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Abstract. We present a Lagrangian model of galaxy clustering bias in which we train a neural
net using the local properties of the smoothed initial density field to predict the late-time
mass-weighted halo field. By fitting the mass-weighted halo field in the AbacusSummit
simulations at z = 0.5, we find that including three coarsely spaced smoothing scales gives
the best recovery of the halo power spectrum. Adding more smoothing scales may lead
to 2–5% underestimation of the large-scale power and can cause the neural net to overfit.
We find that the fitted halo-to-mass ratio can be well described by two directions in the
original high-dimension feature space. Projecting the original features into these two principal
components and re-training the neural net either reproduces the original training result, or
outperforms it with a better match of the halo power spectrum. The elements of the principal
components are unlikely to be assigned physical meanings, partly owing to the features being
highly correlated between different smoothing scales. Our work illustrates a potential need
to include multiple smoothing scales when studying galaxy bias, and this can be done easily
with machine-learning methods that can take in high dimensional input feature space.
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1 Introduction

Galaxy surveys that map the large-scale structure of the universe have been a powerful probe
of the composition of our universe and how its structures form ([for a recent review, see 1]). In
the canonical picture, structure formation originates from the gravitational collapse of initially
small perturbations in the matter density field, which eventually grow into dark-matter halos.
Galaxy formation then proceeds within these halos by gas accretion and cooling, producing
galaxies that act as biased tracers of the underlying density field. An improved understanding
of where dark-matter halos sit in the underlying matter field is crucial for modeling the
formation of the large-scale structure and therefore constraining cosmological parameters.
This, in turn, is key to understand the physics of inflation, and the dark sector of our universe.

Traditionally, the halo density is assumed to trace the underlying matter field in a
polynomial form, with a series of bias parameters characterizing the relation [e.g. 2–4]. This
bias expansion approach has achieved much success in describing summary statistics such as
the galaxy power spectrum and bispectrum [5–11] as well as halos at the field level [12–15],
and previous works have focused on evaluating the biases [16–24]. In ref. [25] (hereafter Paper
I), we developed a fully non-parametric framework to calculate the distribution of halos at
a given redshift given the initial Lagrangian density field. This goes beyond the traditional
bias expansion approach and instead fits a function f that characterizes how much halo mass
should form given properties of the initial density field. Specifically, we model the initial
Lagrangian-space (pre-advection) halo overdensity δh as

1 + δh = f(δ,∇2δ,G2), (1.1)

where δ is the Lagrangian matter overdensity and G2 is the tidal operator, evaluated at each
point in the initial Lagrangian space [3, 4, 26, 27]. We showed that for mass-weighted halos
above a mass threshold, the shape of f clearly deviates from a polynomial of δ and other
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quantities. Therefore while the bias expansion approach has been successful and physically
intuitive [from the peak-background split argument, 28–30], it can yield an unphysical relation
between the galaxy and matter fields such as a non-positive-definite f and enhanced biases
for underdense regions. We demonstrated that our fitted f can recover the late-time halo
power spectrum to sub-percent level at wavenumbers k < 0.1 h Mpc−1

In this work we expand upon our previous Paper I and train a neural network (NN)
to obtain f as a function of particle features associated with various smoothing scales. Our
previous formalism involves dividing the feature space into a finite number of bins and solving
for a piece-wise constant f with least-squares fitting. This limited us to using at most two
features (such as δ and ∇2δ) owing to memory restrictions. A NN, however, allows f to be a
continuous function of a large number of features. It also captures the impact of the cross
terms of the input features on the halo field as in the bias expansion approach, since the input
features get interwoven after passing through two hidden layers. We show that with δ,∇2δ,G2
associated with three smoothing scales appropriately chosen, the f function predicted by the
NN is able to recover the halo power spectrum to within 1–2% at k . 0.1 h Mpc−1 despite
being trained at the field level. We find that for mass-weighted halos, f can be well described
by two orthogonal directions in the original feature space. Projecting the original δ,∇2δ,G2
into these two directions and re-training the NN reproduces the original training results of
the halo power spectrum at least as well. While our work is closely related to refs. [31–33]
who also studied halo formation and large-scale structure using machine learning methods,
we focus on predicting the entire halo field instead of halo masses as done in these works.

This paper proceeds as follows. Section 2 presents our setup of the NN and the
simulations. Section 3 discusses results of using different combinations of smoothing scales.
Section 4 examines the structure of f using the principal components of ∇f . We briefly
explore modeling a thin mass range instead of a mass threshold in section 5, and discuss
future directions section 6.

2 Methods

2.1 Neural net
We aim to train a NN to predict the f weight that a particle should carry given its input
features, so that such an f function best recovers the real-space halo field δtrue

h . To obtain the
particle features, we first compute the smoothed overdensity field δ, its Laplacian ∇2δ, and
the corresponding tidal shear G2 using the initial condition of a simulation given a smoothing
scale Rf . These fields are normalized to have standard deviation of 1. We then assign each
particle in a simulation a certain set of δ,∇2δ,G2 values according to its nearest grid point
in the initial condition. In the presence of multiple smoothing scales Rf1, Rf2, . . ., a particle
carries a vector of features

θorig = (δ1,∇2δ1,G2,1, δ2,∇2δ2,G2,2, . . .)T , (2.1)

ywhere the subscripts denote the indices of the smoothing scales. These features are not
independent of each other. Specifically, the δ’s and ∇2δ’s with different smoothing scales are
highly correlated with each other. The G2’s are uncorrelated with δ’s and ∇2δ’s since these
are quadratic terms, but are highly correlated among themselves.

To expose the independent degrees of freedom to the NN, we opt to orthogonalize the
original features. We thus calculate the covariance matrix of the features

Σij = (θorig,i, . . .) · (θorig,j , . . .)T , (2.2)
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where the subscripts i, j denote the indices of particles, and the size of the covariance matrix
is the number of original features squared. We then obtain the eigenvalues Λ and eigenvectors
V of Σ, where Λ is a diagonal matrix with the eigenvalues as the diagonal elements, and the
columns of the matrix V are the corresponding eigenvectors. Defining a matrix Λ−1/2, which
is diagonal and the elements are the inverse of the square root of Λ, the orthogonalized and
normalized features are

θorth = Λ−1/2V T θorig. (2.3)

Since the original features are highly correlated among each other, the range of the
square root of their eigenvalues can span three or four magnitudes. It is only desirable to keep
the transformed features with larger eigenvalues. Intuitively, the ∇2δ’s can be written as the
derivative of the smoothed δ’s with respect to the smoothing scale, so can be approximated
with a linear combination of δ’s with adjacent smoothing scales. For a number nRf

of
fine-spaced smoothing scales, we thus only need the nRf

δ’s and one ∇2δ with the smallest
smoothing scale to approximate all the 2nRf

δ’s and ∇2δ’s. This motivates us to keep the
n+ 1 eigenvectors with the largest eigenvalues calculated using only δ’s and ∇2δ’s.1 We keep
all of the nRf

G2’s, since in the case of coarsely separated Rf ’s the associated G2’s are not
highly degenerate.2 This leaves us with a total of 2nRf

+ 1 orthogonalized and normalized
features that should be input into the NN, which we represent by a projection matrix P

θinput = Pθorth = PΛ−1/2V T θorig. (2.4)

Here P is a diagonal matrix of size n2, with 2nRf
+ 1 of the diagonal elements being 1 and

the others being 0, which projects out the unused θorth.
For each particle, given its orthogonalized and normalized features θ, a NN predicts an

f value that it should carry. We then sum up the f values of particles in each cell to obtain
the model halo field:

1 + δmodel
h,j = Ncell

Npart

∑
i∈cellj

f(θinput,i) (2.5)

where j denotes the index of a cell. Here the sum of f should be multiplied by the size of the
halo grid Ncell divided by the total number of particles Npart to ensure that the mean of the
halo overdensity is 0. The loss function is defined as

L =
∑

j

(δmodel
h,j − δtrue

h,j )2. (2.6)

The summation is carried over each batch in the training, where a batch is a number of grid
cells with the particles in them.

In addition to the squared loss, the predicted f ’s should be non-negative and satisfy the
integral constraint

∑
i fi/Npart = 1 owing to mass conservation, where i denotes the particle

indices. To enforce the non-negativity constraint, we make the NN predict y = log10(f)
instead of f , and add an additional penalty (y + 5)4 for each particle to prevent y from going
too negative and thus yielding a vanishing gradient. To implement the integral constraint,

1We have verified that for small separation of the smoothing scales, inputting nRf δ’s and only the ∇2δ of
the smallest smoothing scale yields the same training results as inputting 2nRf δ’s and ∇2δ’s and keeping the
largest 2nRf + 1 eigenvectors. This no longer holds with large separations of the smoothing scales.

2We find that keeping 2nRf + 1 features instead of choosing the features based on a cut-off of the ratios of
the eigenvalues yields more stable training results. Specifically, if the eigenvectors and eigenvalues have small
changes when calculated from a different simulation box, the resulting f appears to be robust.
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∇2δ2

Final halo field

f

Figure 1. A schematic illustration of our training process. Top left panel shows the initial matter
density field, illustrated by colors. The overlying gray circles represent the f weights that the particles
should carry, with the size of the circles showing the amplitude of f . The f weights are predicted by
the NN shown at the bottom left, by inputting the initial δ,∇2δ,G2 at various smoothing scales. The
top right panel illustrates the final matter field, where the particles shown by circles have been moved
by gravity. The bottom right panel presents the final halo field, where the circles follow the locations
of the particles and the colors and sizes of the circles represent the amplitude of f . We calculate the
loss based on the residual in modeling the final halo field.

we choose the batch size so that each batch, which is a collection of cells, contains about
Npart,batch = 105 particles in total. The batches are randomly initialized before the training
and kept unchanged during the training. For each batch, in addition to the squared loss
and the non-negativity loss, we add another loss (

∑
i fi/Npart,batch − 1)2/ε2, where ε is the

tolerance. During the first epoch of training, we do not include the integral constraint, and the
NN recovers the integral constraint at a few percent level. Starting from the second epoch, we
set ε as a function of the number of epochs max(10(−1−3 log10(epoch)), 10−4), so that it gradually
decreases. This ensures that NN recovers the integral constraint at sub-percent level.

We stress that our NN makes predictions for particles, but our loss function is defined
on the halo grid. The backward propagation is handled internally by pytorch as long as the
loss function is implemented correctly. Figure 1 gives a schematic illustration of the training
process, where the particles carry their corresponding f weights predicted from the NN (gray
circles in the top left panel) given at the initial time to their final locations, forming the final
halo field (bottom right panel).

2.2 Simulations and training
We use the AbacusSummit simulations [34] in this work to perform the training, which are
run with the Abacus N-body simulation code [35–38]. These simulations were designed to
meet and exceed the currently stated cosmological simulation requirements of the Dark
Energy Spectroscopic Instrument (DESI) survey [39]. We utilize the small box simulations
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which have a box size of 500 h−1 Mpc and 17283 particles, using the Planck2018 standard
cosmology [40]: Ωm = 0.14237, h = 0.6736, σ8 = 0.807952. This gives a particle mass of
2× 109 h−1 M�. Halos are identified on the fly with the CompaSO halo finder which uses a
hybrid FoF-SO algorithm [41]. We focus on fitting the mass-weighted halo field with halo
masses M > 3× 1011 M� at z = 0.5, corresponding to > 150 particles.

The initial conditions were generated at z = 99 using the method proposed in [42]. To
obtain the (δ,∇2δ,G2) values associated with a particle, we interpolated the initial density
field onto 5763 grids and calculated the smoothed (δ,∇2δ,G2) values on each grid point given
a smoothing scale Rf . We then assign (δ,∇2δ,G2) values to each particle by looking for the
nearest grid point to the particle’s location in the initial space. These are then input into the
NN for the training.

To train a NN, we produce halo grids by summing the f values of particles inside each cell.
We note that this calculation of δmodel

h corresponds to using nearest neighbor interpolation
(NNB), so the true halo field δtrue

h is computed with NNB as well. We use 1003 grids, which
gives a cell size of 5 h−1 Mpc. To reduce the computational cost, for each grid cell, we only
sample 10% of the particles in it to perform the training. This fraction guarantees that for
our grid size of 5 h−1 Mpc, there is at least one particle in each cell. The summed f ’s should
then be scaled up by a factor of 10 to correctly obtain δmodel

h .
We implement a NN with 5 hidden layers, each with 64 neurons. We use the GeLU

activation function for all layers and the Adam optimizer for gradient descent. We adopt an
initial learning rate of 0.02, which decays as 0.9epoch. This exponential decay ensures that
the loss becomes rather flat after 20 epochs of training, and after 50 epochs of training the
model predicted halo power spectrum converges as well. We chose these hyperparameters so
that in the case of one smoothing scale, the model predicted halo power spectrum changes
at < 1− 2% level under different initializations of the NN and different sub-sampling of the
particles. Utilizing even larger NNs does not improve the performance on the halo power
spectrum any further. We find that the validation loss has the same trend of variation as the
training loss, so we based the choice of the hyperparameters solely on the training loss and
power spectrum.

Each training process takes one simulation as the training set and other simulations
as the validation set. Here we use the phrase “validation set” interchangeably as “test set”,
since we effectively did not use any validation simulation to tune the hyperparameters. Since
our box size is only 500 h−1 Mpc, using multiple simulations as the validation set allows
us to examine the impact of cosmic variance on the trained f . We train the NN five times
and calculate the average f , each time with a different sub-sampling of the particles and
initialization of the NN weights. During a training process, we do not change the sub-sampled
particles. To examine the halo power spectrum, we apply the trained f function onto all
particles and create the halo field on a 2563 grid with Cloud-In-Cell interpolation. We choose
to use this finer grid when computing the halo power spectrum to avoid aliasing effects [43].
We will assess the range of scatter in power owing to the changes of f in different times
of training.

3 Exploring different combinations of smoothing scales

3.1 Comparison to least squares
As a first crosscheck, we begin by comparing the NN results to those of the least-squares
formalism we developed in Paper I. In Paper I, we only include the δ and ∇2δ values of one
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Figure 2. Comparison between the least-squares solution obtained from our formalism in Paper I
and our NN results on one training simulation. We use one smoothing scale Rf = 2.83 h−1 Mpc
and its associated δ,∇2δ, and trained on one training simulation. Left panel: f as a function of δ
in different ∇2δ bins, represented by different colors. Solid and dashed lines show the least-squares
and the NN results, respectively. Right: the ratio of the model power spectrum to the halo power
spectrum, evaluated on one validation simulation. Blue solid and red dashed lines illustrate results
from least-squares and NN, respectively. Shades represent the minimum and maximum ranges obtained
from 5 times of training and particle sub-sampling (of the same box), and lines show the results
obtained from the average f . The NN recovers the least-squares results well and produces a much
smoother f .

smoothing scale for the particles, and divided the δ-∇2δ plane into bins according to the
percentiles of ∇2δ at each δ value. We then obtained the least-squares solution to f in each
bin by minimizing the mean squared error of the halo field, with the constraints that f is
non-negative and should integrate to 1.

Using the mass-weighted halo field with M > 3× 1011 M� of one training simulation, we
calculate the least-squares solution of f with Rf = 2.83 h−1 Mpc. To make fair comparison,
we train a NN with the δ and ∇2δ of this Rf . Our Rf choice is based on the mass-weighted
mean mass of M > 3× 1011 h−1 M� being 2.4× 1013 h−1 M�, corresponding to a Gaussian
filter with Rf = 2.6 h−1 Mpc. Since we train the NN five different times each with a different
sub-sampling of particles, we also sub-sample 10% of the particles five times to obtain the
least-squares solution. We then compute the average f solution and apply it on one validation
simulation to calculate the halo power spectrum.

The left panel of figure 2 compares the f function obtained from least-squares (solid
lines) and from the NN (dashed lines), with the colors indicating five ∇2δ bins. The NN
solution traces the least-squares solution, but is remarkably smoother. The least-squares
solution, on the other hand, shows large noise at high δ values. The right panel illustrates
the ratio of the model power spectrum to the halo power spectrum Pmodel/Ph calculated
using one validation simulation. The solid and dashed lines show Pmodel obtained from the
average f function from least-squares and NN, respectively. Shades represent the minimum
and maximum ranges obtained from 5 times of training and random sampling of particles.
Again, the average f of the NNs reproduces the least-squares power spectrum well.
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Name Rf (h−1 Mpc)
1 Rf 2.83
3 Rf 1.41, 2.83, 5.66

3 Rf + 11.3 1.41, 2.83, 5.66, 11.3
3 Rf coarse 1, 2.83, 8
3 Rf fine 2, 2.83, 4
5 Rf fine 1.41, 2, 2.83, 4, 5.66

Table 1. The sequences of smoothing scales used for training and their short names.

The NN-predicted f yields noticeably larger scatter (∼ 1%) in the halo power spectrum
at k < 0.1 h Mpc−1 when trained five different times, compared to the � 1% scatter produced
by the least-squares f . Since the least-squares solution is deterministic and noisy but the NN
solution is smooth, the NN tries to match the least-squares solution but can never reach the
low loss created by least-squares. A small change in f , especially at the high-δ end, may not
affect the real-space loss noticeably but will leave a larger imprint on the predicted bias of
the halos. As we will show below, we find that such 1–2% fluctuations in power are persistent
in all NN results, regardless of the smoothing scales used. We will examine these scatter in
more detail below.

We also note that both the least-squares and the NN solutions underpredict the halo
power by ∼ 5% at k . 0.1 h Mpc−1. We showed in Paper I that this deficit can be alleviated
by including a high-k cut-off to our loss function at k = 1/Rf . We do not perform this cut-off
in this work, but rather try to improve the match to the halo field (and indirectly to the
power spectrum) by including different smoothing scales.

3.2 Results with different smoothing scales

We now compare the NN results with different combinations of smoothing scales, since density
fluctuations at different Rf ’s can contribute to halo collapse with different weights. The
least-square method becomes computationally unfeasible for more than 2 input features since
the number of bins grows exponentially with the dimension of the feature spaces, but the
NN is able to incorporate a much higher dimensional input space. For each Rf , we include
its associated δ,∇2δ,G2 into the input features. As mentioned in section 2, we orthogonalize
the features and reduce the 3nRf

-dimensional feature space to a (2nRf
+ 1)-dimensional one

based on the eigenvalues, where nRf
is the number of smoothing scales. For each sequence of

Rf ’s, we make it a geometric series with a common ratio equal to some power of
√

2. Table 1
summarizes the Rf ’s that we use and the names referring to them later in the plots. We use
the ratio of the model power spectrum to the halo power spectrum Pmodel/Ph as a metric,
though we note that it is not included in our loss.

We first examine the effects of using multiple Rf ’s instead of one. Figure 3 contrasts
the training results using Rf = 1.41, 2.83, 5.66 h−1 Mpc (dashed lines) with those of Rf =
2.83 h−1 Mpc (solid lines). Left column shows the result of applying f from the training
simulation to the training simulation. Top left and bottom left panels present Pmodel/Ph, and
the ratio of the power spectra of the uncorrelated residual Puncorr to the halo power spectrum

– 7 –



J
C
A
P
0
5
(
2
0
2
3
)
0
4
0

10 2 10 1 100

k [h Mpc 1]

0.90

0.95

1.00

1.05

1.10
P m

od
el

/P
h

f from train sim  train sim

1 Rf

3 Rf

10 2 10 1 100

k [h Mpc 1]

0.90

0.95

1.00

1.05

1.10

P m
od

el
/P

h

f from 1 train sim  4 val sims

10 2 10 1 100

k [h Mpc 1]

0.000

0.005

0.010

P u
nc

or
r/P

h

10 2 10 1 100

k [h Mpc 1]

0.98

1.00

1.02

1.04

1.06

P m
od

el
/P

h

f from 4 train sims  1 val sims

3 Rf

Figure 3. Comparison between the training results obtained using one smoothing scale (dashed
lines) to using 3 smoothing scales (solid lines), and impact of cosmic variance on the model power
spectrum. Shades represent the minimum and maximum ranges of the power spectra obtained from 5
times of training, and lines show the results obtained from the average f . Left column: results are
obtained by applying f from the training simulation to the training simulation. Top left and bottom
left panels show the ratio of the model power spectra to the halo power spectrum, and the ratio of
the power spectra of the uncorrelated residual to the halo power spectrum respectively. Top right
panel: Pmodel/Ph, calculated by applying f from the training simulation to 4 validation simulations
(different colors). Bottom right panel: Pmodel/Ph, calculated by applying f from 4 training simulations
(different colors) to 1 validation simulation. Adding the two additional smoothing scales significantly
improves the match of the halo power spectrum, although cosmic variance leads to 1–2% scatter in
the resulting halo power spectrum.

respectively. Here

Puncorr = Pmodel −
P 2

h,model
Ph

, (3.1)

where Ph,model is the cross spectrum between the halo field measured and modeled. This
uncorrelated residual characterizes the part in the model halo field that is uncorrelated with
the true halo field [20, 25].

Using 3 smoothing scales dramatically improves the match of Pmodel to Ph, bringing
the ratio to 1 within ∼ 2% at k < 0.1 h Mpc−1. With only 1 smoothing scale, we find
Pmodel/Ph . 0.95 at k < 0.1 h Mpc−1. We emphasize that we fit the real-space halo field
without filtering the residuals at k > 1/Rf in Fourier space as we did in Paper I. Top right
panel shows Pmodel/Ph, calculated by applying f from the training simulation to 4 validation
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simulations (different colors). Results on the validation simulations also trace those of the
training simulations, although cosmic variance can lead to up to 5% scatter in the low-k
power of these small boxes.

There are about 1.5% variations in the model power spectrum of individual simulations
when using 3 Rf , while the one smoothing scale case yields 0.5% scatter in power. Since
Puncorr/Ph < 0.002 at k < 0.1 h Mpc−1, all of the variations in Pmodel come from the residuals
in the model halo field that is correlated with the true halo field. We find that whether the
model underpredicts or overpredicts the power is uncorrelated with the value of the real-space
squared loss (see appendix A for a more detailed discussion). As mentioned earlier, a small
change in f , especially at high δ values, may not affect the real-space loss much since the
number of high δtrue

h cells are small. However, changes in f can leave a more evident imprint
on the power spectrum indicating overestimating or underestimating the halo bias. This issue
seems more prominent when the dimension of the input feature space is higher. This could
be alleviated by using a k-space loss with some emphasis on the low-k end or by explicitly
including in the power spectrum in our fitting.

The fact that our small 500 h−1 Mpc box size contains very few low-k modes can also
contribute to large low-k scatter. The bottom right panel shows Pmodel/Ph calculated by
applying f from 4 training simulations (different colors) to 1 validation simulation. In addition
to the 1–2% scatter around each power spectrum using the average f from a single training
simulation, there is also 1–2% scatter in the power spectra from the 4 average f ’s from 4
different training simulations. This indicates that the fluctuations in the halo power spectrum
may be sourced by changes in f owing to cosmic/sample variance. We thus expect a better
match to the power spectrum by training with multiple small boxes at the same time or with
a larger box size. Given the exploratory nature of this first paper, we leave it for future work
to make these improvements.

We now test the impact of using other combinations of smoothing scales, by either
adding Rf ’s or using another splitting of the Rf ’s. Here we only evaluate Pmodel/Ph by
applying f from one training simulation to one validation simulation, since the training
and validation power spectra show similar trends. The left and right panels of figure 4
show Pmodel/Ph in the case of using coarser (common ratio of 2 or 23/2 in Rf ) and finer
(common ratio of 21/2) Rf ’s respectively. Shades represent the minimum and maximum
ranges obtained from 5 times of training, and lines show the results obtained from the average
f . The black line in the left panel illustrates the Rf = 1.41, 2.83, 5.66 h−1 Mpc case, and
the red line shows the result of adding Rf = 11.3 h−1 Mpc to it. The blue line represents
the case of Rf = 1, 2.83, 8 h−1 Mpc. The magenta and green lines in the right panel show
Rf = 2, 2.83, 4 h−1 Mpc and Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc, respectively.

As mentioned above, all of these cases of training in a very high dimensional feature
space lead to about 1–2% scatter in the model power spectrum. Using 3 smoothing scales with
coarse spacing results in the best match of the power spectrum, and Pmodel agrees with Ph to
1% level. Adding a large Rf = 11.3 h−1 Mpc drastically lowers the low-k power by up to 5%,
which is not reflected in any changes of the loss (see appendix A). In Paper I, we found that
using large smoothing scales with small halo grid cells can lead to a ∼ 10% underestimation
of the power spectrum, if we do not filter out the high-k residuals. It is thus likely that the
NN outweigh the contribution of the Rf = 11.3 h−1 Mpc features which then lowers the low-k
power. Since it is non-trivial to perform the training in Fourier space and determine a proper
high-k cut-off in the case of multiple smoothing scales, we will defer for a future work to
implement these improvements and just warn the reader about fitting with too high Rf ’s.
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Figure 4. Comparison of training results using different combinations of smoothing scales, measured
using the ratio of the model power spectra to the halo power spectra, evaluated for one validation
simulation. The smoothing scales are separated by factors of 2, 23/2 (coarse) in the left panels, and

√
2

(fine) in the right, respectively. Shades represent the minimum and maximum ranges obtained from 5
times of training, and lines show the results obtained from the average f . The black line in the left
panel illustrates the Rf = 1.41, 2.83, 5.66 h−1 Mpc case, and the red line shows the result of adding
Rf = 11.3 h−1 Mpc. The blue line represents the case of Rf = 1, 2.83, 8 h−1 Mpc. The magenta and
green lines in the right panel show Rf = 2, 2.83, 4 h−1 Mpc and Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc,
respectively. Coarse-spaced smoothing scales in general result in much better fit to the halo power
spectrum, while fine-spaced ones lead to 2–3% underprediction of the low-k power owing to the highly
correlated features making the NN overfits. Adding in 11.3 h−1 Mpc without filtering the residuals in
k-space gives significantly underestimated low-k power.

Another possible improvement to make the model less sensitive to the input features
is to implement other machine learning methods, such as random forest. This is, however,
non-trivial to work out because we predict f based on a loss function that depends on the sum
of f values in each grid cell. We do not know the true f ’s a priori. Regression with gradient
boosted trees or random forest instead requires inputting true f values. We leave it for future
work to examine the possibility of implementing these other machine learning methods.

Compared to the coarse-spaced Rf ’s, which match well the power spectrum, using
fine-spaced Rf ’s yields 2% underestimation of the power at k < 0.1 h Mpc−1. We find that
the real-space squared loss is indistinguishable between the two. Since the features are more
correlated when the Rf ’s are closer, the orthogonalization and normalization of the original
feature space greatly stretches the directions in the feature space that have tiny eigenvalues.
This likely leads to the NN overfitting, in the presence of redundant features. We note that we
are using the power spectrum as an indicator of overfitting instead of the real-space loss because
of the uncorrelatedness of the loss and the low-k power (appendix A). We will show below,
however, that re-training with the first 2 principal components of ∇f can effectively reduce this
redundancy and provide a better match of Pmodel to Ph, as long as the required Rf ’s are present.

In summary, we find that the NN-predicted f is much smoother than the least-squares
(binned) f , and that using features associated with coarse-spaced Rf ’s leads to the best
recovery of the halo power spectrum. Below we will examine the structure of f in the input
feature space in more detail.
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4 Reducing the dimensions of the input feature space

Our results above showed that expanding the number of coarse-spaced smoothing scales
gives a better fit to the halo field. However, the NN likely overfits in the presence of highly
correlated features owing to fine-spaced Rf ’s. We now examine whether f can be expressed
in terms of a smaller number of input features that constitute a subset of the original input
feature space. In other words, we would like to find if a lower-dimensional subspace of the
initial features, beyond the projection already employed, might be used.

As an example, if f depended only upon a linear combination of the input features, we
would expect ∇f to show a unique preferred direction in the feature space, even if f itself was
a very nonlinear function. We therefore explore the structure of f by computing the principal
components (PCs) of ∇f . The PCs are given by the eigenvectors of the covariance matrix of
∇f . To calculate the covariance matrix, we randomly sample Nsample = 106 particles, perturb
around their orthogonalized and normalized features θinput, and calculate their ∇f . The
resulting gradient of f forms a matrix of size (2nRf

+ 1)×Nsample, where nRf
is the number

of smoothing scales. We multiply this ∇f matrix by its transpose and obtain the eigenvector
matrix U of the resulting covariance matrix, where the columns of U are the eigenvectors.
The transformation from the original δ,∇2δ,G2 features to the PCs of ∇f is thus

θPC = UT θinput = UTPΛ−1/2V T︸ ︷︷ ︸
M

θorig, (4.1)

where the second equality follows from equation (2.4). Given a set of Rf ’s, we compute the
average f from the five trained NNs and the corresponding PCs of ∇f . We then examine the
structure of f as a function of θPC.

We use the 3 Rf case as an example, since we find that the behavior of f in the PC
space is very similar between the sets of Rf ’s that we have tested (see table. 1). Figure 5
shows the visualization of the f function in the PC space. The top panels illustrate f in
the 2D planes of the zeroth, first, second, and third PCs, which have the largest eigenvalues.
Bottom panels presents f as a function of the zeroth PC, with the color-bars showing values
of the first, second, and third PCs.

We find that most of the variation in f is carried in the zeroth PC, with the largest
eigenvalue. Very approximately f is 0 at PC0 . −1, and increases monotonically with PC0
at larger values. This behavior of f is very similar to the dependence of f on δ seen in Paper
I, thus making PC0 analogous to the overdensity. Intuitively, halos form in regions with high
initial overdensity. The higher the halo mass, the larger the required δ. Since we fit the
mass-weighted halo field with a mass threshold, this leads to a monotonically increasing f
with δ, or PC0.

Beyond PC0, additional trend of variation in f can be well explained by PC1, and
the dependence of f on the rest of the PCs is much weaker. We find that regardless of the
smoothing scales used for training, the eigenvalue of the zeroth PC is a factor of 3 and 4
larger than those of the first and the second PCs respectively, but the variation of f with
PC2 at a fixed PC0 is much weaker than that with PC1. The rest of the PCs have rather flat
amplitudes of the eigenvalues. We thus examine whether f can be recovered by only two PCs
by re-training the NN with the first two rows of θPC that correspond to PC0 and PC1 of ∇f .

Figure 6 show Pmodel/Ph after the re-training with PC0 and PC1. Black and red colors
represent the original training results and the re-trained results, respectively. Shades represent
the minimum and maximum ranges obtained from 5 times of training, and lines show the results
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Figure 5. Visualization of the f function, obtained by training with Rf = 1.41, 2.83, 5.66 h−1 Mpc
in the basis expanded by the principal components (PC) of ∇f . Top panels: f in the 2D planes of
the zeroth, first, second, and third PCs, which have the largest eigenvalues. Bottom panels: f as
a function of the zeroth PC, with the color-bars showing values of the first, second, and third PCs.
Most of the structure of f is contained in the zeroth PC which has the largest eigenvalue, and the
dependence of f beyond the first PC becomes rather weak.
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Figure 6. Results of re-training the NN after projecting the orthogonalized features onto the directions
of the first two PCs of ∇f . Black and red represent the ratio of the model power spectra to the
halo power spectra from the original training results and the re-trained results, respectively. Shades
represent the minimum and maximum ranges obtained from 5 times of training, and lines show the
results obtained from the average f . From left to right we show cases of different combinations of Rf ’s.
Re-training with only 2 PCs either recovers the original training result or outperform it owing to the
reduction of the redundancy in the input feature space.
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Figure 7. Coefficients of the zeroth principal component of ∇f at corresponding values of Rf .
From left to right, the NN is trained with Rf = 2.83 h−1 Mpc, Rf = 1.41, 2.83, 5.66 h−1 Mpc,
Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc, respectively. Blue dots, orange triangles, and green crosses
represent δ,∇2δ,G2 respectively. There is hardly any specific structure in the coefficients, so it is not
desirable to interpret the numbers with any physical meanings.

obtained from the average f . From left to right we show cases of different combinations of Rf ’s:
Rf = 1.41, 2.83, 5.66 h−1 Mpc, Rf = 2, 2.83, 4 h−1 Mpc, Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc.
Although not shown, we find that re-training with the first two PCs also recovers the original
training and validation losses.

For Rf = 1.41, 2.83, 5.66 h−1 Mpc and Rf = 2, 2.83, 4 h−1 Mpc, the re-training produces
Pmodel/Ph ≈ 1 and 0.98 at k < 0.1 h Mpc−1 respectively, the same as the original training
results. This demonstrates that the first two PCs are adequate to characterize f . For
Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc, the re-trained results bring Pmodel/Ph close to 1, while this
ratio is 0.98 in the original training. This indicates that by reducing the size of the input feature
space with only the first two PCs of ∇f , the NN no longer overfits owing to the redundancy
in the highly correlated features. For the case of Rf = 1.41, 2.83, 5.66, 11.3 h−1 Mpc, although
not shown here, we find that the re-training raises the low-k power by 3% and brings Pmodel/Ph
to 0.98 at low-k. The re-training thus improves the match to the power spectrum, in the
absence of filtering the residuals.

We now examine whether the elements of the transformation matrix M , which we term
the “coefficients of the PCs”, have any physical implications. Intuitively, these numbers
might be interpreted as the bias coefficients. Figure 7 shows coefficients of PC0 of ∇f
at corresponding Rf ’s. From left to right, the NN is trained with Rf = 2.83 h−1 Mpc,
Rf = 1.41, 2.83, 5.66 h−1 Mpc, Rf = 1.41, 2, 2.83, 4, 5.66 h−1 Mpc, respectively. Blue dots,
orange triangles, and green crosses represent the coefficients of δ,∇2δ,G2 respectively.

The one smoothing scale case produces a close-to-zero coefficient for G2. This confirms
our previous findings in Paper I that G2 is not as important as ∇2δ in recovering the halo
field with a cut at M > 3× 1011 M�. Previous works also find that either the tidal bias is
only important for halos with M & 1013 h−1 M� [8], or there is a small negative shear bias
regardless of halo mass [22, 44]. When including more smoothing scales, the coefficients of
G2 jump up and down around zero and can have larger amplitudes than the coefficients of δ
and ∇2δ. This is partially caused by the orthogonalization and normalization of the original
features introducing small values in Λ, which when inverted and multiplied with U enlarges
the corresponding U elements (equation (4.1)). In fact, the elements in U that are associated
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with the orthogonalized G2’s have a factor of 2–3 lower amplitude than those associated with
the orthogonalized δ and ∇2δ. Moreover, since the G2’s are correlated, the jumping above
and below zero of the G2 coefficients reflects the cancellation of the effects of the G2 terms.
Our results with multiple smoothing scales thus are still consistent with G2 playing a minor
role in determining the halo field with M > 3× 1011 h−1 M�.

Comparing the 3Rf case and 5Rf one, the coefficients of δ and ∇2δ are similar at
the Rf values of common. The addition of two intermediate smoothing scales brings in
values that continues the spectrum of the coefficients of δ, but the spectrum of the co-
efficients of ∇2δ seems less regular. We find similar trends when examining the case of
Rf = 1.41, 2.83, 5.66, 11.3 h−1 Mpc and Rf = 1, 2.83, 8 h−1 Mpc. It is thus unclear whether
these coefficients can be interpreted with any physical meaning. It might be possible to derive
the spectrum of coefficients using the peak-patch formalism or the extended Press-Schechter
theory, but such an exploration is beyond the scope of our paper. We leave it for a future
work to examine this in detail.

In summary, we find that f can be well described by two directions in the original
features space, and that training with these two principal components prevents the NN from
overfitting. While previous works using the bias expansion approach to model the halo field
only use one smoothing scale [e.g. 8, 20–23, 45], our results indicate that a linear combination
of the features of multiple smoothing scales may lead to a better fit of the halo field.

5 Modeling a thin mass range

Having set up all the necessary tools for fitting f and examining its structure, we now briefly
explore fitting the mass-weighted halo field with a thin mass range instead of a mass threshold.
Intuitively, the larger the halo mass, the more it requires the involvement of higher δ regions.
To obtain halos within a thin mass range, regions with too high δ thus cannot participate.
As a consequence, instead of monotonically increasing with δ, as in the case of using mass
thresholds, f will rise with δ but eventually drop to zero [3]. We also expect the peak of f to
shift towards higher δ for higher-mass bins.

To test these intuitions, we train NNs on the mass-weighted halo fields with 3×1011 M� <
M < 1012 M� and 2 × 1012 M� < M < 1013 M�. The mass-weighted halo masses are
5.2× 1011 M� and 6.2× 1012 M�, corresponding to Gaussian filters with Rf = 0.8 h−1 Mpc
and 1.9 h−1 Mpc, respectively. Since our initial density field is created on a grid with cell size
of 0.87 h−1 Mpc, we only produce smoothed density fields with Rf ≥ 1 h−1 Mpc. However, we
expect the case of fitting a thin mass bin to require more strongly the involvement of multiple
smoothing scales. Intuitively, the overdensity smoothed at the halo scale Rh should be large in
order to form halos within a thin mass range, but the overdensity smoothed at Rf � Rh needs
to be small enough to not collapse to bigger objects. The NN therefore needs intake of features
at a wide range of Rf ’s. We thus train the NN with the δ,∇2δ,G2’s at Rf = 1, 2, 4 h−1 Mpc,
which correspond to typical masses Mh = 1.4× 1012, 1.1× 1013, 8.7× 1013 M�. As above, we
perform five times of training on one training simulation with different initializations and
obtain the average f .

We calculate the PCs of ∇f and examine f as a function of the PCs. Figure 8 shows f
of the lower (left) and higher (right) mass range halos. The top panels illustrate f in the 2D
planes of the zeroth and first PCs. The bottom panels present f as a function of the zeroth
PC, with the color-bars showing values of the first PC.
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Figure 8. Visualization of the f function on two thin mass ranges, defined by 3× 1011 M� < M <
1012 M� (left) and 2×1012 M� < M < 1013 M� (right), obtained by training with Rf = 1, 2, 4 h−1 Mpc.
Top panels: f in the 2D planes of the zeroth and first PCs. Bottom panels: f as a function of the
zeroth PC, with the color-bars showing values of the first PC. The structure of f in the case of a thin
mass range is substantially different from training with a mass threshold. The peak of f shifts to
higher values of PC0 as the halos become more massive, as PC0 is analogous to the overdensity.

As expected, f in the case of a thin mass range rises and drops with increasing values of
PC0, substantially different from the case of a mass threshold where f increases monotonically
with PC0. The peak of f occurs at PC0 ∼ 0.5 for the lower-mass halos, but at PC0 ∼ 1.5
for the higher-mass ones. As PC0 is analogous to the overdensity, this matches our intuition
that higher overdensities contribute more to the formation of more massive halos. f also
exhibits a tilt in the PC0-PC1 plane, compared to its more regular structure in the case of
mass threshold (figure 5). These complex structures of f demonstrate the necessity of using
NNs to explore halo formation in a large parameter space. We will examine the training
on thin-mass-range halos in detail in a future work, including the performance of NNs on
matching the halo power spectrum.
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6 Conclusions

In this work we train neural nets to obtain a non-parametric Lagrangian model of galaxy
clustering bias, expanding our previous formalism that uses least-square fitting on a binned
input feature space. We measure the halo-to-mass ratios f for mass-weighted halos in N-body
simulations, assuming f depends on the linear overdensity δ, the tidal operator G2, and
a non-local term ∇2δ, all of which are smoothed over multiple smoothing scales. We find
that for mass-weighted halos above a mass threshold, using 3 coarsely separated smoothing
scales gives a much better recovery of the halo power spectrum than 1 smoothing scale
that corresponds to the halo mass. Adding more smoothing scales or using fine-spaced ones
leads to overfitting and thus a 2–5% underestimation of the low-k power. By calculating the
principal components (PC) of ∇f , we find that f can be well described by the first two PCs
of ∇f and that f is a monotonically increasing function of the PC with the largest eigenvalue
(PC0). Re-training the NN with these two PCs either recovers the original training results or
outperforms it by better matching the halo power spectrum, indicating that they prevent the
NN from overfitting. The coefficients of these linear combinations may be interpreted as the
bias in the case of multiple smoothing scales, but a detailed examination is beyond the scope
of our paper.

We briefly explored fitting the mass-weighted halo field over a thin mass range instead
of a mass threshold, and find that f rises and drops with PC0 instead of being monotonically
increasing. This matches our physical intuition that f should only be non-zero at a certain
range of overdensities in the case of a thin mass range. The complex structure of f in the PC
space demonstrates the usefulness of using a NN to examine structure formation.

As we find that the real-space squared loss is not correlated with the recovery of the
power spectrum, one way to improve our formalism is to express the loss function in Fourier
space and filtering out high-k residuals. Producing and fitting the halo fields using Cloud-
in-Cell interpolation with varying kernel size instead of nearest neighbor interpolation may
have a similar effect as filtering the high-k residuals and thus can also help alleviate the
difficulty of matching the low-k power. We will also extend our code to perform the fitting in
2h−1 Gpc large box simulations, which may largely reduce the 1–2% scatter in the model
power spectrum.

Despite all these future improvements, we have demonstrated the ability of using a NN
to predict complex-structured f in a high-dimensional input feature space, and that multiple
smoothing scales are needed to fully capture the halo field. This is especially true in the thin
mass range case. We will explore in a future work the use of number-weighted halos or a halo
occupation distribution model [46–48], which should also require complicated structures of f .
Another interesting direction of future work is to examine f of halos at higher redshifts, as
these are more biased than the z = 0.5 halos we study here. These insights might transform
the way we analyze observational data from galaxy surveys, especially those targeting higher
redshifts and larger halo masses.
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Figure 9. Average loss per cell as a function of epoch (left panel) and the ratio of the model to true
halo power spectrum (right panel), evaluated for one validation simulation using different smoothing
scales. Line colors are the same as in figure 4.

Figure 10. The true halo field (leftmost panel) and the differences in the predicted halo fields using
different Rf ’s. The slices are 10 h−1 Mpc thick. The second column shows the model halo field in the
3Rf case minus the true halo field. The third and fourth columns illustrate the model halo field with
3Rf coarse and 3Rf + 11.3 subtracted by the 3Rf case, respectively.

A Loss as a function of epoch

Here we show that the match between the predicted and true halo power spectrum is not
strongly correlated with the real-space loss of our NN.

The left panel of figure 9 shows the average loss per cell as a function of epoch, for the
same validation simulation as in figure 4. Line colors represent the same combinations of Rf ’s
as figure 4. The losses differ at sub-percent level at the 50th epoch which we use to calculate
the halo power spectrum. The “3Rf + 11.3” case even has a slightly lower average loss than
“3Rf coarse”. However, “3Rf + 11.3” produces a halo power spectrum that undershoot the
true power spectrum by ∼ 5% at the lowest k, while “3Rf coarse” provides a fair match of
Pmodel to Ph (right panel). The value of the real-space loss is thus not a good indicator of the
behavior of the halo power spectrum in the case of multiple smoothing scales. This may be
due to our implementation of the loss in this first work.

Figure 10 illustrates the true halo field and the differences in the predicted halo fields,
for 3Rf , 3Rf coarse, and 3Rf + 11.3. The slices are 10 h−1 Mpc thick. The second column,
showing the 3Rf halo field minus the true halo field, indicates that scatter around the input
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Figure 11. Average loss per cell as a function of epoch (left panel) and the ratio of the model to true
halo power spectrum (right panel), evaluated for one validation simulation in the case of “5Rf fine”
and retraining with 2 PCs. Line colors are the same as in figure 6.

halo field is roughly uniform at each local overdensity. The 3Rf coarse halo field also appears
to scatter rather randomly around the 3Rf halo field at a given local overdensity, as illustrated
by the third column. These seem consistent with the 3Rf and 3Rf coarse halo power spectra
matching the true power spectrum well at low-k. Since the 3Rf + 11.3 power spectrum
underpredicts the low-k power, one might expect its real-space halo field to undershoot
the local overdensities. However, the scatter around the 3Rf halo field does not show any
particular pattern. This again demonstrates an uncorrelatedness between the real-space loss
and the power spectrum.

This uncorrelatedness between the real-space loss and the low-k power is also reflected
when retraining with the PCs. Figure 11 illustrates the loss and the halo power spectra in
the case of “5Rf fine” and retraining with 2 PCs. Line colors are the same as in figure 6.
While the original and the retraining losses are nearly indistinguishable at the 50th epoch,
the model power spectra differ by 2% at k < 0.1 h Mpc−1. We will revisit the issue of linking
the loss to the relevant observables (e.g., power spectrum) in future work.
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