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1. Introduction

Quantum field theory (QFT) has an essential role in nuclear and particle physics and in condensed matter physics. From the Standard
Model of particle physics to topological phase structures in quantum materials, the language of QFT provides a concise and predictive
mathematical description. In some cases these descriptions contain a small parameter (coupling) in which an expansion can be performed
to derive analytical expressions for relevant physical quantities. However in other cases, the couplings are large and numerical approaches
are required to extract physical results; the dominant such approach in many strongly-coupled theories is referred to as lattice QFT (LQFT).
The LQFT method involves stochastic Monte-Carlo sampling of the very high-dimensional lattice-regulated path integrals that define the
correlation functions of the theory in which physical information is encoded. The large Euclidean-time behavior of correlation functions
plays a crucial role in LQFT as it is central to obtaining the energy spectrum of the theory under study. If O(x) is a localized operator
built from combinations of the fundamental fields centered around the spacetime point x = (t, X) and O(t) x Y 2 O(x) then, for Euclidean

theories satisfying reflection positivity, the bilocal operator C(t) E@(ﬂ@T (0) has (vacuum, |£2)) expectation value
(cen=(Ic®IR) =3 zce™, (1)

where m is the mass of the lowest energy eigenstate that W(O} |€2) has an overlap with and Z is the overlap factor. Therefore, for large
enough’ t, an estimator for m is given by

i =In(C(t)) — In(C(t + 1)). (2)

In practice, to extract m, one calculates the sample mean and sample variance of i1 and assumes the validity of the Central Limit Theorem
to construct confidence intervals. However, for most choices of correlation function, as the Parisi-Lepage [1,2] argument shows, the signal-
to-noise ratio vanishes exponentially fast as t — co.” This issue has been investigated in detail in lattice calculations in the context of
lattice Quantum Chromodynamics (LQCD), given its phenomenological interest as the theory of the strong interaction. Recent works have
focused on characterizing the nature of statistical fluctuations [3-10] and on proposing strategies for noise reduction [11-25].

In confronting noise issues in the large-time behavior of correlation functions, it would be useful to have an analytical form for
the probability distribution function (PDF) of C(t) even in simple examples. Such a form would allow for statistical tests of empirical
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distributions determined in numerical calculations that may diagnose statistical limitations in the empirical sampling. Examination of
higher moments of the PDF may also be useful in improving extractions of physical properties of the system through improved estimators
[4,5]. In the present work, it will be demonstrated that in certain cases it is possible to obtain such analytical forms in the large time
regime for correlation functions whose source and sink are both constructed to have vanishing spatial momentum. In Sec. 2, the analytical
form of correlation function distributions for the free real scalar field theory will be derived. In Sec. 3, it will be shown that the distribution
obtained in Sec. 2 is valid for correlation functions constructed from local operators for interacting bosonic theories at large times assuming
a unique, gapped vacuum. Deviations from the asymptotic form of the distribution are linked to excited states in the spectrum and are
controlled by the correlation lengths (or masses) of the theory. Consequently, analysis of these deviations provides a means of determining
correlation lengths. Through their more general approach to statistical distributions, these results can potentially provide a path towards
more robust determinations of energies and matrix elements in LQFT.

2. Exact results for free scalar field theory

In this section, the distributions of correlation functions whose source and sink are both constructed to have vanishing spatial momen-
tum are studied in the setting of a free real scalar field theory. The general form of the distribution is derived before a specific lattice
discretization is chosen and investigated.

Since the free theory momentum modes decouple, all non-zero spatial momentum modes can be factored out trivially. That is, if ¢(t)
is defined as

1 -
[)=—= ts s
o(0) N Ez @(t,x) (3)
1 ! r " "
z= f Dslexp ( —3 Y E)DE, 06" | (@)
$O)=p(Np) et

where N; is the lattice size in the tem&)oral direction, V is the spatial volume in lattice units, D(t',t") is a discretization of the continuum
Klein-Gordon operator, and [D¢] = [;0_1 d¢(t) is the integration measure.
For the following argument, it is assumed that the discretized D(t’,t") is

e positive-definite, in order that the integral in Eq. (4) is convergent,
e real and symmetric,
e translationally invariant, only depending on t’ —t”(mod N;).

The characteristic function for the composite operator ¢ (t)¢(0) is defined as

@y )40 (@) = (exp (—iwd (1)$(0)))

1 1 . (5)
=_ Delexp | —— D', e t") — iwg ()P (0
Z ﬁ [Dolexp | — 39D, )9 (") — iep O ©)
B (O)=¢Ne) t.r
If Qr,¢v = 8¢ ,08¢7 ¢ + 8¢ ¢8¢v o is further defined, then it is easy to show that
1
o W) = —, 6
9040 (@) = —m= o) (6)
where
R(@)=1+iwD"2QD" . 7)
Note that D and Q are linear operators acting on a vector space of dimension N; and let e, fort' =0, .-, N; — 1 be the basis of unit

vectors on each timeslice and for which matrix elements are given as D+ and Q. » respectively. Note that in this basis Q eg =e; and

Qe —=eg and Qe =0 for t’ ¢ {0, t}. Let (-,-) be the inner product for which the vectors e, are orthonormal. For the basis {vy = D%e[x},
R(w)vy = vy for t' ¢ {0,t}. Therefore, to calculate det R(w), only the subspace spanned by vg and v; needs to be considered. Further, the

vectors v+ = D%ei can be defined where e+ = 715{8[ tep). If Rlwyvy =Ryyve+Ry v_+--- and R(w)v_=R__v_+Ry_vy+---,
where the ellipsis represents terms that are spanned by v; for j+#0,t and does not contribute to the determinant, then:

det R(w) = R++R__ — R+_ R_+. (8)
Further, for wy = D_%e[e and wy = D_%ei. Then, (wi,vy) =244 +. It follows that

Roo' = (Wo, R(@)Vgr)
. 1 (9)
=08y.0' +iw0 (65, D €y,

where o, ¢’ = . From translational invariance, it also follows that (e+, D~'es) = (eo, D~ 'eg) — (er, D~ 'e;) = (e, D"eg) — (€0, D e;) =0
and so R,_ = R_, =0. Then, by defining’

3 The positivity of w. follows from the positive-definiteness of D.
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Fig. 1. The integration contour used to evaluate I(x) for x > 0.

1
(8:;:, D1 F.’:E) =

it follows that

wy = 0, (10)

(w—iwy)(w+iw_)

det(R(w)) = (11)
Wy w_
Therefore, the probability distribution of ¢ (t)¢(0) is obtained from the characteristic function as:
1 .
Py ®) =5~ f dwe'™ @y 14 (0) (@)
B m fdw elwx (12)
T o Vw—io)(@+io_)
The calculation of Py )40y then reduces to the evaluation of
oo .
ela.lk’
I(x)= f dw = = . (13)
I Vi —ioy) (0 +iw_)

Since w4 > 0 (Eq. (10)), for x > 0 the integration contour in [(x) can be deformed to the contour C = {ico — € — iwy — €} U {iwy +€ —
ioo + €} as in Fig. 1. The integral can thus be expressed as:

1(x) = (—e"if' + e—"%) ie= 1% Io(x) = 21 (x), (14)
where
oo
_ e Xy
I(x):fdyd( YO T o)
— [
o y +) (¥ (15)
1
= e%(‘“——“’“"Kg (E (w4 +w-) x) .
Here, Kp(x) is a modified Bessel function of the second kind.
These formulas can be summarized as*:
fOiw_ 1. 1
Pyys 0 X) = n#ez‘“’— @K, (5 (4 +o_) le) . (16)
The lattice action needs to be specified explicitly to gain more insight into w.. A simple discretization is:
(D-¢) () =m?¢(t) — (P +1) + ¢t — 1) —26(0)). (17)

4 Note that the similarity of this equation to the form of the scalar field propagator in position space,
m@-1/2

d—1
C(x)~ W"'m_mz (m|x|) — Ko (m|x]),

is coincidental for d =1 and does not hold in other numbers of spatial dimensions, d.

3
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Assuming that N; is odd, the normalized eigenvectors of D are given by:

1
E(t)=
O=75
2 2 j
Sjt)= —sm N_tt , (18)
e ,’i 2w j
Cjt)y= N, cos( N, t)

where j=1,---, ﬁﬁ{—l and t indexes the components of the each vector. The corresponding eigenvalues are:
AME) =
.\ 2
A(Sj) =m? 4 4sin )
N; (19)

.\ 2
T
A(C_f):m2—|—4sin(Fj) :

t

Expanding in eigenvectors of D, the vector representing an arbitrary field ¢ can be expressed as ¢ = ¢°E + Z+ ¢SS i+ Z ¢CC j
and it follows that

E:z—_l
68O = 5-(69?) + \/Nzt > cio{69?)
=1

Ne—1
11 2 & COS(%@”)

2 2
Nem? = N =1 m2+4sin(%)

(20)

where {...) indicates integration over the field ¢ where the integration measure is given by [D¢] = ]_[i\r dey = d¢® ]_[ dqﬁ‘dqb“

Partially following Ref. [26], in order to take the continuum limit, the infinitesimal time interval € is introduced and the llmlt t, N[ — 00
is considered such that § =eN; and t/N; are fixed. Further, T =te is defined. The quantity m depends on € (equivalently on N;) and
m(e) should be chosen such that the correlation function decays as exp (—mgt) as € — 0 for large T and § — oo (the f — oo limit
must be taken first), where mg is the renormalized mass. The renormalized field ¢g = \/Zy(€)¢, where Z4(€) is will be chosen such
that correlation functions of ¢z have non-singular behavior as the continuum limit is taken. Setting k = %B”- j. the renormalized correlation
function is:

(Ppr(T)PR(0)) = Z4(€) (9 (D)¢(0))

Z(N—1)
_ Zyle)e Z Ak cos (k1) Zy(€)
R . 2 N 2
k= m(e)? +4sm(§e) tm(€) (21)
Z(Ne—1)
_ Zyle)e Ak cos (k1) Zg(€)e

TS me?+asin(k) PO

Taking the limit § — oo (or equivalently N; — oo) one therefore obtains:

cos (k1)

, z
lim_ (¢r (1)r (0) = 2 f dk >
poo o m(e)? 4 4sin (%e)

L (22)
Z¢,(e) exp (ikt)
5-
= m(e)2 +4sin (%e)
The integration can be performed by defining z = exp (ike) that maps onto the unit circle, giving”:
z¢,(e) #; zé

T 0 . 23
(Pr(T)Pr(0)) = M T 1 (23)

5 Note that I is a non-negative integer, so the integrand is meromorphic.
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The poles of the integrand are at zL =1+ # +m(e),/1+ im(e]z, with only z_ occurring inside the unit circle. Therefore:
Zy(€)
2m(e),/1+ Im(e)?

2 t
x (1 + m(ze) —m(e),/1+ j—lm(e)z) .

To observe the expected exponential decay o exp (—mgT), one is forced to set m(e) =mpge + O (62). This also shows that one must chose

and Z(e) = constant x € + O (ez) for the above equation to be finite for € — 0. Given these constraints, m(e) =mpge and Zy(€) =€ are
chosen, leading to a renormalized correlation function that is finite in the € — 0 limit.
It is clear from Eqs. (18) and (19) that®

1
(= ———F
m%e2/Ny

Ne—1 2
2 ‘%sin(zﬁ—rﬁ) Sj + cos
+ [—
N

r
2
j=1 m%e2 +4sin ( )

(or(T)dr(0)) =

(24)

D e,

A

2njt)cj (25)

£l

Eh

so it is straightforward to show that:
Ny —1 :
2 9 . 1+4cos (2%:“)
2 2 "N 2
Nemge? Nt 72 2 4 45in (%})

H‘E__l l—cos(z—ﬁrj—t)

(€+., D_1€+) =

2
(.0e )= ) . (26)
t 2.2 . ﬂ
j=1 mgpe= + 45sin (Nr )
(es,D7'e_)=(e_,Dey)
=0.

The probability density function of the renormalized two-point function is given as:

Pyr(z)gr(0 (X) = (8 (X — ¢r(T)¢r(0))) (27)
and since Z(€) =€ is chosen, this may be written equivalently as

Pyr(z)pr0(X) = (8 (x — €9 () ¢(0))} . (28)
The factor € leads to the modification of Egs. (7) and (10) as

R(w)=1+icwD1QD 2, (29)
and

Wy = ! 30

*T € (ex,DTey)’ (30)
In the limit € — 0:
) 2 cosh(ﬁg’—“)+cosh(ﬁ'§—"—mgr)
0y — + ; (31)
pmy 2mpg sinh (ﬂ%)
and
cosh (%) —cosh (% - mgr)
0w ' 5= , (32)

2mpg sinh (ﬁ%)

where the following identity’ has been used:

6 Note that this is a vector equation: both D—'e; and E, S; and C; have N; components.
7 The sum f(r)=Y Eﬁ% is to be calculated where k = %—j with j e Z. One observes that f”(t) = — Y, €T +-m% f (). Using the fact that }_; e*” = g&(r) under the
]

restriction 0 <t < 8, we obtain f"(r)=—g8(r) + m% f(t). Therefore, one has the solution f(r)=A e ™" + A_e™*T except at T =0. The symmetries of the summation
in f(r) imply that f(g — t) = f*(r) = f(r), and from this condition, one obtains A_ —e™*#A . Finally, using the boundary condition f'(f —e€) — f'(€) = j as required

to satisfy the inhomogeneous differential equation for f(r), one can also fix A, = Zr;,L

2R
R s'mn(W)

, resulting in Eq. (33).
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Fig. 2. The empirical distribution of ¢(t)¢(0) for free scalar field theory with the discretization given by Eq. (17). The red curve is given by Eq. (16) with wy from Eq. (37).

Z eikT g cosh (ﬂ% — mgr) (3)
— 33
2 .
k=231 jez my+k* 2Mk - sinh (‘%)
In the limit § — oo,
14 e MRT
wf - (34)
2mpg
and further in the limit T — oo,
1
—1
wy — —. 35
* 2mpg ( }

In the large 7, B limit (at non-zero lattice spacing) with w4 = w_, Eq. (16) will be shown to valid for a much larger class of theories in
the next section. First however, the distribution in Eq. (16) is compared to the numerical distribution of ¢(t)¢(0) for the two-dimensional
free real scalar field theory discretized as in Eq. (17). Computations are performed for a lattice of size Ny x N; =20 x 40 for t =6 and a
sample size of A" =10° and the resulting distribution is shown in Fig. 2.

The parameters w4+ to use in Eq. (16) for comparison are determined as follows. The lowest moments of the distribution in Eq. (16)
are given as:

w_ —wy
2w w_

(x)=

(36)

£l

2
{xz} _ 30 20 0, + 3w
40’ w?

where (x") = ffooc dx Py )¢ (0)(%)X". After some algebra, these relations can be inverted to give

V) =207 F (x) | (37)

(x2) — 3 (x)?

As well as the empirical distribution from the numerical calculations, Fig. 2 shows the distribution of Eq. (16) with the above values of
w2y determined from moments of the empirical distribution. The choice of t =6 and lattice size are completely arbitrary and equivalently
good agreement is seen for all ¢ and for various lattice geometries. The numerical data are clearly well-represented by the expected
behavior and the empirical cumulative distribution function converges to the exact cumulative distribution function given by

wy =

X
Fetrp(X) = [ du Py e)p(0) (1) (38)

—00
as the sample size is increased, as seen in Fig. 3 where sample sizes A’ =102 and 106 are used.
3. Large-time correlators
The above results for a free real scalar field theory can approximately describe the statistical behavior of correlation functions for many
operators at large time in a broad class of bosonic interacting lattice field theories. Consider a theory in D =d + 1 dimensions and a local

operator® O(t,X) such that:

e The Euclidean action of the theory is real,

8 This operator does not have to be an elementary field but can be a composite operator constructed from elementary fields.

6
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Fig. 3. (a) shows the empirical distribution function and the exact cumulative distribution function for the sample size 102. (b) shows the same data and curves for sample
size 106,

e There is a unique, translationally invariant, gapped vacuum |£2),
e O(t,X) is covariant under temporal and spatial translations,
o The vacuum expectation value of O(t,x), {Q|O(t,x)|), vanishes,

If O(t) is defined as:

= 1 -
oW =,/ Zoa,x), (39)
X
where X runs over all lattice sites on the given time slice, then as t, N; — oo:
B o _ w —mmin (t, Ny —t)
Jim_ P50 @ = ~Ko@lgh +0 (e ), (40)
with @ > 0. Here, |m) is the zero-momentum eigenstate with the smallest energy such that
(Q18(0 —u)|m) #0 (41)

for some u € R and m is its energy.

To see this, the joint probability distribution Pe), @) (u, v) that O(t) takes value u and O(0) takes value v will be considered. This
is defined as

Poe).00 M. V)= % [Dple>15 (O) —u) 5 (O(0) —v)
¢(0)=¢(N¢)
t.Ny—oo

- (QI8(O(0) —u)|Q) (RUSO(0) —V)|Q) + O (e—"’ min “’”f—”) ,

where ¢ is the set of elementary fields in the theory and [D¢le ¢! is interpreted as a probability measure. The third line expresses
the decoupling at large time separations consistent with cluster decomposition. The factor (€2|6(O(0) —u)|€2) can be calculated as
limp, o0 Tr (e~NeH5(O(0) — u)). Therefore, one may write
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(QI8(O(0) —w)|R) = lim §£ [Dple#15(O(0) — u).
Ni—oo (43}
$(0)=¢(Np)
To evaluate this, N d-dimensional spatial boxes B1, --- , BN centered at an equispaced set of points {X;} are defined, each encompassing 7"&

sites. Coarse-grained quantities O;(t) are defined as:

_ N -
Oi(t) = \fV > o), (44)

XeB;
such that
_ 1 &
o) = — O;(t). 45
(®) JNE i(0) (45)

By integrating over all remaining variables, Eq. (43) can be expressed as:

N
mla(@(l))—u)lsz}:f []‘[du.} Po, ... 0y U1, ,UN)
i=]

x&(m 4+ UN —u)
VN ’

where here and henceforth the abbreviation @; = ©;(0) will be used and P@l‘m, oy U1, -+ UN) is the joint probability density of events
in which each &; takes the value u; and is normalized such that

N
[ [ndui] Po, ...o,W1, - un) =1 (47)

i=1

(46)

If the box sizes are larger than a few correlation lengths, the O; are independent of each other up to exponentially small effects
proportional to e~™, where m is the mass gap specified after Eq. (41) and I is the distance between centers of neighboring boxes.
Consequently, P, . &, W1, uN) ~ ]_[?r:l P 5,(uj). Such an approximation becomes exact in the infinite volume limit, and with N and

[ both taken to infinity®:

N
. = . Uy +---+uy

| QSO —-w)|Q) = 1 du; | P 3 | —————
Jim (Q18(0 —u)|Q) Jim |:.'|=1| u,] Oy Oy U157+, UN) ( TN u)

N
— 1 - = - u1 +--.+uN —
_!\}me [ndu,Poi(u,)] ) (—JN u)

i=1

oo N
— i 1 ki B (ke | gitkatino i) A (1S
_;\:lewW[dA[ [ﬂd”‘d""’a—("ﬁ]e g (=255
—00 =

(48)

1 7 A\
S T iulp_
-dm 3 [ @ [P0 ()]
oo

where P@i{ki) is the Fourier transform of P@i (uj). In the fourth line, that fact that }-’@i (k)= P@I (k) by translational invariance has been
used. Note that f’@l (0)=1 as P@1{'} is a normalized probability density function. Similarly, ﬁ%}l (0)=0 as ((’51) =0 by assumption, and
setting f”él (0)= —O’él, P@I (1) can be expressed as:

1.2 2 3
13@1 o :9_2%11 +O(A ).

This implies that as N — oo:

[ ATV 4oz 2
i [Po ()] = )

and by integrating over A it is clear that:

9 The following set of manipulations follows results of Andrey Andreyevich Markov, see Ref. [27] for further details.

8
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2

lim (QI6(O0 —u)|Q) = ! e_ 2;@1 (50)
V—oo o “;2‘1‘!0‘@1 '
Therefore in the infinite-volume limit, the joint probability density P&, &, (u. V) is given as:
_uz;Evz
H _ _ _ 205 —mmin (t, Ny —t)
Aim Pog,o0®: V)= 2707 e 91 +0(e ). (51)
1

As a consequence, the distribution of the product @(t}@(ﬂ} in the same limit is:
lim P&, A = [ dudv| lim Pgs,, AU, V)|8(q@—uv
ym D(r)l’;}(ﬂ)(m f I:V—mo O(r),O(D)( )] (q )
i
tNoo 1 fdw 'l Lo (e—m min(r,m—n) _ (52)

" ) )

2Wo s
This expression reduces to Eq. (12) with wy = ;;— so finally from Eq. (16) one obtains'’:
4

(@]

. . . 1 Iql
1 1 1 Paid =——Ko|—]- 53
00 Nrg,noo [vl—{rcl;o 0600 (Q):I Jnjrg_31 0 (0‘5231 ) (53)

To test the validity of Eq. (53), interacting ¢* theory in two dimensions is investigated numerically following Ref. [28]. The action for
this theory is:

b K &
S=Y0| 540+ 34+ 5 2 (Gia—a) |, 4)
i fi=1

where i labels the sites, b, u, K are couplings and i labels the directions. Through the rescalings

1
ﬁf’i:ﬁ@i,
b=6K, (55)
u=yk?,

the action be rewritten as

6 X
s=3[(2-3) ¢ + Lot ] - Lo (56)
i (ij)
where } i) indicates summation over all pairs of neighboring points. A schematic illustration of the phase diagram corresponding to the
above action is given in the Fig. 4 in terms of exponentials of the couplings ¢ and .
Defining the one-parameter path through the coupling space
e X =5,

57
ef=1—s, (57)

calculations have been performed for a lattice size of N5 x N; =40 x 40 and sample size N’ = 106 for s =0.05 x k where k € {2, ---, 10}
using a publicly available code [29]. For these values of s, the system is in the disordered phase, and larger s values correspond to smaller
renormalized mass values, m, closer to the critical line, The parameter o2 in Eq. (53) is determined through Eq. (37). To quantify how well
Eq. (53) describes the numerical data, the total variation between the empirical distribution E;(q) at time t and the expected asymptotic
distribution of Eq. (53) is calculated:

Er(@) — —s—Ko (L), (58)
mol o2

1
T = 3 [ dq
O o))

It is expected that the total variation vanishes in the large t, N; limit. The logarithm of the total variation versus t is shown in Fig. 5
where it is seen that the total variation decreases as t is increased until it reaches a plateau value that appears to be independent of s.

Note that, as is seen in Eq. (53), H_;rKD ( ;'3'—) is the dominant term in the expansion of P, »,(q) at large times and arises from the
o O

10 1t must be stressed that the limit § — oo must be taken before the limit t — oo while the limit V — oo can be interchanged with the limits t — oo and f — oc.
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Fig. 4. Schematic phase diagram corresponding to the action given in Eq. (56). The dashed line separates the disordered and ordered phases and is known to be a second
order transition. The stars correspond to the values of the couplings at which simulations are performed. A numerical determination of this phase diagram is given by Fig. 8
of Ref. [28].

—+— s=0.1

g —}— s=0.15
=1 —}— s=0.2
< —+— s=0.25
= —— s=0.3
g —— $=0.35
o s=0.4
5 —— $=0.45
s=0.5

2 4 6 8 10 12 14 16 18
t

Fig. 5. The logarithm of the total variation as a function of time separation for the ¢* theory in the disordered phase for various values of the parameter s in Eq. (57).
Calculations are performed with N x N; =40 x 40, and a sample size A" = 105,

Log Total Variation

6 8 10 12 14 16 18
t

Fig. 6. The logarithm of the total variation as a function of time separation for the ¢* theory in the disordered phase. Calculations are performed for Ns x Ny =40 x 40, with
s =0.5, and results for two different sample sizes ' = {10%,10%, 105, 107} are shown.

contributions of the vacuum state. The subleading terms in this expansion are due to excited states with vanishing spatial momentum.
It follows that:

o0
. 1 _ _
vlew Popow(@ = FKG ;%l +e ™ Am(q) + f due MP(P‘)A#(Q), (59)
C_}] @1 i

1 Since @(0) is invariant under spatial translations, §(Q(0) — u) is also invariant. Therefore (¥|§(((0) —u)|K} is non-vanishing only if |¥) has vanishing spatial momen-
tum. This proves that P, &g, (U, V) can be expanded in eigenstates with vanishing spatial momentum and same is the true for P60 (@)-
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Fig. 7. Estimates of m(s) from the time derivative of the logarithm of total variation are shown in blue, while those from the time-dependence of the correlation function
(C(t)) are shown in red. Error bars represent the standard deviations calculated using 250 bootstrap resamplings.

where m is the mass of the second excited state with zero spatial momentum, p(i) is the density of states, and A, and A, are t-
independent quantities. In this expression, it is assumed that 0 <t « /2 so that effects of the finite temporal extent can be ignored.
Considering the total variation as a function of time, it is seen that

log(7en (£)) = —log(2) —mt + log f dq|Am(q) + f dpe= M)A L@Q)]| |, (60)
m

where Ty (t) is the infinite sample size limit of 7 (t). At values of t for which Am(q) dominates the remaining contributions, one expects
to find linear behavior with slope —m. Such behavior is seen in Fig. 5 for some values of t, but at larger t, a constant behavior is seen.
The above expansion assumes the distribution limy_. P@(r)@(ﬂ) (q), while numerical calculations determine E:(q), that deviates from the
exact distribution at finite statistical sampling. Since e=™ A,;(q) vanishes as t increases, the deviation of E,(q) from the exact distribution
will be larger than e ™ A;(q) at large times, invalidating the above expansion. The main contribution to this deviation is expected to be
due to the finite sample size, since convergence to normality is generically very robust if mN; > 1. Additionally, since t ~ N;/2 in the
figure, effects of the finite temporal extent may need to be accounted for. This expectation is numerically confirmed for the system under
consideration in Fig. 6 where results of calculations are shown for s = 0.5 for sample sizes A" € {10%, 10°, 106, 107}.

Since Eq. (60) depends on the mass of the lowest energy state with the correct quantum numbers (Eq. (41)), the time-dependence
of the total variation between the empirical distribution and the asymptotic expectation can be used to extract the corresponding mass,
m. Estimates of m from the exponential falloffs seen in Fig. 5 are shown in Fig. 7 as a function of s. Estimates from fits to the time
dependence of the correlation function (C(t)) are also shown. The fits to extract these masses are discussed in Appendix A. As can be
seen in Fig. 7, the masses extracted from the total variation and the time-dependence of the correlation function itself are consistent
although the total variation provides a less precise estimate for the parameters used in this study.

4. Summary and outlook

In this work, the statistical behavior of correlation functions of bosonic lattice field theories at large Euclidean time-separations has
been investigated. The exact distribution of bilocal correlation functions in free scalar field theory was determined and numerical Monte-
Carlo calculations were seen to converge to this distribution. It was also shown that the distributions of many correlation functions in
a general class of bosonic lattice field theories approach the same universal distribution in the large-time limit. Numerical tests also
confirmed this behavior.

The existence of analytic expressions for distributions even in simplified theories provides an interesting direction for future work.
Extension of these results to other phenomenologically relevant theories such as lattice Quantum Chromodynamics is possible and may
help in diagnosing the signal-to-noise problem that plagues calculations of many quantities. A more thorough understanding of noise
in Monte-Carlo sampling of lattice field theories along directions analogous to those pursued here, may lead to improved strategies for
extracting physical information. In particular, tests of empirical distributions against the expected asymptotic distribution of correlation
functions at large time may build confidence that a given level of sampling is sufficient for robust physical results to be determined. A
deeper exploration of this direction is left to future work.
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Fig. 8. The behavior of S(t) =log 7 (t) (blue) and S(t) = log (C(t)) (orange) for  =1,---,18 and s =0.1,0.15,---, 0.5 is shown. Uncertainties are determined through the
bootstrap method and the best fits f (defined in Appendix A) are shown as smooth curves over the time range of the best fit.
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Appendix A. Fits to correlation functions and total variation

The fits to extract masses from the correlation functions and total variation functions are performed as follows. For each value of s,
B = 250 bootstrap samples are generated, each having 108 samples. For each bootstrap sample, 7 (t) and C(t) = O(t)O(0) are calculated.
In order to determine the mass, fits of the form f7(t) = A + Be~E7T! must be performed to 7 (t) and fits of the form f¢(t) = De~Ect
must be performed to C(t). In what follows, only the extracted energies Ec and E7 are meaningful and referred to generically as E. For
each s, bounds of acceptable fit ranges tI, tI, t€,tC are set as follows: tC is always chosen to be t€ =1; tI is chosen to be minimum
t that satisfies log 7 (t') < logT(t) for all t’' > t; tE is chosen to be minimum value of t that satisfies (C(t)) < 0; tI is chosen to be
t value where log7(t) becomes consistent with a constant. Fits to the two quantities are performed over subranges (tmin,tmax) Within
these bounds that satisfy the inequalities t. < tijp < max (2, tmax — 3) and 5 < tpa < max (t.., 7). Fully correlated fits are performed for

both 7(t) and C(t) with covariance matrices calculated through optimal shrinkage [30]. Only the fits that satisfy 335— < 1.5 are deemed

2
acceptable and kept for further analysis. These surviving fits are labeled by f =€ {1,---,F} and are assigned a weight Wy o ﬁfe_aﬁ
f

where 8E2 is a measure of the statistical variance of a given fit. Defining the deviations AEE =E *}. — E on each bootstrap b for each fit
range f (£ f is the bootstrap mean for fit range f), this statistical uncertainty is defined by

1
SEfZE[Qg({AEf})—Q; ((AE))] (A1)
where Qg (-) is the quantile function, whose argument is a bootstrap set. A 68% confidence interval is given as (Q 1 ({E}) —48E 2 Q 3 ({EhHh+

SE}} where {E} ={Ef|f=1,--- ,F} and f= argmax; Wry. In Fig. 8, the calculated values of log(C(t))(t) and 7 (t) are shown as a function
of t for each s €{0.10,0.15, - -- , 0.50}. The resulting masses extracted from the two data sets are shown in Fig. 7 as a function of s.
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