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1 Introduction

Let X be a smooth quasi-projective complex variety with an action of a torus A. A
polarisation is a class T!/2 € K4 (X) satisfying

TX = Ty* + 1y

)Y

Stable envelopes are certain correspondences between XA and X associated with a
polarization and a choice of generic cocharacter of A. They can be defined on the level
of cohomology, K-theory or elliptic cohomology. They play a crucial role in modern
geometric representation theory.

In each case, one works equivariantly with respect to a larger group T D A, which
typically does not admit a polarization. In each case, the existence and uniqueness of
stable envelopes is ensured by certain conditions on the action of A on X.

Stable envelopes were first studied in the setting where X is a conical symplectic
resolution with an action of a Hamiltonian torus A, contained in a larger (non-
Hamiltonian) torus T = A x C;. In particular, elliptic stable envelopes were first
defined in [4] as classes in the elliptic cohomology of X over the Tate curve, where X
is a Nakajima quiver variety or a hypertoric variety. The latter will be the focus of this
paper; they play the same role in the theory of symplectic resolutions as toric varieties
do in the theory of algebraic varieties.

In this setting, Aganagic and Okounkov [2, 3] have proposed an interpretation of
elliptic stable envelopes in terms of a ‘duality interface’ relating X to the symplectically
dual space X'. This is an elliptic cohomology class m on X x X' which gives rise to the

W Birkhauser



Elliptic stable envelopes and hypertoric loop spaces Page3of22 73

elliptic stable envelopes on X, X' after restriction to torus fixed points on either side.
They gave an explicit formula for this class when X is hypertoric. Smirnov and Zhou
[13] have developed the hypertoric duality interface in detail, and Rimdnyi, Smirnov,
Varchenko and Zhou [12] have described certain non-abelian examples.

In the spirit of the classical uniformization of theta functions over the Tate curve,
we view the elliptic class m as an element of

K axgvxcx (X x Xlgll, (1)

i.e. as a g-series in the equivariant K-theory of X x X'.

Elliptic cohomology near the Tate curve is intimately related related to the loop
space of X - see for example [1], [7]. As discussed in [2], the same should be true of the
elliptic stable envelopes and the duality interface. The latter is expected to categorify
to an equivalence between certain quasi-coherent sheaves on the loop spaces of X and
X' with ‘half-dimensional” support.

Our aim in this paper is to remterpret the duality interface on X x X' as a K -theory
class £(Z1) on ZLX x PX', where ZX is a hypertoric model of the loop space
introduced in [8], and Z X" is its symplectic dual. We explain how this class is an
instance of a general construction in hypertoric symplectic duality. Our construction
has the advantage of being both elementary and explicit. On the other hand, it is not
clear whether it generalises beyond the hypertoric setting.

In more detail, recgll from [8] that .Z X is defined as a limit of finite dimensional
hypertoric varieties .Zy X along closed embeddings, depending on a stability param-
eter 7). _

As explained in that paper, .Z X should be viewed as a first approximation to the
universal cover of the space of loops into X, which captures some of its key geometric
features. In particular, it carries an action of H>(X, Z) corresponding to the action
of the fundamental group of the loop space by deck transformations, and an action
of C; = C* corresponding to ‘loop rotation’, whose fixed locus is identified with

X X Hy (X, Z). We define a certain completion ZK (X) of the equivariant K-theory
of ZX. The variable g appears naturally as a character of the group (C;.

On the other hand, the space X" is a kind of multiplicative hypertoric space,
originally studied in an unpublished note of Hausel and Proudfoot. It may be defined
as a limit along open embeddings of smooth finite dimensional hypertorics 2y X',
depending on a stability parameter E

In order to make contact with elliptic stable envelopes, we must consider a special
value  of the stability parameter for which the hypertorics Zn X '{ are rather singular:

they are quotients of X é by certain torsion subgroups of its Hamiltonian torus. As
a consequence, the limit space no longer exists in the category of schemes. We can
nevertheless define a ring 2K °(X') which plays the role of “equivariant K-theory"
of the limit space.

There is a geometrically defined map

ZKX)OPK (X)) > Kyygvxcr X x X)((@) @
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where the left-hand side denotes a certain completion of the tensor product. We find
that the duality interface naturally lifts to a distinguished class £(.Z ") in the left-hand
ring.

To better understand £ (£ 1), we observe that it is an instance of a much more general
hypertoric construct. We define by a simple prescription a class § € K, , gv xCX (Y x
Y') associated to any pair of symplectically dual hypertorics Y, Y', together with
a choice of polarisation. When ¥ = ZX,Y' = X' and the polarisation is by
holomorphic loops, we recover & = &(.Z ™). This is Theorem 8.3.

We show that the class £ satisfies a number of properties analogous to the K-theoretic
stable envelope. Proposition 5.7 shows that when viewed as a correspondence from Y
to Y', it intertwines the K-theoretic stable envelopes of both spaces, once we let our
equivariant parameters tend to infinity.

The space K AXGYxCX (Y x Y') admits a tautological categorification, namely the

derived category of equivariant coherent sheaves. There is a natural lift of £ to an object
of this category, satisfying certain compatibilities with the various group actions. Our
result is thus suggestive of a possible categorification of the elliptic stable envelope as
a Fourier-Mukai kernel between the dual loop spaces of X and X', as predicted in [2].

2 K-theoretic stable envelopes

The next few sections collect some generalities which we will have use for. We start
by recalling the definition of a symplectic resolution, before narrowing our focus to
hypertoric varieties in the main body of the paper.

Definition 2.1 Let X be a smooth complex variety equipped with an algebraic sym-
plectic form €2 and an action of C;; := C* scaling Q2 by a nontrivial character /. We
call X a conical symplectic resolution if

e The natural map X — Spec H(X, O) is a projective resolution of singularities.
e The induced C*-action on Spec H(X, Ox) contracts it to a point.

We fix a maximal torus A of the group of (complex) hamiltonian automorphisms
of X, which we assume has isolated fixed point locus XA.

2.1 Equivariant K-theory

Let K TxCX (X) denote the equivariant K-theory ring of X. Let K TxC (pt)10c be the
field of fractions of KTX(C; (pt).
Definition 2.2 Let KTX(C; Xioc 1= KTX(C; (X) ®KT><(C;I< () KTX(C; (pH1oc-

The equivariant Euler characteristic defines amap eq : K¢ xCX (X) = K, xCx (PY10c-
We define a symmetric pairing on equivariant K-theory as follows.

Definition 2.3 Given y, Y’ € KTX(C; (X), let
(y.y) = Xeq(¥ ® ¥).
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In order to work with stable envelopes, we need a notion of degree as follows. Let
A be a torus. Any element .% € K 4(pt) can be expanded as a sum of characters

F = Z ayth.

HEX®(A)

Definition 2.4 We write deg 4 .7 for the convex hullin ay of the A-weights y appearing
with nonzero coefficient.

Degrees are partially ordered by containement of polytopes.

We will also occasionally take limits of equivariant parameters, in the following
sense. Any cocharacter o : C* — A determines a fan in ag consisting of a single ray
spanned by the derivative of 0. There is an open toric embedding A — A, where A,
is the toric variety associated to this fan. In coordinates, C[A,] C C[A] is generated
by t# satisfying (i, o) > 0. We have an isomorphism of schemes A,\A = A/C*.

Definition 2.5 Let .2 be an element of the fraction field of H*(A, ¢) with non-negative
valuation along A,\A. Write

lim 2

o —> 00

for the corresponding element of the fraction field of H(A,\A, €) = H(A/C*, 0).
The following is elementary:

Lemma 2.6 Ifdeg, (%) is strictly contained in deg 4 (¥), then the limit of F | along
any cocharacter of A vanishes.

This motivates the following definition.

Definition 2.7 We say .% /¥ is bounded if deg,(.%) is contained in deg, (%), and
strictly bounded if the containment is strict.

2.2 K-theoretic stable envelopes

We recall the definition of K-theoretic stable envelopes in a somewhat restricted
generality, which will be sufficient for our purposes and simplifies the exposition.
More details can be found in [9, Section 9].

We fix the following data:

1. A cocharacter o of A, which is generic in the sense that X C = xA,
2. A polarization, i.e. a splitting

in Ky (X,

3. A slope L € Pica(X) ®z Q, generic in the sense that the degree of £ on any
rational curve joining two fixed points is non-integral.

) Birkhauser
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Forpe X A we can define the attracting cell

Attry (p) = {x € X| linz)o(z) -x = p}.
—>

We define a partial order on X* by taking the closure of the relation {g < pifq €
Attr, (p)}. We define the ‘full attracting set’ of p to be

Attl‘;};([?) = Uy<p Attry (q).

It is a closed singular langrangian in X.
The K-theoretic stable envelope Stab,, 12 £(p) € K AXC] (X) is a class satisfying

the following conditions:

1. It is supported on Attr({ (p).
2. Its restriction to p equals the restriction of &, Attr, @ % where

1/2 (det T 1/2
g — _1 rk T>0 <
=D det T1/2

Here T is the repelling part of the tangent space at p, i.e. the complement to the
tangent space of Attr, (p).
3. Letq € XA. Then we have

degy Stab(p)l, ® L, C degy Stab(g)ly ® L.
Stable envelopes exist, and are uniquely specified by the above conditions, for a wide

class of symplectic resolutions including all hypertoric varieties. See [9, Section 9]
for an introduction and [10] for a much more general construction.

Definition 2.8 Let A be atorus. Let /\ : (K4 (pt), +) = (Ka(pDioc, ®) be the unique
map extending V — ), (=1’ A\' V. It may be written in coordinates as

Z cutt — 1_[(1 —tMn,

HEX®(A) n#0

Condition 2 tells us that, after specializing KA><(C;§ (pt) — Ka(pt), we have an
equality

stab(p)l, = (T,

The following proposition tell us that stable envelopes for ‘opposite’ choices of data
form dual bases of K-theory.

Proposition 2.9 Fix data o, TY2, L as above. Let Toll[,/p2 =Ty — T1/2,

W Birkhauser
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1. The classes Stab, 712 £(p) for p € XA form a basis of KTXC; (X)ioc over
KTx(fj; (pt)loc-

2. <Stabm7—1/2’ £(p).Stab_ s (q)> = 5.

3 Hypertoric varieties

In this section we define our main geometric actors: the hypertoric varieties introduced
in [5]. For a survey of these spaces, see [11].
Fix the following data:

1. A finite set E.
2. A short exact sequence of complex tori

l1-G—->D—>A—>1, 3)

with an isomorphism D = (C*)£.
3. A character n of G.

To these choices we will associate a hypertoric variety. Let g, 0, a be the complex
lie algebras of G, D, A. We require that 07 — ayz be totally unimodular, i.e. the
determinant of any square submatrix (for a given choice of integer basis) is one of
—1, 0, 1. This will ensure that when smooth, our hypertoric variety is a genuine variety
and not an orbifold. We also assume that no cocharacter of G fixes all but one of the
coordinates of CE.

Let V := Spec C[x.|e € E]. The torus D acts by hamiltonian transformations on
T*V = SpecClxe, y.le € E], equipped with the standard symplectic form  :=
Y eck dxe Ady.. Amoment map up : T*V — 0V is given by

up(x, y) = (Xeye).

We have the exact sequence

0s>g22bas0 @)
and its dual
v B vy
0—>a" " —-0"—>g —0. (®)]

The pullback g = 8" o up defines a moment map for the G action on 7*V . Fix a
character (1, 1) € gy @ g”. Given a G-variety U, write U //,, G for the GIT quotient

Proj@,,en{f € OWU) : g* f = n(g) ™" f.}. Let
Definition 3.1

Xpo = ug' @) /y G. (©6)

) Birkhauser
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We will often assume that  is suitably generic, in which case X, ; is smooth; this holds
away from a finite set of hyperplanes. We write X; := X, o, which we sometimes
abbreviate further to X.

The Kirwan map defines morphisms Hi(X VL) — 0y, H%(X,Z) — gy, and
H)y(X,Z) — gz. If the map B does not annihilate the natural basis of 0 = Z"
and 7 is suitably generic, these maps are isomorphisms.

The variety X inherits an algebraic symplectic structure from its construction via
symplectic reduction. The induced A action on X is Hamiltonian. There is a further
action of C; dilating the fibers of TV, which scales the symplectic form by /. This
preserves u(_;] (0), and descends to an action of (C,i; on X commuting with the action
of A.

3.1 Bases and torus fixed points

The torus fixed points X ‘,7‘ are indexed by bases. These are the subsets b C E such

that the restriction of ZF — az to Z” is an isomorphism. By construction, the set of
bases B does not depend on 7.

Lemma 3.2 There is a bijection B — X‘,’* taking b to

Db = (T*(CE\b N M(_;I(O)) /s G.

We can schematically write p = (), {Xe = ye = 0}.

The isomorphism Z? — az determines a basis of the right-hand lattice. Let {ozf } C
ay be the dual basis. We will sometimes write ol if we wish to emphasise the fixed
point rather than the base.

Lemma3.3 Let e € b. The normal bundle to {x, = 0} at p has A-character ol . The

normal to {y, = 0} has A-character —a?.

Corollary3.4 Let ¢ € b. Then the normal to {x, = 0} at p is attracting for the
cocharacter ¢ if (@l , ¢) > 0 and repelling if (al, ¢) < 0.

We now turn our attention to e ¢ b, and characterise which of the divisors {x, = 0} or
{y. = 0} contains p. The map gz — Z’* is an isomorphism. Dualizing gives a map
7" — g, and thus a basis of gy. We let B be the dual basis of gz.

Lemma 3.5 There is a unique coordinate lagrangian L, C T*CE\P containing an
n-semistable point, cut out by x. = 0 for (X, n) < 0and y. = 0 for (8Y, n) > 0. We
have p =L, /, G.

Corollary3.6 Lete ¢ b. Then p € {x, = 0} if (BY,n) < O and p € {y. = 0} if
(B¢.m) >0

Fix a generic cocharacter ¢ € az.

Definition 3.7 Let Attr’g (p) C X be the singular lagrangian defined by intersecting
{ye = 0} for (¢, a?) > 0 with {x, = 0} for (¢, al) < 0.

W Birkhauser
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It is a union of components of Attr{ (p), and is precisely the support of the K -theoretic
stable envelope of p, although we will not use this fact below.

We have the following useful characterisation of the fixed points which lie in this
set.
Lemma 3.8 Let by, b, be the bases associated to p, q € XA q € Attr'é (p) if and only
if (@f . ¢)(B. ) > Oforall e € by N b5,

3.2 Symplectic duality for polarized hyperplane arrangements, or Gale duality

Symplectic duality as defined in [6] may be thought of as a relation between two
symplectic resolutions (or more generally, symplectic singularities). We refer to that
paper for the general concept: here we will content ourselves with a review of the
construction of the symplectic dual of a hypertoric variety X, in order to fix notation.

Consider a sequence of tori as in 3, together with a character 1 of G and a cocharacter
¢ of A. We define the Gale dual data to be

1. The set E.
2. The dual sequence of tori

1-AY=>D" -G =1 @)

with the induced isomorphism DY = (C*)¥£.
3. The character —¢ of AY.
4. The cocharacter —n of GV.

The torus DY acts on 7*V". We define X' ¢ as the symplectic reduction of T *VV by
the induced action of AV with GIT parameter —¢. We will write X,, y, for the natural
coordinates on T*V"V.

In general, we will use the shriek superscript to indicate that we are working with
X" ¢ rather than X _;. In particular, we set £ ':= E. There is a natural bijection of the

bases B = B' given by taking b C E to its complement b C E.

Definition 3.9 Given a fixed point p € xé{ indexed by b C E, we write p' €
(x" C)GV for the fixed point indexed by b¢.

The following is a direct consequence of the definitions.

Lemma3.10 Lete € b. Then ol = BL .

4 Cohomology and K-theory of hypertoric varieties
4.1 The Kirwan map
Definition 4.1 Let
K :RepD x Cf = Kp,cx (T*V) = Ky (ug'©) /G

) Birkhauser
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be the composition of the restriction to ,u(_}l (0) with the Kirwan map, which takes a
representation R of D x (C;; to the class of the associated bundle R x© ,ual (0)G—ss,

Definition 4.2 Givene € E, let x, be the D x (C;L(—character of x, € O(T*V), and let

Ue :=K(Xe) € Kpxcx (X).

Thus u, represents an equivariant line bundle on X. The dual Darboux coordinate y,
has character /i~! Xe ! defining the bundle h_lue_l.
Let x. be the character of X, under DY. We have the analogous definition:

Definition 4.3
lie = Kk (fe) € K yox (X).

Definition 4.4 Given any coordinate Lagrangian subspace L C T*V, we define a
corresponding polarisation of X by viewing L as a representation of D x C* and
taking its image under the Kirwan map.

4.2 Restriction to a fixed point

We recall some known facts about the classes u,, it,. The following is essentially a

restatement of Lemma 3.3.

Lemma4.5 Let p € XA be indexed by the base b. Let e € b. Then the image of Uelp

under the map H;x(CX (p,©) = H(p,C) equals ol
h

Lemma 4.6 Keep the notations of the previous lemma, but suppose e ¢ b. We have
Uelp = hif{Be, n) > 0, andue|p =1if(Be,n) <O.

We introduce the notation €/ € Z for the function such that u, lp = ol hee for e € by
and u.|, = h€ for e ¢ by. For e ¢ b we have e’ = 0if and only if (87, n) < 0.

5 Theclass ¢

Consider the antidiagonal embedding C; — ((C;)z, 7 = (z,z71). We use this
embedding to define the equivariant K-group K, gv xC; (X x X"). Our main object
of interest is the following class in this K-group.

Definition 5.1

&= 1_[(1 - Meﬁe)-

ecE

We may think of & as associated to the polarisation V of 7*V, as follows. Recall
that our construction of dual hypertorics in Sects.3 and 3.2 starts from the tori D x

W Birkhauser
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(Cg ,DY x C; acting on the spaces T*V, T*V". As torus representations, we have
decompositions

V:@Xeandsz@xev.

ecE ecE

Definition 5.2 Let
Fe A (D)
e
viewed as an element of KDX(C; XDV xC (p1).
Now we fix dual hypertorics
X:=T*V [, G, X :=T*VY [ A"

as in Sects. 3 and 3.2. We also fix the auxiliary data which specifies stable envelopes
on X, X'. Thus, we fix suitably generic choices of

X € Pica(X) ®2Q, £X € Picgv (X)) @7 Q.

Furthermore, we pick the usual polarizations T;/ 2 (resp T;,/ 2) of X; (resp X !;) induced
by the image of V (resp V") under the Kirwan map.
. !
We have a Kirwan map KDx(c; DY xC} (pt) — KAx(c; GV xC (X x X°). We

further restrict along the antidiagonal embedding C} — (C})%,z — (z,27") to
obtain a map

!
KDx(C,jxDvxc; (pt) — KAX(;VXC; (X x X°). (8)

Thus £ is the image of £ under the map 8.

Definition 5.3 Given any coordinate subspace V' C T*V, we define a class §(V’) as
the image under the map 8 of the class

/.\ (Z XiX,'v),

where V' = @y; is the isotypic decomposition of V' into D-characters.

The class & (V') satisfies anumber of interesting properties analogous to the defining
properties of the K-theoretic stable envelope. The rest of this section explores a few
of these properties, which will not however be needed in the remainder of this paper.
For simplicity, we focus our attention on & = &£(V') below.
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Lemma5.4 Letp,q € XA suchthatq ¢ Attr’g (p), orequivalently (ad , )(BY, n) <0
for some e € by Nb,. Then

ue|pﬁe|q! = 1.

Proof This follows from Lemma 3.8, Lemma 3.10 and Lemma 4.6. O

Corollary 5.5 The restriction &, .+ vanishes unless p € Attr'{’(q), or equivalently

(aZ,{)(ﬂf,n) > 0foralle € b, ﬂb;.

Lemma 5.6

degé, ., = deg/\T,}ﬂX ® /\qu!/zX!.

for p # q, and

A 1/2 A 1/2 !
G = NI X 0 \T)°X"

Here all classes are taken equivariant with respect to the Hamiltonian subtorus A x
GY CAxGY xCy.

Proof We have

degé |,y = deg [ (1 —uelpitel,) ©)
eckE

Let by, b, C E be the bases associated to p, g respectively, so that b; is the base
associated to ¢'.

The characters u. |, for e € b, are precisely the summands of T;/

%X with nonzero
A-weight, and likewise for qu!/ X' This proves the first inequality. When p = ¢, each

factor contains a single nontrivial character of either TI} 2X or qu!/ ¢ ', thus proving

the second equality. O

The following Proposition is the main result of this section. It shows that £ inter-
twines the stable envelopes of X, X "in a certain limit. Consider the cocharacter
¢ xn ' C* - A x GV. It defines a map

Kpxgvxcr (X x X) = Koo (X x X0,

We may view elements of the right-hand space as functions of the tautological character
t € Kex(pt).
Proposition 5.7 The image in K¢, cx (X x X') of

X )'e X\—1 x'\—1 !
(,Zp ®fq, )®<($ )T RER (L) ,Stab{qT;/gpp’gx(p)®Stame;!/’znpp,sz(q )>

W Birkhauser
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A rk ind = rk 1nd |
has a limit as t — oo. This limit equals (ﬁ) (1—?1*1) "ifp=gqand

equals 0 otherwise.
Here ind, = T / ~ o s the index bundle at p, and md | = T / 1s the index bundle at
p'. Note that rk 1nd p is the number of e for which @l ¢y > 0.

Remark 1 By Proposition 2.9, we may reinterpret the Proposition as follows. Viewed
as a correspondence, (%) ® &£ ® (ZX)~! defines a map from KAx((:;)(X)loc

to K GVxC] (XY1oc. In the basis defined by K -theoretic stable envelopes, this map is
represented by a diagonal matrix in the limit t — oo.

Proof Write

A= o5 LX)
BPd .— (.,f,f( ® fq)f) ® Stab 1/2 X (p)® Stab T2 ox! (q!).

X,opp> X‘,opp

We use the localization theorem for equivariant K-theory, which expresses our
pairing as a sum over fixed points:

A ®Bl7><q

: x><) xxy!
(A, Bpxq > = Z . - —. (10)
XEXA,y!e(X!)GV /\ (TXX) ® /\ (TyX)

We consider the right-hand side summand by summand. By Corollary 5.5, we may
assume x € Attr’g ).

We have a restriction map K xgv (X x X') = Kcx (X x X') induced by our choice
of cocharacter. Below we write deg for the degree with respect to C*. By definition
of the stable envelope, we have

e 87 = deg AT @ NI @ 20 (2

with a strict inequality when x x y' # p x ¢'. On the other hand, by Lemma 5.6 we
have deg & |, 1< deg \* T 1/2 SON° Tl/2

Combining, we find that every summand on the right hand side of Eq. 10 is bounded,
and those summands with x x y' # p x ¢ are strictly bounded.

Upon taking the limit 7 — oo, the summands with x x y' % p x ¢' tend to zero
by Lemma 2.6.

To finish the proof, we must compute the limits of those summands with x x y' =
p % ¢'. This is done in Lemma 5.8 below. O
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. o 1/2 e n1/2 -1
Lemma5.8 Let F,, (1, h) be the image of &, - (/\ Tp/ X® A Tq,/ X!) in

KCXX@; (p1). Suppose p # q. Then lim; o0 F,, ;v = 0. On the other hand,

) i rkind, h_l rk indp!
A% Fonpt = (m) <1 - h—1> |

Proof F pxq! 18 given by a product of factors of the following form. Below, vanishing

. . roo .
factors in the denominator of the form (1 — /€ ) with €/ = 0 are understood to be
ommited.

(1 — e O pee plod . —m el

(1 — 1@l el (1 — gl =n el o
fore € b, N b,
a —t<“5’§>hffph‘53!) | (12)
(1 — el O pel (1 — hed)
fore € b, N by,
(1— h€5t<°‘5!"’y’>ﬁ_egl) ’ (13)
(1—hef)(1 — sl =mpely
for e € b, N bS and
(1 — B ped ) (14)

(1 —heHy( — h—fé’!)

fore € b}, Nb,. We consider the each terms in the limit # — oo. By Corollary 5.5, we

may assume (o, ¢)(al , —n) < 0. Recall also that for e ¢ b, €/ # 0 exactly when

(af, —n) > 0,and €/ # 0 precisely when («f, ¢) > 0. Thus, in factors of type 14,

one of €/, €/ must vanish, and the factor equals one.

On the other hand, the factors of type 11 vanish in the limit since (o, ¢)(af , —1) <
0. The factors of type 12 limit to 1 when («/, ¢) < Oand //(1 — k) when (af, ¢) > 0.

The factors of type 13 are similar, replacing («f, ¢) by (af, —n) and A by h~!. In
particular, we see that all factors are bounded as t — oo.
There are rk ind, factors of type 12 with (@f,¢) > 0and rkind P factors of type

13 with (!, —n) > 0. The lemma follows. O
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6 Elliptic cohomology over the Tate curve

Fix a coordinate g on the formal punctured disk D*, and let E = C*/¢” be the
corresponding family of elliptic curves over D*. More generally, let A be a complex
torus with cocharacter lattice az, and let £4 = A/q° be the corresponding abelian
variety over D*. A-equivariant elliptic cohomology, in the narrow sense needed here,
is a covariant functor from A-schemes to schemes

Ell4(—) : A — Sch — Sch

such that Ell4 (pt) = £4. The analogue of a class y in equivariant K-theory will be a
section f of a coherent sheaf .% over Ell4 (X).

To an equivariant line bundle u# € Pic4(X), one can associate a bundle ® (1) over
Ell4(X) called the Thom class of u, with a canonical section (). The next few
subsections explain how to do this in our setting.

6.1 Line bundles on abelian varieties

Given an elliptic curve E = C* /g%, we can specify a line bundle on E starting from
the trivial bundle on C*, by glueing the fiber over x to the fiber over gx by multiplying
by the ‘factor of automorphy’ cx? for some constant ¢ and integer d.

A holomorphic section of this line bundle may be identified with a holomorphic
function f(x) on C* such that f(gx) = cx? f(x).

We start with a line bundle £ with factor of automorphy —g ~!/2x~!, which serves
as a building block for most other bundles arising in the theory of elliptic stable
envelopes. The theta function

172

9(x) = 2 —xT ] = g"x)(1 = q" /), (15)

n>0

defined on the double cover of C*, has precisely this automorphy and thus defines
a section of L. In this paper, ¢ will be a formal variable, and we may think of the
right-hand side of Eq. 15 as an element of ClxtV 2][[q]].

Givenamap of toriu : D — C*, we may define aline bundle ® (1) on Ep by pulling
back £ via the induced map &p — E. ®(u) comes with a canonical section ¥ (u) also
obtained by pullback. More generally, given a virtual representation R = ) uCnth
of D, we have the line bundle

O(R) = ®,0 (")

and (meromorphic) section @ (R) defined by [ | u DA N
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6.2 Uniformization

By expanding the expression in Eq. 15, the section ¥ (R) may be viewed as an element
of HO(D', 6")[[q]], the completion of H*(D', &)[¢] at ¢ = 0, where DV is a certain
finite cover of D defined by taking the square roots of the coordinates x. We indicate
the latter interpretation by the superscript u for ‘uniformization’, so that

9(R) € H(ép, O(R)), 9" (R) € H (D', O)I[[q]].

6.3 Line bundles on the scheme of elliptic cohomology

The ring of virtual representations of a torus D is otherwise known as Kp(pt). The
definition of ® can in fact be extended to K (X) for a torus A acting on a space X,
and defines a group map

O : (Ka(X), +) = (Pic(EllA (X)), ®).

Given R € Ka(X), we write ¥(R) for the canonical meromorphic section of
HO(ElA(X), O(R)).

In the hypertoric setting, this is not much of a generalisation. The elliptic cohomol-
ogy of a hypertoric variety admits a natural embedding

Bllycx (X) = Epecys

induced by the embedding X — [Mal (0)/G]. It is the elliptic analogue of the embed-
ding Spec KAX(C; (X) — Spec KDX(C; (pt) induced by the Kirwan map. All of our
line bundles will in fact be pulled back along this map.

6.4 Uniformization on Ell (X)

Using the maps ® and ¥, we have a large supply of line bundles on Ells (X), each
equipped with a canonical section. We would like to think of these sections as elements
of Ka(X)[[g]], the completion of Ka(X)[g] at ¢ = O.

We thus define 9% : Ka(X) — Ka(X)[[g]] as the dotted line in the following
commutative diagram.

KA(X) <—— Kp(p1)
\;ﬂu \Lﬁu (16)
Ka(X)llgll <— Kp(pnllql]
Here the top horizontal map is the Kirwan map, and the bottom horizontal is induced
by the Kirwan map.

To see that the result does not depend on the choice of lift to Kp(pt), we note
that an element of K4 (X) is determined by its restrictions to fixed points p € XA, It
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thus suffices to check independence of lift for the surjection Ka (pt) <— Kp(pt). The
kernel of this map is spanned by elements t#* — 1, where ., ' are characters of D
which coincide after restriction to A. Independence of lift follows from the fact that
such elements map to 1 € Ka (pt)[[gq]]-

7 Elliptic stable envelopes

We fix the following data:

1. A sufficiently generic cocharacter o of A.
2. A polarization T;/ 2,

Let p € XA. Aganagic and Okounkov [4] associate to this data an elliptic stable
envelope, which is a section of a certain line bundle ®(R) on a certain enlargement
of the elliptic cohomology scheme.

For a complete definition (which also applies to situations with non-isolated fixed
locus), we refer the reader to [4]. We will in fact work with the ‘renormalized’ elliptic
stable envelopes, which are described in Smirnov and Zhou [13]. They are given by a
simple formula in terms of the so-called duality interface, defined as follows.

Let S =) . XeXe- We have a bundle ®(S) on Ep x Epv x S(CZ with a canonical
section ¥ (S).

Let C; act antidiagonally on X x X ', so that the character denoted 7 in K cx (X)

(resp. K cx (xh) pulls back to i (resp. ~!). We can pull back ©(S) along the embed-
ding

!
EHAXGVXC; (X x X ) —> gD X (c:D\/ X g(C;{
to obtain a line bundle on the left-hand side, which we denote 9t. We write m for the

restriction of ¥ (S). The following will serve for us as a definition.

Theorem 7.1 [2][13] The renormalized elliptic stable envelope of p on X is the restric-
tion of mto X x p'.

8 The class ¢ for loop spaces and the duality interface
8.1 Loop spaces

We recall some concepts and notation from [8]. Starting from the data defining a
hypertoric variety, namely a set E, a subtorus G — N((CX)E and a character n of G,
that paper defined a loop analogue of X denoted ZX. It is, loosely speaking, the
infinite dimensional hypertoric variety associated to the data

e YE :=E x Z.
el >G— ¥D=(CH?E > 7 1.
e The character n of G.
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Morally, X is the symplectic reduction T*(CZE) //n G. In fact, the space LX is
constructed as a limit of closed embeddings of finite dimensional hypertoric varieties
.= .i”N 1X — .,S,”NX — .,?NH X — ..., associated to the following ‘truncated’

hypertoric data.

o YNE:=E x[-N,N].
e 1> G— LD=(CHNE 5 gy > 1.
e The character n of G.

The natural coordinates on T*C- £ are denoted Xe k> Ye.k»and correspond to the fourier
modes in the expansion of a loop (x.(1), y.(1)) = (O ez Xextk, Y kez Ve xt*). The
coorginate Xe.k 18 ‘paired’, under the symplectic form, with the coordinate y, _.

Z X carries an action of an infinite-dimensional torus of Hamiltonian transforma-
tions, containing the subtorus A x (C; corresponding to the action of A on X and the
action of CJ by ‘loop rotation’.

Given any character of D x CJ x C;, we obtain by descent a A x C; x Cr-
equivariant line bundle on ZX. We denote the bundle associated to the character of

Xe,0 by u.. The bundle associated to x,  is qkue where ¢ is the tautological character
of C*.
q

8.2 K-theory of the loop space

We will have need for the following construction. Let & be an algebra over the ring
Clg,q~"] of Laurent polynomials. Choose a C[g]-lattice & C . Let £ be the
completion of Ky at the ideal (¢) C C[gq], and let K" := R@ ®crgn C((g)). Itis an
algebra over C((g)).

In our setting, £ will be an equivariant K-group, g will be a generator of K, cx (p1),
and we may choose the lattice to be defined by those elements whose restriction to the
A-fixed locus are polynomial in g.

Let .XNK(X) = KAX(CX c; (.,S,”NX) Itis a K(Cx (pt) = Clq, g ']-algebra. We
define

A
FKX) = < lim ,,s?N(X))

N—o00

If we take C; to act trivially on X, then the embedding csty : X — QSZNX of the
‘constant loops’ is (C; -equivariant, and we get a restriction map csty; : DZZN K(X)—
KAXC; X)lg, q_l]. In the limit, we obtain a map

t: ZK(X) - Kpxcy X)((@)).

The class g¥u, pulls back to the class of the same name on the right-hand side.
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8.3 Periodisation

Recall the diagonal embedding A — ZyD/G = Jy, and dually .7,/ — A". Given

a character ¢ of AV, let g: be its pullback along this last map.
Fix a generic character ¢ of A, and consider the hypertoric data

o YNE:=FE x[—-N,N].
o Iy — XNDVA — GV.
e The character ¢ of .7/.
The associated hypertoric space &y X '{ carries an action of G¥ = DY/ T V.

In contrast to the situation considered in [8], our character Z’ is ‘trivial in the
loop direction’. In particular, the periodic hyperplane arrangement associated to
limpy_ 00 PNX ; has period 0, and collapses to the finite arrangement associated to

X'
Let ZyAY := ANV G := GI=N-N1_ We have

1> NAY - Ty - Gy —> 1 (17)
where Gy := £vG/G. We have
PNX, =T CNE J 77,
Using 17, we can factor this as
(T°CHE )z 2wAY) ) G5 = (XYM ) Gy

This last reduction is by definition the scheme-theoretic Gy -quotient of the moment
fiber

!

-1 ! ! !
,qu(O) = X{ Xg Xg Xg .o Xg X{.

Here the right-hand side denotes the fiber product of 2N + 1 copies of X é over the
GY-moment map X é — g. The action of G, on this scheme has positive-dimensional

stabilisers, and it will be useful to also consider the stack quotient [/L(_};V 0)/Gx 1.

Remark 2 The scheme-theoretic quotient can be described as follows. For a positive
integer K, let GY[K — tor] C GY be the subtorus of K -torsion points. The diagonal
embedding

AN X = gy (0) (18)

descends to an isomorphism of schemes

X;/GY[2N + 1 — tor] = @NX!E.
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8.4 K-theory of the periodisation

We write K°(X) for the K-group of equivariant perfect complexes. Consider

L ).

\
N

o . o —1 _ o _
PNE ) = Koo g (LG ©/6GR) = K2 o 6 (g

h
Projection defines a C;; x £y G"-equivariant map
-1 -1
v (O v (0).
Hgl O = ugh ()
Pullback along these maps defines a direct system over Z=°, and we define the direct
limit

PKO(X) = lim PNKO(X)

N—o0

This ring is intended as a substitute for the K-theory of (a stacky version of) the limit
space X '{ , which we do not attempt to define here.

Pullback along 18 defines maps
o ! o ! !
Ay PNK°(X') — KGthc;L (Xp) = KGthcg(Xq)
which combine to define a map
* o ! !
A" PK(X) —> KGchg (Xp).

Leti,r € ZK°(X " be the class associated to the character Xe.k of ZDY. Then by
construction, we have

v .
A Ue f = Ue.

8.5 Combining .ZX and 2X'

Definition 8.1 We consider the ‘completed’ tensor product
~ R ~ A
ZKX)@PK(X) = lim (.,%NK(X) ®chh-1] @K"(x‘)) ,
N—o00

where the C[/:]-algebra structure on the right-hand factor is twisted by # — A~!, and
the A superscript denotes completion at g = 0 as before.

Taking the limit of the maps (csty x Ay)*, we obtain a map

(est xA)* 1 ZK(X)RPK (X' — K pxcz (X0 ®cpnn1) Kgvser (XD (@)).
(19)
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8.6 Polarization by positive loops

We fix the polarisation of LX by the positive loops, meaning the polarization induced
by the lagrangian subspace .Z(T*CF) c T*(ZCF) defined by

{xex = 0lk < 0} N {yx = Ok < O}

Remark 3 Another natural polarization of X is induced by the subspace ZCF
T*(ZLCFE), corresponding to loops in the x-variables. We have no use for it here.

As a representation of .ZD x C7, the space £+ (T*CF) decomposes as a sum of
characters

LHTCE) =Y D xen+ D 0 xk

ecE \ k>0 k<0

We write X for the dual characters of D, appearing in the symplectically dual
loop space. We write .ZJ (T*CE) for the analogous character of ZyD x Cr.

8.7 The universal intertwiner and the duality interface

Let g(iﬂﬁ (T*CE)) be class defined as in Sect.5 and Remark 5.3 starting from the
subspace Ly (T*CE) c T* £y CE. 1tis given by the formula

[T = xe0ke) JT 0= xexkew) J] 0 =xiiker) (20)

ecE 0<k<N —N<k<0
Taking the image of 20 under the Kirwan map, we obtain an element
(L (T*CF)) € LyK (X) ®cip 1] P K (XD,
Letting N — oo, these classes define an element
E§(LH(TCE)) € ZK(O®PK(XY).
Definition 8.2 Let £(.Z) denote the image of &(.Z+(T*CF)) under the map 19.

. . | . ..
Thus £(ZT) isa class in KAx(CE (X) ®crn.n-1 Kgv xC (X)((g)). We can write it in
terms of the tautological classes as

§2h) =[]0 —uetie) [T = g ueiie) (1 = g*u; i h. 1)

ecE k>0

Comparing Eq. 21 with the definition of the duality interface m, we obtain our final
result:
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Theorem 8.3 The class (L) equals the uniformization m* of the duality interface
m, multiplied by the fractional bundle ]_[e (o) /2.
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