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Abstract
This paper describes a relation between the elliptic stable envelopes of a hypertoric
variety X and a distinguished K -theory class on the product of the loop hypertoric
space ˜L X and its symplectic dualPX !. This class intertwines the K-theoretic stable
envelopes in a certain limit. Our results are suggestive of a possible categorification
of elliptic stable envelopes.
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1 Introduction

Let X be a smooth quasi-projective complex variety with an action of a torus A. A
polarisation is a class T 1/2 ∈ KA(X) satisfying

T X = T 1/2
X + (T 1/2

X )∨.

Stable envelopes are certain correspondences between XA and X associated with a
polarization and a choice of generic cocharacter ofA. They can be defined on the level
of cohomology, K-theory or elliptic cohomology. They play a crucial role in modern
geometric representation theory.

In each case, one works equivariantly with respect to a larger group T ⊃ A, which
typically does not admit a polarization. In each case, the existence and uniqueness of
stable envelopes is ensured by certain conditions on the action of A on X .

Stable envelopes were first studied in the setting where X is a conical symplectic
resolution with an action of a Hamiltonian torus A, contained in a larger (non-
Hamiltonian) torus T = A × C

×
�
. In particular, elliptic stable envelopes were first

defined in [4] as classes in the elliptic cohomology of X over the Tate curve, where X
is a Nakajima quiver variety or a hypertoric variety. The latter will be the focus of this
paper; they play the same role in the theory of symplectic resolutions as toric varieties
do in the theory of algebraic varieties.

In this setting, Aganagic and Okounkov [2, 3] have proposed an interpretation of
elliptic stable envelopes in terms of a ‘duality interface’ relating X to the symplectically
dual space X !. This is an elliptic cohomology classm on X×X ! which gives rise to the
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elliptic stable envelopes on X , X ! after restriction to torus fixed points on either side.
They gave an explicit formula for this class when X is hypertoric. Smirnov and Zhou
[13] have developed the hypertoric duality interface in detail, and Rimányi, Smirnov,
Varchenko and Zhou [12] have described certain non-abelian examples.

In the spirit of the classical uniformization of theta functions over the Tate curve,
we view the elliptic class m as an element of

KA×G∨×C
×
�

(X × X !)[[q]], (1)

i.e. as a q-series in the equivariant K-theory of X × X !.
Elliptic cohomology near the Tate curve is intimately related related to the loop

space of X - see for example [1], [7]. As discussed in [2], the same should be true of the
elliptic stable envelopes and the duality interface. The latter is expected to categorify
to an equivalence between certain quasi-coherent sheaves on the loop spaces of X and
X ! with ‘half-dimensional’ support.

Our aim in this paper is to reinterpret the duality interface on X × X ! as a K -theory
class ξ(L +) on ˜L X × PX !, where ˜L X is a hypertoric model of the loop space
introduced in [8], and PX ! is its symplectic dual. We explain how this class is an
instance of a general construction in hypertoric symplectic duality. Our construction
has the advantage of being both elementary and explicit. On the other hand, it is not
clear whether it generalises beyond the hypertoric setting.

In more detail, recall from [8] that ˜L X is defined as a limit of finite dimensional
hypertoric varieties ˜LN X along closed embeddings, depending on a stability param-
eter η.

As explained in that paper, ˜L X should be viewed as a first approximation to the
universal cover of the space of loops into X , which captures some of its key geometric
features. In particular, it carries an action of H2(X , Z) corresponding to the action
of the fundamental group of the loop space by deck transformations, and an action
of C

×
q = C

× corresponding to ‘loop rotation’, whose fixed locus is identified with

X × H2(X , Z). We define a certain completion ˜L K (X) of the equivariant K-theory
of ˜L X . The variable q appears naturally as a character of the group C

×
q .

On the other hand, the space PX ! is a kind of multiplicative hypertoric space,
originally studied in an unpublished note of Hausel and Proudfoot. It may be defined
as a limit along open embeddings of smooth finite dimensional hypertorics PN X !,
depending on a stability parameter˜ζ .

In order to make contact with elliptic stable envelopes, we must consider a special
value ζ̂ of the stability parameter for which the hypertoricsPN X !

ζ̂
are rather singular:

they are quotients of X !
ζ by certain torsion subgroups of its Hamiltonian torus. As

a consequence, the limit space no longer exists in the category of schemes. We can
nevertheless define a ring PK ◦(X !) which plays the role of “equivariant K-theory"
of the limit space.

There is a geometrically defined map

˜L K (X)⊗̂PK (X !) → KA×G∨×C
×
�

(X × X !)((q)) (2)
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where the left-hand side denotes a certain completion of the tensor product. We find
that the duality interface naturally lifts to a distinguished class ξ(L +) in the left-hand
ring.

Tobetter understand ξ(L +),weobserve that it is an instanceof amuchmoregeneral
hypertoric construct. We define by a simple prescription a class ξ ∈ KA×G∨×C

×
�

(Y ×
Y !) associated to any pair of symplectically dual hypertorics Y ,Y !, together with
a choice of polarisation. When Y = ˜L X ,Y ! = PX ! and the polarisation is by
holomorphic loops, we recover ξ = ξ(L +). This is Theorem 8.3.

We show that the class ξ satisfies a number of properties analogous to theK-theoretic
stable envelope. Proposition 5.7 shows that when viewed as a correspondence from Y
to Y !, it intertwines the K-theoretic stable envelopes of both spaces, once we let our
equivariant parameters tend to infinity.

The space KA×G∨×C
×
�

(Y × Y !) admits a tautological categorification, namely the
derived category of equivariant coherent sheaves. There is a natural lift of ξ to an object
of this category, satisfying certain compatibilities with the various group actions. Our
result is thus suggestive of a possible categorification of the elliptic stable envelope as
a Fourier-Mukai kernel between the dual loop spaces of X and X !, as predicted in [2].

2 K-theoretic stable envelopes

The next few sections collect some generalities which we will have use for. We start
by recalling the definition of a symplectic resolution, before narrowing our focus to
hypertoric varieties in the main body of the paper.

Definition 2.1 Let X be a smooth complex variety equipped with an algebraic sym-
plectic form � and an action of C

×
�

:= C
× scaling � by a nontrivial character �. We

call X a conical symplectic resolution if

• The natural map X → Spec H0(X ,OX ) is a projective resolution of singularities.
• The induced C

×-action on Spec H0(X ,OX ) contracts it to a point.

We fix a maximal torus A of the group of (complex) hamiltonian automorphisms
of X , which we assume has isolated fixed point locus XA.

2.1 Equivariant K-theory

Let KT×C
×
�

(X) denote the equivariant K-theory ring of X . Let KT×C
×
�

(pt)loc be the
field of fractions of KT×C

×
�

(pt).

Definition 2.2 Let KT×C
×
�

(X)loc := KT×C
×
�

(X) ⊗K
T×C

×
�

(pt) KT×C
×
�

(pt)loc.

The equivariant Euler characteristic defines amapχeq : KT×C
×
�

(X) → KT×C
×
�

(pt)loc.
We define a symmetric pairing on equivariant K-theory as follows.

Definition 2.3 Given γ, γ ′ ∈ KT×C
×
�

(X), let

〈γ, γ ′〉 := χeq(γ ⊗ γ ′).
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In order to work with stable envelopes, we need a notion of degree as follows. Let
A be a torus. Any element F ∈ KA(pt) can be expanded as a sum of characters

F =
∑

μ∈X•(A)

aμt
μ.

Definition 2.4 Wewrite degA F for the convexhull ina∨
R
of the A-weightsμ appearing

with nonzero coefficient.

Degrees are partially ordered by containement of polytopes.
We will also occasionally take limits of equivariant parameters, in the following

sense. Any cocharacter σ : C
× → A determines a fan in aR consisting of a single ray

spanned by the derivative of σ . There is an open toric embedding A → Aσ , where Aσ

is the toric variety associated to this fan. In coordinates, C[Aσ ] ⊂ C[A] is generated
by tμ satisfying 〈μ, σ 〉 ≥ 0. We have an isomorphism of schemes Aσ \A ∼= A/C

×.

Definition 2.5 LetQ be an element of the fractionfield of H0(A,O)with non-negative
valuation along Aσ \A. Write

lim
σ→∞Q

for the corresponding element of the fractionfield of H0(Aσ \A,O) ∼= H0(A/C
×,O).

The following is elementary:

Lemma 2.6 If degA(F ) is strictly contained in degA(G ), then the limit ofF/G along
any cocharacter of A vanishes.

This motivates the following definition.

Definition 2.7 We say F/G is bounded if degA(F ) is contained in degA(G ), and
strictly bounded if the containment is strict.

2.2 K-theoretic stable envelopes

We recall the definition of K -theoretic stable envelopes in a somewhat restricted
generality, which will be sufficient for our purposes and simplifies the exposition.
More details can be found in [9, Section 9].

We fix the following data:

1. A cocharacter σ of A, which is generic in the sense that XC
× = XA.

2. A polarization, i.e. a splitting

T X = T 1/2 + �
−1(T 1/2)∨

in KA×C
×
�

(X).
3. A slope L ∈ PicA(X) ⊗Z Q, generic in the sense that the degree of L on any

rational curve joining two fixed points is non-integral.
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For p ∈ XA, we can define the attracting cell

Attrσ (p) := {x ∈ X | lim
z→0

σ(z) · x = p}.

We define a partial order on XA by taking the closure of the relation {q ≤ p if q ∈
Attrσ (p)}. We define the ‘full attracting set’ of p to be

Attr fσ (p) := ∪q≤p Attrσ (q).

It is a closed singular langrangian in X .
The K-theoretic stable envelope Stabσ,T 1/2,L(p) ∈ KA×C

×
�

(X) is a class satisfying
the following conditions:

1. It is supported on Attr fσ (p).
2. Its restriction to p equals the restriction of OAttr p ⊗ L where

L = (−1)rk T
1/2
>0

(

det T<0

det T 1/2

)1/2

Here T<0 is the repelling part of the tangent space at p, i.e. the complement to the
tangent space of Attrσ (p).

3. Let q ∈ XA. Then we have

degA Stab(p)|q ⊗ Lp ⊂ degA Stab(q)|q ⊗ Lq .

Stable envelopes exist, and are uniquely specified by the above conditions, for a wide
class of symplectic resolutions including all hypertoric varieties. See [9, Section 9]
for an introduction and [10] for a much more general construction.

Definition 2.8 Let A be a torus. Let
•
∧ : (KA(pt),+) → (KA(pt)loc,⊗) be the unique

map extending V → ∑

i (−1)i
∧i V . It may be written in coordinates as

∑

μ∈X•(A)

cμt
μ →

∏

μ�=0

(1 − tμ)cμ.

Condition 2 tells us that, after specializing KA×C
×
�

(pt) → KA(pt), we have an
equality

Stab(p)|p =
•

∧

(T 1/2|p)∨.

The following proposition tell us that stable envelopes for ‘opposite’ choices of data
form dual bases of K-theory.

Proposition 2.9 Fix data σ, T 1/2,L as above. Let T 1/2
opp := TX − T 1/2.
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1. The classes Stabσ,T 1/2,L(p) for p ∈ XA form a basis of KT×C
×
�

(X)loc over
KT×C

×
�

(pt)loc.

2.
〈

Stabσ,T 1/2,L(p),Stab−σ,T 1/2
opp ,L−1(q)

〉

= δpq .

3 Hypertoric varieties

In this section we define our main geometric actors: the hypertoric varieties introduced
in [5]. For a survey of these spaces, see [11].

Fix the following data:

1. A finite set E .
2. A short exact sequence of complex tori

1 → G → D → A → 1, (3)

with an isomorphism D = (C×)E .
3. A character η of G.

To these choices we will associate a hypertoric variety. Let g, d, a be the complex
lie algebras of G,D,A. We require that dZ → aZ be totally unimodular, i.e. the
determinant of any square submatrix (for a given choice of integer basis) is one of
−1, 0, 1. This will ensure that when smooth, our hypertoric variety is a genuine variety
and not an orbifold. We also assume that no cocharacter of G fixes all but one of the
coordinates of C

E .
Let V := SpecC[xe|e ∈ E]. The torus D acts by hamiltonian transformations on

T ∗V = SpecC[xe, ye|e ∈ E], equipped with the standard symplectic form � :=
∑

e∈E dxe ∧ dye. A moment map μD : T ∗V → d∨ is given by

μD(x, y) = (xe ye).

We have the exact sequence

0 → g
∂→ d

β→ a → 0 (4)

and its dual

0 → a∨ β∨
→ d∨ ∂∨→ g∨ → 0. (5)

The pullback μG = ∂∨ ◦μD defines a moment map for theG action on T ∗V . Fix a
character (η, λ) ∈ g∨

Z
⊕ g∨. Given a G-variety U , write U �η G for the GIT quotient

Proj
⊕

m∈N
{ f ∈ O(U ) : g∗ f = η(g)−m f .}. Let

Definition 3.1

Xη,λ := μ−1
G (λ) �η G. (6)
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Wewill often assume that η is suitably generic, inwhich case Xη,λ is smooth; this holds
away from a finite set of hyperplanes. We write Xη := Xη,0, which we sometimes
abbreviate further to X .

The Kirwan map defines morphisms H2
A(X , Z) → d∨

Z
, H2(X , Z) → g∨

Z
and

H2(X , Z) → gZ. If the map β does not annihilate the natural basis of d = Z
n

and η is suitably generic, these maps are isomorphisms.
The variety X inherits an algebraic symplectic structure from its construction via

symplectic reduction. The induced A action on X is Hamiltonian. There is a further
action of C

×
�
dilating the fibers of T ∗V , which scales the symplectic form by �. This

preserves μ−1
G (0), and descends to an action of C

×
�
on X commuting with the action

of A.

3.1 Bases and torus fixed points

The torus fixed points XA
η are indexed by bases. These are the subsets b ⊂ E such

that the restriction of Z
E → aZ to Z

b is an isomorphism. By construction, the set of
bases B does not depend on η.

Lemma 3.2 There is a bijection B → XA
η taking b to

pb :=
(

T ∗
C

E\b ∩ μ−1
G (0)

)

�η G.

We can schematically write p = ⋂

e∈b{xe = ye = 0}.
The isomorphismZ

b → aZ determines a basis of the right-hand lattice. Let {αb
e } ⊂

a∨
Z
be the dual basis. We will sometimes write α

p
e if we wish to emphasise the fixed

point rather than the base.

Lemma 3.3 Let e ∈ b. The normal bundle to {xe = 0} at p has A-character α
p
e . The

normal to {ye = 0} has A-character −α
p
e .

Corollary 3.4 Let e ∈ b. Then the normal to {xe = 0} at p is attracting for the
cocharacter ζ if 〈α p

e , ζ 〉 > 0 and repelling if 〈α p
e , ζ 〉 < 0.

We now turn our attention to e /∈ b, and characterise which of the divisors {xe = 0} or
{ye = 0} contains p. The map gZ → Z

bc is an isomorphism. Dualizing gives a map
Z
bc → g∨, and thus a basis of g∨

Z
. We let β p

e be the dual basis of gZ.

Lemma 3.5 There is a unique coordinate lagrangian Lη ⊂ T ∗
C

E\b containing an
η-semistable point, cut out by xe = 0 for 〈β p

e , η〉 < 0 and ye = 0 for 〈β p
e , η〉 > 0. We

have p = Lη �η G.

Corollary 3.6 Let e /∈ b. Then p ∈ {xe = 0} if 〈β p
e , η〉 < 0 and p ∈ {ye = 0} if

〈β p
e , η〉 > 0

Fix a generic cocharacter ζ ∈ aZ.

Definition 3.7 Let Attrnζ (p) ⊂ X be the singular lagrangian defined by intersecting

{ye = 0} for 〈ζ, α
p
e 〉 > 0 with {xe = 0} for 〈ζ, α

p
e 〉 < 0.
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It is a union of components of Attr fζ (p), and is precisely the support of the K -theoretic
stable envelope of p, although we will not use this fact below.

We have the following useful characterisation of the fixed points which lie in this
set.

Lemma 3.8 Let bp, bq be the bases associated to p, q ∈ XA. q ∈ Attrnζ (p) if and only

if 〈α p
e , ζ 〉〈βq

e , η〉 > 0 for all e ∈ bq ∩ bcp.

3.2 Symplectic duality for polarized hyperplane arrangements, or Gale duality

Symplectic duality as defined in [6] may be thought of as a relation between two
symplectic resolutions (or more generally, symplectic singularities). We refer to that
paper for the general concept: here we will content ourselves with a review of the
construction of the symplectic dual of a hypertoric variety Xη, in order to fix notation.

Consider a sequence of tori as in 3, togetherwith a characterη ofG and a cocharacter
ζ of A. We define the Gale dual data to be

1. The set E .
2. The dual sequence of tori

1 → A∨ → D∨ → G∨ → 1 (7)

with the induced isomorphism D∨ ∼= (C×)E .
3. The character −ζ of A∨.
4. The cocharacter −η of G∨.
The torus D∨ acts on T ∗V∨. We define X !−ζ as the symplectic reduction of T ∗V∨ by
the induced action of A∨ with GIT parameter −ζ . We will write x̌e, y̌e for the natural
coordinates on T ∗V∨.

In general, we will use the shriek superscript to indicate that we are working with
X !−ζ rather than X−ζ . In particular, we set E ! := E . There is a natural bijection of the

bases B ∼= B
! given by taking b ⊂ E to its complement bc ⊂ E .

Definition 3.9 Given a fixed point p ∈ XA−ζ indexed by b ⊂ E , we write p! ∈
(X !−ζ )

G∨
for the fixed point indexed by bc.

The following is a direct consequence of the definitions.

Lemma 3.10 Let e ∈ b. Then α
p
e = β

p!
e .

4 Cohomology and K-theory of hypertoric varieties

4.1 The Kirwanmap

Definition 4.1 Let

κ : RepD × C
×
�

= KD×C
×
�

(T ∗V ) → KA×C
×
�

(μ−1
G (0) � G)
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be the composition of the restriction to μ−1
G (0) with the Kirwan map, which takes a

representation R of D × C
×
�
to the class of the associated bundle R ×G μ−1

G (0)G−ss .

Definition 4.2 Given e ∈ E , let χe be theD×C
×
�
-character of xe ∈ O(T ∗V ), and let

ue := κ(χe) ∈ KA×C×(X).

Thus ue represents an equivariant line bundle on X . The dual Darboux coordinate ye
has character �

−1χ−1
e , defining the bundle �

−1u−1
e .

Let χ̌e be the character of x̌e under D∨. We have the analogous definition:

Definition 4.3

ǔe := κ(χ̌e) ∈ KG∨×C
×
�

(X !).

Definition 4.4 Given any coordinate Lagrangian subspace L ⊂ T ∗V , we define a
corresponding polarisation of X by viewing L as a representation of D × C

× and
taking its image under the Kirwan map.

4.2 Restriction to a fixed point

We recall some known facts about the classes ue, ǔe. The following is essentially a
restatement of Lemma 3.3.

Lemma 4.5 Let p ∈ XA be indexed by the base b. Let e ∈ b. Then the image of ue|p
under the map H•

A×C
×
�

(p, C) → H•
A(p, C) equals α

p
e .

Lemma 4.6 Keep the notations of the previous lemma, but suppose e /∈ b. We have
ue|p = � if 〈βe, η〉 > 0, and ue|p = 1 if 〈βe, η〉 < 0.

We introduce the notation ε
p
e ∈ Z for the function such that ue|p = α

p
e �

ε
p
e for e ∈ bp

and ue|p = �
ε
p
e for e /∈ bp. For e /∈ b we have ε

p
e = 0 if and only if 〈β p

e , η〉 < 0.

5 The class �

Consider the antidiagonal embedding C
×
�

→ (C×
�
)2, z → (z, z−1). We use this

embedding to define the equivariant K-group KA×G∨×C
×
�

(X × X !). Our main object
of interest is the following class in this K-group.

Definition 5.1

ξ :=
∏

e∈E
(1 − ueǔe).

We may think of ξ as associated to the polarisation V of T ∗V , as follows. Recall
that our construction of dual hypertorics in Sects. 3 and 3.2 starts from the tori D ×
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C
×
�
,D∨ × C

×
�
acting on the spaces T ∗V , T ∗V∨. As torus representations, we have

decompositions

V =
⊕

e∈E
χe and V∨ =

⊕

e∈E
χ∨
e .

Definition 5.2 Let

ξ̃ :=
•

∧

(

∑

e

χeχ
∨
e

)

viewed as an element of KD×C
×
�

×D∨×C
×
�

(pt).

Now we fix dual hypertorics

X := T ∗V �η G, X ! := T ∗V∨ �ζ A∨

as in Sects. 3 and 3.2. We also fix the auxiliary data which specifies stable envelopes
on X , X !. Thus, we fix suitably generic choices of

L X ∈ PicA(X) ⊗Z Q, L X ! ∈ PicG∨(X !) ⊗Z Q.

Furthermore, we pick the usual polarizations T 1/2
X (resp T 1/2

X ! ) of Xη (resp X !
ζ ) induced

by the image of V (resp V∨) under the Kirwan map.
We have a Kirwan map KD×C

×
�

×D∨×C
×
�

(pt) → KA×C
×
�

×G∨×C
×
�

(X × X !). We

further restrict along the antidiagonal embedding C
×
�

→ (C×
�
)2, z → (z, z−1) to

obtain a map

KD×C
×
�

×D∨×C
×
�

(pt) → KA×G∨×C
×
�

(X × X !). (8)

Thus ξ is the image of ξ̃ under the map 8.

Definition 5.3 Given any coordinate subspace V ′ ⊂ T ∗V , we define a class ξ(V ′) as
the image under the map 8 of the class

•
∧

(
∑

χiχ
∨
i

)

,

where V ′ = ⊕χi is the isotypic decomposition of V ′ into D-characters.

The class ξ(V ′) satisfies a number of interesting properties analogous to the defining
properties of the K-theoretic stable envelope. The rest of this section explores a few
of these properties, which will not however be needed in the remainder of this paper.
For simplicity, we focus our attention on ξ = ξ(V ) below.
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Lemma 5.4 Let p, q ∈ XA such that q /∈ Attrnζ (p), or equivalently 〈αq
e , ζ 〉〈β p

e , η〉 < 0
for some e ∈ bq ∩ bcp. Then

ue|pǔe|q ! = 1.

Proof This follows from Lemma 3.8, Lemma 3.10 and Lemma 4.6. ��
Corollary 5.5 The restriction ξp×q ! vanishes unless p ∈ Attrnζ (q), or equivalently

〈αq
e , ζ 〉〈β p

e , η〉 > 0 for all e ∈ bq ∩ bcp.

Lemma 5.6

deg ξp×q ! ≤ deg
•

∧

T 1/2
p X ⊗

•
∧

T 1/2
q ! X !.

for p �= q, and

ξp×p! =
•

∧

T 1/2
p X ⊗

•
∧

T 1/2
p! X !.

Here all classes are taken equivariant with respect to the Hamiltonian subtorus A ×
G∨ ⊂ A × G∨ × C

×
�
.

Proof We have

deg ξ |p×q ! = deg
∏

e∈E
(1 − ue|pǔe|q !) (9)

Let bp, bq ⊂ E be the bases associated to p, q respectively, so that bcq is the base

associated to q !.
The characters ue|p for e ∈ bp are precisely the summands of T 1/2

p X with nonzero

A-weight, and likewise for T 1/2
q ! X !. This proves the first inequality. When p = q, each

factor contains a single nontrivial character of either T 1/2
p X or T 1/2

q ! X !, thus proving
the second equality. ��

The following Proposition is the main result of this section. It shows that ξ inter-
twines the stable envelopes of X , X ! in a certain limit. Consider the cocharacter
ζ × η−1 : C

× → A × G∨. It defines a map

KA×G∨×C
×
�

(X × X !) → K
C××C

×
�

(X × X !).

Wemayviewelements of the right-hand space as functions of the tautological character
t ∈ KC×(pt).

Proposition 5.7 The image in K
C××C

×
�

(X × X !) of

(L X
p ⊗ L X !

q ! ) ⊗
〈

(L X )−1 ⊗ ξ ⊗ (L X !
)−1,Stab

ζ,T 1/2
X ,opp,L

X (p) ⊗ Stab
η,T 1/2

X !,opp,L
X ! (q !)

〉
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has a limit as t → ∞. This limit equals
(

�

1−�

)rk indp (

�
−1

1−�−1

)rk indp! if p = q and

equals 0 otherwise.

Here indp = T 1/2
p,>0 is the index bundle at p, and indp! = T 1/2

p!,>0
is the index bundle at

p!. Note that rk indp is the number of e for which 〈α p
e , ζ 〉 > 0.

Remark 1 By Proposition 2.9, we may reinterpret the Proposition as follows. Viewed
as a correspondence, (L X )−1 ⊗ ξ ⊗ (L X !

)−1 defines a map from KA×C
×
�

)(X)loc

to KG∨×C
×
�

(X !)loc. In the basis defined by K -theoretic stable envelopes, this map is
represented by a diagonal matrix in the limit t → ∞.

Proof Write

A := (L X )−1 ⊗ ξ ⊗ (L X !
)−1

B p,q ! := (L X
p ⊗ L X !

q ! ) ⊗ Stab
ζ,T 1/2

X ,opp,L
X (p) ⊗ Stab

η,T 1/2

X !,opp,L
X ! (q !).

We use the localization theorem for equivariant K-theory, which expresses our
pairing as a sum over fixed points:

〈A, B p×q ! 〉 =
∑

x∈XA,y!∈(X !)G∨

Ax×y! ⊗ B p×q !
x×y!

∧•
(Tx X)∨ ⊗ ∧•

(Ty! X !)∨
. (10)

We consider the right-hand side summand by summand. By Corollary 5.5, we may
assume x ∈ Attrnζ (y).

We have a restrictionmap KA×G∨(X×X !) → KC×(X×X !) induced by our choice
of cocharacter. Below we write deg for the degree with respect to C

×. By definition
of the stable envelope, we have

deg B p×q !
x×y! ≤ deg

•
∧

(T 1/2
X ,x )

∨ ⊗
•

∧

(T 1/2
X !,y!)

∨ ⊗ L X
x ⊗

(

L X !
y!

)−1
.

with a strict inequality when x × y! �= p × q !. On the other hand, by Lemma 5.6 we
have deg ξ |x×y!≤ deg

∧• T 1/2
X ,x ⊗ ∧• T 1/2

X !,y! .
Combining, we find that every summand on the right hand side of Eq. 10 is bounded,

and those summands with x × y! �= p × q ! are strictly bounded.
Upon taking the limit t → ∞, the summands with x × y! �= p × q ! tend to zero

by Lemma 2.6.
To finish the proof, we must compute the limits of those summands with x × y! =

p × q !. This is done in Lemma 5.8 below. ��
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Lemma 5.8 Let Fp×q !(t, �) be the image of ξp×q ! ·
(

∧• T 1/2
p X ⊗ ∧• T 1/2

q ! X !
)−1

in

K
C××C

×
�

(pt). Suppose p �= q. Then limt→∞ Fp×q ! = 0. On the other hand,

lim
t→∞ Fp×p! =

(

�

1 − �

)rk indp (

�
−1

1 − �−1

)rk indp!
.

Proof Fp×q ! is given by a product of factors of the following form. Below, vanishing

factors in the denominator of the form (1 − �
ε
p
e ) with ε

p
e = 0 are understood to be

ommited.

(1 − t 〈α
p
e ,ζ 〉

�
ε
p
e t 〈α

p!
e ,−η〉

�
−ε

q!
e )

(1 − t 〈α p
e ,ζ 〉�ε

p
e )(1 − t 〈α p!

e ,−η〉�−ε
q!
e )

(11)

for e ∈ bp ∩ bcq ,

(1 − t 〈α
p
e ,ζ 〉

�
ε
p
e �

−ε
q!
e )

(1 − t 〈α p
e ,ζ 〉�ε

p
e )(1 − �−ε

q!
e )

(12)

for e ∈ bp ∩ bq ,

(1 − �
ε
p
e t 〈α

p!
e ,−η〉

�
−ε

q!
e )

(1 − �ε
p
e )(1 − t 〈α p!

e ,−η〉�−ε
q!
e )

(13)

for e ∈ bcp ∩ bcq and

(1 − �
ε
p
e �

−ε
q!
e )

(1 − �ε
p
e )(1 − �−ε

q!
e )

(14)

for e ∈ bcp ∩bq . We consider the each terms in the limit t → ∞. By Corollary 5.5, we

may assume 〈α p
e , ζ 〉〈α p!

e ,−η〉 < 0. Recall also that for e /∈ b, ε p
e �= 0 exactly when

〈α p!
e ,−η〉 > 0, and ε

q !
e �= 0 precisely when 〈α p

e , ζ 〉 > 0. Thus, in factors of type 14,

one of ε
p
e , ε

q !
e must vanish, and the factor equals one.

On the other hand, the factors of type 11 vanish in the limit since 〈α p
e , ζ 〉〈α p!

e ,−η〉 <

0. The factors of type 12 limit to 1 when 〈α p
e , ζ 〉 < 0 and �/(1−�)when 〈α p

e , ζ 〉 > 0.

The factors of type 13 are similar, replacing 〈α p
e , ζ 〉 by 〈α p!

e ,−η〉 and � by �
−1. In

particular, we see that all factors are bounded as t → ∞.
There are rk indp factors of type 12 with 〈α p

e , ζ 〉 > 0 and rk indp! factors of type

13 with 〈α p!
e ,−η〉 > 0. The lemma follows. ��
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6 Elliptic cohomology over the Tate curve

Fix a coordinate q on the formal punctured disk D
∗, and let E = C

∗/qZ be the
corresponding family of elliptic curves over D

∗. More generally, let A be a complex
torus with cocharacter lattice aZ, and let EA = A/qaZ be the corresponding abelian
variety over D

∗. A-equivariant elliptic cohomology, in the narrow sense needed here,
is a covariant functor from A-schemes to schemes

EllA(−) : A − Sch → Sch

such that EllA(pt) = EA. The analogue of a class γ in equivariant K-theory will be a
section f of a coherent sheaf F over EllA(X).

To an equivariant line bundle u ∈ PicA(X), one can associate a bundle �(u) over
EllA(X) called the Thom class of u, with a canonical section ϑ(u). The next few
subsections explain how to do this in our setting.

6.1 Line bundles on abelian varieties

Given an elliptic curve E = C
×/qZ, we can specify a line bundle on E starting from

the trivial bundle onC
×, by glueing the fiber over x to the fiber over qx bymultiplying

by the ‘factor of automorphy’ cxd for some constant c and integer d.
A holomorphic section of this line bundle may be identified with a holomorphic

function f (x) on C
× such that f (qx) = cxd f (x).

We start with a line bundle L with factor of automorphy −q−1/2x−1, which serves
as a building block for most other bundles arising in the theory of elliptic stable
envelopes. The theta function

ϑ(x) := (x1/2 − x−1/2)
∏

n>0

(1 − qnx)(1 − qn/x), (15)

defined on the double cover of C
×, has precisely this automorphy and thus defines

a section of L. In this paper, q will be a formal variable, and we may think of the
right-hand side of Eq.15 as an element of C[x±1/2][[q]].

Given amap of tori u : D → C
×, wemay define a line bundle�(u) onED by pulling

back L via the induced map ED → E . �(u) comes with a canonical section ϑ(u) also
obtained by pullback. More generally, given a virtual representation R = ∑

μ cμtμ

of D, we have the line bundle

�(R) = ⊗μ�(tμ)cμ

and (meromorphic) section ϑ(R) defined by
∏

μ ϑ(tμ)cμ .
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6.2 Uniformization

By expanding the expression in Eq.15, the section ϑ(R)may be viewed as an element
of H0(D′,O ′)[[q]], the completion of H0(D′,O)[q] at q = 0, where D′ is a certain
finite cover of D defined by taking the square roots of the coordinates x . We indicate
the latter interpretation by the superscript u for ‘uniformization’, so that

ϑ(R) ∈ H0(ED,�(R)), ϑu(R) ∈ H0(D′,O)[[q]].

6.3 Line bundles on the scheme of elliptic cohomology

The ring of virtual representations of a torus D is otherwise known as KD(pt). The
definition of � can in fact be extended to KA(X) for a torus A acting on a space X ,
and defines a group map

� : (KA(X),+) → (Pic(EllA(X)),⊗).

Given R ∈ KA(X), we write ϑ(R) for the canonical meromorphic section of
H0(EllA(X),�(R)).

In the hypertoric setting, this is not much of a generalisation. The elliptic cohomol-
ogy of a hypertoric variety admits a natural embedding

EllA×C
×
�

(X) → ED×C
×
�

,

induced by the embedding X → [μ−1
G (0)/G]. It is the elliptic analogue of the embed-

ding Spec KA×C
×
�

(X) → Spec KD×C
×
�

(pt) induced by the Kirwan map. All of our
line bundles will in fact be pulled back along this map.

6.4 Uniformization on EllA(X)

Using the maps � and ϑ , we have a large supply of line bundles on EllA(X), each
equippedwith a canonical section.Wewould like to think of these sections as elements
of KA(X)[[q]], the completion of KA(X)[q] at q = 0.

We thus define ϑu : KA(X) → KA(X)[[q]] as the dotted line in the following
commutative diagram.

KA(X) KD(pt)

KA(X)[[q]] KD(pt)[[q]]
ϑu ϑu (16)

Here the top horizontal map is the Kirwan map, and the bottom horizontal is induced
by the Kirwan map.

To see that the result does not depend on the choice of lift to KD(pt), we note
that an element of KA(X) is determined by its restrictions to fixed points p ∈ XA. It
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thus suffices to check independence of lift for the surjection KA(pt) ← KD(pt). The
kernel of this map is spanned by elements tμ − tμ

′
, where μ,μ′ are characters of D

which coincide after restriction to A. Independence of lift follows from the fact that
such elements map to 1 ∈ KA(pt)[[q]].

7 Elliptic stable envelopes

We fix the following data:

1. A sufficiently generic cocharacter σ of A.
2. A polarization T 1/2

X .

Let p ∈ XA. Aganagic and Okounkov [4] associate to this data an elliptic stable
envelope, which is a section of a certain line bundle �(R) on a certain enlargement
of the elliptic cohomology scheme.

For a complete definition (which also applies to situations with non-isolated fixed
locus), we refer the reader to [4]. We will in fact work with the ‘renormalized’ elliptic
stable envelopes, which are described in Smirnov and Zhou [13]. They are given by a
simple formula in terms of the so-called duality interface, defined as follows.

Let S = ∑

e∈E χeχ̌e. We have a bundle �(S) on ED × ED∨ × E
C

×
�

with a canonical
section ϑ(S).

Let C
×
�
act antidiagonally on X × X !, so that the character denoted � in K

C
×
�

(X)

(resp. K
C

×
�

(X !)) pulls back to � (resp. �−1). We can pull back �(S) along the embed-
ding

EllA×G∨×C
×
�

(X × X !) → ED × ED∨ × E
C

×
�

to obtain a line bundle on the left-hand side, which we denoteM. We write m for the
restriction of ϑ(S). The following will serve for us as a definition.

Theorem 7.1 [2][13] The renormalized elliptic stable envelope of p on X is the restric-
tion of m to X × p!.

8 The class � for loop spaces and the duality interface

8.1 Loop spaces

We recall some concepts and notation from [8]. Starting from the data defining a
hypertoric variety, namely a set E , a subtorus G → (C×)E and a character η of G,
that paper defined a loop analogue of X denoted ˜L X . It is, loosely speaking, the
infinite dimensional hypertoric variety associated to the data

• L E := E × Z.
• 1 → G → LD = (C×)L E → T → 1.
• The character η of G.
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Morally, ˜L X is the symplectic reduction T ∗(CL E ) �η G. In fact, the space ˜L X is
constructed as a limit of closed embeddings of finite dimensional hypertoric varieties
... → ˜LN−1X → ˜LN X → ˜LN+1X → ..., associated to the following ‘truncated’
hypertoric data.

• LN E := E × [−N , N ].
• 1 → G → LND = (C×)LN E → TN → 1.
• The character η of G.

Thenatural coordinates onT ∗
C
L E are denoted xe,k, ye,k , and correspond to the fourier

modes in the expansion of a loop (xe(t), ye(t)) = (
∑

k∈Z
xe,k tk,

∑

k∈Z
ye,k tk). The

coordinate xe,k is ‘paired’, under the symplectic form, with the coordinate ye,−k .
˜L X carries an action of an infinite-dimensional torus of Hamiltonian transforma-

tions, containing the subtorus A× C
×
q corresponding to the action of A on X and the

action of C
×
q by ‘loop rotation’.

Given any character of D × C
×
q × C

×
�
, we obtain by descent a A × C

×
q × C

×
�
-

equivariant line bundle on ˜L X . We denote the bundle associated to the character of
xe,0 by ue. The bundle associated to xe,k is qkue where q is the tautological character
of C

×
q .

8.2 K-theory of the loop space

We will have need for the following construction. Let K be an algebra over the ring
C[q, q−1] of Laurent polynomials. Choose a C[q]-lattice K0 ⊂ K. Let K∧

0 be the
completion of K0 at the ideal (q) ⊂ C[q], and let K∧ := K∧

0 ⊗C[[q]] C((q)). It is an
algebra over C((q)).

In our setting, K will be an equivariant K-group, q will be a generator of K
C

×
q
(pt),

and we may choose the lattice to be defined by those elements whose restriction to the
A-fixed locus are polynomial in q.

Let ˜LN K (X) := KA×C
×
�

×C
×
q
( ˜LN X). It is a K

C
×
q
(pt) = C[q, q−1]-algebra. We

define

˜L K (X) :=
(

lim←−
N→∞

˜LN (X)

)∧

If we take C
×
q to act trivially on X , then the embedding cstN : X → ˜LN X of the

‘constant loops’ is C
×
q -equivariant, and we get a restriction map cst∗N : ˜LN K (X) →

KA×C
×
�

(X)[q, q−1]. In the limit, we obtain a map

cst∗ : ˜L K (X) → KA×C
×
�

(X)((q)).

The class qkue pulls back to the class of the same name on the right-hand side.
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8.3 Periodisation

Recall the diagonal embedding A → LND/G = TN , and dually T ∨
N → A∨. Given

a character ζ of A∨, let ζ̂ be its pullback along this last map.
Fix a generic character ζ of A∨, and consider the hypertoric data

• LN E := E × [−N , N ].
• T ∨

N → LND∨ → G∨.
• The character ζ̂ of T ∨

N .

The associated hypertoric space PN X !
ζ̂
carries an action of G∨ = LD∨/T ∨.

In contrast to the situation considered in [8], our character ζ̂ is ‘trivial in the
loop direction’. In particular, the periodic hyperplane arrangement associated to
limN→∞ PN X !

ζ̂
has period 0, and collapses to the finite arrangement associated to

X !.
Let LNA∨ := (A∨)[−N ,N ], LNG := G[−N ,N ]. We have

1 → LNA∨ → T ∨
N → G∨

N → 1 (17)

where GN := LNG/G. We have

PN X !
ζ̂

= T ∗
C
LN E �

˜ζ T ∨.

Using 17, we can factor this as

(

T ∗
C
LN E �

˜ζ LNA∨)

� G∨
N = (X !

ζ )
[−N ,N ] � G∨

N .

This last reduction is by definition the scheme-theoretic G∨
N -quotient of the moment

fiber

μ−1
G∨

N
(0) = X !

ζ ×g X !
ζ ×g ... ×g X !

ζ .

Here the right-hand side denotes the fiber product of 2N + 1 copies of X !
ζ over the

G∨-moment map X !
ζ → g. The action ofG∨

N on this scheme has positive-dimensional

stabilisers, and it will be useful to also consider the stack quotient [μ−1
G∨

N
(0)/G∨

N ].
Remark 2 The scheme-theoretic quotient can be described as follows. For a positive
integer K , let G∨[K − tor] ⊂ G∨ be the subtorus of K -torsion points. The diagonal
embedding

�N : X !
ζ → μ−1

G∨
N
(0) (18)

descends to an isomorphism of schemes

X !
ζ /G

∨[2N + 1 − tor] ∼= PN X !
ζ̂
.
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8.4 K-theory of the periodisation

We write K ◦(X) for the K-group of equivariant perfect complexes. Consider

PN K
◦(X) := K ◦

C
×
�

×G∨
(

[μ−1
G∨

N
(0)/G∨

N ]
)

= K ◦
C

×
�

×LNG∨
(

μ−1
G∨

N
(0)

)

.

Projection defines a C
×
�

× LNG∨-equivariant map

μ−1
G∨

N+1
(0) → μ−1

G∨
N
(0).

Pullback along these maps defines a direct system over Z
≥0, and we define the direct

limit

PK ◦(X !) := lim←−
N→∞

PN K
◦(X !)

This ring is intended as a substitute for the K-theory of (a stacky version of) the limit
space PX !

ζ̂
, which we do not attempt to define here.

Pullback along 18 defines maps

�∗
N : PN K

◦(X !) → K ◦
G∨×C

×
�

(X !
ζ ) = KG∨×C

×
�

(X !
ζ )

which combine to define a map

�∗ : PK ◦(X !) → KG∨×C
×
�

(X !
ζ ).

Let ǔe,k ∈ PK ◦(X !) be the class associated to the character χ̌e,k of LD∨. Then by
construction, we have

�∗ǔe,k = ǔe.

8.5 Combining ˜L X andPX!

Definition 8.1 We consider the ‘completed’ tensor product

˜L K (X)⊗̂PK (X !) := lim←−
N→∞

(

˜LN K (X) ⊗C[�,�−1] PK ◦(X !)
)∧

,

where the C[�]-algebra structure on the right-hand factor is twisted by � → �
−1, and

the ∧ superscript denotes completion at q = 0 as before.

Taking the limit of the maps (cstN ×�N )∗, we obtain a map

(cst×�)∗ : ˜L K (X)⊗̂PK (X !) → KA×C
×
�

(X) ⊗C[�,�−1] KG∨×C
×
�

(X !)((q)).

(19)
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8.6 Polarization by positive loops

We fix the polarisation of ˜L X by the positive loops, meaning the polarization induced
by the lagrangian subspace L +(T ∗

C
E ) ⊂ T ∗(LC

E ) defined by

{xe,k = 0|k < 0} ∩ {ye,k = 0|k ≤ 0}.

Remark 3 Another natural polarization of ˜L X is induced by the subspace LC
E ⊂

T ∗(LC
E ), corresponding to loops in the x-variables. We have no use for it here.

As a representation ofLD × C
×
�
, the spaceL +(T ∗

C
E ) decomposes as a sum of

characters

L +(T ∗
C

E ) =
∑

e∈E

⎛

⎝

∑

k≥0

χe,k +
∑

k<0

�
−1χ−1

e,k

⎞

⎠ .

We write χ̌e,k for the dual characters of L Ď, appearing in the symplectically dual
loop space. We writeL +

N (T ∗
C

E ) for the analogous character of LND × C
×
�
.

8.7 The universal intertwiner and the duality interface

Let ˜ξ(L +
N (T ∗

C
E )) be class defined as in Sect. 5 and Remark 5.3 starting from the

subspace L +
N (T ∗

C
E ) ⊂ T ∗LNC

E . It is given by the formula

∏

e∈E
(1 − χe,0χ̌e,0)

∏

0<k≤N

(1 − χe,k χ̌e,k)
∏

−N≤k<0

(1 − χ−1
e,k χ̌−1

e,k ) (20)

Taking the image of 20 under the Kirwan map, we obtain an element

ξ(L +
N (T ∗

C
E )) ∈ ˜LN K (X) ⊗C[�,�−1] PN K (X !).

Letting N → ∞, these classes define an element

ξ(L +(T ∗
C

E )) ∈ ˜L K (X)⊗̂PK (X !).

Definition 8.2 Let ξ(L +) denote the image of ξ(L +(T ∗
C

E )) under the map 19.

Thus ξ(L +) is a class in KA×C
×
�

(X) ⊗C[�,�−1] KG∨×C
×
�

(X !)((q)). We can write it in
terms of the tautological classes as

ξ(L +) =
∏

e∈E
(1 − ueǔe)

∏

k>0

(1 − qkueǔe)(1 − qku−1
e ǔ−1

e ). (21)

Comparing Eq.21 with the definition of the duality interfacem, we obtain our final
result:
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Theorem 8.3 The class ξ(L +) equals the uniformization mu of the duality interface
m, multiplied by the fractional bundle

∏

e(ueǔe)
−1/2.
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