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Nanoscale addressing and manipulation of neutral atoms using
electromagnetically induced transparency
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We propose to integrate dark-state based localization techniques into a neutral atom quantum computing
architecture and numerically investigate two specific schemes. The first scheme implements state-selective
projective measurement by scattering photons from a specific qubit with very little cross talk on the other atoms
in the ensemble. The second scheme performs a single-qubit phase gate on the target atom with an incoherent
spontaneous emission probability as low as 0.01. Our numerical simulations in rubidium (Rb) atoms show that
for both of these schemes a spatial resolution at the level of tens of nanometers using near-infrared light can be
achieved with experimentally realistic parameters.
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I. INTRODUCTION

Over the last two decades, the interest in quantum com-
puting has been continually growing due to the possibility
of solving difficult computational problems efficiently [1].
The principles of quantum computing have now been demon-
strated using different physical qubits, each with various
advantages and drawbacks, such as trapped ions [2], super-
conducting qubits [3,4], quantum dots [5,6], nitrogen-vacancy
centers [7], and single photons [8]. In this paper, we will focus
on addressing several challenges in neutral atom quantum
computing. Neutral atoms have made great strides over the
last decade towards a scalable quantum computing architec-
ture [1,9–16]. Single atoms can be trapped using microscopic
dipole traps, and can be individually measured and addressed.
Quantum information can be stored in the stable hyperfine
states of the ground electronic level. Single qubit gates can
be applied using microwave pulses [17–19] or focused two-
frequency Raman light [20,21]. Finally, two-qubit gates are
achieved by exciting the atoms to Rydberg states with a large
principle quantum number (typically n > 60), and utilizing
the dipole-dipole interaction [22].

Scalability requires that gate errors are sufficiently low to
be compatible with error correcting codes. Recent progress
on both theory and experiment suggests that neutral atoms
will be able to reach fidelity sufficient for error correction.
For single qubit gates, experiments have already shown gate
fidelities >0.9999 [19]. For two-qubit Rydberg gates detailed
theory has shown that fidelity >0.999 is possible, accounting
for r atomic structure details and atomic recoil effects [23–26].
Although experiments are still far from the theoretical pre-
diction, several groups have now demonstrated Rydberg state
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mediated entanglement with fidelity well above 90% in long
lived hyperfine ground states [27–30]. In particular, two-qubit
gate fidelities exceeding 98% [30] and a three-qubit Toffoli
gate [27] have been demonstrated, as well as multiqubit entan-
glement and implementation of several quantum algorithms
using neutral atom arrays [28,29]. Near term technical im-
provements in lasers, optical control, and cooling to reduce
imperfections in Rydberg excitation, will likely lead to two-
qubit gates and entanglement in the hyperfine basis, with a
fidelity that is sufficient for error correction.

Despite this great progress, there are still outstanding chal-
lenges that need to be overcome in neutral atom quantum
computing [10,31,32]. Even with high fidelity gates, imple-
mentation of cross talk free qubit measurements (or qubit
resetting [33]) which are required for error correction, is an
outstanding challenge for neutral atom qubits. Hyperfine state
selective projective measurements are typically performed
by collecting fluorescent photons using a cycling transition.
However, the photons scattered from a specific atom can be
reabsorbed by neighboring atomic qubits causing errors as
high as 4% for realistic experimental conditions. This chal-
lenge can, in principle, be overcome by globally shelving all
the other atoms in the array to a state not interacting with
the fluorescent light [34,35]. However, this requires global
operations on every qubit in the neighborhood of the measured
atom, which is slow and adds to the error rate.

Another challenge in neutral atom arrays is the required
high optical power of the trapping light. Due to the large over-
head of quantum error correction, it is anticipated that from
100–1000 physical qubits may be needed for each protected
logical qubit in a future universal computer. This implies that
machines capable of beyond classical calculations based on
several hundred logical qubits, may require 104 to 105 or more
physical qubits. Present approaches based on two-dimensional
(2D) arrays of optical traps with interatomic spacing of d ∼
5 µm require > 100 Watts of optical trapping power to reach
such large numbers. The approach described in the following
allows for spacing of d ∼ 0.5 µm, thereby reducing power
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requirements by a factor of 100, which will enable arrays with
>105 qubits using only a few Watts of trapping light.

To address these challenges, we propose to integrate
dark-state based localization techniques into a neutral atom
quantum computing architecture. It is now well-understood
that the dark state of electromagnetically induced trans-
parency (EIT) can be used to achieve a spatial resolution that
can be much smaller than the wavelength of light. As we
discuss below, the key idea is to use the spatial sensitivity
of the dark state to the intensity of the coupling laser and
tightly localize the coherent population transfer between the
Raman levels. This approach was first theoretically proposed
in Refs. [36–38] and was experimentally demonstrated in
[39–43]. A related 2D scheme was proposed in Ref. [44].
Very recently, EIT-based measurement in an ensemble with-
out disturbing the quantum information has been considered
as a promising method for error correction [45]. In this pa-
per, we will focus on an array of qubits that are trapped in
a standing-wave lattice, with a distance of d ∼ λlattice/2 =
0.5 µm between adjacent qubits. Due to their small spacing,
it is difficult to address individual qubits using traditional
optical means [46]. We will then discuss how variations of
the dark-state-localization approach can be used to (i) perform
state-selective projective measurement by scattering photons
from a specific qubit with very little cross talk on the other
atoms in the ensemble, (ii) implement a single-qubit phase
gate with low spontaneous emission rate and with nanoscale
position resolution.

The paper is organized as follows. In the model section, we
discuss the dark state and EIT-based localization. In the results
section, we will give details of the two schemes and show the
results of the numerical simulations. In our simulations, we
numerically solve the density matrix equations using realistic
experimental parameters. As we mentioned above, the main
ideas of dark-state based localization has been discussed in
detail before. The main result of the current work is the
specific state-selective readout scheme (including the timing
of the EIT pulses), and the implementation of the density
matrix numerical simulations for both the localized readout
and phase gate.

II. MODEL

A. EIT and the Dark State

EIT is a technique where the destructive quantum inter-
ference between different coupled energy levels of atoms
are used to make a laser-dressed medium transparent to the
probe light [47,48]. The absorption cancellation is because the
atomic system is driven to the dark state which is a coherent
superposition of the two lower Raman levels with no com-
ponent in the excited radiating level. In addition to EIT, the
dark state is also central to coherent population trapping and
stimulated-Raman adiabatic passage [49,50]. The preparation
of the dark state typically involves a pair of near-resonant
fields both of which are coupled to an atomic lambda sys-
tem. The Hamiltonian for the system can be written as H =
H0 + Hint, where H0 is the Hamiltonian of the bare state atom
and Hint describes the interaction between the atoms and the
applied lasers. The interaction Hamiltonian under the rotating

FIG. 1. (a) The three level � configuration for EIT. Probe laser
�P couples level |a〉 with |e〉 and the coupling laser couples the
level |b〉 to the level |e〉. (b) Qualitative description of dark-state
based localization of population transfer. With atomic system driven
to the dark state, population transfer from the ground level |a〉 to
|b〉 (black curve) can be localized to very small spatial scales. For
comparison, the spatially varying coupling laser intensity (red curve)
is also plotted.

wave approximation is

Hint =
⎡
⎣ 0 0 �P

0 −2(�1 − �2) �C

�P �C −2�1

⎤
⎦. (1)

Noting Fig. 1(a), the quantities �P and �C are the Rabi
frequencies for the probe and the coupling lasers. The fre-
quency detunings are defined as �1 = ωe − ωa − ωP and
�2 = ωe − ωb − ωC . The eigenvectors of the Hamiltonian of
Eq. (1), are

|a+〉 = sin θ sin φ |a〉 + cos φ |e〉 + cos θ sin φ |b〉 , (2)

|a0〉 = cos θ |a〉 − sin θ |b〉 , (3)

|a−〉 = sin θ cos φ |a〉 − sin φ |e〉 + cos θ cos φ |b〉 , (4)

where the quantities θ and φ are defined as

tan θ = �P

�C
, (5)

tan 2φ =
√

�2
P + �2

C

�1
. (6)

The state |a0〉 does not have any component in |e〉, and is
the dark state. This state is smoothly connected to the ground
state and can be prepared adiabatically using the counterintu-
itive pulse sequence, i.e., the coupling laser beam turning on
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before the probe laser [47,51]. In the dark state based local-
ization approach, the key idea is to use the spatial sensitivity
of the dark state to the intensity of the coupling laser beam.
From Eq. (3), it can be shown that the population of state
|b〉 is |〈b|a0〉|2 = |�P|2/(|�P|2 + |�C |2). This population has
a highly nonlinear dependence on coupling laser intensity,
and using this nonlinear dependence, it can be localized to
spatial scales that are much smaller than the wavelength of
the light. Specifically, in a region where the coupling laser
goes through an intensity minimum, the population of state
|b〉 can be localized very tightly. As discussed in Refs. [38,43],
an easy approach to implement this scheme would be to use
a coupling laser beam with a standing-wave spatial profile.
This is schematically shown in Fig. 1(b). It can be shown
that, for a spatially uniform probe laser, the full width half
maximum (FWHM) of the transfer will be ≈ λ(�P/�C,max),
where �C,max is the Rabi frequency of the coupling laser at the
peak of the standing wave.

Using the dark state for the localization of population trans-
fer provides key advantages compared to other approaches
[37,52–67]. The atoms are coherently transferred, keeping
their phase relationship with other qubits intact. If the evolu-
tion is sufficiently adiabatic, the dark state can be prepared
with little population in the excited radiative state, which
reduces heating and decoherence from spontaneous emission.
Because the excitation is coherent, dark-state-based localiza-
tion can be achieved using short and intense laser pulses.
Finally, due to the robust nature of adiabatic preparation,
the localization is insensitive to fluctuations in experimental
parameters, such as frequency and intensity jitters of the probe
and coupling lasers. The protocols that we discuss below for
state-selective readout and single-qubit phase gate fully utilize
these advantages

III. RESULTS

Figure 2 shows the specific system that we will be focusing
on throughout the rest of the paper. We consider a neutral
atom based quantum computing architecture using 87Rb atoms
and take clock states as the logical qubit states: |0〉 ≡ |F =
1,mF = 0〉 and |1〉 ≡ |F = 2,mF = 0〉. For simplicity and
clarity, we focus on a one-dimensional geometry, although
the protocols that we discuss extend to two-dimensions in
a straightforward way. The atoms are trapped in a lattice
using a far-off-resonant dipole trap. Nanoscale state-selective
measurement and single-qubit gates are achieved using a
spatially varying coupling laser beam at a wavelength near
the D2 line of λD2 = 780 nm. The coupling laser standing
wave is obtained by using a counterpropagating beam pair.
The intensity minimum of the coupling-laser beam is inter-
ferometrically aligned to the qubit that is to be addressed.
We choose the wavelength of the dipole trap laser such that
the coupling laser is at a maximum at the nearby qubits:
λlattice = 3

2λD2 = 1.17 µm. This results in a qubit spacing of
λlattice/2 = 0.59 µm. To simplify the discussion, we will take
the probe laser beam to be focused sufficiently tightly so that it
overlaps with only the three qubits in the array (i.e., to a spot
size of ∼λlattice = 1.17 µm). In what follows, we will focus
on nanoscale addressing and manipulation of the central qubit
with negligible cross talk to the neighboring two qubits.

F=1

F=2

0

1

lattice

potential

coupling

laser

lattice beam lattice beam

atom array
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FIG. 2. Nanoscale measurement and addressing scheme. The
atoms are trapped in a one-dimensional optical lattice which is ob-
tained using a counterpropagating beam pair (the lattice potential is
shown in the dashed black curve). The intensity minimum of the
coupling laser of EIT (solid red curve) is aligned to the qubit of
interest. The coupling laser standing wave is also obtained using
a counterpropagating beam pair. The probe laser beam is focused
sufficiently tightly so that it overlaps with only the three qubits in the
array (i.e., to a spot size of ∼λlattice = 1.17 µm). In our simulations,
we focus on nanoscale addressing and manipulation of the central
qubit with negligible cross talk to the neighboring two qubits. The
logical qubit states are the clock states of the ground hyperfine
manifold: |0〉 ≡ |F = 1,mF = 0〉 and |1〉 ≡ |F = 2,mF = 0〉.

A. State-selective single-qubit readout

As mentioned above, state selective single-qubit readout
remains one of the outstanding challenges in neutral atom
quantum computing. This is difficult to achieve even in arrays
where the atoms are spaced by ∼10 microns and individual
addressing is achieved by tightly focused laser beams. State-
selective projective measurement is traditionally performed
by collecting fluorescent photons using a cycling transition.
However the photons scattered from a specific atom in the
array can be reabsorbed, thereby causing error rates as high as
4% at neighboring qubits ∼10 microns away. This challenge
can be overcome by globally shelving remaining qubits in
the array to a state not interacting with the fluorescent light
[10,31]. However, this then requires global operations on ev-
ery qubit in the ensemble, which is slow and adds to the error
rate. In this section, we discuss a dark-state localization based
measurement scheme that largely overcomes these challenges
even when the spacing between adjacent qubits is 0.59 µm.

Figure 3 shows the relevant energy level diagram for the
measurement scheme that we envision. The goal is to perform
a projective measurement of the logical |0〉 state of only the
addressed qubit, while scattering as few photons from the
other qubits as possible. A probe laser beam polarized along
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FIG. 3. Level scheme in 87Rb for nanoscale-level single-qubit
readout, which consists of two parallel EIT channels. The coupling
laser with Rabi frequency �C couples the states |F = 1,mF = ±1〉
and |F ′ = 0,mF ′ = 0〉 and the probe laser with Rabi frequency �P

couples the states |F = 1,mF = 0〉 and |F ′ = 0,mF ′ = 0〉.

the quantization axis (π polarization) couples |F = 1,mF =
0〉 to |F ′ = 0,mF ′ = 0〉 state of the D2 line. The two beams
forming the coupling laser standing wave are linearly polar-
ized orthogonal to the quantization axis, thereby containing
equal amounts of σ+ and σ− light. As shown in Fig. 3, the
result is two � schemes, forming two parallel EIT channels.

The measurement protocol is as follows. During the EIT
pulse, the intensities of the beams forming the coupling laser
standing-wave are balanced so that the intensity vanishes at
the minimum. At the node of the coupling laser (which is
the position of the qubit whose state is to be measured),
the atom scatters probe photons and is pumped into one of
|F = 1,mF = 1〉 or |F = 1,mF = −1〉 states (since EIT is
not established). The other atoms in the array experience EIT
and evolve into the dark state. As shown in Fig. 4, the cou-
pling laser is turned on before and turned-off after the probe
beam. As a result, the other qubits in the array adiabatically
evolve from the |0〉 state into a coherent superposition and
then evolve back to |0〉. This is achieved while maintaining

FIG. 4. The Rabi frequencies for the coupling laser �C , (solid
orange curve) and probe laser �P, (solid blue curve) as a function of
time. The lasers are turned on adiabatically using a counterintuitive
pulse sequence: i.e., the coupling laser is turned on before the probe
laser. Second coupling-only pulse is for optically pumping the atom
back to the logical |0〉 state.

negligible population in the excited |F ′ = 0,mF ′ = 0〉 state
and therefore with low spontaneous emission. After the EIT
(probe and coupling) pulse sequence, the atom at the node
is left in one of the |F = 1,mF = 1〉 or |F = 1,mF = −1〉
states. To pump this atom back, we turn on the coupling laser
beam, but now with a slight intensity imbalance in the beam-
pair, so that there is some light at the intensity minimum. Note
that this second coupling-only pulse does not interact with
the other atoms in the array (since all the other atoms are in
state |0〉). The end result after this pulse sequence is that the
atom at the node scatters ∼2 photons, while other atoms in
the array scatter little if efficient EIT is achieved. To ensure
arrival of a photon at the detector, the above pulse sequence
can be applied multiple times to scatter a sufficient number of
photons from the addressed qubit.

One of the key advantages of this approach is that due to the
presence of EIT at the other atoms, there is negligible proba-
bility of scattered photons to be reabsorbed within the array. If
the coupling laser intensity is much larger than the probe laser
intensity at the positions of the other atoms, the majority of
the dark state remains in state |0〉. As a result, the probability
of reabsorption is significant only for photons scattered on the
probe transition (π polarized). But these photons are scattered
only when there is large coupling intensity at the other atoms,
which means the atoms are transparent to these photons due
to EIT.

In this approach, the cross talk and the error on the adjacent
qubits is limited by nonadiabatic corrections to the dark state.
To keep the nonadiabatic corrections small, the rate of change
of the Hamiltonian must be slow compared to the separation of
the eigenvalues of the Hamiltonian. To first order, the energy
splitting between the dark and bright states [the separation of
the eigenvalues in the EIT Hamiltonian of Eq. (1)] is deter-
mined by the Rabi frequency of the coupling laser beam, �C .
Adiabatic evolution of the dark state therefore requires that the
frequency bandwidth of the EIT pulses (probe and coupling
laser pulse profiles) must be small compared to the coupling
laser Rabi frequency, �C . Nonadiabatic corrections can be
kept quite low, by ensuring that (δω/�C )2 (the quantity δω

is the bandwidth of the probe pulse) is sufficiently small at the
neighboring qubits. However, δω cannot be set arbitrarily low,
since the bandwidth of the probe pulse essentially determines
the measurement time.

Figure 5 shows the results of a simulation where we numer-
ically solve the 4 × 4 density matrix for the scheme of Fig. 3
using quite reasonable parameters. The equations for the time
evolution of the density matrix, as well as their derivation is
outlined in the Appendix. In these simulations, we take probe
pulses with a duration of 6 µs, a probe Rabi frequency of
�P = 0.2�e (the quantity �e = 2π × 6.06 MHz is the D2 line
decay rate). In the false-color 2D plot, the coupling laser Rabi
frequency at the peak of the standing wave is varied from
�C,max = �e to �C,max = 18�e. We take a combined photon
collection efficiency of 3% (a numerical aperture of NA=0.5
of the initial lens and 40% detection efficiency from the first
lens to the photon counter). Figure 5 shows the total number of
scattered photons (in log scale) as a function of position. The
atom at the node scatters 33 photons (which produces a mean
detected photon number of 1), and this scattering is spatially
localized very strongly. The three insets show the number of
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FIG. 5. Dependence of the localization with respect to the maximum coupling laser frequency �C,max and the relevant cross sections of the
2D plot with �C,max = 1�e, �C,max = 10�e, �C,max = 18�e, with FWHMs of 58.5, 6.1, and 4.1 nm, respectively.

scattered photons as a function of position for �C,max = �e,
�C,max = 10�e, and �C,max = 18�e, respectively. For these
three cases, The population transfer is localized to a spatial
region with a FWHM of 58.5, 6.1, and 4.1 nm, respectively.
Even tighter localization of photon scattering can be achieved
with the use of higher values for the coupling laser Rabi
frequency at the peak of the standing wave.

We note that, the laser requirement for the numerical simu-
lations of Fig. 5 is modest. Rabi frequencies of ∼20�e require
laser intensities of ∼1 W/cm2, which can be achieved by
focusing a 10 mW laser beam, to a spot size less than 1 mm.
We also note that, scattering 33 photons requires ∼33/2 ∼ 16
pulse sequences. This sets the measurement time for the nu-
merical simulations of Fig. 5 to be ∼16 × 6 ∼ 100 µs. Faster
measurement times can be achieved with the use of shorter
pulses, which would increase the bandwidth, δω, resulting in
higher nonadiabatic corrections to the dark state (and there-
fore higher cross talk) for fixed probe and coupling laser
Rabi frequencies. This can be overcome by increasing the
probe and coupling laser Rabi frequencies while keeping their
ratio constant (in order to achieve a similar amount of spatial
localization).

B. The effect of initial spread of the atomic position

The numerical simulations of Fig. 5 assume the ideal case
of no spread of the initial atomic position (i.e., the atom is
assumed to be a point particle at a fixed position). In a realistic
experiment, there will be an initial spread of the atomic posi-
tion due to the finite depth of the optical trap and the atomic
temperature. This initial spread of the atomic position will

broaden the results that are presented in Fig. 5. We calculate
this broadening to be on the order of tens of nanometers,
with trap depth of the lattice potential in the 1–10 mK range
and atoms cooled to the ground state of the trap (with the
wavelength of the lattice potential fixed at λlattice = 1.17 µm,
and therefore the qubit spacing fixed at λlattice/2=0.59µm).

Figure 6 shows our numerical calculation of this effect for
the specific case of a trap depth of 5 mK. Here, we assume
the atom to be in the ground state of the trapping potential,

FIG. 6. The photon count plot for �C,max = 18�e when we as-
sume the atom to be in the ground state of a trapping potential with
the trap depth of 5 mK. We obtain this result by convolving the
numerical calculation for the third inset of Fig. 5, with the proba-
bility distribution of the atomic position due to the finite spread of
the wavefunction. The FWHM of the localization for the scattered
number of photons is increased to 23.8 nm.
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calculate the initial probability spread for the atomic position,
and convolve the result that we obtain in Fig. 5 with this initial
probability distribution. The result of Fig. 6 is obtained for
the case of �C,max = 18�e, i.e., for the conditions of the third
inset in the numerical simulation of Fig. 5. The FWHM spread
for the scattered photons is increased to ∼23.8 nm (from
4.1 nm). This is still well below the diffraction limit of the
addressing probe and coupling lasers, which has a wavelength
of λD2 = 780 nm.

C. The effect of photon scattering on the nearby qubits

In the simulations of Fig. 5, we numerically calculated
the density matrix equations due to the probe and coupling
lasers only. These results show that within the assumptions
of these simulations, the addressed qubit can scatter many
photons while keeping the scattering from the nearby qubits
at very low values. We have also qualitatively argued that
the photons scattered from the the targeted atom will not be
reabsorbed by the nearby atoms due to the presence of EIT.
In this section we will make this argument quantitative by
including the effect of the radiated field from the addressed
qubit on the nearby atoms explicitly. For this purpose, we first
calculate the electric field at the position of the neighboring
qubit, due to the scattered photons from the targeted atom.
Consider a radiating dipole (the target qubit), with a dipole
moment, �p. Working in a spherical coordinate system and
positioning the addressed atom at r = 0, the vectorial electric
field due to this radiating atom is

�Edipole = k3

4πε0
{ 1

kr
(r̂ × �p) × r̂

+
(

1

k3r3
− i

1

k2r2

)
[3r̂(r̂ · �p) − �p]}. (7)

Here, the quantity r̂ is the unit vector that connects the
observation point to the radiating atom and k = 2π/λ is
the optical k vector. As the targeted atom is radiating, de-
pending on which specific transition the excited atom decays
into, the orientation of the dipole vector �p can be different.
A photon that is emitted into the |F ′ = 0,mF ′ = 0〉 → |F =
1,mF = 0〉 transition will be linearly polarized while a pho-
ton emitted into the |F ′ = 0,mF ′ = 0〉 → |F = 1,mF = ±1〉
transitions would be circularly polarized. Scattered photons
at these different polarizations would then introduce pertur-
bations to the probe and coupling laser frequencies at the
position of the neighboring qubit. We calculate these time
varying perturbations, which we refer to as �P,dipole(t ) and
�C,dipole(t ), by multiplying the radiated electric field at the
position of the neighboring qubit with respective matrix el-
ements of the transitions.

We have simulated this effect by adding the time depen-
dent dipole emission to the density matrix equations at the
nearby qubit which is r = 0.59 µm away. At this distance
the peak values for the perturbation to the Rabi frequencies
are �P,dipole = 2π × 159 kHz and �C,dipole = 2π × 159 kHz,
respectively, when the quantization axis to be perpendicular to
the axis of the array of atoms. When the quantization axis is
taken to be parallel to the array axis, then the Rabi frequencies
for the dipole emission are reduced to �P,dipole = 2π× 67 kHz

FIG. 7. Four level structure F ′ = 0,mF = 0 and F = 1,mF =
0, ±1with the relevant coupling and probe lasers, �C and �P. In
addition, there is a detuning of � and new Stark-shift laser with Rabi
frequency �stark.

and �C,dipole = 2π× 67 kHz, respectively. With these added
dipole perturbations to the Rabi frequencies for the probe and
coupling laser beams, we then calculate the change in the
photon scattering rate at this other qubit, when compared with
the simulations of Fig. 5. We find that the results that we have
reported in Fig. 5 only change at the level of 10−6 or less at the
position of the adjacent neighboring qubit. This is remarkably
low and is due to the robustness of EIT to the exact values of
the probe and coupling laser intensities.

D. Single-qubit Phase Gate

In this section we discuss how to implement a single-qubit
phase gate with the truth-table |1〉 → |1〉, |0〉 → exp (iϕ)|0〉.
The phase gate, although not universal by itself, does provide
for arbitrary single qubit rotations on targeted qubits when
combined with global π/2 and −π/2 rotations about an axis
on the equator of the Bloch sphere which can be readily
implemented with microwaves [18,28].

Our approach is similar to what was discussed in Ref. [38].
The relevant energy level diagram and the pulse sequences
for the involved laser beams are shown in Figs. 7 and 8.
To implement a single-qubit phase-gate, we are interested
in coherent manipulation of the atom near the node of the
coupling laser spatial profile using EIT. For this purpose,
similar to the localization scheme that we discussed above,
we need to ensure adiabatic evolution at all points along
the coupling-laser standing wave. We therefore introduce an
imbalance in the intensities of the beam-pair forming the
coupling laser, which then results in a non-vanishing intensity
minimum. If the peak coupling laser intensity is much higher
than the uniform probe intensity, then there is localization of
the transfer to states |F = 1,mF = 1〉 and |F = 1,mF = −1〉.
Only near the intensity minimum of the coupling laser profile,
there is large population transfer from the logical |0〉 state to
these states during EIT. We then adiabatically turn on a far-
detuned laser beam, which Stark-shifts the |F = 1,mF = 1〉
and |F = 1,mF = −1〉 states by an amount �2

stark/(2�). The
Stark shift causes a phase accumulation of �2

stark/(2�)T (the
quantity T is the duration of the Stark-shift laser pulse). But
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FIG. 8. Plot of the Rabi frequencies for the phase gate scheme
with the minimal spatial dependence, �C,max = 8�e. All of the fre-
quencies are turned on adiabatically, where the turn order is �C (solid
orange curve), �P (solid blue curve) and �stark (solid green curve)

only near the intensity minimum where there is substantial
transfer to the |F = 1,mF = 1〉 and |F = 1,mF = −1〉 states,
the wave function acquires this phase.

The Rabi frequencies for the laser pulses as a function of
time are plotted in Fig. 8. To ensure adiabatic preparation,
the coupling laser beam is turned-on before the probe laser
beam. The Stark-shift laser is present only after EIT has been
established and the system has evolved into the dark state (i.e.,
after the probe and coupling laser beams are turned-on).

Figure 9 shows the result of density-matrix numerical sim-
ulations for the single-qubit phase-gate scheme. Here, the
maximum of the coupling laser Rabi frequency is varied to
until �C,max = 80�e, while the value of the coupling laser
Rabi frequency at the intensity minimum is kept fixed at
�C,min = 8�e. We set the uniform probe laser Rabi frequency
to be �P = 8�e. The parameters of the Stark shift-laser beam

are adjusted to obtain a phase-shift value of π/4 radians.
Specifically, we choose the Rabi frequency of the Stark-shift
laser to be �stark = 1.6�e, set its detuning at � = 200�e, and
take it’s duration to be T = 15μs. The durations of the probe
and coupling laser pulses as shown in Fig. 7 are 25µs and
35µs, respectively.

The 2D plot in Fig. 9 is a false-color plot of the applied
phase as the Rabi frequency of the coupling laser at the
intensity maximum, �C,max is varied. The three insets show
the number of scattered photons as a function of position
for �C,max = 16�e, �C,max = 48�e, and �C,max = 80�e, re-
spectively. For these three cases, The population transfer is
localized to a spatial region with a FWHM of 324.5, 136.32,
and 107.65 nm, respectively.

In this scheme, the fidelity of the single-qubit phase-gate is
limited by spontaneous emission (and therefore decoherence)
of the excited radiating level, |F ′ = 0,mF ′ = 0〉. This level
is populated due to (1) nonadiabatic corrections to the dark
state, and (2) the far-detuned excitation because of the Stark-
shift laser. As discussed above, the nonadiabatic corrections
to the dark state can be kept low by keeping the ratio of the
bandwidth of the probe and coupling laser pulses to their Rabi
frequencies to be small. The excitation of the radiating level
due to the Stark-shift laser can be kept small, by keeping a
large value for the detuning of the Stark-shift laser beam, �.

For the numerical simulations of Fig. 9, the spontaneous
emission rate due to the nonadiabatic corrections to the dark
state is negligible (at the level of 0.1%). This is because of
the high values for the probe and coupling laser Rabi fre-
quencies. The spontaneous emission rate is instead limited by
the excitation to the radiating level (followed by incoherent
spontaneous emission) due to the Stark shift laser. In Fig. 10,
we plot the total spontaneous emission probability during the
whole time duration of the applied phase gate, as a function
of position for the conditions of the third inset of Fig. 9 (i.e.,

FIG. 9. Dependence of the localization of the phase with respect to the maximum coupling laser frequency �C,max and the relevant cross
sections of the 2D plot with �C,max = 16�e, �C,max = 48�e, �C,max = 80�e, with FWHMs of 324.51, 136.32, and 107.65 nm, respectively.
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FIG. 10. The total incoherent spontaneous emission probability
during the duration of the applied phase gate (solid red line) as well
as the accumulated phase in radians (solid blue line) with respect
to position. At the position of the target atom there is 0.82 radians
phase accumulation while the spontaneous emission probability is
kept ≈0.01. Lower spontaneous emission rates can be achieved by
increasing the detuning, �, of the Stark-shift laser from the excited
level (at the expense of an increase in its Rabi frequency so that the
applied phase �2

stark/(2�)T remains unchanged).

for a coupling laser Rabi frequency of �C,max = 80�e at the
intensity maximum). Here, we calculate the total spontaneous
emission probability is calculated for each spatial point as∫ T

0 ρ44�edt (the integration is over the whole time duration
of the simulation). For completeness, we also plot the applied
phase (in linear scale) as a function of position. At the inten-
sity minimum of the coupling laser (i.e., at the position of the
addressed qubit), the applied phase is about π/4, with a spon-
taneous emission probability of ≈0.01. Lower spontaneous
emission rates can be achieved by increasing the detuning, �,
of the Stark-shift laser from the excited level (at the expense
of an increase in its Rabi frequency so that the applied phase
�2

stark/(2�)T remains unchanged).

IV. CONCLUSIONS

Neutral atoms have made great strides over the last decade
towards a scalable quantum computing architecture. Despite
this great progress, there are still outstanding challenges
that need to be overcome in neutral atom quantum comput-
ing. Even with high fidelity gates, implementation of cross
talk free qubit measurements, which are required for er-
ror correction, is an outstanding challenge for neutral atom
qubits. Another challenge in neutral atom arrays is the re-
quired high optical power of the trapping light. To address
these challenges, we have proposed to integrate dark-state
based localization techniques into a neutral atom quantum
computing architecture and suggested two schemes, one for
state-projective measurement, and other for single-qubit phase
gates. Density-matrix numerical simulations in 87Rb atoms
show that both approaches can achieve a spatial resolution
well into the nanoscale regime.
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APPENDIX: DENSITY MATRIX EQUATIONS

For the four level EIT schemes that were discussed above,
we numerically simulate the systems by calculating the time
evolution of the 4 × 4 density matrix ρ. The Von Neumann
equation for the density matrix ρ, without any relaxation, is
[68],

ρ̇ = − i

h̄
[H, ρ]. (A1)

In order to include decay and dephasing processes, we add
the relaxation matrix � with the following matrix elements
into the Von Neumann equation:

〈n| � |m〉 = γnδmn. (A2)

The total equation of motion with the relaxation matrix of
above is

ρ̇ = − i

h̄
[H, ρ] − 1

2
{�, ρ}. (A3)

In order to simplify the notation that will follow,
for the four level scheme of Fig. 3, we define the
states |F = 1,mF = 1〉 → |a〉, |F = 1,mF = 0〉 → |b〉,
|F = 1,mF = −1〉 → |c〉 and |F ′ = 0,m′

F = 0〉 → |e〉. We
define the relevant energies for these states to be h̄ωa, h̄ωb,
h̄ωc, and h̄ωe, respectively. The states |a〉 and |c〉 are coupled
to the excited state |e〉 with a coupling laser with a Rabi
frequency of �C and |b〉 state is coupled to the excited state
|e〉 with a probe laser with the Rabi frequency �P. The
unperturbed (zero field) Hamiltonian for the four atomic
levels is

H0 =

⎡
⎢⎢⎣
h̄ωa 0 0 0

0 h̄ωb 0 0
0 0 h̄ωc 0
0 0 0 h̄ωe

⎤
⎥⎥⎦. (A4)

The dipole interaction Hamiltonian, that describes the in-
teraction of the four levels with the probe and coupling
lasers(frequencies �C and �P) is

�μ · �E = −1

2

⎡
⎢⎢⎣

0 0 0 �Ce−iωCt

0 0 0 �Pe−iωPt

0 0 0 �Ce−iωCt

�CeiωCt �PeiωPt �CeiωCt 0

⎤
⎥⎥⎦.

(A5)

Note that ωP and ωC are the phase differences on the Rabi
lasers. Whereas, ωa, ωb, ωc and ωe are the transition frequen-
cies. When one combines the dipole interaction Hamiltonian
and the unperturbed (zero-field) Hamiltonian, one gets the
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total Hamiltonian:

H = 1

2

⎡
⎢⎢⎣

h̄ωa 0 0 −�Ce−iωCt

0 h̄ωb 0 −�Pe−iωPt

0 0 h̄ωc −�Ce−iωCt

−�CeiωCt −�PeiωPt −�CeiωCt h̄ωe

⎤
⎥⎥⎦.

(A6)

We next use the Hamiltonian of Eq. (A5) in the Von
Neumann equation of Eq. (A2) and write the differential equa-
tions for the elements of the density matrix ρ(t ). Below, the
subscripts of ρ are consistent the state labeling that was de-
scribed in the previous paragraph. For example, the diagonal
density matrix element for the state |a〉 is ρaa. The complete
set of equations for the density matrix elements are

ρ̇aa = i�C

2
eiωCtρ∗

ae − i�C

2
e−iωCtρae − �aρaa + �eρee

3
,

ρ̇ab = i�C

2
eiωCtρ∗

be − i�P

2
e−iωPtρae

− ρab

2
(�a + �b) + iρab(ωb − ωa),

ρ̇ac = i�C

2
eiωCtρ∗

ce − i�C

2
e−iωCtρae

− ρac

2
(�a + �c) + iρac(ωc − ωa),

ρ̇ae = i�C

2
eiωCtρ∗

ee − i�C

2
e−iωCtρaa − i�P

2
e−iωPtρab

− i�C

2
e−iωCtρac − ρae

2
(�a + �e),

+ iρae(ωe − ωa)

ρ̇bb = i�P

2
eiωPtρ∗

be − i�P

2
e−iωPtρbe − �bρbb + �eρee

3
,

ρ̇bc = i�P

2
eiωPtρ∗

ce − i�C

2
e−iωCtρbe

− ρbc

2
(�b + �c) + iρbc(ωc − ωb),

ρ̇be = i�P

2
eiωPtρ∗

ee − i�C

2
e−iωCtρ∗

ab

− i�P

2
eiωPtρbb − i�C

2
eiωCtρbc − ρbe

2
(�b + �e)

+ iρbe(ωe − ωb),

ρ̇cc = i�C

2
eiωCtρ∗

ce − i�C

2
e−iωCtρce − �cρcc + �eρee

3
,

ρ̇ce = i�C

2
eiωCtρee − i�C

2
e−iωCtρ∗

ac − i�P

2
eiωPtρ∗

bc

− i�C

2
eiωCtρcc − ρae

2
(�a + �e)

+ iρae(ωe − ωa),

ρ̇ee = i�C

2
e−iωCtρae + i�P

2
e−iωPtρbe + i�C

2
e−i�Ctρce

− i�C

2
ρ∗
ae − i�P

2
ρ∗
be − i�C

2
eiωCtρ∗

ce − �4ρee, (A7)

where the terms ρiis define the relevant density matrix element
of ρ. When one transforms to the rotating frame, the terms
transform to

ρ̃ae = ρaee
−iωCt ,

ρ̃be = ρbee
−iωPt ,

ρ̃ce = ρcee
iωCt ,

ρ̃ab = ρabe
−i(ωC−ωP )t ,

ρ̃bc = ρbce
i(ωC−ωP )t . (A8)

Thus, the differential equations for the terms of the density
matrix can be updated as

˙̃ρaa = i�C

2
ρ̃∗
ae − i�C

2
ρ̃ae − �aρ̃aa + �eρ̃ee

3
,

˙̃ρab = i�C

2
ρ̃∗
be − i�P

2
ρ̃ae − ρ̃ab

2
(�a + �c)

+ iρ̃ab(ωb − ωa − ωC + ωP ),

˙̃ρac = i�C

2
ρ̃∗
ce − i�C

2
ρ̃ab − ρ̃ac

2
(�a + �c)

+ iρ̃ac(ωc − ωa),

˙̃ρae = i�C

2
ρ̃ee − i�C

2
ρ̃aa − i�P

2
ρ̃ab − i�C

2
ρ̃ac

− ρ̃ae

2
(�a + �e) + iρ̃ae(ωe − ωa − ωb),

˙̃ρbb = i�P

2
ρ̃∗
be − i�P

2
ρ̃be − �bρ̃bb + �eρ̃ee

3
,

˙̃ρbc = i�P

2
ρ̃∗
ce − i�C

2
ρ̃ce − ρ̃bc

2
(�b + �c)

+ iρ̃bc(ωc − ωb − ωP + ωC ),

˙̃ρbe = i�P

2
ρ̃ee − i�C

2
ρ̃∗
ab − i�P

2
ρ̃bb − i�C

2
ρ̃bc

− ρ̃be

2
(�b + �e) + iρ̃be(ωe − ωb − ωP ),

˙̃ρcc = i�C

2
ρ̃∗
ce − i�C

2
ρ̃ce − �cρ̃cc + �eρ̃ee

3
,

˙̃ρce = i�C

2
ρ̃ee − i�C

2
ρ̃∗
ac − i�P

2
ρ̃∗
bc − i�C

2
ρ̃cc

− ρ̃ce

2
(�c + �e) + iρ̃ce(ωe − ωc − ωC ),

˙̃ρee = i�C

2
ρ̃ae + i�P

2
ρ̃be + i�C

2
ρ̃ce

− i�C

2
ρ̃∗
ae − i�P

2
ρ̃∗
be − i�C

2
ρ̃∗
ce − �eρ̃ee. (A9)

Since the energies of |a〉 and |c〉 are the same, ωa = ωc

holds true. Thus, we define the decouplings,

�1 = ωe − ωa − ωC,

�2 = ωe − ωb − ωP. (A10)
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Considering these decouplings, our differential equa-
tions become,

˙̃ρaa = i�C

2
ρ̃∗
ae − i�C

2
ρ̃ae − �aρ̃aa + �eρ̃ee

3
,

˙̃ρab = i�C

2
ρ̃∗
be − i�P

2
ρ̃ae − ρ̃ab

2
(�a + �c)

+ iρ̃ab(�1 − �2),

˙̃ρac = i�C

2
ρ̃∗
ce − i�C

2
ρ̃ab − ρ̃ac

2
(�a + �c),

˙̃ρae = i�C

2
ρ̃ee − i�C

2
ρ̃aa − i�P

2
ρ̃ab − i�C

2
ρ̃ac

− ρ̃ae

2
(�a + �e) + iρ̃ae(ωe − ωa − ωb),

˙̃ρbb = i�P

2
ρ̃∗
be − i�P

2
ρ̃be − �bρ̃bb + �eρ̃ee

3

˙̃ρbc = i�P

2
ρ̃∗
ce − i�C

2
ρ̃ce − ρ̃bc

2
(�b + �c)

+ iρ̃bc(�2 − �1),

˙̃ρbe = i�P

2
ρ̃ee − i�C

2
ρ̃∗
ab − i�P

2
ρ̃bb − i�C

2
ρ̃bc

− ρ̃be

2
(�b + �e) + iρ̃be(ωe − ωb − ωP ),

˙̃ρcc = i�C

2
ρ̃∗
ce − i�C

2
ρ̃ce − �cρ̃cc + �eρ̃ee

3
,

˙̃ρce = i�C

2
ρ̃ee − i�C

2
ρ̃∗
ac − i�P

2
ρ̃∗
bc − i�C

2
ρ̃cc

− ρ̃ce

2
(�c + �e) + iρ̃ce(ωe − ωc − ωC ),

˙̃ρee = i�C

2
ρ̃ae + i�P

2
ρ̃be + i�C

2
ρ̃ce − i�C

2
ρ̃∗
ae

− i�P

2
ρ̃∗
be − i�C

2
ρ̃∗
ce − �eρ̃ee. (A11)

After getting the rotating-frame coupled differential equa-
tions, a fourth-order Runge-Kutta Algorithm [69,70] is used
to numerically solve these equations. The solutions to these
equations are used in Sec. III.
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M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).

[28] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K.
Jooya, P. Eichler, J. X, A. Marra, B. Grinkemeyer, M. Kwon,
M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D.
Bowman, T. Ballance, C. Campbell, E. D. Dahl et al., Nature
(London) 604, 457 (2022).

[29] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M.
Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner,
V. Vuletic, and M. D. Lukin, Nature (London) 604, 451 (2022).

063711-10

https://doi.org/10.1063/1.5088164
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1038/s42254-021-00283-9
https://doi.org/10.1557/mrs.2013.206
https://doi.org/10.1063/1.5115814
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevLett.93.150501
https://doi.org/10.1103/PhysRevLett.82.1060
https://doi.org/10.1103/PhysRevLett.82.1975
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1038/nature06011
https://doi.org/10.1038/nphys645
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1126/science.aaf2581
https://doi.org/10.1103/PhysRevLett.121.240501
https://doi.org/10.1103/PhysRevLett.96.063001
https://doi.org/10.1063/1.3494526
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevA.96.042306
https://doi.org/10.1103/PhysRevA.103.022424
https://doi.org/10.1103/PhysRevResearch.4.033019
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1038/s41586-022-04592-6


NANOSCALE ADDRESSING AND MANIPULATION OF … PHYSICAL REVIEW A 107, 063711 (2023)

[30] Z. Fu, P. Xu, Y. Sun, Y.-Y. Liu, X.-D. He, X. Li, M. Liu, R.-B.
Li, J. Wang, L. Liu, and M.-S. Zhan, Phys. Rev. A 105, 042430
(2022).

[31] M. Saffman, J. Phys. B: At., Mol. Opt. Phys. 49, 202001 (2016).
[32] M. Morgado and S. Whitlock, AVS Quantum Sci. 3, 023501

(2021).
[33] D. Crow, R. Joynt, and M. Saffman, Phys. Rev. Lett. 117,

130503 (2016).
[34] I. I. Beterov and M. Saffman, Phys. Rev. A 92, 042710 (2015).
[35] M. Kwon, M. F. Ebert, T. G. Walker, and M. Saffman, Phys.

Rev. Lett. 119, 180504 (2017).
[36] G. S. Agarwal and K. T. Kapale, J. Phys. B Phys. 39, 3437

(2006).
[37] D. D. Yavuz and N. A. Proite, Phys. Rev. A 76, 041802(R)

(2007).
[38] A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D.

Lukin, Phys. Rev. Lett. 100, 093005 (2008).
[39] S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett.

98, 218103 (2007).
[40] M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100,

073602 (2008).
[41] H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R.

Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, Phys.
Rev. A 78, 013803 (2008).

[42] N. A. Proite, Z. J. Simmons, and D. D. Yavuz, Phys. Rev. A 83,
041803(R) (2011).

[43] J. A. Miles, Z. J. Simmons, and D. D. Yavuz, Phys. Rev. X 3,
031014 (2013).

[44] J. C. Wu and B. Q. Ai, Europhys. Lett. 107, 14002 (2014).
[45] F. Giraldo, A. Kumar, T.-Y. Wu, P. Du, and D. S. Weiss, Phys.

Rev. A 106, 032425 (2022).
[46] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P.

Schauss, T. Fukuhara, I. Bloch, and S. Kuhr, Nature (London)
471, 319 (2011).

[47] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[48] S. E. Harris, Phys. Today 50(7), 36 (1997).
[49] B. Lounis and C. Cohen-Tannoudji, J. Phys. II France 2, 579

(1992).

[50] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom—
Photon Interactions (Wiley, New York, 1998).

[51] J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690
(1984).

[52] J. E. Thomas, Phys. Rev. A 42, 5652 (1990).
[53] K. D. Stokes, C. Schnurr, J. R. Gardner, M. Marable,

G. R. Welch, and J. E. Thomas, Phys. Rev. Lett. 67, 1997
(1991).

[54] J. R. Gardner, M. L. Marable, G. R. Welch, and J. E. Thomas,
Phys. Rev. Lett. 70, 3404 (1993).

[55] F. Le Kien, G. Rempe, W. P. Schleich, and M. S. Zubairy, Phys.
Rev. A 56, 2972 (1997).

[56] S. Qamar, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. A 61,
063806 (2000).

[57] K. T. Kapale, S. Qamar, and M. S. Zubairy, Phys. Rev. A 67,
023805 (2003).

[58] M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, Phys.
Rev. A 72, 013820 (2005).

[59] M. Macovei, J. Evers, C. H. Keitel, and M. S. Zubairy, Phys.
Rev. A 75, 033801 (2007).

[60] J.-T. Chang, J. Evers, M. O. Scully, and M. Suhail Zubairy,
Phys. Rev. A 73, 031803(R) (2006).

[61] E. Paspalakis and P. L. Knight, Phys. Rev. A 63, 065802
(2001).

[62] J. Xu and X. ming Hu, J. Phys. B 40, 1451 (2007).
[63] P. Storey, M. Collett, and D. Walls, Phys. Rev. Lett. 68, 472

(1992).
[64] R. Quadt, M. Collett, and D. F. Walls, Phys. Rev. Lett. 74, 351

(1995).
[65] S. Kunze, K. Dieckmann, and G. Rempe, Phys. Rev. Lett. 78,

2038 (1997).
[66] M. Holland, S. Marksteiner, P. Marte, and P. Zoller, Phys. Rev.

Lett. 76, 3683 (1996).
[67] J. Mompart, V. Ahufinger, and G. Birkl, Phys. Rev. A 79,

053638 (2009).
[68] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, 1997).
[69] C. Runge, Math. Ann. 46, 167 (1895).
[70] W. Kutta, Z. Math. Phys. 46, 435 (1901).

063711-11

https://doi.org/10.1103/PhysRevA.105.042430
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1116/5.0036562
https://doi.org/10.1103/PhysRevLett.117.130503
https://doi.org/10.1103/PhysRevA.92.042710
https://doi.org/10.1103/PhysRevLett.119.180504
https://doi.org/10.1088/0953-4075/39/17/002
https://doi.org/10.1103/PhysRevA.76.041802
https://doi.org/10.1103/PhysRevLett.100.093005
https://doi.org/10.1103/PhysRevLett.98.218103
https://doi.org/10.1103/PhysRevLett.100.073602
https://doi.org/10.1103/PhysRevA.78.013803
https://doi.org/10.1103/PhysRevA.83.041803
https://doi.org/10.1103/PhysRevX.3.031014
https://doi.org/10.1209/0295-5075/107/14002
https://doi.org/10.1103/PhysRevA.106.032425
https://doi.org/10.1038/nature09827
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1063/1.881806
https://doi.org/10.1051/jp2:1992153
https://doi.org/10.1103/PhysRevA.29.690
https://doi.org/10.1103/PhysRevA.42.5652
https://doi.org/10.1103/PhysRevLett.67.1997
https://doi.org/10.1103/PhysRevLett.70.3404
https://doi.org/10.1103/PhysRevA.56.2972
https://doi.org/10.1103/PhysRevA.61.063806
https://doi.org/10.1103/PhysRevA.67.023805
https://doi.org/10.1103/PhysRevA.72.013820
https://doi.org/10.1103/PhysRevA.75.033801
https://doi.org/10.1103/PhysRevA.73.031803
https://doi.org/10.1103/PhysRevA.63.065802
https://doi.org/10.1088/0953-4075/40/7/013
https://doi.org/10.1103/PhysRevLett.68.472
https://doi.org/10.1103/PhysRevLett.74.351
https://doi.org/10.1103/PhysRevLett.78.2038
https://doi.org/10.1103/PhysRevLett.76.3683
https://doi.org/10.1103/PhysRevA.79.053638
https://doi.org/10.1007/BF01446807

