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Fig. 1. Given an input image and a pixel selection (marked with a red square), our method automatically selects all the pixels that have the same material as the
query. Our algorithm can identify materials shared by different objects (table and stools), and is robust to shading variations (castle example). Material-based
selection enables downstream applications, such as material editing or replacement (top right). Our approach can be extended to select materials across
multiple images, enabling material selection in videos (bottom right) without requiring any optical flow propagation.

Separating an image into meaningful underlying components is a crucial
first step for both editing and understanding images. We present a method
capable of selecting the regions of a photograph exhibiting the same mate-
rial as an artist-chosen area. Our proposed approach is robust to shading,
specular highlights, and cast shadows, enabling selection in real images. As
we do not rely on semantic segmentation (different woods or metal should
not be selected together), we formulate the problem as a similarity-based
grouping problem based on a user-provided image location. In particular,
we propose to leverage the unsupervised DINO [Caron et al. 2021] features
coupled with a proposed Cross-Similarity Feature Weighting module and an
MLP head to extract material similarities in an image. We train our model
on a new synthetic image dataset, that we release. We show that our method
generalizes well to real-world images. We carefully analyze our model’s
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behavior on varying material properties and lighting. Additionally, we eval-
uate it against a hand-annotated benchmark of 50 real photographs. We
further demonstrate our model on a set of applications, including material
editing, in-video selection, and retrieval of object photographs with similar
materials.
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1 INTRODUCTION

In this work, we present a method to select image regions with the
same material as a given query pixel. This enables a wide variety of
image editings as shown in Figure 1, and can be used to guide down
stream-tasks such as inverse rendering [Nimier-David et al. 2021].

Material selection is a challenging ill-posed problem because a
material’s appearance can vary drastically within a single image,
depending on the viewing angle and the local illumination, such
that two pixels with the same material can exhibit very different
reflected colors and intensities. Since a pixel’s color is a complex
function of the scene’s geometry, illumination, and materials, the
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converse can also hold: two pixels with the same radiance, may
belong to different materials. Yet, humans can identify objects that
share the same material with surprising accuracy, regardless of
an object’s shape, and despite shading variations and strong light-
dependent effects, such as specular reflections and cast shadows. It
is remarkable, for instance, that we can, from a single image, identify
that both chairs and the table in Fig 1 are made of the same wooden
material.

In contrast to semantic segmentation, our method does not rely
on a predetermined closed set of material classes. Instead, it dynam-
ically evaluates material similarities between a user query location
and all other pixels. This approach generalises to materials which
have not been seen during training. We further show our method is
robust to variations in shading, and in the geometries on which the
material appears.

In this paper, we consider that two surfaces have the same mate-
rial if they share the same texture and reflectance properties. For
instance, we consider a wood with growth color variations, or a wall-
paper with small repeating patterns to be single materials. However,
we consider two woods with different grain textures, or different
colours to be distinct materials.

To the best of our knowledge, ours is the first method that can
select image regions based on the material at a user-selected pixel.
Existing selection tools either perform selections based on color or
intensities, requiring continued user interactions (e.g., the “lasso”
tool), or perform object-level selections, using semantic and instance-
level segmentation models [Cao et al. 2020; He et al. 2017; Tan and
Le 2019; Wang et al. 2020b,a; Yuan et al. 2018]. Color-based methods
and texture segmentation methods [Belongie et al. 1998; Chen et al.
2013; Deng and Manjunath 2001; Haindl and Mikes 2008; Todorovic
and Ahuja 2009] are not robust to shading variations, as shown in
Figure 8. Existing material segmentation approaches [Bell et al. 2015;
Upchurch and Niu 2022] do not provide sufficient granularity: they
are limited to a fixed set of high-level, predefined material classes
(e.g., wood vs. metal). This precludes selecting a specific wood mate-
rial in a scene containing distinct types of wood for example. Object
selection methods built on instance-level segmentation are closer
in spirit to our approach, but cannot perform precise material selec-
tions since a single object can be made of several materials, and a
given material can appear on multiple objects.

To perform in-the-wild natural image material selection, we use
a pre-trained self-supervised vision transformer, DINO [Caron et al.
2021}, as a fixed feature extractor to compute a patch-level repre-
sentation of the input image, leveraging its natural image priors.
We then specialize these generic pretrained features for material
selection using a multi-scale neural network. To specify the query
pixel, we propose a Cross-Similarity Feature Weighting mechanism
that modulates features at different resolutions and fuses them to
obtain a material similarity score. We train our model exclusively
on a synthetic dataset containing 50,000 images of indoor scenes
rendered using a physically-based path tracer. The images were
rendered using 100 indoor scenes with defined camera trajectories
and 16,000 physically-based rendering materials.

Despite being trained on synthetic indoor scenes, we show that
our model exhibits great generalization to real photographs, in-
cluding outdoor images. Further, our method supports cross-image
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selections: a query embedding from a given image can be used
to select similar materials in other images. This enables material
selection in videos or material-based image retrieval in object pic-
ture databases. We demonstrate these applications and analyze the
behavior of the method through a set of controlled experiments
that vary material, color, lighting, selection position, and image
resolution.

In summary, we propose a method that adds to the palette of
image selection tools, simplifies a wide range of editing tasks, and
provides important information for downstream tasks like material
recognition and acquisition. We enable this through the following
key contributions:

o The first material selection method for natural images, robust
to shading and geometric variations.

e A novel, query-based, architecture inspired by vision trans-
formers, allowing to select pixels based on user input.

e A new large dataset of photorealistic synthetic HDR images
with per-pixel fine-grained material labels.

2 RELATED WORK

Semantic segmentation. Parsing a scene into "things and stuff”
[Adelson 2001] is critical for scene understanding. It has led to the
development of semantic and instance segmentation datasets with
per-pixel annotations of object classes [Caesar et al. 2018; Cordts
et al. 2016; Everingham et al. 2015; Geiger et al. 2012; Lin et al.
2014; Zhou et al. 2017]. Fully convolutional networks [Long et al.
2015] have become the standard for image segmentation, with ever-
improving efficiency and accuracy on established benchmarks [Cao
et al. 2020; Chen et al. 2017; He et al. 2017; Tan and Le 2019; Wang
et al. 2020a]. Recent methods have also explored open vocabulary
image segmentation [Ghiasi et al. 2021]. Although critical steps
towards scene understanding, these methods are often limited by to
the fixed set of labels or vocabulary they use during training and
cannot adjust their segmentation for previously unseen labels. In
contrast, our method can dynamically adapt its selection to a user

query.

Material classification. Material classificaton is a long standing
problem [Leung and Malik 2001]; it aims at recognising the type
of material in an image based on a pre-defined set of classes. Prior
to deep learning, methods relied on various filter banks [Fogel and
Sagi 1989; Leung and Malik 2001] to extract relevant features for
classification. Based on improvements in deep learning for image
segmentation, per-pixel classification architecture were proposed
for material types (metal, wood, ...) [Bell et al. 2015; Cimpoi et al.
2014; Schwartz and Nishino 2013, 2016] and material properties,
such as fuzziness [Schwartz and Nishino 2020]. Specialized angular
imaging capture systems were also proposed to further improve
automatic material classification in the wild [Xue et al. 2022]. Unlike
ours, these approaches are limited to a pre-defined set of material
classes, and therefore cannot handle materials outside their label set.
Further, they group different variations of a material in the same
generic class (e.g. “‘wood’), despite strong intra-class appearance
variations.



Material segmentation. Prior work has also extensively studied
texture segmentation using co-occurrence matrices [Haralick et al.
1973], EM [Belongie et al. 1998], filtering [Randen and Husoy 1999;
Reyes-Aldasoro and Bhalerao 2006], and watershed [Malpica et al.
2003]. These methods can segment contiguous texture regions, but
do not handle disjoint regions, e.g., when multiple objects have
the same material, and they do not enable a user input to specify
the selection. Flat surface material segmentation typically relies on
Matrix Factorization [Lawrence et al. 2006] or scribble interfaces,
letting user control the segmentation [Chen et al. 2013; Hu et al.
2022b; Lepage and Lawrence 2011; Pellacini and Lawrence 2007].
These approach are however limited to the BTF/SVBRDF domain
and cannot handle natural images. Different methods were proposed
for scribble-based natural image decomposition into intrinsic im-
ages [Bousseau et al. 2009], or for color and local statistics based
image editing [An and Pellacini 2008]. Their assumptions are too
limiting for our material selection task.

Attention models and Vision Transformers. Recently, the attention
mechanism [Vaswani et al. 2017] has been used in several vision
tasks, such as image classification [Chen et al. 2020; Dosovitskiy
et al. 2020; Hu et al. 2018], semantic segmentation [Ranftl et al. 2021;
Wang et al. 2021, 2020b], super-resolution [Cao et al. 2021; Chen
etal. 2022; Lu et al. 2021; Yang et al. 2020], image generation [Peebles
and Xie 2022; Zhang et al. 2022], and self-supervised visual repre-
sentation learning [Caron et al. 2021; Deng and Manjunath 2001].
Specifically, DINO [Caron et al. 2021] uses a Vision Transformer
(ViT) to performs self-distillation to learn visual representations
and demonstrate unsupervised class-specific salient object segmen-
tations. Moreover, STEGO [Hamilton et al. 2022] uses DINO as the
backbone visual representation to extract dense semantic correspon-
dence between images and semantic segmentations. Likewise, we
build our material selection model atop pre-trained DINO features,
benefiting from their large-scale real image prior. Also, our Cross-
Similarity Feature Weighting layer injects the user’s pixel query
into our model using a cross-similarity weighting scheme inspired
by cross-attention [Vaswani et al. 2017].

Material inverse rendering. Inverse rendering for materials aims at
recovering appearance properties of materials from image(s) [Guarn-
era et al. 2016]. This problem is inherently ill-posed. So, several
methods rely on data-learned prior [Deschaintre et al. 2018, 2019,
2021; Gao et al. 2019; Guo et al. 2021, 2020; Li et al. 2020, 2018a,b;
Zhou et al. 2022]. Other methods rely on a stationarity assump-
tion [Aittala et al. 2016, 2015; Deschaintre et al. 2020; Henzler et al.
2021] to extract material information from a few images. Inverse
rendering methods [Azinovi¢ et al. 2019; Nimier-David et al. 2021]
often explicitly require material segmentation as an input. Hu et al.
[2022a] use it to improve their material editing results. Our material
selection approach is orthogonal to these works. It can be used as
guidance to these methods, to better share information across the
image and facilitate inverse rendering.

Material datasets. Multiple datasets providing some level of ma-
terial information have been proposed for classification, segmenta-
tion [Bell et al. 2013, 2015; Liu et al. 2010; Schwartz and Nishino 2019;
Upchurch and Niu 2022], material inverse rendering [Deschaintre

Materialistic: Selecting Similar Materials in Images « 154:3

et al. 2018] or image editing tasks such as relighting [Griffiths et al.
2022; Murmann et al. 2019; Nicolet et al. 2020; Philip et al. 2019,
2021]. However, these datasets do not contain fine per-pixel mate-
rial annotations. Some of them do contain per-pixel material class
information (i.e. wood, metal), but they do not differentiate between
intra-class instances. The lack of fine-grained material annotation
creates false positives for our task (two different woods would be
in the same class) and prevents us from using these datasets. Asa
result, we chose to render a new synthetic dataset containing 50, 000
images of indoor scenes and per-pixel material segmentation which
respects the intra-class variations of materials.

Selection tools. Typical selection tools (e.g., those found in Photo-
shop) include the lasso or "magic wand", based on color information,
as well as object-based selection tools, built on semantic and in-
stance segmentation technologies. Color-based selection tools are
insufficient for material selection, because lighting and geometric
variations can significantly alter the reflectance of a single material
throughout a natural scene. Semantic and instance segmentation
methods have a different goal: selecting entire objects. In our mate-
rial selection task, multiple objects can have the same material (e.g.,
multiple plastic chairs in a conference room), and a single object
can be made of multiple materials (e.g., a chair with metal legs and
leather seat). Our method therefore adds a new dimension to image
selections, allowing a user to easily select similar materials in an
image.

3 METHOD

Given an input image and a query pixel location, our algorithm
computes a scalar score that quantifies how similar materials at each
pixel of the input image is to the material at the query pixel, from
which we derive a binary material selection mask by thresholding.
The user can refine the selection by tweaking the threshold.

Our method, illustrated in Figure 2, starts from rich self-supervised
natural image features from a pretrained vision model (§ 3.1), atop
which we train a material-aware multi-scale encoder (§ 3.2). This en-
coder serves two purposes. First, it specializes the representation to
be sensitive to material properties and insensitive to lighting, object-
ness or other discriminative properties the pretrained features may
contain. Second, it lets us refine the spatially coarse pretrained fea-
tures into more precise per-pixel features. We inject the spatial query
point using a novel feature aggregation mechanism that weights the
encoder’s internal features by cross-similarity at each scale of the
encoder (§ 3.2.2). We then fuse the multi-scale information before
computing the final, per-pixel material similarity score (§ 3.2.3).
Because of the lack of high-quality, publicly available datasets with
fine-grained material annotations, we train our encoder on a new
large dataset of photorealistic renderings of interior scenes with
ground-truth material labels (§ 3.3). Using features from a large
pretrained vision model trained on natural images together with
synthetic training data with ground-truth label gives us the best
of both worlds: labels that are cheap to acquire, and straightfor-
ward generalization to natural images. We provide the details of our
network architectures in supplemental material.
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Fig. 2. Model Architecture. We illustrate our model architecture in this figure. The DINO features extracted on the left come from a frozen, pre-trained DINO
model. We then process these layers independently at different resolution, injecting the user reference through our Cross-Similarity Feature Weighting layer
(Cross-Sim) before fusing the features and extraction the similarity prediction through a fully-connected head.

3.1 Pre-trained DINO features

Self-supervised vision transformers (ViT) features have recently
been shown to encode remarkable properties, such as rich semantic
segmentation information [Caron et al. 2021], which makes them a
natural starting point for our material selection task. As we discuss
later (see Section 3.3), starting from features pretrained on natural
images has the added advantage of mitigating the real-synthetic
domain gap that often arises when training neural networks purely
on synthetic data.

Concretely, we process our input image using DINO’s ViT 8 X 8
configuration [Caron et al. 2021] and extract a subset of its inter-
mediate feature tensors. Internally, DINO splits the image into non-
overlapping 8 X 8 patches, called ‘tokens’, which are then processed
by a series of transformer blocks. Each block maintains a set of
local tokens, which encode local patch information; and a global
token that encodes global context information [Caron et al. 2021;
Hamilton et al. 2022]. The DINO ViT model contains 12 attention
blocks, we use the outputs of four blocks at index (2, 5, 8, 11) as
our starting feature representation, inspired by Ranftl et al. [2021].
We denote the local tokens, viewed as spatial feature tensors, by

¢; € Rd'%'%, and the global tokens with i; € R4, where h, w € N2
are the input’s spatial dimensions, d = 768 is the feature dimension,
and i € {1,..., 4} indexes the blocks. Because of the transformer’s
tokenization, the local feature tensors have % the spatial resolution
of the input image.

In section 5, we show with an ablation that the DINO features
significantly improve the selection quality, compared to a UNet-
based baseline trained from scratch.
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3.2 Material feature encoder

Despite their remarkable properties, the DINO features are generic
and do not possess the invariants that make for a robust material
representation. Therefore, we transform them into material-specific
features (§ 3.2.1) by training a custom encoder on synthetic render-
ings with material ground-truth labels (§ 3.3). We then condition
the features on our query selection (§ 3.2.2), to finally compute our
material similarity score (§ 3.2.3).

3.2.1 Multi-scale features. Our encoder operates at multiple scales,
to increase the spatial resolution of the DINO features and analyse
multiple scales in the selection process. We combine the global and
local features and expand their spatial dimension following the
pipeline of DPT [Ranftl et al. 2021].

Specifically, for each transformer block i = 0,..., 3, we first ag-
gregate the local and global features by replicating the global token
spatially and concatenating it with the local feature tensor. Then,
we process the aggregate using a convolutional network followed
by a bilinear upsampling operator, with a different upscaling factor
s; for each feature block, which yields a new set of features

fildi, i) € REXsigxsiy (1)

with &’ = 256. We use the following upsampling factors: 55 = 4,
sy = 2, 53 = 53 = 1, such that earlier feature blocks are upsampled
more.

3.2.2 Query injection using cross-similarity feature weighting. After
the convolutional stages described above, we obtained generic ma-
terial features maps f; at resolutions 1/2,1/4,1/8,1/8 of the input
image, respectively. To implement a dynamic selection mechanism
that does not rely on a predefined set of material classes, and can gen-
eralize to materials unseen during training, we need to transform f;
into conditional features. These conditional features must account



for the material at the query pixel g € [0, 1]?, using normalized
coordinates, to simplify the multi-scale notation.

To do so, we propose a novel cross-similarity feature weighting
operator that modulates the feature at another pixel p € [0,1]2
using a query-dependent weight. We first obtain query Q, keys
K and values V embeddings from f;. K and V are computed by
processing f; with two different linear layers. To obtain Q, we first
extract the embedding at location q from f; and concatenate the
in-patch pixel coordinate of the query selection to it. This provides
our network with spatial information finer that the DINO patch
index. We then feed this embedding to an MLP that outputs Q. The
query-dependent weight of pixel p at each resolution i is then given
by:

wipg = o(QTK/NA) € [0, 11 5rF, @
where o is a sigmoid activation. Given this weight, we compute the
weighted multiscale features to be fused as

gipg = Wipq V- (3)
Our feature weighting scheme is inspired by the attention mech-
anism [Vaswani et al. 2017], with a couple differences. First, our
similarity implements a one-to-many comparison, unlike the many-
to-many relationship in traditional attention. Second, we do not
seek to compute relative importance in the feature map, but rather
a non-negative similarity score between the query and all other
embeddings. So, the weights need not sum to one over the spatial
dimensions, hence the use of a sigmoid in Eq. (2) instead of the usual
softmax.

3.23 Multi-scale fusion and final material similarity score. We pro-
gressively fuse the information from our query-conditioned multi-
scale features g; from coarse to fine, using a residual network fol-
lowed by 2x bilinear upsampling between each consecutive scale,
until we reach the full image resolution h X w, Finally, we compute
our material similarity score in [0, 1] from the fused features using
a pointwise neural network followed by a sigmoid activation.

3.3 Datasets with fine-grained annotations

As noted in Section 2, existing material datasets [Bell et al. 2013;
Murmann et al. 2019; Upchurch and Niu 2022] with per-pixel mate-
rial annotations contain semantic material annotations. These are
too coarse for our application; they do not account for intra-class
material variations. For instance, two different wood types share
the same label. This prevents us from training and evaluating on
these datasets for our task. Instead, we rendered a synthetic dataset
for training, and manually annotated a dataset of 50 real images for
evaluation.

3.3.1 Real-world evaluation benchmark. For evaluation, we manu-
ally annotated 50 images using Label Studio [Tkachenko et al. 2021],
exhaustively segmenting on average 2 materials per image. The test
images were sourced from Pixabay and Pexel and are available in
the supplemental materials. They contain challenging cases such
as multiple objects with the same material and objects made of
multiple materials. We will release this benchmark publicly.

3.3.2 Synthetic training data. Our synthetic training dataset is com-
posed of 50, 000 HDR images rendered using Blender Cycles [2018].
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Fig. 3. Our synthetic dataset. We show samples from our synthetic train-
ing dataset. Top: three sample rendered images. Bottom: The corresponding
material id maps, ids are mapped to random colors.

For the geometry of our scenes, we use a subset of 100 scenes from
the Archinteriors collection [eve 2021]. For each of the 100 scenes,
we use a camera trajectory spline and an associated viewing direc-
tion spline that was recorded using a first-person exploration of the
scene for about one minute. We randomly sample camera locations
and associated directions from the path for each scene. To render
each image in the dataset, we randomly sample a camera position
and field-of-view on a pre-defined, scene-specific camera path man-
ually created using splines in Blender [2018]. For each rendering,
we replace each material in the scene by randomly sampling a new
one from a set of 3, 000 Adobe Substance Source materials which we
curate to be stationary. We keep the original material assignment of
each object constant, meaning objects that share the same materials
in the original scene still share the same material after replacement.

We show a few samples from our dataset in Fig.3. The random
combination of material and geometries dramatically increases the
diversity of our dataset. Replacing materials allows us to render
an accompanying material ID map where the IDs are global across
the dataset. By using such ID maps for supervision, we implicitly
define similar materials as materials sharing the same stationary
SVBDREF. While we do not use the cross-image consistency of the
IDs during training, we show in Figure 5 that our method is still
capable making selections across multiple images.

We render at a 1024 x 1024 resolution with 256 samples per pixel
using the original scene lighting. Rendering the full dataset takes
about 24 hours using 8 NVIDIA A10G GPUs. Upon publication, we
will release the 50, 000 HDR images and material ID pairs to facilitate
further research on material selection.

3.4 Implementation details

We train our model for 30 epochs on the dataset described in Sec-
tion 3.3, using the Adam optimizer with a learning rate of 10”4 on 2
V100 GPUs, with a batch size of 8 images per GPU, following the dis-
tributed data-parallel (DDP) training approach. During training, we
apply random exposure, saturation, and brightness augmentations
to a random 512 X 512 crop of our training renderings. At inference
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time, our model computes material similarity in a 512 X 512 image
in 240 ms on a V100 GPU.

Loss function. Given a query pixel, we compute a binary cross-
entropy loss to measure whether the predicted selection (with thresh-
old 0.5) matches the desired material regions in the image, specified
by the query pixel location and the ground truth material segmen-
tation of our synthetic data.

Selection refinement using KNN matting. Because of the low res-
olution of the DINO feature, our approach may not always select
the boundaries of thin features perfectly. We found that applying
the KNN-Matting algorithm [Chen et al. 2013] on the edges of our
selection was sufficient to improve the resolution of small features,
if desired. When using this post-processing, we automatically de-
fine the positive and negative anchors required by KNN matting, by
eroding and dilating our selection mask with a (9, 9) kernel, mark-
ing the content of the erosion as positives, and the inverse of the
dilation as negative anchors. Unless explicitly specified, we show the
direct output of our network and do not apply the refinement step
discussed in here, which is separately illustrated in Figure 8 and in the
supplemental material.

4 RESULTS

In this section, we present the qualitative results from our model, and
its ability to perform material selection across images allowing us
to directly apply our method to selection in high-resolution images
and video frames for example.

4.1 Qualitative results

In Figure 4, we present results obtained by directly applying our
method to a subset of our evaluation dataset. This shows our model
is robust to strong shading variations (first and second columns), to
the presence of different objects sharing the same material (fifth and
seventh columns), and to surface orientation (seventh column). We
also show in Figure 8 (last column) that the KNN refinement step
discussed in Section 3.4 can slightly improve selection boundaries

and challenging thin structures.

4.2 Cross-image selection

A natural extension of our method is the selection of similar mate-
rials across images. Given an image in which a user provides the
query, we show that we can select similar materials in different im-
ages, as long as the lighting does not vary dramatically (we evaluate
the robustness to lighting variation in Figure 10).

Given an input image Igyery, used to define the user-query, we
want to select similar materials in a different image I.jqc;- To do
so, we process both Igyery and Ig.),c; independently up until the
Cross-Similarity Feature Weighting layers. We then compute the
query (Q in Figure 2) using the features from Igyery while we use
the spatially processed images features (K and V in Figure 2) from
Iielect- The cross-similarity features are then fused in the same way
than for selection in a single image.

We show cross-image selection results in Figure 5. We can see
that despite varying viewpoints and lighting conditions, our method
can select similar materials across images. The “Arc de Triomphe” in
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the first column also illustrates that our method generalises well to
outdoor images, further demonstrated in the video results discussed
in Section 4.3, despite the training data being confined to indoor
renderings. Note that even though the two images have different
scene lighting, the model outputs robust selections. On the second
and third column we observe that the materials from the chairs and
sofa are well identified in the target image even though orientation
and lighting vary.

4.3 Videos

The ability to select materials across images can also be used directly
on videos where the reference pixel selection is made in the first
frame, and the model selects material on a per-frame basis to extract
the desired material across the video. We show results in Figure 1
and 7 and supplemental materials. These videos and Figure 5 further
illustrate the stability and robustness of the approach even though
no temporal smoothing is applied to the output.

4.4 High resolution images

The high computational cost of self-attention to compute DINO
features restricts the input to our method to 512512 pixel resolution.
However, since our model generalizes across images, this lets us
evaluate it on high-resolution images by processing overlapping
crops.

Specifically, we follow the same process as cross-image selection.
We first obtain a query Q by running the model on a 512 x 512
downsampled version of the image. Then, using this query Q, we
evaluate the similarity scores for a set of crops of size 512 x 512
using a simple sliding window with a stride of 256 pixels on the
high-resolution image. For each crop, we use their respective keys
K and values V.

For each pixel in the high-resolution input we average the sim-
ilarity scores obtained from all crops that overlap with this pixel,
which gives us our final similarity score. We present results on 1K
resolution images in Figure 6.

5 EVALUATION

We present both quantitative and qualitative evaluations of our
model through a set of ablations, comparisons and experiments to
better understand its behavior and limitations. Quantitative results
are shown in Table 1, in which we provide the mean Intersection
over Union (IoU) score comparing the ground truth material masks
and the predicted masks on our benchmark evaluation dataset for
10 randomly selected query points per image. We further show
qualitative comparisons in Figure 8. As different methods require a
different threshold, we always report the number with their optimal
threshold selected. We perform a grid search to find the threshold
that yields the highest mIOU for each method. This illustrates the
best selection result that can be achieved using each method.

5.1 Ablations

Dense Material Segmentation. We compare our method to a mate-
rial segmentation method [Upchurch and Niu 2022], where we run
the pre-trained segmentation network on the test images and gen-
erating the binary mask as the segment that belongs to the segment



Prediction GT Input

Scores

Table 1. Quantitative metrics. Mean loU scores of all models evaluated
on our densely annotated material dataset containing 50 real images. We
compute the mloU for 10 randomly selected user-query pixel for each image
and average the results. —see supplemental. We also provide a tally which
indicated if the method requires negative samples during inference.

Model Negative Samples mloU T

KNN matting (3 patches) ve 0.617
KINN matting (5 patches) ve 0.677
KINN matting (3 patch, albedo estimates) ve 0.567
KINN matting (5 patch, albedo estimates) ve 0.640
DMS [Upchurch and Niu 2022] 0.38
UNet on RGB 0.612
DINO ViT16 backbone 0.877
(Ablation) Single Dino Block 0.5

(Ablation) No Cross-Sim layer 0.9

(Ours) DINO ViT8 backbone 0.917
Ours refined with KNNmatting 0.92

at the user selection. Since this network is trained with a closed set
of high-level material labels (i.e. wood, metal), the network suffers
from under-segmentation as it treats all intra-class variations of the
material as the same.

UNet. We explore and evaluate an alternative neural architecture.
Given the image to image nature of our task, we use the fixup
UNet [Ronneberger et al. 2015; Zhang et al. 2019] which has been
shown to do well on single-image relighting tasks [Griffiths et al.
2022]. We train this model on the synthetic dataset presented in
Section 3.3. Given an RGB input image I, the network outputs a per-
pixel 32-dimensional embedding f,. We train this approach with a
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Fig. 4. Qualitative results. We present the input image along with the query point annotated with a red square, ground truth mask (GT), predicted mask,
and the per-pixel score (top to bottom rows). Note that the user selects the center of the marked square. The prediction is the best possible mask generated by
optimally thresholding the per-pixel scores. The predicted results demonstrate the robustness to shading variations (first and second columns), the presence of
different objects sharing the same material (fifth and seventh columns), and surface orientation (seventh column).

binary cross entropy loss using the dot product between the query
embedding f; and all other embeddings fp.

This approach can be seen as an extremely simplified version of
our model, where the query injection happens at a single resolution,
and where the dot product between query and key (which are not
processed through separate MLPs) is directly used as similarity
instead of being further processed. As shown in Table 1 this U-Net
model achieves significantly lower mIoU, and we can see in Figure 8
that the resulting selection tends to be noisy.

Single DINO features block. Our model uses multiple blocks of
the pre-trained DINO model, which we need to fuse after injecting
the query, as described in Sections 3.2.2 and 3.2.3. We evaluate the
performance of a simplified model that uses a single DINO feature
block. For this baseline, we directly use ws pq from Eq.2 as the simi-
larity score, since no fusion is needed. Table 1 shows a single feature
block with limited processing is insufficient. This confirms that the
pre-trained DINO features are not natively sufficient to discriminate
materials, and that our model design, which refines the 4 blocks of
DINO features with a query-dependent feature combination and
selection mechanism, is essential.

DINO patch size. To evaluate the impact of the patch sizes of
the DINO features, we trained a variant of our model using the
ViT-16 model as a backbone, using 16 X 16 patches, instead of our
main method, which uses ViT-8, i.e., 8 X 8 patches. The ViT-16
backbone performs better than the more naive baselines described
above. However, its lower spatial resolution leads to less precise
segmentations, compared to the ViT-8. This is especially visible
around material edges in Figure 8. This also leads to a lower accuracy
overall (see Table 1).

ACM Trans. Graph., Vol. 42, No. 4, Article 154. Publication date: August 2023.
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Fig. 5. Material selection across images. From a selection in one image
(top row), our model can find the corresponding material in a second image
(second row). The reference pixels are highlighted with a red square and the
predicted selection and associated similarity scores are shown in the third
and fourth rows. We show that our model can indeed select across images,
despite the differences in environment, viewpoint, and lighting.

Selection injection. Finally, we ablate our Cross-Similarity Feature
Weighting layer, replacing it with a simple concatenation, at every
pixel, of the query features vector with the pixel’s feature vector.
This new tensor is then processed by a linear layer before the fusion
step. This simplified network, denoted “(Ablation) No Cross-Sim
layer” in Table 1, performs reasonably well. But removing our feature
reweighting and the injection of the local sub-patch position of the
query pixel (Figure 2 top-right), leads to degraded spatial localization.
This is especially visible in Figure 8, where the selection is imprecise
around the chairs edges and some part of the TV (top-row). The
baseline also overselects the wooden chair background (bottom
row). More comparisons are provided in the supplemental material.

5.2 Comparisons

In addition to these ablations, we compare to existing selection
methods. Our method being the first to enable material selection for
natural images, we compare our model to the following selection
tools: KNN matting [Chen et al. 2013] in multiple color spaces (HSV,
albedo from intrinsic images[Li et al. 2020]) and the Magic Wand
and Object selection tools in Photoshop. For all comparisons and
ablations, we show additional results in supplemental material
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Fig. 6. High resolution material selection. Our method can be evaluated
on higher resolution such as 1024 x 1024 even though the method was
trained on 512 x 512. Using the query embedding from a downsampled
version of the image, we compute the similarity to the query of crops of
the high-resolution image using a sliding window with stride 256. These
scores coming from different patches are averaged for each pixel in the
high-resolution image.

KNN matting. We use the open-source implementation of KNN
matting [Germer et al. 2020] on our test data in HSV space [Chen
et al. 2013]. The method requires positive and negative anchors, so
we report their results using 3 and 5 32 x 32 patches as positive and
negative samples. We select the patch randomly within the ground-
truth positive/negative regions. We also evaluate KNN matting on
an albedo map extracted using intrinsic image decomposition [Li
et al. 2020], to try and minimize the effect of shading in the selection.

Based on the mean IoU scores in Table 1, our method outperforms
the baseline models. Since KNN matting only takes into account the
observed color and the local pixel position, without any notion of
lighting and geometry, its selection degrades when cast shadows
and light dependent effects are present. While the albedo component
extracted from an intrinsic image decomposition method should
remove shading , current methods do not handle global illumination
effects perfectly [Garces et al. 2022], leading to artefacts in the image.
Moreover, recent intrinsic image decomposition methods output
low resolution albedo maps. Togehter, this limits the quality of KNN
matting on intrinsic images baseline, so that it is no better than
running the algorithm in its original HSV space.

Photoshop selections. We also compare our method qualitatively
to results obtained using existing selection tools, namely the Magic
Wand and Object selection tools in Photoshop. Object selection
works well but it solves a different task than ours, typically selecting
a single entire chair, and not just the seat, in both examples of
Figure. 8.

On the other hand, Magic Wand selection is based on color simi-
larity and often selects incorrect areas due to shading or specular

highlights. As we show in Figure 8 it does not handle well shading
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Input Selections across video frames

Fig. 7. Material selection in videos. Given a user input on the first frame of the video, our method can select the material across all frames of the video.
Note that the spotted fur of the cheetah is selected in all frames even though the dry grass texture also exhibits the same low frequency statistics. The method
also successfully selects all the bread rolls on the assembly row.

KNN matting Intrinsic . . (Ours) DINO ViT 8
Input 3 patches 3 patches UNet Maglc Wand DINO ViT 16 (Ours) DINO ViT 8 Refined with KNN matting
—— e—
""”ﬁﬁ-l‘ @"‘“M

D]ND ithout
GT mask  5patches 5 patches cm: ;unu Ob]ect Sel.

(Ours) DINO ViT 8
Reﬁ.rled with KNN nlath.ng

KNN matting Intrinsic
3 patches 3 patches

DINO without

l.'l'USSSLIIl.

GTmask  5patches 5 patches Object Sel.

Fig. 8. Qualitative comparisons. We show comparisons between selected regions (marked in red) obtained with different methods. From left to right,
we first show results obtained with KNN matting using a different number of positive and negative patches, and in two different color domains (HSV and
Intrinsic image albedo). We then show results for our two best-performing ablations, i.e. the alternative UNet architecture and our architecture without the
Cross-Similarity Feature Weighting mechanism. Then we present results from existing Photoshop selection tools and a VIT-16 pre-trained network. Finally, on
the far right are our results and a KNN matting refined version of our results for which we refine selection borders. We can see that our method better selects
the same materials in the image across different objects, despite similar colors in the image (e.g color and lamps in the top row) or the space being cluttered
(bottom row). Further, the KNN Matting improved selection better follows material edges. While close, the no-cross sim ablation has more imprecise selection
and overselects the TV (top-row) and the background of the wooden chair (bottom-row).

variations and varying lighting. Further, similar RGB color (such as 5.3 Selection consistency

the TV and lights in the first row) are also incorrectly selected. We study the consistency of our model’s output with respect to

change in the scene lighting and selected pixel location.

ACM Trans. Graph., Vol. 42, No. 4, Article 154. Publication date: August 2023.
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Query

Selections

Fig. 9. Consistency of model output. Querying our model with 5 different query points —highlighted by a colored square— within region corresponding to
the same material, the selected region is consistent. Each of the query points and the corresponding selection is presented in different colors. Note that despite
the different lighting effects such as specularity and shadows around different selections, the model consistently selects the same region (row 1 and 3). Similar
consistency is exhibited for selections around different regions of a spatially varying texture of marble in row 2.

Robustness to the query pixel. We evaluate the self-consistency of
our model’s selections by making multiple queries within a region
labeled as a single material.

Figure 9 illustrates this experiment for 5 different selections
marked in the input with squares of different colors along with the
corresponding output selections. Regardless location of the query
pixel within a given material’s region, our method’s output selec-
tion is stable. In particular, as shown in rows 1 and 3, our selection
does not change, even if the query points are under different illu-
minations. We compute cross-mloU between the selected regions
predicted with different input query points within the regions corre-
sponding to the same material. We consider the first selection point
to be the control and compute the average mIoU of 5 other selections
with respect to control. We compute this over our entire benchmark
dataset with each image evaluated twice with random selection of
query points and obtain an average cross-mloU of 0.9387.

Consistency under varying lighting. Previous sections showed
qualitatively that our method is robust to varying lighting. Here,
we evaluate this systematically. In Figure 10, we show a room pho-
tographed multiple times, from the same viewpoint, each time chang-
ing the color and intensity of the room’s artificial lighting. For this
test, we used the “across images” approach described in Section 4.2.
The query is computed from the leftmost image in each row and
then used to select the same material in the other images with the
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Fig. 10. Lighting Robustness Analysis. We show the consistency of the
selection of a given material for scenes with varying lighting.



same viewpoint. Our selections are fairly robust to strong lighting
variations, although slight variations can be observed in areas where
the radiance changes significantly, such as the grey carpet turning
deep blue in the first example.

We show further examples with varying lighting from the dataset
of Murmann et al. [2019] in supplemental material. We compute
the cross-mloU again (as described in §5.3) between the selections
across different lighting conditions for the photographs shown in
Figure 10 and examples from Murmann et al. [2019] dataset shown
in the supplement material. Here we obtain an average cross-mloU
of 0.956.

5.4 Varying color and texture

Color is a very strong visual cue, on which many segmentation
methods rely (e.g., Photoshop’s Magic Wand or KNN Matting [Chen
et al. 2013])). To evaluate the importance of color and texture in our
model’s selection, we designed two synthetic test cases, in which
color (resp. texture) varies progressively across multiple spheres
(see supplemental material.). In particular, this test helps understand
what the method considers to be a single material. Our model be-
haves as expected, with no color variations tolerated in the selection
at high threshold. As we lower the threshold, the selection is relaxed
and some color variation is tolerate. Similarly, in the texture inter-
polation test, we see that closer interpolated textures are selected

first, with a loose threshold.

5.5 Refining selections with multiple query points

To further empower artists, in our interactive demo, we allow users
to select multiple positive and negative query points. The resulting
score map for positive query points are combined by taking the
maximum of the individually predicted similarity scores for each
pixel, and thresholded with a user defined value in [0, 1]. Similarly,
the user can select negative points to remove regions from the
current selection. The predicted scores corresponding to all negative
samples are also combined by computing a per-pixel maximum
across all predicted scores, and then thresholded by the user using
a separate threshold value. The intersection of the negative mask
with the mask computed using positive query points is removed
from the final selection. We illustrate this workflow in a video in
supplemental material.

6 APPLICATIONS

We showcase two applications of our model: image editing and
material-driven web recommendations.

Image editing. The ability to make selections based on materials
opens up many image editing possibilities. For instance, Figure 11
shows examples in which we alter or replace the selected materials.
In the top two rows, we modify the hue of the selection (first result
column), and multiply the luminance with texture to replace the
selection’s appearance (second result). For the next two rows, we
partially re-implement the material-editing method from Khan et al.
[2006] using contemporary techniques, such as monocular depth
estimation [Ranftl et al. 2022] and GAN-based inpainting for the en-
vironment [Karimi Dastjerdi et al. 2022]. The first edit for the statue
(3rd row) uses their glass approximation, while the second uses a
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Selection

Original Image
I

Editing results

Fig. 11. Image editing results. Our selection method output used as input
for material selection based image editing using e.g. Photoshop (top rows),
Khan et al. [2006] (middle rows) and Stable Diffusion Inpainting [Rombach
et al. 2021] (bottom rows). Fifth row prompts: "A white tea cup with gilding",
"A green mug'". Last row prompts: "Pine trees”, "Mediterranean trees".

pure mirror material. In the Arc de Triomphe example (4th row), we
use the glass approximation with varying roughness, implemented
by blurring the environment map. The last two rows are obtained
using our selection as inpainting mask in Stable Diffusion [Rombach
et al. 2021] and various text prompts.

Recommendation based on a selected material. Large online datasets
such as an online product catalog can be challenging to navigate. Us-
ing our method we show that we can add a new axis along which it
is possible to explore the dataset: material similarity. Given a subset
of 150 images for different semantic material classes (wood, plastic,
leather), from the Amazon Berkeley Objects (ABO) Dataset [Collins
et al. 2022], we first select an image with a material we want to
see more of, and search for objects with similar material using our
query embedding following the material selection across images

ACM Trans. Graph., Vol. 42, No. 4, Article 154. Publication date: August 2023.
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Recommendations

Query

Fig. 12. Web recommendation. Our method can be employed to perform
material based search for web recommendation. Given a query image and
a user selection, we rank the images based on mloU of the selection with
respect to object mask in a random 150 images subset of the Amazon
Berkeley Dataset [Collins et al. 2022] from different (wood, plastic leather).
We show the complete subset in the supplemental material.

Prediction

Fig. 13. Limitations. The first two images illustrate the challenge of se-
lecting thin structures for our method, while the last image illustrates the
difficulty of extracting precisely high frequency and small selection borders.

approach (Section 4.2). We rank the images in the database’s subset
based on the mloU of the selection with respect to object mask
in the rest of the dataset. As shown in Figure 12, our method can
retrieve objects with similar materials, we show the complete subset
in supplemental material.

6.1 Limitations

As shown in the evaluations, our method is robust to light and
view variations. Despite being trained on purely synthetic data, it
generalizes to real photographs and unseen materials, which in
turns enables diverse applications.

However, as mentioned in Section 3.4 selections of fine details
remain challenging. As shown in Figure 13, thin elements such as
the blue feather, the thin grid on the chair or the ant are very hard
to segment accurately. Our KNN refinement step helps clean the
selection boundaries in difficult cases, but is insufficient to recover
very thin structures. We believe stems from two limitations: the

ACM Trans. Graph., Vol. 42, No. 4, Article 154. Publication date: August 2023.

low resolution DINO features, mitigated but not entirely solved
by our rescaling and feature-weighting mechanisms; and our syn-
thetic training data, which does not contain many thin geometric
structures.

At a higher level, our definition of what constitutes a single ma-
terial is closely tied to the notion of material in Computer Graphics,
and what artists commonly define as stationary materials. For ex-
ample, we consider a wood plank as a single material, despite the
wood-growth hue variations. This definition may not always align
with a user’s expectation, but a different definition may require
more fine-grained ground truth labels. Our method is inaccurate
for regions with extreme direct cast shadows, as seen in the second
example presented in Fig 6. The direct cast shadows in such cases
result in extremely underexposed regions revealing very little about
the material in that region.

7 CONCLUSION

In summary, we propose a method for material selection in natural
images. Our method builds on pre-trained generic vision features,
which we specialize for material selection by training a downstream
model on a new synthetic dataset. Crucially, our downstream model
employs a new mechanism to merge multi-scale features and inject
a user input. We demonstrate the quality and robusiness of our
selections on both indoor and outdoor scenes, and show it can
be applied to make selections with single images, across multiple
images or even in videos. We believe our method enables better
high-level scene understanding and provides important information
for inverse rendering optimization.
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