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moduli, which leads to eigenvalue crossing. We identify the cause for this behavior for the
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varieties. To quantify the error of our numerical methods, we also study the dependence of
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1 Introduction

String theory has a history of bringing together many different fields within Physics and
Mathematics. In the context of String Geometry or String Phenomenology, one often studies
string compactifications on Calabi-Yau (CY) n-folds to obtain lower-dimensional theories.
Candelas et al. showed [1] that such reductions can preserve supersymmetry and hence
computational control, due to the existence of a Ricci-flat metric on these spaces [2, 3]. In
the absence of an analytic expression for the metric, properties of the lower-dimensional
theory were derived using powerful tools from algebraic geometry. This lead to the discovery
of new mathematics, such as mirror symmetry [4].

However, algebraic geometry is not the only mathematical field with connections to
string theory. In his seminal work [5], Moore established a connection between Calabi-
Yau compactifications and number theory. A few years prior to Moore, Ferrara et al. [6]



introduced attractor varieties. The authors observed that dyonic BPS black holes in 4D
N = 2 theories, the vector multiplets of the theory flow to fixed points called attractors.
In the context of string theory, upon compactifying Type IIB theory on a CY threefold,
the vector multiplet moduli space is mapped to the complex structure moduli space, and
the attractor flow becomes a flow to fixed points in this moduli space. Moore made the
remarkable observation that, in the case where the CY is 7% or K3 x T2, these attractor
points correspond to special points where the torus has a number-theoretic property called
complex multiplication (CM). In these cases, attractors are arithmetic.

A lot of research has gone into attractor points and complex multiplication since.
Shortly after Moore, Gukov and Vafa observed that there is a potential tension between
Rational Conformal Field theories being dense in the set of all superconformal field theories
and the scarcity of CM points, based on a number theory conjecture due to André [7] and
Oort [8], which has been proven in full generality very recently [9]. Also very recently, a set
of counterexamples to one of Moore’s conjectures has been constructed for (complex odd-
dimensional) CYs of sufficiently high dimension [10]. However, Moore’s conjecture seems to
be true for rank 2 attractor points, where it is “protected” by the Hodge conjecture [11], as
recently explored by Candelas et al. [12].

With the advent of powerful machine learning techniques and their applications in string
theory [13-16], it became possible to perform complex numerical computations fast and
with high accuracy [17]. Building on earlier work [18-20], neural networks were developed to
approximate the Ricci-flat metric on CY manifolds [21-28]. One exciting application which
requires knowledge of the Ricci-flat metric is computing the spectrum of the compactified
theory: while the zero modes can be counted by computing cohomologies due to Hodge
theory, there is currently no known way to obtain the massive spectrum. As a consequence,
not much is known about the full eigenspectrum of Laplacian operators on Calabi-Yau
manifolds. On the other hand, the swampland distance conjecture (SDC) [29], which has
received a lot of attention recently, states that the mass gap of the eigenspectrum closes
exponentially fast as a function of the geodesic distance between two points in moduli space.
In [30], Ashmore and one of the authors studied the spectrum of the scalar Laplacian on (a
one-parameter family of) quintic CY threefolds with the goal to check — and verify in that
case — the swampland distance conjecture.

The one-parameter family of quintics has only one complex structure parameter instead
of 101, which means that it has a large symmetry group. The Laplacian eigenmodes arrange
themselves in irreducible representations (irreps) of this symmetry group [20, 30]. As a
consequence, the spectrum is degenerate in codimension 0 with multiplicities given by
the dimension of the irreps. However, we observed [30] that some eigenmodes became
heavier and other became lighter as a function of the geodesic distance along a trajectory
of real codimension 1 within the complex structure moduli space of real dimension 2. At
points in complex structure moduli space where two modes cross, the number of degenerate
eigenmodes does in general not match the dimension of the irreps. Albeit not in contradiction
with no-crossing theorems of quantum mechanics (since they appear in codimension 1) or
random matrix theory (the scalar Laplacian is a hermitian matrix, but not random and the
trajectory is not a simple homotopy due to the complex structure moduli dependence of
the metric), we found the observation still surprising.



But even besides the aforementioned points, the observation of crossings begs the
questions which we will address in this paper:

1. What governs the behavior of the eigenmodes, i.e., why do some modes become lighter
while others become heavier?

2. What is special about the points in complex structure moduli space where eigenvalue

crossings occur?

The rest of this paper is organized as follows: in section 2, we study the one-parameter
family of cubics in IP? analogous to the quintic family. This family describes tori, for which
we have full analytic control over the metric, the eigenmodes etc. We work out the map
between the ambient space description of the torus embedded as a hypersurface in P? and a
description of the “flat” tours on a lattice A and make the observation that crossing points
are related to special points in complex structure moduli space where the torus has complex
multiplication. In section 3, we review how to extend the notion of CM to arbitrary CY
manifolds by phrasing it as a condition on their middle cohomology. As we will review, the
one-parameter family of K3 surfaces admits CM points where its Picard rank jumps from
19 to 20, while the only known CM point for the one-parameter family of quintics is at the
Fermat point. We then review the relation between CM points and attractor points and
argue that it is more likely that crossings are related to attractor points. In section 4, we
turn to the numerical analysis part of the paper. We describe how we approximate the
Ricci flat metric and the Laplacian eigenspectrum. We study the different approximation
steps and their influence on the accuracy by comparing the numerical and the analytic
result on 72. We do so in order to get an idea on the errors to expect when checking the
relation between attractor points and eigenvalue crossings in section 5 (but this might be of
independent interest in future applications involving the Laplacian eigenspectrum). We end
with conclusions and an outlook in section 6.

2 Fermat cubic

We start our analysis with the one-parameter family of Fermat cubics in P?. These
correspond to Calabi-Yau one-folds, i.e., tori. These simple cases allow for an exact
treatment of the metric, the spectrum and the eigenfunctions. We work out the map from
the description of a T2 embedded as a hypersurface in P? with one complex structure
parameter, to the flat torus described by one complex coordinate w € C/A on a lattice A
with periods 1 and 7 € C.!

The one-parameter family of Fermat cubics in P? is given by

X =2 +23 4+ 25 — 3zziza =0 (2.1)

where the z; are the homogeneous coordinates of IP?, and ¢ € C is a single complex structure
modulus related to 7. The manifold is singular at ¢» = 1 and |¢)| — co. The latter is the

!"'We may assume without loss of generality 7 € H = {r € C | Im(7) > 0}.



large complex structure degeneration where the manifold degenerates into three complex
lines, and the former is the analog of the conifold point in the quintic, where X =dX =0
(e.g. [z0: 21 : 22| = [1:1:1]). However, unlike the conifold on the quintic, this point is dual
to the large complex structure point.

Since the hypersurface is Calabi-Yau, it admits a Ricci-flat metric (which, in the case of
d =1, is actually flat). We also have a nowhere vanishing holomorphic 1-form €, which we
can integrate over the two 1-cycles A and B to obtain the two periods of the torus lattice
A. Since we want to choose a basis of 1 and 7, we divide by the period of the A-cycle,

_ Jp$h
T = I (2.2)

The periods can be obtained from the underlying Picard Fuchs system using standard
methods [4, 31, 32]. The solutions are given in terms of hypergeometric functions

= _ ¢ 2F1<%a%;1;1—$>
T—T(qb)_% oF (%7%;1;#) . (2‘3)

Next, we map the cubic into Weierstrass form

vz = 42 — g2(¢)$22 — gg(w)z?’. (2.4)

We find that the curve is smooth in the patch z = 1, so we will work in this patch from
now on. Transforming (2.1) into (2.4) can be done in general using Nagell’s algorithm [33].
However, the symmetries of the Fermat cubic make the problem very simple, leading for
example to the transformation

e 0~
T 20 (1—yp3)Y/ 4(1—-y®)
_ M—l M = Y -1 4*1/13 (2 5)
vy = 20 ) | 2t/3(1—y3)/3 24(1—3) : :
z 29 ¥ 1 4—y3

21/3(1_w3)1/3 24(1—43)

The solution of the Weierstrass equation (2.4) in terms of the flat torus coordinate is the

Weierstrass p(w) function and its derivative,

T = p(w)a Y= p,(w)v z=1. (26)
Next, we read off go(v)) and g3(v),
P (8+ 47 _ 8+209° —¢°

) 93(¥) (2.7)

92(¢) =

24 25 (1—¢3)s 864 (1 — y3)*

To find the complex structure parameter 7 as a function of ¥, we can either use (2.3), or
express T in terms of ¥ via the Klein j function

92(¥)?

i) = 92(1)? — 27g3(1))?

(2.8)
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Figure 1. Left: a fundamental domain for 7 in the upper half plane is plotted with dashed gray
lines. The way 7(1)) varies as ¢ € R is varied is depicted with arrows; note that 7 traverses the
boundary of the fundamental domain as well as the line Re(7) = 0 twice (and in opposite directions).
Colors in the interior correspond to the value of the metric. Right: moduli space metric with
coordinate 1. Note that the fundamental domain is only a third of this.

In either case, an analytic expression only exists for very special values of ¢, so we will have
to resort to numerical formulae to obtain 7 as a general function of ¢. However, we find

that the special values 7 € {i,e*™/3 ioc} are obtained for
T=1i& g3=0 & Y= (14+/3)¢k
T =23 & g2 =0 & Yp=0 or ¢=—-2F (2.9)
T =00 & g3 — 2793 =0 & =6 or Y| = oo

where k = 0,1,2 and & = ¢2™/3 is a third root of unity. Note that only 4> enters in the
hypergeometric functions (2.3). Alternatively, note that ¢¥» — £ in (2.1) can be undone
by zg — £ 120, say. This means that a good coordinate on the complex structure moduli
space is 13 rather than 1. More generally, we should use 1”2 for the one-parameter family
of CY n-folds discussed in this paper.

The modular parameter 7 can be defined in the complex upper half-plane, modulo
SL(2,7Z) transformations. Note that for ¢ real, 7 only takes values along (half) the boundary
of the fundamental domain and along Re(7) = 0. The different regions of moduli space
traced out for these values, together with the whole fundamental domain for 7, are shown
on the left of figure 1. The color coding corresponds to the values of the moduli space
metric. In terms of 7, the Weil-Petersson metric on the Teichmiiller space is

1

W , (2.10)

grr =
so the metric is constant along constant slices of Im(7). In terms of v, the moduli space
metric can be obtained from the periods [4], or by inserting 7(¢) in (2.10). The resulting
metric g,,; is plotted on the right of figure 1. The color coding matches the color coding
for the metric g, 7.



P YveC—-R P eR =0
Symmetry G =853 x7Zs | (S3 X Za) XZs | (S3 X Za)x(Zs x Zs3)
dim(irrep) 1 2 1 2 4 1 2 4 6

number (irreps) 2 4 4 4 1 4 4 1 2

Table 1. Symmetry group of the cubic for different values of the complex structure parameters ).

2.1 Discrete symmetries

All hypersurfaces (2.1) have an S35 symmetry which arises from invariance under permutation
of the z;, and a Zs symmetry which arises from invariance under multiplying the z; by a
phase. Naively, we have three Zs factors acting as

o
(20, 21, 22) ZL> ( &z, fflzl, z9),
e
(20,21,22) —— (20, &z1, € '29), (2.11)
73
(20,21, 22) = (€ ' 20, z1, Ez).

where ¢ = e2™/3. However, only one of these is independent, since the others are related via
projective scalings. We choose without loss of generality Zél) and call the corresponding
generator p.

Along more special points in complex structure moduli space, this symmetry is enhanced:
if 9» € R, there is a Zy symmetry corresponding to complex conjugation. We denote the
generator of this symmetry operation by c¢. At the point b = 0, the Z3 symmetry is
enhanced to Zs x Zs, where we can choose any two of the following three symmetries (the

third is not independent but related to the other two by the projective scaling of P2):

!/
(20, 21, 22) —> (€20, 21, 22)

7!
(20721722) —3_> (207521722)’ (212)

"

(20, 21, 22) — (20, 21,&22) -

These symmetries are key in our analysis, since the eigenvalues of the scalar Laplacian occur
in irreducible representations (irreps) of the combined symmetry group [20]. We start our
discussion with S3, which is generated by cyclic permutations (s) and transpositions ().
These act on the homogeneous coordinates [zg : 21 : z9] as

¢
(20,21, 22) = (21,22, 20) s (20,21, 22) = (21, 20, 22) - (2.13)
Note that permutations and complex conjugation commute, while complex conjugation
and the Z3 action(s) do not. For this reason, the full symmetry group is a semi-direct

product of these symmetry operations, cf. table 1. The combined symmetry group is

veC—-R: S3 X Zsg,
PpeR: (Sg X Zg) X Zis (2.14)
wZOZ (SgXZQ)N(ZgXZg).



To fully specify the semi-direct product, we need to specify the twisting, i.e., how elements

e € Zs change under g—!

oeo g, where g is an element of S3 (or S3 x Zs). More specifically,
we have to specify the action of the generators s, ¢ and ¢ on the generator p of Zs modulo
projective scalings. For ¢, we have the simple action (because ¢ — ¢! under complex
conjugation):

—1

p C oeoc p_l (2‘15)

For the generators s and ¢, we need to compute their action on any element e € Z3. A
general action of Zs is given by p™, where n is an integer (mod 3), by

(Z07z17z2) — (gnZOag_nzlaZQ) . (216)

This implies an action on the generators given by

tloeot —1 sloeos

p————p , p——D (2.17)
We work out the dimensions d of the irreps and the number ng4 of often they occur with the
software GAP in Sage [34]. The results are summarized in table 1.

2.2 Eigenvalue analysis

We recall the eigenvalues and eigenfunctions of the scalar Laplacian on the torus in terms
of the coordinate w. The eigenvalues are given by (setting the Kédhler modulus to 1) [35]:
472 9 us 9
Enyny = e Iny —not|? = T—22|n1 — nat]?, (2.18)
where n; and ng are integers parameterizing the windings around the two torus cycles with
periods 1 and 7 = 7 + i7y, respectively, and A = 1 x 7o is the area of the torus. The
corresponding eigenfunctions are

2mi(cw+ew) _ 1 e2mi(cw+ew) ’ c = 1 (n1(14im) —ing) .

VA JT2 T 2m

Fn1,n2 (w7 71)) =
(2.19)

We plot the eigenvalues E,, ,, as a function of ¢ € R, using the implicit map (2.8), in
figure 2 on the left. More generally, the eigenmodes vary as a function of 7 or ¥ € C and
intersect along a real codimension 1 line. This crossing line is illustrated for three modes in
figure 2 on the right.

We see that the cubic spectrum shows a qualitatively similar behavior to the one
observed for the quintic in [30]: it was already known that the multiplicity of coincident
eigenvalues in codimension 0 in complex structure moduli space is in accordance with the
dimensions of the irreps of the symmetry group of the manifold [20]. Moreover, it was
observed in [30] that some irreps become heavier while others become lighter and hence
they cross as one moves in complex structure moduli space. At the crossings, the symmetry
group does not enhance (except at » = 0), and hence the multiplicities along the real
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Figure 2. Left: the exact spectrum of eigenvalues for the first few modes of the Laplacian on the
torus, as a function of the complex structure . The different modes correspond to different colors,
and the dimension of the irrep corresponds to the type of line. The non-smooth behavior of the
spectrum as a function of v is explained by the corresponding path through moduli space in terms
of 7(3) and monodromies around the infinite distance point at ¥ = £ of 7(¢)) as shown in figure 1.
Right: eigenmode crossings as 7 € C is varied.

codimension 1 locus where crossings occur do in general not fall into irreps of the symmetry
group. We will address the question of what is special about the crossing points in the
following sections.

For the torus, we have analytic control over the spectrum. Expanding (2.3) around
large 1), we get
1

T om

(1) In(3v)). (2.20)

Note that for real 1) > 0, 7 is purely imaginary, i.e., 7 = 0. Thus, along the red path? in
figure 1, the expression for the eigenvalues in (2.18) simplifies to

2| (™ 2 2
En1,n2 :47'(' <7’2> +n2

For purely imaginary 7 (or equivalently ¢ € R™), there are three different scenarios:

(2.21)

1. For n1 = ng = 0, we get the unique zero mode with multiplicity one.

2. For the cases where either n; or ng vanish, we get:

e (n1,m2) = (0,£l): the eigenvalues are constant Ey1; = 47%%, since the area-

suppressed denominator cancels the numerator, and we keep the other period
fixed at length 1.

e (n1,n2) = (£k,0): the eigenvalues run down quadratically in 75, or logarithmi-

. 21.2 412
cally in ¢ for ¢ large, Eipo = 47:_; ~ 911?17{3112)2

These are the two cases of multiplicity two (i.e., transforming in two two-dimensional
irreps of the symmetry group); one is constant and one is running down.

3. For (ni,n9) = (+k,£l), all eigenvalues run down logarithmically for large enough v,
following B4y 4, = 4772(12_1_%) ~ %. These energy levels are four-fold degenerate,
and hence correspond to the four-dimensional irrep described in section 2.1.

2This path is actually a geodesic in complex structure moduli space, as explained in [30].



To summarize, we find that all energy levels in codimension 0 arrange in irreps of the
symmetry group. Along a path where 7 is purely imaginary, modes are either constant
or run down logarithmically. It is this logarithmic behavior that leads to the exponential
dependence of the massive KK tower on the distance in field space as predicted by the
swampland distance conjecture [29]. For general 7 € C, we observe multiplicities are running
up as 7, gets smaller and 7 is kept fixed, cf. figure 2. In that case, the denominator is
constant but 7 is in the numerator varies. Note however that 7 €] — 0.5,0.5], so the
amount by which the modes run up is limited.

This analysis makes the origin for the running behavior of the modes obvious: we fix
one period (the A-cycle, say) to 1, while we vary the other (the B-cycle) by changing the
complex structure parameter ¢ (or 7). This means that the eigenmodes associated with
the A-cycle become lighter as the B-cycle volume and with it the volume of the entire CY
grows: indeed, the running of the eigenmodes (+k, 0) is governed by the overall 1/voulme
factor. For modes associated with just wrapping the B-cycle, we also get the 1/voulme
factor suppression, but at the same time, we get a |7|? factor from the winding. For purely
imaginary 7 both factors cancel exactly and the modes are constant; for general 7 the area
only depends on 79, while 7| appears in the numerator and the exact behavior depends on
the trajectory in the Teichmiiller space. Finally, the modes (+k, +l) that wrap both the A-
and the B-cycle also become lighter as 79 — oo (or equivalently ) — —o0). For a general
path through moduli space, either behavior of the mass can occur.

It is very suggestive that a similar effect explains this behavior observed in [30] for
the quintic as well: there, ¥ was varied along a geodesic with ¢ € R, which connects the
conifold point to the large complex structure point. As was worked out by Candelas et al. [4]
for the Fermat quintic, but should hold more generally according to the SYZ conjecture [36],
the Fermat quintic has a T3-fibration. At the conifold point, the base S? shrinks to a point,
while in the large complex structure limit, the 7% fiber shrinks. Hence, along the path
studied in [30], we have two 3-cycles that compete and can thus lead to some eigenmodes
becoming lighter while others become heavier.

2.3 Level crossing and enhanced symmetries

Looking at the values of 1) where the crossings occur, there seems in general nothing special
in the hypersurface equation (2.1) or in the moduli space metric (2.10) (see also figure 1):
a generic crossing occurs away from the point of maximal unipotent monodromy (MUM),
and there are no (apparent) symmetry enhancement of the defining equation at the points
where the eigenvalues cross, and hence no explanation for the observed multiplicities at
these points.

However, consider for example the special cases 1) = —2¢* and 1 = 0, corresponding to

7 = e2mi/3

as shown in (2.9). From table 1, we see that the latter has an enhanced symmetry
by an additional factor of Zs3, which leads to the existence of a 6D irrep at v = 0. And
indeed, we observe crossings of the 4D irreps with the 2D irreps at ¢ = 0 (and consequently
also at ¢ = —2). The two points ¢» = 0 and 1) = 2 are related by an SL(2,Z) transformation

on the hypersurface, which is not apparent from the defining equation in P2.



While it could be that there is an enhanced, non-linearly realized symmetry at all
crossing points, we will now point out another property of the manifold at values of the
complex structure where level-crossing occurs. According to (2.18), two modes (n1,n2) and
(m1, mg) cross when

2 2
ny —m ning — mims

=Lt ——— (2.22)
my — Ny my — Ny

These points do not seem special from the point of view of the hypersurface, but the values
of 7 in (2.22) are special: they correspond (for 71 € Q) to algebraic periods. At these points,
the torus has Complex Multiplication (CM), which we will explain in more detail in the
next section. Moreover, these values correspond to attractor points as first observed by
Moore in [5].

Note that the above condition 7 € @ is satisfied for ¥ € R. To see this, we should
distinguish the three cases where 7 is purely imaginary, 7 is along the boundary of the
fundamental domain with 71 = %, and 7 is on the boundary circle, cf. figure 1.

The first case 71 = 0 occurs for ¢ > 1, which means that crossings are at

2 2
, ny —m
T=1iTp =1 12 % . (2.23)

For large 1, such that the expansion (2.20) is valid, this means that level crossings appear
at (we take the branch where 7 > 0)

1 2m [n2 —m?
= -\ == - 2.24
v 3exp< 3\ m3—n3 (224)

Similarly, we have 71 = 1/2 for ¢» < —2 or 0 <1 < 1, such that level crossings appear
at (again, we take the branch where 7 > 0)
1 i [(2n] —n9)2 — (2m; — mo)?
n \/( 1 2) . ( - 1 2) (2.25)

my — 1Ny

Finally, for the third case |7|?> = 1, condition (2.22) for the crossing becomes

2(m1m2 — nlng)

This means all crossings along the circle occur at 7 € Q.

So for all ¢ € R, CM points occur when two eigenmodes cross. The converse is
not true though, i.e., there are more general solutions to (2.22), which appear in (real)
codimension 1. Indeed, choosing an arbitrary value for 71 (or 72) and two eigenmodes,
we can just solve (2.22) for 7o (or 71) to find the corresponding complex structure where
these eigenmodes cross (if the crossings exist, i.e., if (2.22) has a solution with 71,72 € R).
Nevertheless, these codimension 1 eigenmode crossings can then be followed as in figure 2 to
a point on the boundary or at Im(v) = 0, corresponding to the cases with rational periods
discussed above.

~10 -



3 Attractor points and complex multiplication

For tori and K3 surfaces, rank 1 attractors, complex multiplication, and the appearance of
rational periods are closely related (for general CYs, this is not the case). In this section,
we will discuss these quantities and their relation for the one-parameter families of CY
(n — 1)-folds in P",
n n

St —(n+ 1)y [z =0. (3.1)

i=0 i=0
3.1 Complex multiplication

3.1.1 The cubic CY 1-fold

Let us start our discussion by looking at CM tori. We start with a binary quadratic form
in two variables with integer coefficients,

q(z,y) = az® + bxy + cy? (3.2)
where a,b,c € Z and a,c > 0. We will be interested in the case with negative discriminant
D =b*—4ac<0. (3.3)
There is an SL(2,7Z) action defined on these binary quadratic forms,
() = (20
Y rs Y

which amounts to a basis change that changes the coefficients a, b, ¢ but leaves the discrimi-

(p q) e SL(2,Z), (3.4)

r s

nant invariant. The number of orbits of this action, i.e., the number of equivalence classes
of binary quadratic forms up to SL(2,Z) transformations, is called the class number and is
denoted by h(D). In the case D < 0, we can find the solutions to (3.2) by extending the
rationals by v/D. This way, we get an imaginary quadratic field denoted by Q(v/D). This
is a degree 2 number field (since v/D is the solution of a degree 2 polynomial u? + D = 0).

Let us now switch to elliptic curves: a generic elliptic curve E over C maps onto C/A
where A is a Z? lattice, A = Z? & 7Z. The endomorphisms of the elliptic curve to itself
that fix the origin are holomorphic maps of the form w — Aw, where AA C A. Any elliptic
curve with coordinate w € A has an endomorphism that is given by just multiplication
with an integer A € Z, which corresponds to integer scalings of the lattice. Hence for
a generic torus we have End(E) = Z. However, if we pick a lattice generated by 1 and
7 where 7 € Q(v/D), we have an additional endomorphism given by multiplication with
A=w= D‘Ei‘/ﬁ, and End(E) = Z® atZ (where a is the coefficient in front of the quadratic
term in (3.2)). Such elliptic curves have complex multiplication by w: let A € End(E), and
say the lattice is generated by a and § (or equivalently by 1 and ¢t = 3/a). Then we have

Ao =ja+ kS, AB =ma+npf. (3.5)
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This linear set of equations will have a non-trivial solutions for («, ) if the determinant of
the associated matrix is 0, which means that

A? — (j+n)A+ (jn—km) =0. (3.6)

Let us first assume A € R. Since a and 8 are linearly independent over R, the first

equation in (3.5) gives
(A—jla—kB=0, (3.7)

which implies A € Z and leads to the trivial endomorphisms corresponding to lattice
rescaling that exist for any elliptic curve. In contrast, if A is allowed to take complex values,
we find the solutions

(j+n)++(—n)2+4km
2

A= (3.8)

where D = (j —n)? + 4km < 0 (taking (j — n)? + 4km > 0 reduces to the case A € R).
Inserting this into (3.7) and dividing by «, we find (focusing on ¢ in the upper complex
half-plane)

(n—3)++(—n)2+4km
2k

t= (3.9)
Hence, t € Q(D) and the endomorphism ring is enlarged.

The point is now that both the condition (3.6) on A and (2.22) for level crossing along
the real codimension 1 path in complex structure moduli space parameterized by ¢ € R
as drawn in figure 1 are a quadratic equation for a single variable (A and 7, respectively)
with integer coefficients (the winding numbers around the periods a and § or around 1 and
7). The SL(2,Z) transformations that leave this quadratic equation invariant are the usual
SL(2,7Z) transformations of the target space torus. Hence, each level-crossing point along
the line Im(¢)) = 0 is a CM point. Of course, there are many more CM points and many
more crossings (for arbitrary complex 1)), in particular whenever 7 € Q.

3.1.2 Generalization of CM for Calabi-Yau n-folds

Complex Multiplication for higher-dimensional Calabi-Yau manifolds have been studied
in [37, 38]. For higher-dimensional tori, T%", the generalization is rather straight-forward.

Let Z be the set of complex coordinates z;, i = 1,--- ,n. An endomorphism A of T?" is
given by

7 — AZ. (3.10)
For T?", we have a set of n 1-forms w;, and 2n 1-cycles A; and B; for i = 1,--- ,n. We can

set the integrals over the A cycles to 1, and then define the period matrix T as

’I%j :/ Wi . (311)
B;
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Following the same line of arguments as in the previous section, there will be non-trivial
endomorphisms if the equation

TNT +TM — N'T — M' =0 (3.12)

has non-trivial solutions, where M, N, N’, M’ are integer matrices and rank(N) = n. In
that case, the endomorphism A is given by

A=M+NT. (3.13)

The generalization to Calabi-Yau n-folds is to impose the condition (3.12) on the middle
cohomology, where T are the Calabi-Yau periods computed with respect to the holomorphic
(n,0) form Q and an integral basis of n-cycles.

3.1.3 The quartic K3 surface

After the torus, the next-higher one-parameter family of Calabi-Yau manifolds is a K3,
given by zero locus of a quartic equation in P3. The criteria for a K3 surface X to be CM
is described by Chen in [39]. The author studies non-trivial endomorphisms of H?(X,Z)
and show that they occur when the transcendental lattice T' of the K3 is of CM-type. This
means that the K3 has Picard rank 20. Such K3 surfaces have been classified by Shioda
and Inose [40] and are called singular (“singular” means exceptional in that context; the
manifolds are smooth) or attractive (since they are related to attractors) K3 surfaces. The
construction proceeds by constructing all attractive K3s as a double cover of the orbifold
(T? x T?)/Zs, and the CM property is inherited from the CM property of the underlying
two-tori. One can see that attractive K3 are CM as follows [39]: for Picard rank 20, the
transcendental lattice T is

T =H>°X)p H*?(X). (3.14)

Since a K3 surface has a unique holomorphic 2-form, T is a 2-dimensional vector space.
Now we will show that this decomposition is defined over a quadratic CM-field. We can
choose an orthogonal basis (e1,e2) for T over Q. Next, we can define a basis vector o of
H?%(X) as

o=-e + Aey, (3.15)

where A € C. One can then use the Mukai pairing, which is proportional to the wedge
product on differential forms, to show that

0= (0,0) = (er,ex) + Alea,ea), A2 = —Se1€D (3.16)
(€2, €2)

Hence, we see that o € Q(A), and Q(A) is a CM-field. Now, there is an endomorphism of
T given by the action of Q(A), A: T — T, which induces the basis change

er — A2€2 s €9 — €1. (3.17)
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Inserting this in (3.16), we get
A:o— Ac. (3.18)

This preserves H29(X) as was claimed above. Hence, K3 surfaces of Picard rank 20 admit
non-trivial endomorphisms of its middle cohomology, corresponding to multiplication by
elements in an imaginary quadratic field.

The one-parameter family of quartics in P has Picard rank 19 generically, but the
rank of the Picard lattice is enhanced to 20 over a dense set of countably many points in
the moduli space of ¢ [41]. This begs the question of whether there will be crossings in the
spectrum of the Laplacian at these points of enhanced symmetry as well, just like the torus
case. The Picard-Fuchs system of the quartic is also hypergeometric, with the fundamental
period given by

113 1
== (3.7 701 ) (319)

This K3 is CM at special points, as can be seen by writing the fundamental period in terms
of a modular parameter 7 [42],

)16 )16 1/2
A3 ) - (et

where the function p(7) is given in terms of Dedekind 7-functions,

o(7) = 256 (1) n(27)*
(n(7)** + 64n(27)24)2

(3.21)

The CM points correspond to choosing a value of 7 where the corresponding torus has
complex multiplication. We can then simply calculate the corresponding 1 values from

=t = p(7).
3.1.4 The quintic CY threefold
The final case we will discuss is the quintic Calabi-Yau threefold. The period matrix can be
obtained from the prepotential F' by
T;; = 0;0;F , (3.22)

where 7,5 = 0---h%!. Borcea proved that the existence of CM for a CY threefold is
equivalent to the condition that the elements of the endomorphism matrix A generate an
imaginary field K:

K =End(H*(M,Q)) ® Q. (3.23)

Since A is related to the period matrix 7' through (3.13), T is also valued in the above
number field. Borcea also showed that this number field must have degree 2(h%! + 1).
Gukov and Vafa [38] checked this for case of the Fermat quintic for ¢ = 0, i.e., they showed
that ¢ = 0 is a CM point. In this case, h*! = 1, and the extension should be of degree 4.
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Indeed, the required extension is by the fifth root of unity ¢ = e%, which solves the degree
4 equation

e+t 42’ +24+1=0. (3.24)

The period matrix elements T;; takes values in this extension

-1 3
T = <f+ C3 C;:j ) . (3.25)

One can show that (3.25) satisfies (3.12) for specific integer matrices, which lead to

-1 + 3
()

the endomorphism

Hence, the elements of T' and A are both valued in K = Q((), in accordance with Borcea.
As we will see in our numerical analysis, there are again level crossings at the CM point
1 = 0. Beyond the Fermat point ¢ = 0, no other CM points are known for the quintic, and
there is some numerical evidence that none exist, as we will discuss next in the context
of attractors.

3.2 Attractor points

The attractor mechanism was introduced in [6] and states that vector multiplets coupled to
spherical, dyonic black holes at the origin of spacetime with a metric

ds? =~V a2 4 2V g2 (3.27)

flow to fixed points in their target space. Here, U(r) is a function of the radial distance
r = |r]. Asymptotically flat space then requires U(r) — 0 as r — oo.

In the context of IIB string compactifications on Calabi-Yau manifolds X3 to 4D
(including cases X3 = X3_g x T?? where the holonomy is a proper subset of SU(3)), the
vector multiplet moduli space is associated with the complex structure moduli space on
X3 and the charge lattice is given by the middle cohomology lattice, A = H3(X,Z). The
fixed points of the attractor flow for a black hole with charges 4 € H?(X,Z) turns into a
condition on the Hodge structure of X,

g =470 4403, (3.28)

The (normalized) central charge of the BPS black hole is given by

,  |hew)

where Q(v) is the complex-structure moduli-dependent holomorphic top-form and ~ is

(3.29)

Poincaré dual to 4. In [43], it was shown that stationary points of |Z|? with Z # 0 occur if
and only if 4 has the decomposition (3.28).
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In his study of attractors, Moore distinguishes three cases:
1. |Z(t«,7)| # 0: the flow exists for any distance r from the BPS object.

2. |Z(¥«,v)| = 0 and 1), is at a regular point in moduli space: the flow breaks down at
finite distance and no BPS object exists.

3. |Z(¢s,v)| = 0 and 1, is at a singular or boundary point in moduli space: well-behaved
solutions might or might not exist. An example of a well-behaved point with this
property is the conifold point of the quintic.

As explained in [44], the attractor flow equations for U and® z = ¢~ (1) in terms of
the inverse radial distance 7 = r~! reads

0rz = —g**0:| 7|, (3.30)

where ¢g?* > 0 is the inverse moduli space metric. By redefining 7, we can absorb ¢** in
7, which further simplifies the flow equation. This makes it obvious that the flow ends at
stationary points of |Z|.

To compute the attractor points as an end point of the flow, one proceeds as fol-
lows: in the mirror-dual ITA theory, the (quantum-corrected) volume of holomorphic
even-dimensional cycles are defined in terms of the BPS D-brane states (Dy, D2, Dy, Dg)
that wrap these cycles. These quantum-corrected volumes on the ITA side are given on
the IIB side in terms of the mirror 3-cycle. Choosing an integral basis of three-cycles I';,
i=1,...2(h*!' + 1) of H3 such that v = ¢'T';, one can express (3.29) as

qifri
{ifXQ/\QT/Q |

1Z(v)| = (3.31)

The periods of the one-parameter family of quintics has been computed already in the early
days of mirror symmetry [4]. In terms of the period vector II, we can write the (normalized)
central charge simply as

Z(q;2,2) = K22 0T, K(z,z)=—1n {z/ QA Q] . (3.32)
X

From the above discussion, the condition on attractors and CM look similar, compare
e.g. (3.28) and (3.14). In [5] Moore observed and studied the connection between complex
multiplication and attractor points. Indeed, via the Shioda-Inose construction [40], there is
a one-to-one correspondence between attractive K3 surfaces and CM tori. Moreover, Moore
conjectured that all attractors are arithmetic, i.e., the periods and the complex structure
coordinates are both arithmetic. Moreover, he observed that compactification of F-theory
on attractive K3 surfaces corresponds under the usual heterotic F-theory duality to the
8D heterotic string being a Rational Conformal Field Theory (RCFT). Gukov and Vafa
conjectured [38] that SCFTs whose target space are K3 surfaces with CM are themselves
rational SCFTs.

3Remember that a good coordinate on complex structure moduli space of the family of CY manifolds
in (3.1)is ™ 1.
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While the connection between CM points, attractors and arithmeticity is well estab-
lished for CY one- and two-folds, it is false in general. In [10], the authors construct
counterexamples for CY n-folds with odd n (except for n = 1,3,5,9). But already on
CY threefolds, it is not expected that attractors are arithmetic in general. Gukov and
Vafa already point out that CM and hence RCFTs are expected to appear at most at a
finite number of points for the 1 parameter family of quintics, based on the André-Oort
conjecture [7, 8] (which has been recently been proven [9]). Moreover, the authors of [12]
study this family of quintics and search for rank 2 attractor points, which are attractor
points for two independent integral charges 77 and 7. These are arithmetic by the Hodge
conjecture, but the rank one attractor condition seems not strong enough to guarantee
arithmeticity. Numerical evidence presented in [12] indeed suggests that the periods are
not algebraic but transcendental.

Given that points in complex structure moduli space where eigenvalues cross are ubiqui-
tous and CM points are rare beyond K3, this makes a correspondence between crossings and
CM unlikely. However, attractor points are also ubiquitous in these compactifications [44].
Hence, a more promising generalization from the torus and K3 seems to be that crossings
are not related to CM but to (rank 1) attractor points. For the one parameter family of 72
and K3 manifolds the CM and attractor conditions are the same, so we can investigate
crossings and CM points for the torus and K3, and move to analyzing attractor points for
the quintic threefold, which we do in the following section. Our numerical studies supports
a relation between attractor points and level crossing. It would be very interesting to
understand this connection on a deeper level, since attractor points are related to BPS
objects, while we are not aware for such a relation for higher eigenmodes of the Laplacian.

4 Numerical spectrum

In order to check whether level crossing of the different modes of the scalar Laplace operator
correspond to attractor (or CM) points for CY n-folds, we need to resort to numerical
methods. The purpose of this section is to study potential sources of inaccuracies in the
numerical spectrum computation of the Laplace operator.

The spectrum computation proceeds in several steps, each of which requires some
approximation and hence introduces numerical inaccuracies:

1. First, instead of working over the entire complex variety X, we sample a collection of
points and evaluate the quantities of interest on these points. The denser the point
sample, the more accurate this approximation becomes.

2. Second, the Ricci-flat Calabi-Yau metric has to satisfy a complex differential equation
of Monge-Ampere type [2, 3]. We approximate the exact metric using a neural network
(NN), which we evaluate at the points sampled in step 1. The accuracy will improve
if we include more points when training the neural network, when we make the NN
bigger (i.e., a more powerful function approximator), and when we train the NN longer
(i.e., improve the accuracy with which the NN satisfies the Monge-Ampere equation).
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3. Third, we construct a set of basis functions in which we expand the eigenfunctions
of the scalar Laplace operator. We construct this basis from pullbacks of the basis
functions that parameterize the lowest eigenmodes of the scalar Laplace operator
in the ambient space P"*!. By including more basis functions, we can improve the
approximation capacity of the eigenmodes on the CY. In particular, we would expect
that the accuracy of the higher modes on the CY suffers from this truncation.

In order to benchmark our pipeline, i.e., to gauge the influence of the inaccuracies
introduced in each of the steps on the final spectrum, we compare the numerical and the
analytic, exact results for 72 as we vary the parameters controlling the several truncations
described above. Once we have a qualitative idea of which factors influence the result
the strongest and how big the inaccuracies are, we check whether level crossings occur
at the CM points discussed in section 3.1.3 for the quartic K3 and section 3.1.4 for the
quintic CY threefold. Knowledge of the influence of these hyperparameters on the spectrum
approximation will also be useful for other studies and applications that involve the higher
Laplacian eigenmodes.

4.1 Point generation

To generate points on the Calabi-Yau which are distributed according to the pullback of
the Fubini-Study (FS) metric on the ambient P, we use the techniques detailed in [22]
and implemented in the cymetric package [26, 27]. The points sampled will lie on the CY
X, but are expressed in terms of the homogeneous coordinates on the ambient IP2. To plot
the distribution, we map the Fermat cubic (2.1) into Weierstrass form (2.4) using (2.5), use
the projective scaling to set z = 1 (for points sampled numerically, this is always possible,
since the points that have z = 0 are a measure zero set and will hence never be sampled),
invert the Weierstrass g function to obtain the corresponding value in terms of the “flat”
coordinate w € €/A, and use lattice translations to map the points into the fundamental
cell spanned by 1 and 7(¢), as calculated from inverting (2.8).

In figure 3, we plot the distribution of 40000 point samples for ¢ € {—1,—-10, —500}.
Note that, as || gets larger, horizontal voids develop. These hint at the point sampling
method sampling some regions on the Calabi-Yau more densely than others. The sampling
technique we use produces points that are distributed according to the pullback of the
Fubini-Study metric, so these voids are an artifact of how the hypersurface is embedded
in the projective ambient space. Since we know the point distribution explicitly, we can
correct for over-/undersampling regions by weighting points in oversampled regions less
and points in undersampled regions more, according to the ratio of the pullback of the
ambient space F'S metric and the volume measure on the CY as computed from |Q|?, with
the weights w ~ det(g)/|©2|?. Indeed, |©2|? is small in the undersampled regions, while
the difference in the (determinant of the) of the pullback of the FS metric is not very
pronounced. Furthermore, this correlates with the curvature in the void regions (of the
pulled back FS metric) being larger than elsewhere, as seen in figure 3.

We can also exclude that the problem is numerical and arises from the hierarchy in the
coefficients of the defining polynomials. We do this by using SL(2,7) transformations of
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Figure 3. Top row: distribution of points sampled from the ambient space with respect to the
pullback of the FS metric for various 1. We see horizontal voids develop for larger |¢|. Bottom row:
the Ricci scalar R (w.r.t. the FS metric) in the fundamental domain, with color gradient indicating
the point density. Higher curvature corresponds to undersampled regions.

7 to identify an equivalent point 1)'(7), whose absolute value is close to 1: as can be seen
in figure 1, the infinite complex structure point is mapped to || = 1. The fact that the
point sample for these numerically very different values of ¢ looks identical excludes that
the voids are due to numerical problems.

4.2 Spectrum

Next, we compute the spectrum numerically, varying the number of points n,, the complex
structure parameter v and the number kg4 of the basis functions in which we expand the
Laplacian eigenfunctions. We perform all computations for the pullback of the FS metric
(which is the lowest-order approximation to the CY metric in the sense of Donaldson’s
algorithm [18]) and for the exact CY metric (obtained from |Q|?, which is proportional
to the determinant of the metric, and hence to the metric itself for one-folds) to see the
influence of choosing various qualities of approximations to the CY metric. In all cases, we
can compare the approximate result to the analytic result (2.18) to quantify the error of
the approximation.

Varying the number of points. To study the influence of the number of points, we
choose n, € {1,000, 10,000, 100,000}. We present the results for each of the first 36 massive
eigenmodes (the single massless mode is omitted from the plot) in figure 4. These 36
eigenmodes fall into various irreps under the symmetry group, such that there are 11
distinct eigenvalues. For each eigenvalue, we plot the spectrum as computed with respect
to the exact CY metric obtained from |Q2|? (labeled CY in the plot), the analytic result
computed from (2.18), and the spectrum computed on the CY hypersurface when using the
pullback of the ambient space F'S metric as a proxy for the exact CY metric. For the plot,
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Figure 4. The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding
to one standard deviation) as we vary the number of points for the FS and the exact CY metric,
compared to the analytic result.

we fix the other parameters like k;, = 3 and ¢ = —1. The error bars represent 95 percent
confidence intervals for multiplets with multiplicity larger 1. The different colors represent
the three different choices for the number of points used to compute the spectrum.

From the plot, we can make the following two observations. First, the metric dependence
is rather weak. In particular, the error we get from using the F'S metric is often comparable
to the error we get for the exact CY metric. At around the eighth-heaviest eigenmode, the
exact CY metric still agrees very well with the analytic result, while the F'S metric result
starts to deviate from the other two.

Second, for the lower eigenmodes, as little as 1000 points and the FS metric already gives
very good agreement with the exact, analytic result. From the fourth-heaviest multipliet
onward, however, the small number of points introduces a significant error, and 10k points
are needed for agreement with the exact result. After reaching the eighth heaviest multiplet,
100k points are necessary to obtain agreement with the analytic result.

Varying the complex structure. For the complex structure, we choose 1) € {—1, —50,
—500}. We focused on this range since we restricted our discussion of CM points to the
case where Im(¢)) = 0. In terms of the modular parameter 7, these ¥ probe a point on
the boundary torus (for ¢» = —1) as well as points along the boundary line with 7 = 1/2,
cf. figure 1. We compute the spectrum using 100k points and kg = 3 for the first 12
multiplets using the exact CY metric as well as the pullback of the F'S metric and plot them
together with the analytic result in figure 5. Note that the eigenvalues are complex-structure
dependent, so there are three values for each multiplet, one for each choice of v, which we
distinguish by color.

The blue data points with ¢» = —1 correspond to the green ones in figure 4 and are
included for reference (note the logarithmic scale in figure 5 to better resolve the differences
for ¢» = —50 and ¥ = —500). The trend that lower eigenmodes are approximated better
continues to hold also for other values of v. The dependence on the choice of the metric
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Figure 5. The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding
to one standard deviation) as we vary the complex structure for the FS and the exact CY metric,
compared to the analytic result.
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Figure 6. The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding
to one standard deviation) as we vary the number of basis functions for the FS and the exact CY
metric, compared to the analytic result.

seems again rather weak. Moreover, the approximation gets worse with larger v, even
for the exact CY metric. The only explanation that we see for this is that even at 100k
points, there is too little information in some regions of the CY (the voids) for a reliable
computation: the few points that are sampled in the voids are weighted more strongly (by
a factor of 10-1000), but there are simply not enough for an accurate spectrum estimation
in these regions. We expect that the problem can be overcome by sampling N; > N points
initially and then draw a more representative sample by choosing N out of the Ny points
according to their weights. Since point generation is rather inexpensive computationally
(at least from complete intersections at small h''!), this is a viable option to increase the
accuracy of the approximation.
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Varying the number of basis functions. As a set of basis function in which we expand
the eigenmodes of the scalar Laplacian on the CY, we choose a set of basis functions (with
respect to the FS metric) for the lowest eigenmodes of the scalar Laplacian on P2, and
pull them back to the Calabi-Yau. In practice, it is to be expected that any of the CY
eigenfunctions will receive contributions from all modes of the ambient space Laplacian, so
the truncation to a finite set will introduce an error.

The basis for the ambient space eigenfunctions is

{sibs) 500}

(20 + 212 + [22[2)* -

{aa} = (4.1)
In this expression, ske) ¢ pp 0(Op2(ky)) are the sections of Opa(ky), i.e., monomials of
degree ky in the homogeneous ambient space coordinates, labeled by v = 1,..., h%(Opz(ky)).
Since there are n + kg4 choose ky sections of Opn(ky), we find that A € {9,36,100,225}
for k4 € {1,2,3,4}. However, once ky > n + 1 (i.e., the degree of the sections of the
anticanonical bundle), the hypersurface equation implies relations among these sections.
So, upon pulling back to X, only 81 of the 100 ambient space monomials a4 at kg = 3 are
independent (and similar for ky = 4, 144 of the 225 are independent). This means that we
have in principle access to the lowest 9, 36, 81, and 144 eigenmodes. We would expect that
the higher eigenmodes are effected more strongly by the truncation of the number of basis
functions. We can see this in figure 6.

For our error analysis we fix the number of points to 100k and ¢ = —1. As expected,
we find that around the eighth multiplet (which means after 24 eigenmodes), k4 = 2 ceases
to provide good approximations, since we are reaching a point where we are using 24/36
available eigenmodes and the finite truncation effects start to show. At the 36th eigenmode,
the full basis for k4 has been exhausted and the approximation breaks down. In contrast,
both k4 =3 and kg = 4 (which comprise the first 100 and 225 ambient space eigenmodes,
respectively) are ample to provide an excellent approximation to the spectrum. The metric
dependence is again weak, but it is perhaps the most pronounced here: with 100k points
at ¥ = —1 and k4 > 2, the error from the discrete point sampling and from truncating
the eigenbasis become negligible, so that the error due to the approximated metric are the
main source of discrepancy between the numerical and the exact result. This observation is
also supported by the fact that the numerical eigenvalue computation using the exact CY
metric is in essentially perfect agreement with the analytic result.

5 Numerical analysis of crossings and attractor points

In this section, we use the numeric methods outlined in section 4 to find crossings of
eigenmodes of the scalar Laplacian and compare them to the known CM points on the
underlying manifolds.

5.1 Crossing and CM points for the torus

For the torus, the analytic results of section 3 establish that ¢y € R gives rise to CM
points when two eigenmodes cross. From the discussion of section 4, we know that we can
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Figure 7. Spectrum of the scalar Laplacian on the quartic as a function of complex structure.
We plot a codimension 1 slice ¢ = (1 + 4)p in the moduli space, which contains CM points at
=% = —1/48 and ¢y~ = —9/16 (corresponding to the dashed lines at p = —0.61 and p = —1.86).
We can see eigenvalue crossings in the vicinity of these values.

approximate the eigenspectrum numerically with large accuracy (especially at smaller ),
which allows us the to match the crossings and the CM points at the same level of accuracy.
5.2 Crossing and CM points for the quartic

For the quartic, we will exemplify how one can use crossings of eigenmodes in the spectrum
to find CM points for

1+ 3¢ 1 3i
T = + and T:;\m. (5.1)
2 2
These correspond to
Yt =p(r) = 1 and vt =p(r) = 9 (5.2)
48 16’
as explained in section 3.1.3.
For generic ¢, the one-parameter Fermat quartic has a symmetry group
(54) X (Z4 X Z4) . (5.3)

Using the same method that we outlined in section 2.1 for the torus, we find the irreps

dim(irrep) |12 36 12

(5.4)
number(irreps)|(2 1 6 1 2

In our numerical analysis, we choose an arbitrary branch of the fourth root of unity
and approach the CM points along the trajectory ¢ = (1 +7)p for p € R. We approximate
the CY metric using the cymetric package [26, 27]. We use the phi model with a three-layer
neural network (NN) with 64 hidden nodes each and gelu activation, and train the NN
with 1 million points generated for p € [—3,0]. We train the NN until the sigma loss is
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< 0.01, which happens already at around 5 epochs. With this approximate CY metric, we
then compute the spectrum using kg4 = 2, which gives us access to the first 100 eigenmodes
of the scalar Laplacian on P3. The full calculation takes around 2 hours on a modern
desktop PC. We then group the eigenmodes according to their multiplicities as computed
in (5.4). The result is shown in figure 7. We see that there are eigenmode crossings among
low eigenmodes that are consistent with the CM points on the quartic given in (5.2). We
want to point out, however, that the crossing around p = 0.61 is hard to disentangle and
could also be consistent with the red, green, and purple line approaching each other but not
actually crossing. Since all three have multiplicity 3, they cannot be distinguished by their
multiplicity, unlike the much cleaner crossing around p = —1.86. In any case, the spectrum
behaves in a special way around p— = 0.61 as compared to other values for 1, where the
eigenmodes just decay or grow exponentially.

5.3 Crossing and attractor points for the quintic

For the quintic, the only CM point that is known analytically is at 1 = 0, Computation of
the scalar Laplacian eigenmodes show a plethora of crossings at 1) = 0, which is known to
be a CM point as explained in section 3.1.4. However, the point 1) = 0 is special in many
regards. In particular, the symmetry group from the ambient space enhances, so this might
not be the best point to test the relation. Moreover, as argued in section 3.2, it is more
likely that the generalization from the torus case is to a connection between eigenvalue
crossings and attractor points rather than eigenvalue crossings and CM points.

Instead of solving the attractor flow equation (3.30), we proceed by reading off the
values of ¢ where eigenmodes cross and then compute the central charge (3.32) for this
choice of 1 and a set of D-brane charges and look for a minimum of |Z| in the vicinity of .
In practice, we do that by brute-force scanning over D-brane charges and minimizing |Z|
numerically with the ¢ we read off from the crossings as a starting point. For the value of
the crossings, we simply take some of the ones observed in [30], which appear at around

wl ~ b4, ¢2 ~ 6.8, 1/12 ~ 9.1, (5.5)

cf. figure 8.

When computing the central charge for these crossings, we should note that they were
taken along a trajectory with Im(¢)) = 0. Since ¢ ~ e2™ik/54, for k € Z, this means that
we need to apply a monodromy matrix around the MUM point and shift the argument
Arg(y)) — 27w /5 — Arg(y)) upon computing the central charge in the vicinity of a crossing
point with Arg(y)) < 0. We present the results in figure 8. For each crossing value, we
can identify a set of D6-D4-D2 or D4-D2-D0 charges that has an attract very close to the
crossing points (5.5).

6 Conclusion and outlook

In this paper, we study the spectrum of the scalar Laplacian on a one-parameter family
of CY n-folds for n < 3. Our motivation comes explaining explain the behavior of the
eigenmodes of the Laplace operator on the quintic observed in [30]: some eigenvalues
become heavier and others lighter as we vary the complex structure, such that eigenmodes
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Figure 8. A zoomed in view of the crossings observed in [30] for the one-parameter quintic along a
slice of the moduli space with Im()) = 0. We find attractor points in the vicinity of the crossings,
more precisely at ¥ = 5.52, ¥ = 6.82, and ¢ = 9.17, respectively.

cross along special loci in complex structure moduli space. To develop intuition for the
phenomenon, we first analyze CY one-folds, for which we have full analytic control. Given
that the Ricci-flat CY metric is just flat, it is easy to write down a set of eigenfunctions
and their eigenvalues, which are given in terms of winding numbers around the two periods
of the torus. These are obtained from the underlying Picard-Fuchs system as a function
of the complex structure modulus v that appears in the defining equation of the torus
described as a hypersurface in P2, or by mapping the torus to Weierstrass form and reading
of the Eisenstein series and the Klein j(7) function to obtain the modular parameter 7 in
terms of 1.

The analytic eigenvalues depend inversely on the area of the torus (which is given
by the imaginary part 75 of 7) and on the winding numbers around the two cycles. As a
consequence, eigenmodes that only wrap cycle of length 1 become lighter as 7o gets larger
due to the 1/area factor, while for generic eigenmodes the factor of 7 in the numerator
competes with the area suppression in the denominator, leading to those eigenmodes either
becoming heavier, staying constant, or becoming lighter. A similar mechanism could be at
work for the quintic: the geodesic studied in [30] along which the behavior was observed
started close to the conifold point and ran towards the MUM point at infinite distance.
Close to the conifold point, the manifold degenerates, and a three-cycle (an S3) shrinks,
while close to the infinite complex structure point another three-cycle (a 7°3) shrinks. This
behavior is not special to the quintic under consideration but true in general if the SYZ
conjecture is true (although in the case at hand, the S® and T2 have been constructed
explicitly by Candelas et al.). Thus, there are also two competing cycles that can cause a
similar behavior.

In general, crossings of two eigenmodes of the family of CY manifolds studied here
appear along a real codimension 1 line inside their real two-dimensional complex structure
moduli space. For the torus, we point out that along a real codimension 1 slice (along
which the crossings appear at points), crossings are at Complex Multiplication points. In
this sense, points where eigenvalues cross are special, even though nothing special seems to
happen from the point of view of the defining equation or the moduli space metric.
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For generalizing this result, we need to compute crossing points for higher n-folds, which
requires resorting to numerical techniques. To get an understanding of the influence that
different approximations can have on the eigenvalues, we compute them first numerically
and vary the different hyperparameters entering the computation, and compare them to
the exact, analytic results for the torus. These hyperparameters include the number of
discrete points which we sample to approximate the CY, the quality of approximation of the
Ricci-flat metric, how close we are to a degeneration point in complex structure moduli space,
and the order at which we truncate the eigenbasis for the Laplacian eigenfunctions. We find
that in general the metric dependence is not very pronounced, and good results are already
obtained from simply pulling back the ambient space Fubini-Study (FS) metric. This is
interesting because obtaining an approximation to the Ricci-flat metric is computationally
costly, even when using modern neural network techniques, while computing the F'S metric
is cheap. When truncating the eigenbasis to some number k basis functions pulled back
from the ambient space, we find that the lowest 2k/3 eigenmodes can be approximated
well, while for the last 33% the finite truncation affects the accuracy. Sampling more points
drastically improves the accuracy in the beginning but has essentially no effect once a
threshold number of points is reached (10k for the torus). Finally, we observed that the
sampling method is not sampling uniformly from the fundamental domain of the torus;
horizontal voids develop that are due to how the hypersurface is embedded in P? and
that become more pronounced as we move towards the infinite complex structure point.
While the distribution of points obtained from the sampling method is known and we can
just weight points in the over/undersampled regions differently, these voids still introduce
numerical inaccuracies which get more and more pronounced. Knowing the dependence of
the spectrum on these parameters is helpful for the rest of the paper, but also of independent
interest for other applications involving the Laplacian eigenmodes.

Armed with an understanding of the error in the spectrum computation, we turn to
a generalization of the notion of CM points o arbitrary CY n-folds, where it is phrased
as a condition on the middle cohomology lattice. For T2 and K3, CM points are closely
related to attractor points in complex structure moduli space; however, in general the two
are different. We argue that if the result from the torus generalizes, it is more likely that
crossing points correspond to (rank 1) attractor points rather than CM points, since the
latter are scarce, while the number of crossing points is infinite. We check this relation by
computing the eigenspectrum numerically and reading off crossing points, which we then
compare to known CM points for K3. For the quintic, we solve the attractor equation and
show that there exists a D-brane system that leads to attractor points compatible with the
crossing points. This is surprising since attractor points are related to BPS objects, while
we are not aware of such a relation for higher eigenmodes of the Laplace operator. We hope
to study this further in the future and, if correct, establish this connection.
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