to previous reactions, the
creation of the stereogenic C-N axis occurred in good yields (86-98,
80-90%) and enantiocontrol (mostly >90% e.e.) for various N-sulfonyl
imines. Modest drops of enantiopurities were observed in products
with N-isopropyl and N-cycloalkyl sulfonyl imines (96-98, 80-86%
e.e.). Thereaction efficiencies and atroposelectivities were generally
impervious to substituent modifications on iminoquinone (99) and
indoles (100-114). The tert-amyl and 1-adamantyl groups sustained
the axial rigidity (100-101). The installation of a methyl group at C4
position was also able to lock the stereogenic axis (102). Meanwhile,
variegated functionalities such as ester, halogen, heteroaryl and alkyl
groups could be introduced on indoles (103-114). Notably, the for-
mation of these axially chiral heteroaryl sulfonamides was complete
within 30 min.

Mechanistic investigations

To clarify the influence of an aromatization event in the developed
transformations, imines derived from indolin-2-one (E-5a), benzo-
phenone (E-5b) and oxomalonate (E-5¢) were reacted withindole N-3a
under optimal conditions (Fig. 3a). These substrates did not exhibit any
umpolung reactivity and gave C-C bond formation product instead,
corroborating that an aromatization process has probably driven the
umpolung reaction of imines in this study. To investigate whether this
umpolung chemistry develops through a radical manifold, several
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radical scavengers were included in the reaction of E-1a and N-1a. The
formation of arylamine1in 88% yield wasinvariably observedin these
experiments, thus precluding a radical pathway (Fig. 3b).

To gain further insight into the mechanism of the CADA reac-
tion, density functional theory (DFT) calculations using Gaussian
16 (ref. 51) were performed on the reaction of 2-phenylindole-based
imine E-Im and 3,7-di-tert-butylnaphthalen-1-ol N-1c in the presence
of biphenyl phosphoric acid (Fig. 3¢). Geometry optimizations were
conducted by using the wB97X-D (ref. 52) functional with the 6-31G(d)
basis set. Single-point energies and solvent effects in toluene were
calculated with the Conductor-like Polarizable Continuum Model **
atthe wB97X-D/6-311+G(d,p) level of theory. Thermochemistries were
corrected with the Head-Gordon and Grimme corrections using Good-
Vibes version 3.0.1 (ref. 54), with quasiharmonic approximations to
entropy® and enthalpy*® and corrected for 233.15 K. Conformation
searches were carried out using the conformer-rotamer ensemble
sampling tool””*® version 2.10.2 with xtb version 6.3.3 (refs. 59-61).

As shown in Fig. 3¢, two hydrogen bonds are initially formed
between the bifunctional phosphoric acid catalyst and the two sub-
strates E-Im and N-1c to afford complex CP1 with a free energy of
-19.5 kcal mol relative to the separated reactants. Then, the imine
substrate is activated by a barrierless proton transfer to form anion
pair intermediate CP2. This process enhances the electrophilicity
of the imine nitrogen through resonance and delocalization of the
positive charge. Subsequently, the dearomative addition of naph-
thol to the imine nitrogen proceeds via transition state TS1, with an
activation free energy of 8.5 kcal mol™. Once the activation barrier
is overcome, the dearomatized products are formed along with the
release of the free catalyst. Further, CPA (R)-C5 was used to investigate
the enantioselectivity origin. Nevertheless, the results from extensive
computations with CPA (R)-CS5 fail to explain the observed selectiv-
ity (Supplementary Fig. 796). Thus, the origins of enantioselectivity
presumably involve a more complicated process. This will be the
subject of future research.

Conclusions

We have detailed the conception and development of an
aromatization-enabled umpolung reaction of imines promoted by
a Brgnsted acid catalyst. The synergy of the thermodynamic driv-
ing force and substrate design, as well as catalyst activation and con-
trol, contributed to the high efficiency and chemoselectivity of this
imine umpolung strategy. The application of CPA catalysts effectively
induces asymmetry in these direct C-N bond formation reactions
withindole-based imines and iminoquinones. Thisapproach delivers
diverse chiralaliphaticamines via the dearomative amination pathway
aswell as (N-hetero)aryl frameworks containing stereogenic C-N axis
through atroposelective arene C-H amination. This organocatalytic
tool enables construction of (axially) chiral amines through an effec-
tive umpolung strategy.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41557-023-01384-x.
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Methods

Procedure for synthesis of N-aryl compounds (1-41)

In an oven-dried Schlenk tube, phosphoric acid PA1 (10 mol%), E-1or
E-2 (0.20 mmol) and N-1 or N-2 (0.30 mmol) were dissolved in CH,Cl,
(0.05M, 4 ml). The mixture was stirred at 25 °C until the reaction was
completed (about 0.5 h). The solvent was removed under reduced
pressure, and the residue was purified by column chromatography
onsilicagel (CH,Cl,/EtOAc = 50/1as eluent) to give the pure product.

Procedure for CADA of 1-naphthols (42-54)

Inan oven-dried Schlenk tube, (R)-C5 (10 mol%), E-1(0.20 mmol) and
N-1(0.30 mmol) were stirred at—40 °C for 5 min. Then, 4 mltoluene was
addedinone portion. After the completion of the reaction, the mixture
was purified by preparative thinlayer chromatography (TLC) (CH,Cl,/
EtOAc =50/1as eluent) to give the pure product.

Procedure for atroposelective N-arylation (55-83)

Inan oven-dried Schlenk tube, (R)-C10 (7.5 mol%), E-3 (0.20 mmol) and
N-2 (0.20 mmol) were dissolved in toluene (anhydrous, 0.05 M, 4 ml)
under N,. The mixture was stirred at 25 °C until the reaction was com-
pleted (about 4 h). The solvent was removed under reduced pressure,
and the residue was purified by column chromatography onsilica gel
(CH,Cl,/PE = 2/1as eluent) to give the pure product.

Procedure for atroposelective N-heteroarylation (84-114)

Inan oven-dried Schlenk tube, (R)-C12 (5 mol%), E-4 (0.25 mmol) and
N-3 (0.20 mmol) were stirred under N, for 5 min. Then, anhydrous
1,2-dichlorethane (0.05 M, 4 ml) wasaddedin one portion. The mixture
was stirred at 25 °C until the reaction was completed (about 0.5 h). The
solvent was removed under reduced pressure, and the residue was
purified by preparative TLC (CH,Cl, as eluent) to give the pure product.
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