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Abstract

It is well known that the power spectrum is not able to fully characterize the statistical properties of non-Gaussian
density fields. Recently, many different statistics have been proposed to extract information from non-Gaussian
cosmological fields that perform better than the power spectrum. The Fisher matrix formalism is commonly used to
quantify the accuracy with which a given statistic can constrain the value of the cosmological parameters. However,
these calculations typically rely on the assumption that the sampling distribution of the considered statistic follows a
multivariate Gaussian distribution. In this work, we follow Sellentin & Heavens and use two different statistical tests to
identify non-Gaussianities in different statistics such as the power spectrum, bispectrum, marked power spectrum, and
wavelet scattering transform (WST). We remove the non-Gaussian components of the different statistics and perform
Fisher matrix calculations with the Gaussianized statistics using Quijote simulations. We show that constraints on the
parameters can change by a factor of ~2 in some cases. We show with simple examples how statistics that do not
follow a multivariate Gaussian distribution can achieve artificially tight bounds on the cosmological parameters when
using the Fisher matrix formalism. We think that the non-Gaussian tests used in this work represent a powerful tool to
quantify the robustness of Fisher matrix calculations and their underlying assumptions. We release the code used to
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compute the power spectra, bispectra, and WST that can be run on both CPUs and GPUs.

Unified Astronomy Thesaurus concepts: Astrostatistics distributions (1884); Normal distribution (1896);
Astrostatistics strategies (1885); Cosmology (343); Large-scale structure of the universe (902); Cosmological

parameters from large-scale structure (340)

1. Introduction

Upcoming surveys of the large-scale structure (LSS) of the
universe like DESI (Levi et al. 2013), Euclid (Laureijs et al.
2011), and the Rubin Observatory (LSST Science Collaboration
etal. 2009; LSST Dark Energy Science Collaboration 2012; Jain
et al. 2015) will map the distribution of galaxies in angular and
redshift space over large cosmological volumes. These galaxies
will serve as a biased tracer of the underlying matter density
field. If this field were an homogeneous Gaussian random field,
the power spectrum would contain all of the information about
the cosmological parameters. However, the matter density field
today or at low redshift is highly non-Gaussian, especially at the
small scales (<104 Mpc), and the power spectrum is not able
to fully characterize the statistical properties of it.

Recently, different methods and statistics have been developed
to efficiently extract the cosmological information hidden in the
matter, halo, and galaxy density fields (Neyrinck et al. 2009;
Simpson et al. 2011, 2013; Coulton et al. 2019; Liu &
Madhavacheril 2019; Li et al. 2019; Marques et al. 2019;
Vicinanza et al. 2019; Ajani et al. 2020; Allys et al. 2020;
Banerjee et al. 2020; Dai et al. 2020; de la Bella et al. 2021;
Friedrich et al. 2020; Giri & Smith 2022; Gualdi et al.
2021a, 2021b; Hahn et al. 2020; Lee & Ryu 2020; Ryu &
Lee 2020; Villaescusa-Navarro et al. 2020; Valogiannis &
Dvorkin 2022; Uhlemann et al. 2020; Zhang et al. 2020;
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Banerjee & Abel 2021a, 2021b; Bayer et al. 2021; Cheng &
Menard 2021a; Hahn & Villaescusa-Navarro 2021; Harnois-
Deraps et al. 2021, 2022; Kuruvilla 2022; Kuruvilla &
Aghanim 2021; Massara et al. 2021; Naidoo et al. 2022;
Porth et al. 2023; Samushia et al. 2021; Liu et al. 2022). For
instance, Hahn et al. (2020) uses the halo bispectrum to break
the parameter degeneracy between og and M, and shows that
the sum of neutrino masses can be measured with ~5x
higher precision than just using the power spectrum.
Vicinanza et al. (2019) evaluates the Minkowski functionals
of lensing convergence maps, which are helpful breaking the
€1,,—og degeneracy. Other promising approaches consist of
applying a simple nonlinear input transform to the density
field. Simpson et al. (2011, 2013) clips the density field to a
maximum value to reduce the large contribution of massive
halos to the power spectrum, while Neyrinck et al. (2009) log
transforms the density field to weight all elements of the
cosmic web in a similar manner. Massara et al. (2021)
showed that the marked power spectrum, conceptually
similar to a density field transformation, sets greatly
improved constraints on all cosmological parameters.

In recent years, new methods applying nonlinear operators on
top of wavelet transforms, the so-called wavelet scattering
transform (WST; Bruna & Mallat 2013), have also obtained
promising results (Cheng et al. 2020; Cheng & Ménard 2021a;
Valogiannis & Dvorkin 2022). Valogiannis & Dvorkin (2022)
for instance suggested that the WST can improve constraints on
the value of the cosmological parameters by a factor between 3
and 100 better than the power spectrum, when evaluated on the
three-dimensional matter density field. A similar method called
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the Wavelet Phase Harmonics has been introduced in Allys et al.
(2020), showing very promising results in terms of information
content.”

It is a standard practice in cosmology to quantify the
information content a given statistic carries by using the Fisher
matrix formalism. For instance, the Quijote simulations
(Villaescusa-Navarro et al. 2020), a suite of 44100 full N-
body simulations, was designed to perform Fisher matrix
calculations, and several of the works listed above employ such
simulations to address this point.

Although conceptually simple, the standard Fisher matrix
analyses rely on some assumptions like the Gaussianity of the
considered statistic. In this work, we investigate the level of
non-Gaussianities of different statistics and their impact on
Fisher matrix calculations. Overall, we argue how the use of
several statistical tools can help in the quest to find optimal and
robust statistics to extract the maximum information from the
cosmic web and its tracers.

The rest of the paper is organized as follows:

1. First, in Section 2 we introduce the Fisher matrix
formalism and two statistical tests to quantify the level
of non-Gaussianity in a given statistic. We also propose a
method to remove non-Gaussian components from the
considered statistic.

2. Second, in Section 3 we illustrate the problem by
considering the power spectrum and some statistics
derived from it and show how the Fisher matrix
formalism can give different results just a result of
transformations that do not carry cosmological informa-
tion. We show how to ameliorate these situations by
making use of the non-Gaussian tests.

3. Third, we repeat the above exercise but for other statistics
of the LSS of the universe such as the bispectrum,
marked power spectrum, and WST in Section 4.

4. Next, we describe the limitations of the tools used to
identify non-Gaussianities in Section 5.

5. Finally, we draw our conclusions in Section 6.

2. The Fisher Matrix Formalism and Gaussianity Tests

In this section we first describe the Fisher matrix formalism
and then we discuss two different tests to identify non-
Gaussianities in a given statistics. We then describe a method
to remove non-Gaussian dimensions from generic statistics. We
note that while in this paper we focus our attention on
cosmology, these methods are generic and can therefore be
applied to problems outside cosmology.

2.1. Fisher Matrix Formalism

The Fisher matrix formalism (Fisher 1922; Cover &
Thomas 2006) is a method to quantify the accuracy that a
given statistic can constrain the value of some parameters. The
Fisher matrix formalism is commonly used in cosmology to
quantify the accuracy that a given statistic can place on the value
of the cosmological parameters. One of its big advantages is that
is does not require actual data to perform the calculation.

When having N parameters, 6 € R", conditioning the value
of a statistic X, the Fisher information can be represented in a

s In this work, we use both information content and parameter constraints.

Higher information content means tighter parameter constraints, and vice versa.
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matrix form as:

F;(0) = Ex l(% log £(X; 9)](%1%’ L(X; 9)]|9], 1)

J

where L(X; @) is the likelihood function. Formally, the
likelihood function is a function of @ when the observed
sample X is fixed. However, in this work, we will explore the
case where @ is fixed instead. We will call £(X; ), the
probability of X when @ is fixed, the sampling distribution.
‘When the likelihood can be differentiated twice, this can be
rewritten as

2

86,06,

F;(0) = —Exl log £(X; 6)|9]. )

This matrix is called the Fisher information matrix (FIM;
Fisher 1922; Cover & Thomas 2006). The Cramer—Rao
theorem states that the variance of an optimal unbiased
estimator on the parameter 6; will satisfy

§%6; = (F Y. 3)

When the likelihood £(X; @) is a multivariate Gaussian

distribution, the FIM can be expressed as (see, e.g., Tegmark
et al. 1997)

o, Opy 1

g — _k _IZ“] + —Eu

108 im 1 Ok
;= ¥
06; 06; 2

a6, ™ 6

, 4)

where p and ¥ are the mean and the covariance of the
considered statistic. In this equation and in the whole paper, we
assume Einstein notation. Following Carron (2013), we only
keep the first term in this equation since we are using a non-
Gaussian distributed estimator, and this term will lead to
overestimating the Fisher information. This has been shown
explicitly by Carron (2013) for Gaussian fields, but we
conservatively apply this in our case where we have non-
Gaussian fields. We do not come back on this hypothesis in the
present paper. The Fisher matrix is then further simplified as:
Oy Oy

Fi‘? — Lk il 5
7 o6, 86, ©

To evaluate the FIM (e.g., from numerical simulations), two
ingredients are needed:

1. Estimate the covariance X of the statistic, which can be
computed from many independent realizations, at a fixed
value of the cosmological parameters, of the considered
statistic.

2. Estimate the partial derivatives of the expectation value
of the statistic with respect to the parameters.

In theory, this is enough to evaluate the FIM and to derive
optimal constraints on the cosmological parameters from
Equation (3). In practice, however, there are a few subtleties
to this analysis, such as:

1. The estimated covariance and /or derivatives might have
not numerically converged.
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2. Numerical precision can affect calculation of derivatives
and matrix inversion.

3. Spurious effects may arise due to artifacts from the way
the statistic is represented.

4. Noise and systematics may not have to be taken into
account.

5. The sampling distribution of the considered statistic can
be substantially non-Gaussian.

It is common practice to perform some sanity checks to
verify that the first and second points above are not a problem.
There are also standard practices to investigate the effects of the
third. While including noise may be easy, systematics may be
more challenging. In this work however, we focus our attention
on the last point, that it is usually not taken into account, and it
is commonly assumed that the sampling distribution is a
multivariate Gaussian distribution.

2.1.1. Standard Fisher Analysis

We will start with a standard Fisher analysis, where we
evaluate the Fisher matrix of Equation (5) and derive optimal
constraints using Equation (3). In this analysis, we will perform
a series of sanity check to verify the robustness and validity of
the computation, such as:

1. We check that the condition number® of the covariance
matrix is well under 10’. Larger values can lead to
numerical instabilities when computing the inverse of the
covariance matrix.

2. We conservatively remove any frequency beyond ky,, the
Nyquist frequency of the grid.

3. We check the numerical convergence of the covariance
and the derivatives by checking the change in the
constraints when using a subset of the simulations. (see
Figure 7).

2.1.2. Fisher Analysis from Quijote Simulations

In this paper, the different Fisher computations are carried
out using the Quijote Suite, which is especially designed for
this purpose. We consider six cosmological parameters, {2,
Qp, h, ng, og, M} (see Villaescusa-Navarro et al. 2020, for the
choice of cosmological models). In particular, we use:

1. A set of 15,000 simulations with the same fiducial
cosmology, closely matching the latest constraints by
Planck (Aghanim et al. 2020), to estimate the covariance
matrix.

2. A pair of 500 simulations ran with one parameter both
slightly smaller and larger than the fiducial value to
estimate the partial derivatives of the statistic with respect
to the parameters {€2,,, €%, h, n,, og}. To compute the
partial derivative of the statistic with respect to M,, we
instead use four sets of 500 simulations ran with
M_,=0.0, 0.1, 0.2, and 0.4 eV neutrinos.

The M, =0.0eV simulations have the same parameters as
the fiducial simulations, but they have been generated from
Zeldovich initial conditions as in the massive neutrino
simulations. The value of the parameters for all of the
simulations employed can be found in Table 3. We refer the

6 The condition number is defined as the ratio between the maximum and the

minimum eigenvalue of a given matrix.
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Figure 1. This figure shows an example of the two-dimensional density field
from a Quijote simulation. The slice has dimensions of 1000 x 1000 x
250 (h~'Mpc)’. As can be seen, these fields are non-Gaussian, and therefore the
power spectrum cannot characterize all of its statistical properties.

reader to Villaescusa-Navarro et al. (2020) for further details on
the Quijote simulations.

In this work we focus our attention on summary statistics of
the three-dimensional matter density field (see Figure 1 as an
example). In future work, we plan to carry out this exercise for
summary statistics of the halo and galaxy density fields.

2.2. Probing the High-dimensional Non-Gaussianity of the
Statistic Distributions

Probing the Gaussianity (normality) of a probabilistic
variable can be done via many tests in one dimension. For
instance, a combination of the kurtosis and skewness yields a
simple but efficient and fast descriptor for the non-
Gaussianity (D’Agostino  1971), the Kolmogorov—Smirnov
(K-S) test (Karson 1968) can evaluate the goodness-of-fit
between empirical and expected cumulative distribution
functions (CDFs), and the Shapiro-Wilk test (Shapiro &
Wilk 1965) is another efficient test to reject a null hypothesis
about Gaussianity.

However, the task becomes more complex and challenging
in higher dimensions. In this work, we will perform two tests,
one to identify and quantify non-Gaussian pairs, and another to
quantifying whether the sharpness of the sampling distribution
is reproduced by the Gaussian assumption.

2.2.1. Pairwise Gaussianity Test

For some applications, it may be interesting to quantify the
Gaussianity of the different dimensions of an statistic. To
identify the terms exhibiting non-Gaussianity, we use a
simplified version of the test proposed in Sellentin & Heavens
(2017). The steps, nearly identical to Sellentin & Heavens
(2017) are as follows:

1. Start with N samples of a d-dimensional statistic,
S € RN, where the sample mean has been subtracted,
> 5 Sp; = 0. (The index “b” labels the individual samples:
bel0, N—1)).
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2. Compute the covariance:
STS
N—-—d-2

and check its convergence.” Note that the denominator
includes the Hartlap factor (Hartlap et al. 2006).°

3. For all (i, j) such that 0 <i, j<d andi=j, get the two
eigenvectors v ;)W of the subcovariance matrix

Ci G ©)
Gi G

4. For all 0 < b < N and all pairs (i, j), calculate:

C:

Xpij = Vi) - (Sbi> Spj)
Yoij = Waij) = (Sbis Spj)

Now, if § are samples from a multivariate Gaussian, for
each (i, j),

Zpij = Xpij T Ypij

should be samples drawn from a Gaussian as well.
5. Perform a kurtosis—skewness test (D’Agostino 1971) on
zpij for all (i, j) along b and construct the matrix:

Rj=si + kjf (7

where s is the z-score from the skewness test, and k is the
z-score from the kurtosis test, both along the sampling
dimension. s is defined in Equation (13) in D’ Agostino &
Belanger (1990) while k is defined in Equation (19) of
D’ Agostino & Belanger (1990).

We will refer to this test as the pairwise Gaussianity test. The p-
value for the test in Step 5 can also be of interest, but this is
prone to numerical error and stochastic convergence, so we
rather choose to run many calibrations using the covariance
obtained in Step 2. We draw samples from a multivariate
Gaussian having the covariance estimated in Step 2 and repeat
the Gaussianity test with these samples. We perform the same
tests above with this mock data. We denote the mean of R;; over

different mocks as p:;“' and the standard deviation of R; over

different mocks as a}ffj. Note that “cal” stands for “calibration.”

2.2.2. Quantifying the Overall Non-Gaussianity

The second test we use to quantify the level of non-
Gaussianity of an statistic evaluates how well a multivariate
Gaussian approximates the shape of the sampling distribution
around the fiducial parameters. In general, this test works well
when there are enough samples to obtain a converged estimate
of the covariance matrix. Our test for an s-sigma confidence
level is described below. The index b always runs over the
different samples while i, j runs over the dimensions of the
statistics:

1. Start with N samples of a d-dimensional statistic,
S € RW-4) where the sample mean has been subtracted,
>op Spi=0.

7 Convergence here is checked by the percent level convergence of the

covariance when using 80% of the simulations. However, the convergence of
the covariance does not guarantee the convergence of its inverse or any derived
guantities. As we will see, we use mock data to overcome these difficulties.

If we were to omit this factor, the mean of #, (defined in the next item)
would be away from the expected mean, d.
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2. Divide S into two sets of N/2 samples. We denote the
fist set as A € RV/24) and the second set as
B € RIN/2D),

3. Compute the covariance using only A:

T
c—__ A4
N/2—d—2

and check the convergence of the matrix elements by
using smaller (<N/2) number of samples.

4. Evaluate t, = B,; C;; By; (no sum on b). The square root of
this quantity is also called the Mahalanobis distance.

5. If the statistic distribution is Gaussian, the #, values are
expected to follow the Xz-dislribution for d degrees of
freedom.

6. Use the K-S test (Karson 1968) of these t, values and the
x’-distribution of degree of freedom d. We get the test
statistic:

sks = sup,|CDF,,(x) — CDF,2(x)|,

where CDF,, is the empirical CDF from the #, samples
and CDin is the CDF of the y’-distribution of degree of
freedom d. Note that these CDFs are one-dimensional.
7. Repeat with some mock samples drawn from a Gaussian
with the covariance obtained in Step 3. The test passes if
the test statistic, sgs, is within an s-sigma interval from
the Gaussian mock. In this work, we use s =3 and s = 5.

We note that different metrics can be used to evaluate the
distribution differences in Step 6. We tested out some options
including the Kullback-Leibler divergence and the Earth
mover’s distance, but found them to be more sensitive to the
outlier samples at the tail of the distribution. We call this test
the X2 distributional test.

With the two Gaussianity tests described above, we aim at
identifying two signatures of a non-Gaussian sampling
distribution: (1) when pairs of coefficients shows a highly
non-Gaussian relation, and (2) when the overall sampling
distribution’s peak’s sharpness differs from the Gaussian one.
We will use these two tests to quantify, and remove, the non-
Gaussianities of different statistics of the LSS.

2.3. Removing the Non-Gaussian Dimensions

Based on the above analysis, we propose a scheme to
iteratively eliminate the non-Gaussian components of a given
statistic, keeping a subset that passes our Gaussianity tests at
some confidence level. The procedure is as follows:

1. Compute Ry £ and off' for all (i, j) based on
Equation (7).

2. Perform the pairwise Gaussianity test:
(a) Compute the matrix of z-scores Z; where

Zj= Ry — pi) /o ®)

this is the metric we choose to define how non-Gaussian a
component is.

(b) In order to remove the maximally non-Gaussian
component, remove the row containing the maximal
matrix element of Z;. Since we would get two rows,
we remove the row in which the sum of the Z; along
the row is bigger.

(c) Repeat (b) until all z-scores lay within an s-sigma
interval.
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3. Separately, perform the x’ distributional test:

(a) Compute z;=>; Z;.

(b) Eliminate dimensions sorted by decreasing value of z;
until the remaining statistic passes the X2 distribu-
tional test within an s-sigma interval.

4. The remaining statistics are the dimensions surviving
both tests.

We will refer to “Gaussianize a given statistic” when we apply
to it the above procedure. It is however important to emphasize
that this does not mean that we take a non-Gaussian statistic
and make it Gaussian, but instead that we attempt to remove its
non-Gaussian components. Thus, this procedure will naturally
remove information from the statistic.

3. Examples with the Power Spectrum and Its Variations

We now quantify how the constraints on the value of the
cosmological parameters, as derived by a Fisher matrix
computation, depend on the non-Gaussianity of the considered
statistic. For this, we use the power spectrum and two toy
statistics that are constructed from it.

3.1. Statistical Probes

We start by describing the power spectrum and the two toy
statistics we build from it.

3.1.1. The Power Spectrum (Pk)

The power spectrum characterizes the amplitude of Fourier
modes for different wavenumbers. For a homogeneous and
isotropic random field, 6(x), one can define the (isotropic)
power spectrum as

(3" (K") = @m)*P(k)5p(k — K') (&)

where the brackets indicate an ensemble average, d(k) is the
Fourier transform of é(x), and 5;?_') is a Dirac delta. Being an
isotropic estimator, it depends only on the norm k of k, the
only nonvanishing configurations being for k = k’. The power
spectrum, as a probe of the LSS, has the advantage of being
directly interpretable and closely related to theoretical
predictions.

For an isotropic and homogeneous Gaussian random field,
the power spectrum contains all of the information about the
underlying process. Indeed, all of the odd higher-order
correlation functions vanish, and the even cormrelation functions
can be expressed as functions of the power spectrum.

It is worth mentioning that the power spectrum of a
nonlinear transformation of the density field has been shown
to be a useful statistic for cosmology. For instance, the power
spectrum of the log of the density field (Neyrinck et al. 2009)
and the clipped power spectrum (Simpson et al. 2011, 2013)
are examples of statistics that bring information from high-
order correlation functions back to the power spectrum due to
the nonlinear field level transformation.

We have performed a standard Fisher matrix analysis using
the power spectrum, and we show the results as dotted blue
lines in Figure 2. We find that the results pass all standard tests:
reasonable conditional number and convergence for covariance
and derivatives.

Park et al.

3.1.2. Pk @ log(Pk)

We will illustrate the problem of performing Fisher matrix
analysis using non-Gaussian statistics by constructing a toy
statistic whose sampling distribution is not Gaussian. We
consider the statistics defined by the concatenation of the power
spectrum, Pk, and the log of the power spectrum, log(Pk). We
denote this statistics as Pk & log(Pk).

With dotted lines in Figure 2, we show the derived constraints
on the value of the cosmological parameters from a standard FIM
for Pk, log(Pk), and Pk & log(Pk). As can be seen, the
constraints from the Pk & log(Pk) are tighter than those from
Pk and log(Pk) (while these two are very similar). This is
physically not possible, since we are just performing a local
transformation of the power spectrum, which cannot add
additional information to the existing one from the power
spectrum.

One might think that this behavior may be only happening
because Pk and logPk are very correlated, and that computing
properly their cross-covariance will get the cormrect results.
However, this is not what we found since our standard Fisher
analysis passes all traditional tests to determine the robustness
of the results.

3.1.3. Arbitrary Transformation of the Pk: £(Pk)

We now show another example of an statistic derived from
the power spectrum that can give rise to unrealistically tight
constraints on the value of the cosmological parameters.

We build the summary statistic, which we call f(Pk), as
follows. We optimized a multilayer perceptron (MLP) network
that takes as input the power spectrum and outputs a nonlinear
function of it. We minimize a loss function that represents the
parameter constraints derived from a standard FIM. Specifi-
cally, we use an MLP with two hidden layers with 32 neurons,
which transforms the 78-dimensional power spectrum into a
20-dimensional statistic. This approach is similar to that of
Charnock et al. (2018). We apply the ReLU activation function
(Glorot et al. 2011) to the output of each hidden layer. Let the
parameters of the network be A, then we optimize for

N = argmax, L£(\), (10)
where

L(A) = Lag(A) + £n6(A) + Lcond(A)- (11)

Lag(N) is the loss term decreasing the marginalized parameter
constraints. It is implemented as the sum of the squares of the
ratio of the new constraint to the constraint given by Pk. Lyg(A)
is the loss term maintaining the statistic to be dimensionally
Gaussian. It is simply (Skewness)>+(kurtosis — 3)%. Lcong(A) is
just the condition number of the covariance when using this
statistic. See Appendix B.2 for further details on the loss function
and its different terms.

Then our statistic becomes f (Pk) = MLP(Pk, )\’). We show
the parameter constraints, derived from the FIM in dotted lines
in Figure 2. As in the case of Pk @ logPk, f(Pk) achieves higher
accuracy on the cosmological parameter than the power
spectrum. This is physically not possible as both statistics are
related by a transformation that does not contain cosmological
information.
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(d) Standard and Gaussianized Fisher constraints for log(Pk)
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Figure 2. We have used the Fisher matrix formalism to quantify how well a given statistic can constrain the value of the cosmological parameters. To avoid each plot
being too small, we only show the joint constraint for the three parameters (1, og, and M,, while the constraints are marginalized over all six parameters. Panel (a)
shows the results for Pk, log(Pk), Pk & log(Pk), f (Pk) , while panel (b) shows the same for the Gaussianized equivalent (i.e., the statistic obtained after removing the
non-Gaussian components as explained in Section 2.3). All Gaussianized statistics are plotted in solid lines. Panel (c) has the standard and Gaussianized constraints
for Pk and log(Pk) together, and panel (d) has the standard and Gaussianized constraints for log(Pk) and Pk & log(Pk) together. (The ellipses in panels (c) and (d)
already appear in panels (a) and (b).) « denotes the value of the condition number. As can be seen in panel (a), Pk & logPk and f(Pk) achieves tighter constraints on the
value of the parameters than Pk and logPk (they achieve similar constraints), which should not be possible. Their Gaussianized version achieves constraints much
more similar, which can be seen in panel (d). We note however that for f(Pk), we were not able to keep enough Gaussian dimensions to obtain reliable Fisher
constraints. This exercise shows the importance of quantifying and avoiding using non-Gaussian statistics using traditional Fisher matrix calculations. The full comer

plot is in Figures 8 and 9.

3.2. Non-Gaussianity Tests

To investigate whether the results above are due to their
sampling distribution not being Gaussian, we perform a
pairwise Gaussianity test on Pk, logPk, Pk @ logPk, and
f(Pk) and show the results in the upper row of Figure 3.

For the power spectrum, we find nonnegligible non-
Gaussianities at the largest scales. This is expected, since on
large scales, there are few modes, and the power spectrum is
not expected to follow a Gaussian distribution. This observa-
tion is somewhat similar to the one in Sellentin & Heavens
(2017) for the weak lensing power spectrum. We also find
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Figure 3. We have performed the pairwise non-Gaussianity test on a set of different statistics: Pk, log(Pk), Pk & log(Pk), f(Pk), Mk, Bk, and WST (from top left to
bottom right). The color in each pixel indicates the z-scores, Zy, defined in Equation (8). Higher values indicate larger deviations from Gaussianity. We find different
pattems in the pairwise non-Gaussianity matrices. Note that Pk, log(Pk), and Mk are ordered such that the large scales (small k) come first. The bright bands around
the 80th element of Pk & log(Pk) are pairs between the large scales of log(Pk) and all scales of Pk. The bispectrum, Bk, and wavelet scattering transform, WST, are
reduced to 200 dimensions for the ease of analysis. This test can help us identifying and removing non-Gaussian components of a given statistic.

some non-Gaussianities on small scales. However, we suspect
this is due to numerical artifacts when calculating the power
spectrum.

For the logarithm of the power spectrum, we find
significantly lower non-Gaussianities, although we observe
some on large scales. In this case, since the power spectrum
spans several orders of magnitude, we believe that a
logarithmic transform could in part reduce the effect of outliers
on the covariance. For Pk & log(Pk), we observe that the non-
Gaussianity between a dimension of Pk and the corresponding
dimension of log(Pk) is clearly revealed by the pairwise
Gaussianity test. For f(Pk), we observe some pairs with
nonnegligible values of the z-score (Equation (8)).

We also perform the x* distributional test and show the
results in the first row of Figure 4. While the CDF of t-values of
Pk and log(Pk) shows a negligible amount of deviation from
the expected X2 distribution, for Pk & log(Pk) and f(Pk) we
find substantial deviation from the expected distribution. f(Pk),
which was constrained to be dimension-wise Gaussian, turned
out to be highly non-Gaussian and does not pass the ¥ test. It
is interesting to see that the pairwise non-Gaussianity test did
not reveal these non-Gaussianities as well as it did for other
probes. The reason probably lies in the way we constructed the
statistic. The output of a neural network is derived from dense
linear operations and nonlinearities. Thus, its output coeffi-
cients can be expected to have cormrelations involving many
terms compared to other probes, which usually maintain some
separation between the regions of Fourier plane that are probed.
Even if we do not see many pairwise non-Gaussianities, it is
likely that higher (>2) dimensions are correlated in a complex
and non-Gaussian manner.

The above tests indicate that the results from the standard
Fisher matrix calculation for the Pk & log Pk and f(Pk) may
not be valid since these statistics exhibit significant level of
non-Gaussianities.

3.3. Corrected Fisher Analysis

We now Gaussianize the statistics using the procedure
described in Section 2.3 and show the results of the FIM
analysis with solid lines in panels (b)—(d) of Figure 2. We refer
the reader to Tables 1 and 2 for more quantitative details.

Although the non-Gaussianity detected for the power
spectrum seems to be mild compared to the other probes, it
does affect the parameter constraints at roughly the 50% level,
as we can see from Table 2. We note however that this may be
due to the fact that some of the wavenumbers identified as non-
Gaussian on small scales may only be due to numerical
artifacts.

For log(Pk), we find that a logarithmic transform of the
power spectrum is sufficient to make it more consistently
Gaussian. The corrected parameter constraints are now only
corrected at the 15% level. It is important to emphasize that
even if log(Pk) is just a transformation of the power spectrum,
and therefore it should not contain more information that the
power spectrum itself, the reason why our results show that
constraints from the Gaussianized log(Pk) are better than those
from the Gaussianized Pk is because our procedure removes
non-Gaussian information. If that would not be the case, all
statistics should give the same constraints.

For Pk & log(Pk), we observe that the non-Gaussianity
between a dimension of Pk and the corresponding dimension of
log(Pk) is clearly revealed. After correcting for the non-
Gaussianity, Pk & log(Pk) ends up having constraints similar
to that of log(Pk). We conclude that the non-Gaussian
correlations and the spurious constraints caused by them are
successfully removed.

For f(Pk), and unlike other statistics, we find it difficult to
get consistent results when repeating the neural network
training, or when bootstrapping the mock samples in the
Gaussianity tests. In general, it should be thought to be
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Figure 4. Results of the f distributional test performed on the seven statistics considered in this work: Pk, log(Pk), Pk & log(Pk), f (Pk), Mk, Bk, WST . As can be
seen, this can help us in identifying the statistics that deviate from Gaussianity. In this case, Pk & log(Pk), f (Pk), Bk, WST exhibit different levels of non-
Gaussianity in their sampling distributions. The results of this same test after removing the non-Gaussian components are in Figures 12 and 13.

Table 1
Standard and Comected Parameter Constraints

Alm Ay ADp A, Ah AhC Ay Ang Agg A

o —0, e =20 - - - —ny = —o AM,[eV]  AME [eV]
Pk 0.271 0.433 0.752 1.109 0683 1038 0463 0.73 0014  0.023 0.789 1.273
51%] 29 1.4 1.7 17 17 1.0
log(Pk) 0273 0.319 0.758 0.851 0689 0784 0467 0.54 0014 0016 0.786 0.912
51%] 11 07 0.9 1.0 04 0.5
Pk & log(Pk)  0.057 0.35 0.245 0.934 019 0853 0094 0589 0003 0018 0.082 0.987
51%] 8.2 6.6 6.8 72 52 5.9
F(PK) 0.062 NA 0.216 NA 0.11 NA 0.055 NA 0.001 NA 0.082 NA
51%] NA NA NA NA NA NA
Mk 0.042 0.083 0.212 0.39 0.147 0275 005 0101 0002  0.005 0.017 0.025
51%] 8.9 78 9.3 43 7.1 35
Bk 0.099 0.209 0.321 0.598 027 0518 0166 0326 0009 0014 0276 0.755
51%] 33 3.7 35 3.7 10.2 37
WST 0.087 0.129 0.404 0.591 0259 0372 0056 0086 0002  0.003 0.058 0.111
51%] 6.5 28 3.6 25 4.1 10.4

Note. For each parameter and statistic, we describe the standard and 3¢ corrected marginalized fractional constraints. The § is the percentage error on the reported
ratios of changes when using different Gaussian mocks. The neutrino mass has a fiducial value of M,, = 0, so we write down the raw constraint. “NA” represents “not
applicable” and is the case where the Gaussianity test leaves fewer than six dimensions.

unreliable. Although our test reveals that this statistic is
exploiting the Gaussian assumption of the Fisher analysis to
report seemingly confident results, we have found f(Pk) to
sometimes (depending on the neural network instance) pass
our test and report promising constraints, especially for
the case of the neutrino mass. We do suspect that these
constraints are still contaminated by other assumptions made
for a Fisher analysis, and do not signify that a function of the
power spectrum can truly be more informative. We will try to
reveal the cause in a future study. This observation however
suggests that a spurious probe reporting seemingly confident

results could be easily engineered while being difficult to
validate.

4. Application to Non-Gaussian Statistics in Cosmology

In the previous section, we illustrated the problems inherent
to estimating parameter constraints using Fisher matrix
calculation for statistics that exhibit some level of non-
Gaussianities. In this section, we investigate the level of non-
Gaussianities in statistics commonly employed to extract
information not captured by the power spectrum, such as the
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Table 2
Parameter Constraint Change Ratio

Ang ang Ang? Ao Ane3 A An? An® Ao’ Acf AmS AME

Alm Alm Ay Ay Ah Ah Ang Ang Aoy Aoy AM, AM,
Pk 1.596 1.518 1474 1.427 1.52 1.47 1.576 1.509 1.623 1.518 1.615 1.516
&%) 29 1.6 14 1.0 1.7 1.1 1.7 0.8 1.7 36 1.0 2.7
log(Pk) 1.165 1.137 1.122 1.101 1.137 1.113 1.156 1.13 1.16 1.145 1.16 1.143
&%) 1.1 0.4 0.7 0.4 0.9 0.4 1.0 04 04 0.3 0.5 0.3
(Pk & log(Pk)) 6.115 5.949 3.81 3.726 4.486 4.38 6.26 6.093 6.065 5.857 12.114 11.726
&%) 8.2 8.0 6.6 6.4 6.8 6.5 7.2 7.0 52 5.8 59 6.4
f(Pk) NA NA NA NA NA NA NA NA NA NA NA NA
&%) NA NA NA NA NA NA NA NA NA NA NA NA
Mk 1.971 1.522 1.837 1.558 1.866 1.544 2.018 1.749 2.348 1.845 1.402 1.232
&%) 8.9 4.8 7.8 52 08 4.8 43 36 7.1 34 35 1.5
Bk 2.103 1.638 1.864 1.464 1.921 1.509 1.957 1.538 1.678 1.341 2.736 2.111
&%) 3.3 1.8 37 0.8 35 1.1 37 1.2 102 14 37 14
WST 1.48 1.242 1.462 1.217 1.434 1.214 1.53 1.272 1.745 1417 1.902 1.567
&%) 6.5 1.0 2.8 42 3.6 1.8 25 4.1 4.1 4.6 104 35

Note. For each parameter and statistic, we describe the ratio of the new constraint to the original constraints when applying a 3o condition of non-Gaussianity and a 5o
condition. The § is the percentage error on the reported ratios of changes when using different Gaussian mocks. Since the 5o condition must reject fewer terms of a
statistic, it is by construction more constraining than the 3¢ condition while allowing for more non-Gaussianity. “NA” represents “not applicable” and is the case

where the Gaussianity test leaves fewer than six dimensions.

marked power spectrum, the bispectrum, and WST. We will
also study the change in the Fisher results when we
Gaussianize those statistics.

4.1. Non-Gaussian Statistics

We now describe the different summary statistics we
consider in this section. It is important to emphasize that the
name of these statistics (non-Gaussian) does not arise due to
their non-Gaussian distribution, but instead to the fact that they
are used to study non-Gaussian density fields, where the power
spectrum is not able to fully characterize its statistical
properties. The sampling distribution of these statistics can
still be Gaussian.

The constraints on the value of the cosmological parameters
derived from a standard Fisher analysis are shown as dotted
lines in Figure 5.

4.1.1. The Marked Power Spectrum (Mk)

The idea behind the marked power spectrum is to assign a
weight to each particle (or galaxy). That weight can be an
intrinsic property of the particle/galaxy or can be related to the
environment of the object.

In the cosmological context, the mark introduced by White
(2016) has been studied in depth in Massara et al. (2021) and
Philcox et al. (2020), especially for its ability to constrain the
neutrino mass. In this work, we use the measurements from
Massara et al. (2021). The mark here, first introduced in White
(2016), represents an environmental property of the particle/
galaxy defined as

(12)

P
m(x; R, p, és)z[ Lt o ] ,

1+ & + Gr(x)

with parameters R = 10 h_lMpc, p =2, and 6,=0.25.

4.1.2. The Bispectrum (Bk)

The bispectrum is a statistic that measures correlations of
closed triangles in Fourier space. For a homogeneous random
field, it is defined as:

(6(ky) S(ka) S(k3))
= 2n)*B((k1, ka, ks) 6y (ky + ke + k), (13)

with the same notation as Equation (9). Note that the
bispectrum, as defined above, is a scalar function with three
vector arguments. However, the delta function requires k, +
k; + k3 =0, i.e., the three vectors should form a triangle. Thus,
the bispectrum can also be represented as B(ky, k2, 612) or B(ky,
k2, k3) assuming statistical isotropy of the field.

The bispectrum is a non-Gaussian statistic capturing
interactions of different Fourier modes. In fact, the expectation
value for the bispectrum vanishes for a homogenous Gaussian
random field. Recently, Hahn et al. (2020) showed that the halo
bispectrum is a good probe of the LSS breaking the parameter
degeneracy between og and the sum of the neutrino mass M,,.

We use our own estimator for the bispectrum, which relies
on fast Fourier transforms (FFTs), similarly to other works
(Sefusatti 2005; Watkinson et al. 2017). We provide further
details in Appendix B.4.

4.1.3. The Wavelet Scattering Transform

The WST is a set of statistics initially used in image analysis.
They were first introduced in Bruna & Mallat (2013) and
Mallat (2012). There are many similarities between WST and
convolutional neural networks (Krizhevsky et al. 2012), since
they are both built from successive applications of convolutions
and nonlinearities. However, in the WST formalism, the
convolutional kemels are a set of fixed wavelets instead of
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Figure 5. Standard (dotted lines) and Gaussianized (solid lines) Fisher constraints for the marked power spectrum (Mk), Bk, and WST. To avoid each plot being too
small, we only show the joint constraint for the three parameters €1,,, o, and M,, while the constraints are marginalized over all six parameters. The full comer plot is

shown in Figures 10 and 11.

being optimized for the data, while the nonlinearities are a
complex modulus.

Wavelets are spatially localized oscillatory functions, which
probe specific frequencies and orientations. Having a set of Ny
such wavelets that sample the whole Fourier space below the
Nyquist frequency, the wavelet transform of a field I(x) is built
by convolving it with these wavelets. This generates N fields,
which are bandpass filtered versions of the original field on the
frequencies probed by each wavelet. The WST is then built
with successive application of these wavelet convolutions and
nonlinear modulus operations, allowing us to characterize the
interaction between different frequency components of the
field (Mallat 2012). Following recent works on the WST, we
restrict ourselves to a two-layer WST. Recently, the WST
became a statistic of interest in astrophysical applications
(Allys et al. 2019; Cheng et al. 2020; Regaldo-Saint Blancard
et al. 2020; Cheng & Ménard 2021a, 2021b; Saydjari et al.
2021).

In the present paper, to allow for a direct comparison to other
three-dimensional statistics, we develop a “2.5-dimensional”
WST, where instead of using fully three-dimensional wavelets,
we treat the line-of-sight (LOS) direction specially. We dissect
the xy-Fourier plane using radial and angular wavelets as in
conventional two-dimensional WST, but then we multiply each
of the xy-wavelets by every other z-wavelet. Our z-wavelets are
simply logarithmically spaced one-dimensional wavelets in the
z-direction. Our wavelets are thus not optimized to probe
spherically isotropic fields but rather for a field with the LOS-

10

direction being special. This design of these wavelets might not
be optimal as a statistic for an isotropic density field, but it is
motivated by the fact that the LOS-direction is treated
differently in real surveys.

In this study, we use two-dimensional wavelets with eight
angular bins and eight radial bins and LOS(z) wavelets with six
bins. We thus have Ny=(1+ 8 x 8) x 6 =390 wavelets and
standardly 2 + Ny + Nf = 152492 coefficients. However, we
can average over angles since we assume statistical isotropy,
and we assume that a convolution of a low passed image by a
high-frequency filter has negligible information Mallat (2012).
With these dimensionality reductions, the final dimension of
the statistic is 1052. Since our Gaussianity tests are
computationally intensive for high-dimensional probes, we
further reduce the dimensionality to 500 dimensions by using a
principal component analysis (PCA). More details are provided
in Appendix B.5.

4.2. Results of the Non-Gaussianity Tests

We have performed the non-Gaussianity tests described in
Sections 2.2.1 and 2.2.2 to the above non-Gaussian summary
statistics and show the results in the bottom rows of Figures 3
and 4. We find prominent non-Gaussian pairs in the case of the
marked power spectrum on large scales, and on pairs involving
large and small scales. The calculation of the mark assigned to
every particle requires information from some large scale,
described by the parameter R. Philcox et al. (2020) showed that
this creates a coupling between large and small scales, which
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may be behind this phenomenon. On lhe other hand, the
marked power spectrum seems to pass the y 2 distributional test
(see Figure 4).

For the bispeclmm we do not find as many hjghly non-
Gaussian pairs as we do in Mk or the WST. However, in this
case, the overall non-Gaussianity revealed by the  distribu-
tional test is significant as seen in Figure 4. To check the
robustness of our estimator for the bispectrum, we repeated the
analysis from the public bispectrum measurements from the
Qlujote suue (Appendix B.4), finding similar results. When
using the x° test, we find substantial non-Gaussianities for both
bispectra measurements (see Figure 4). We note that the
presence of non-Gaussianities in the bispectrum likelihood was
already noted in Scoccimarro (2000).

For the WST, Figure 3 reveals that several principal
components have non-Gaussian correlations with almost all
other coefficients. At this point, it is hard to reveal whether
these non-Gaussianities are caused by some small amount of
coefficients or a combination of them since we apply a
dimensionality reduction using the principal components (see
Appendix B.5). However, a linear transformation of a (multi-
variate) Gaussian distributed variable is still Gaussian dis-
tributed; thus, these non-Gaussianities should exist in the
original coefficients. However, we wamn the reader that since
the amplitude of the z-scores (Equation (8)) is not dramatically
large, these results may be affected by some inaccuracies as in
the case of the power spectrum. Figure 4 shows that the -
values from the WST also deviate from the expected
distribution in a manner similar to the bispectrum.

4.3. Corrected Fisher Analysis

As we did for the power spectrum, we Gaussianize the above
non-Gaussian statistics using the procedure described in
Section 2.3. With the derived statistics, we perform a Fisher
matrix analysis and show the results in solid lines in Figure 5.
Table 1 contains the standard and corrected constraints while
their ratio can be found in Table 2.

The marked power spectrum’s parameter constraints are
affected by the correction. We find that the constraints on 2,,,,
2, €, and og have roughly doubled. It is also worth noting
that the constraints from a 30 Gaussian threshold to a 5¢
condition are nonnegligible for the Mk, as can be seen in
Table 2. We suspect that a large portion of the non-Gaussian
components in Figure 3 (a) are between these thresholds. It is
interesting to see that the constraint on the neutrino mass is less
affected than the other parameters and still is very promising
compared to the power spectrum, at least for this analysis on
the three-dimensional matter density field.

For the bispectrum, the parameter constraints are also
affected, resulting in constraints roughly 100% bigger (less
constraining), as we can see from Table 2. The constraint on
the neutrino mass (M,), which is an important motivation for
the bispectrum (Hahn et al. 2020), is affected by 170%, making
it only different by a 10% level from the constraints from
log(Pk). One could expect a similar effect for the halo or
galaxy bispectra in redshift space (see Hahn & Villaescusa-
Navarro 2021; Hahn et al. 2020). The extent to which this
effect appears, however, would have to be estimated explicitly,
and we make no claims about it in this work.

We originally had an intuition that the WST would have high
levels of non-Gaussianity similarly to the bispectrum, since the
same frequency components appear in the construction of
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several coefficients (see Appendix B.5). However, as we can
read off of Table 2, the parameter change ratios were roughly
similar to those of the power spectrum, except in the case of the
neutrino mass. It could be the case that our principal
component selection actually removed most of the complex
non-Gaussianities. Nevertheless, we find corrections roughly at
the 50% level, which cannot be overlooked.

We emphasize once again that the derived constraints from
the Gaussianized statistics should be seen as a very
conservative bound since the procedure we use to Gaussianize
a statistic removes information. A full validation of the original
constraints from the Fisher matrix would require us to compare
them against methods that do not throw away information.

5. Limitations of Gaussian Tests

In this section, we describe some of the limitations of the
method and tests used to (1) identify non-Gaussianities, and (2)
Gaussianize the statistics.

In a case where one dimension is exactly a linear
combination of other dimensions, the redundancy manifests
in an obvious way (e.g., a large condition number or singular
covariance). However, our example of Pk & log(Pk) is an
instructive example of a non-Gaussian sampling distribution
evading this check. The case here is more pernicious—the
information is redundant but in a nonlinear way, which does
not appear as an extremely large condition number. Never-
theless, the pairwise test makes it rather obvious which
dimensions of the sampling distribution will cause the Gaussian
approximation to break down.

But, in the case of inputs derived from WST, a neural
network, or some other complicated statistical probe, the issue
is further complicated for two reasons, as follows:

1. The presence of nonlinear relations between its dimen-
sions cannot be easily guessed, as it is the case for
Pk & log(Pk), where we do suspect such a relation from
construction.

2. Such a relation could be a nonlinear combination of many
dimensions, which can be hard to detect by the pairwise
Gaussianity test.

And thus, although our cormrection scheme renders the
distribution of these statistic more compatible to a Gaussian
approximation, we expect there to be many different ways a
statistic could be non-Gaussian while evading the pairwise test.
As a simple example, we point out that a three-<component
relation cannot be easily picked up with this test. Let us
consider

a~ N(©,1) (14

b ~ N, 1) (15)

3
C:a—l—b—l—ex(a—l—b)_ (16)

V2

When ¢ is zero, every two-dimensional joint distribution will be
exactly amultivariate Gaussian while the full three-dimensional
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Figure 6. The non-Gaussianity of the joint distribution of a, b, and c in
Equation (14) revealed by the y* distributional test.

distribution will clearly not be. In fact, the covariance will be
singular in this case, and this is something that can be easily
spotted. However, when e is not zero but small, the covariance
will not be singular nor have a very big condition number.
Every two-dimensional subdistribution will still be very close
to Gaussian, and thus the pairwise non-Gaussianity test will fail
to detect the severe non-Gaussianity. Extending the pairwise
non-Gaussianity test to a triplet test would reveal the relation;
however, this approach does not scale well with the
dimensionality of the probe.

Although this toy example seems to be artificially tailored to
show this effect, similar cases are expected to show up in real
data. The € =0 case is rarely seen in real data since such an
explicit linear relation is usually discovered using linear
analysis. However, nearly linear relations with slight nonlinea-
rities are expected to be a common case, even though the
nonlinear components might not be of any known form, as in
the example above. In general, for a d-dimensional statistical
probe, if one can predict a single dimension of the statistic
using the d — 1 dimensions better than what a Gaussian process
could do, a hidden relation between the dimensions of the
statistics should be suspected to exist.

Further elaborating on this example, the non-Gaussianity
here is detected by our x 2 distributional test, as we can see from
Figure 6. This is because even though every two-dimensional
subdistribution is Gaussian, the #-values of the samples are not
consistent with a Gaussian distribution. Our x? distributional
test thus serves as a complementary test to the pairwise
Gaussianity test.

In the statistical probes explored, our x distributional test
was effective and indispensable in picking out the non-
Gaussianity for f(Pk), Bk, and WST, but we note that the
test is somewhat less sensitive than the pairwise test. In
complex statistics like the bispectrum and the WST, there could
be very complicated hidden relations connecting some
dimensions in a comphcated highly non-Gaussian manner. In
this sense, our X distributional test is a good way to
complement the pairwise test.

Finally, it should be noted that passing these tests should be
treated as a necessary condition but not a sufficient one. There
are many ways non-Gaussianities can hide in high-dimensional
distributions, while we only check for the cases where (1) two
dimensions of the statistic have a non-Gaussian partial
distribution, and (2) where the sharpness of the Gaussian
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approximation of the sampling distribution is vastly different
from the one computed from data.

Let us consider the example of the f(Pk) statistic. While this
statistic cannot contain more information than the power
spectrum, the results from the Fisher may be interpreted in the
other direction when the Gaussian tests are passed. This clearly
illustrates the limitations of the proposed tests. In general, one
should thus always simultaneously check for convergence,
numerical stability, and Gaussianity when performing a Fisher
analysis and be as rigorous as possible. We thus highlight that
the interpretability of a statistical probe has a major importance,
especially when using machine-learning typed approaches,
since they provide an intuition of how the joint distribution will
behave.

6. Conclusions

The Fisher matrix formalism is commonly used in
cosmology to quantify the accuracy that a given statistic can
constrain the value of some cosmological parameters. This
method will determine the variance of the optimal unbiased
estimator for the considered statistic. However, the Fisher
matrix is usually computed assuming that the statistic
considered follows a multivariant Gaussian distribution.

In this work, we have considered several statistics to
characterize the LSS of the universe and investigated whether
their distribution is Gaussian or deviate from it. For this, we
made use of two tests that will identify pairwise and global
non-Gaussian distributions of the considered statistic. These
tests can be employed in general and are not only designed for
Fisher matrix calculations. We found non-Gaussianities in
traditional statistics like the power spectrum and bispectrum but
also in more recent statistics like the marked power spectrum
and WST. We note that our conclusions are in agreement with
previous works that have investigated this in depth (see, e.g.,
Hahn et al. 2019).

Next, we have applied a procedure to Gaussianize the
statistics, which consists of identifying the non-Gaussian
components of the statistic and removing them. We stress that
this procedure removes non-Gaussian dimensions, rather than
Gaussianizing the entire statistic. We have then performed
Fisher matrix calculations with the standard and the Gaussia-
nized statistics. We find significant corrections to the parameter
constraints: (62%, 51%) for the power spectrum, (134%, 84%)
for the marked power spectrum, (173%, 111%) for the
bispectrum, and (90%, 56%) for the WST when the threshold
to Gaussianize the statistics is set to (30, 50), respectively.

We have also shown that without imposing Gaussianity for a
given statistic, one can achieve unrealistically tight constraints
on the value of the parameters. We illustrated this by
considering the statistics Pk & log(Pk) (the concatenation of
the power spectrum and the logarithm of it) and f(Pk), which
performed better than the power spectrum just by a nonlinear
transformation that does not contain cosmological information.

We have also outlined the limitations of the method we use
in this work, which can identify pairwise and global (around
the peak) non-Gaussianities, but cannot identify more complex
non-Gaussianities (e.g., higher-order interactions). It is also
important to mention that we found that the Gaussianized
statistics performed worse in constraining the value of the
parameters. An obvious reason for this is because our method
throws away the non-Gaussian information. A fairer compar-
ison would be to develop an optimal method to Gaussianize a
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given statistic or to perform the inference with a method that
did not rely on a Gaussian assumption, e.g., likelihood-free
inference (see, e.g., Charnock et al. 2018; Alsing et al. 2019;
Diaz Rivero & Dvorkin 2020; Makinen et al. 2021). Thus, the
degraded constraints derived in this work from the Gaussia-
nized statistics should be recalled as a conservative and perhaps
more robust bound. This work however emphasizes the need to
compare the constraints derived from the Fisher matrix with
methods that do not discard the non-Gaussian information.

We note that other methods may be more efficient at
Gaussianize statistics. For instance, Scoccimarro (2000)
proposed the use of PCA components of the bispectrum as a
way to compress the relevant information while at the same
time taking advantage of the central limit theorem to
Gaussianize the likelihood. We note that this strategy is similar
to the one we have used for the WST, although the x test
revealed the presence of non-Gaussianities. One could also
calculate the correction to the distribution of the statistic as in
Hall & Taylor (2022).

In general, Fisher matrix calculations are known to perform
well at the 10% level. In this work, we have shown that under
more conservative assumptions, the Fisher constraints can be
trusted within a factor of ~2, at least for the statistics
considered in this work. The tests used in this work can thus be
used to quantify the robustness of the considered statistics to
Fisher matrix assumptions.

In the quest to find the best statistic to constraint the value of
the cosmological parameters, it is important to keep in mind the
inherent limitations of the Fisher matrix formalism. The
method used in this work will allow us to complement the
standard analysis with a more conservative Fisher matrix
calculation. These, combined with methods like simulation-
based inference can help the community identify robust
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statistics to retrieve cosmological information from the LSS
of the universe.

We note that the Gaussianity of a given statistic not only
affects the outcome of Fisher matrix calculations, but
traditional analyses performed using, for instance, Markov
Chain Monte Carlo methods (see, e.g., Byun et al. 2021;
Philcox & Ivanov 2022) commonly assume a Gaussian
likelihood. If this assumption breaks down, corrections to the
inferred parameters would also be expected.

We release the code we have used to compute the power
spectra, bispectra, and WST. The code can be found on
GitHub’ and is archived in Zenodo and works on both CPUs
and GPUs.
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Appendix A
Parameters of the Simulations

Table 3 contains the characteristics of the Quijote N-body
simulations used for the Fisher matrix calculations in this work.
We refer the reader to Villaescusa-Navarro et al. (2020) for
further details on the Quijote simulations.

Table 3
Parameters of the Simulations
Name N L [h~"Mpc] IC Q,, Q, h g oy M, [eV]
Fiducial N 1000 2LPT 0.3175 0.049 0.6711 0.9624 0.834 0.0
Q$ 15000 1000 2LPT 0.3275 0.049 0.6711 0.9624 0.834 0.0
o, 500 1000 2LPT 0.3075 0.049 0.6711 0.9624 0.834 0.0
QL" 500 1000 2LPT 0.3175 0.051 0.6711 0.9624 0.834 0.0
Q 500 1000 2LPT 0.3175 0.047 0.6711 0.9624 0.834 0.0
'y 500 1000 2LPT 0.3175 0.049 0.6911 0.9624 0.834 0.0
h™ 500 1000 2LPT 0.3175 0.049 0.6511 0.9624 0.834 0.0
n,+ 500 1000 2LPT 0.3175 0.049 0.6711 0.9824 0.834 0.0
ny 500 1000 2LPT 0.3175 0.049 0.6711 0.9424 0.834 0.0
oi;" 500 1000 2LPT 0.3175 0.049 0.6711 0.9624 0.849 0.0
og 500 1000 2LPT 0.3175 0.049 0.6711 0.9624 0.814 0.0
M, 500 1000 Zeldovich 0.3175 0.049 0.6711 0.9624 0.834 0.0
Mj’ 500 1000 Zeldovich 0.3175 0.049 0.6711 0.9624 0.834 0.1
M;H' 500 1000 Zeldovich 0.3175 0.049 0.6711 0.9624 0.834 0.2
M,:H_" 500 1000 Zeldovich 0.3175 0.049 0.6711 0.9624 0.834 04

Note. N is the number of simulations, and L denotes the size of the box in comoving units. “IC” denotes the method of initial condition generation.
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346117283.

codebase: https: //zenodo.org/badge /latestdoi /
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Appendix B
Details of the Statistics

B.1. Power Spectrum

We use the well-known “FFT and bin” method to compute
the power spectrum. We bin the squared amplitudes into
uniform bins spaced by the frequency resolution: ks = 27/L
where L is the length of the box. For the sake of clarity, our bin
edges are [—0.5 ks, 0.5 Kpes,---, (ﬁ |H/2] + 0.5) k] for a
grid side H. The factor of J3 comes from the three-
dimensional nature of the grid. Although, as is clear from the
above, we bin all of the modes resulting from an FFT, to avoid
contamination from any information from |k| > kny, we only
use the bins below 0.5 kny

B.2. f(Pk)

We discuss the details of our information maximizing neural
network. We use a multilayer perceptron architecture with an
ReLU activation (Glorot et al. 2011). A single sample of the
input power spectum with 78 elements, Pk € R’®, is
processed as follows:

=Pk —p) Co

x; = ReLU(Owxy + by)
x3 = ReLU(Oqx; + b3)
X4 =0Osx3 + b3
f=Pk — x4

where x2, x3 € R, x4 € R¥, and @ constitute the Hada-
mard division. The matrices ®; have dimensions compatible for
the vector dimensions. The scaling vectors i, o are fixed to the
fiducial mean and standard deviation. This transformation alone
is a linear transform and thus does not affect the Fisher analysis
up to numerical effects. However, neural networks perform
optimally when the data is (1) motivating this transform.

Calling the vector of all parameters, {@®,, ©®,, @, by, b, b;}
as A, we optimize for

LX) = Las(A) + £n6(A) + Leond(N)

using the Adam optimizer (Kingma & Ba 2014) until
convergence. Lag(A) is simply defined as the sum of rational
change of the marginalized parameter constraints, Lyg(\)
quantifies the dimensionally non-Gaussianity of the samples; it
is the squared sum of the normalized skew and the kurtosis.
Lcong(A) 18 the condition number of the covariance matrix times
a small constant, here 0.001. While the first two losses are of
order unity, the condition number of the matrix is generally
considered safe when under 10°. We discount this term to focus
the network on optimizing the two first functions. To avoid any
potential issues from over-fitting to these specific realizations of
the simulation, we only use 70% of the simulations.

B.3. Marked Power Spectrum

We use the mark in Equation (12), with optimal parameters
R=10h""Mpc, p =2, and §, = 0.25. We do not calculate this
but use the publicly available data from Villaescusa-Navarro
et al. (2020).

Park et al.

B.4. Bispectrum

Here are our choices when implementing Equation (13) with
the FFT estimator (Sefusatti 2005; Watkinson et al. 2017), as
follows:

1. Our computational representation of §(|k| — k)), or a “k-
ring” centered at k, is smoothed. We use a b-splined
kemel as the WST (see Equation (B.5)) falling off to 0 at
the center of the neighboring bins. It is normalized to
unity.

2. We use 16 k-values uniformly sampled in log(k) up to
kN),.

3. We use all possible triangles satisfying the triangular
inequality.

We end up with 825 valid configurations.

B.5. Reduced Wavelet Scattering Transform

We describe our three-dimensional WST and its reduction
scheme. We start with wavelets similar to the Morlet wavelets
in two dimensions. Then we multiply a one-dimensional
wavelet in the z-direction. Thus we treat the z-axis as being
different than x and y motivated by the line-of-sight (LOS)-
direction in the observational scenario. One could interpret
these as 2.5-dimensional wavelets having one dimension
different than the two others. For NZ LOS wavelets, NR radial
wavelets, and NT angular wavelets, our three-dimensional
wavelets are ¢ x ¢’ (xy,z are just naming labels) where
O0<k<NZ 0<i<NR, 0<j<NT, and we add the DC
wavelets ¥pC to keep the squared sum of the wavelets unity
near the DC frequency.

Although one can use any LOS, radial, angular separations,
we use radial bins and LOS bins equally spaced in logarithmic
space and equally spaced angular bins:

0Owheni <0

lng(kNy) —1
NR

log, (kny) when NR < i

= pow(Z,]—l—i* ]whenOQi(NR

(BI)

w

6,=j* (B2)
=1 NT

Owheni <0

when 0 < i < NZ

. log,(kny) — 1
= ]JOW[Z,]—FI*TY

log, (kny) when NZ < i
(B3)

where kyy is the Nyquist frequency. Note that we define the
values at all i in order to simplify our wavelet definitions
below.

We then define the b-spline:

1whent <0
bo(t) =423 —3t+ 1when0 <t < 1 (B4)
Owhenl <t
t—1
b](f., t.l"} tf) = bO (BS)
I — 1
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Owhent < g
by(t, te, 1)) when t) < € <

by(t, I, 1, 1) = . B6
2( s kg by r) b[(l‘, te, tr) when tc g t <t ( )

Owhent, <t

Our wavelets are then:
U7 (r, 6) = ba(r, 1i, iz, Tig1) X ba(6, 6, 611, 6i51)  (BT)
V(@) = b2(2, Zis Zi-1, Zix1) (B8)
Vi (r, 6, 2) = V7 (r, 6) x Vi (@) (BY)
to where we add the DC wavelets
Owhenrg<r
,DC

r r, .9, = v ) . B10
v (1,0, 2) {(1 — 7 0) x ¥i) (B10)

We thus have NF= (1 + NR x NT) x NZ wavelets.

Indexing all wavelets as 1) ; (note that we abuse the notation
here to represent the function sampled at all pixels needed to
match the image size), the wavelet coefficients for an input
image I are defined as:

p = mean(l) (B11)
o = std(I) (B12)
50 = (. o) (B13)
p=I—¢ (B14)

a
I'=1°® (B15)
S1; = mean(l}) (B16)
F=1PF ey (B17)
§2;; = mean(1} (B18)
WST = {80, Si, S2}. (B19)
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The mean and std operations are ran over the image domains,
all bold fonts represent images, superscripted arrows represent
vectors.

The total number of WST coefficients are then
2 + NF + NF2. For this analysis, we discard the field mean,
which should be zero for all of the overdensity fields. Due to
the high dimensionality, we reduce the dimensionality by
reporting the angular averaged coefficients. In detail, we report
S1 coefficients averaged over angles. We then divide all 52
coefficients by the corresponding S1 coefficient to remove
redundant information. We then only take the coefficients
where the angular index and the LOS index for the first
convolution and the second convolution are the same. We then
take the averaged coefficient over this angle. For a Fisher
analysis, it would be useful to have an even smaller
dimensionality due to numerical effects and convergence. We
thus report only the first 500 principal components derived
from the set of coefficients from the fiducial simulations. These
coefficients have strictly less information than the whole set of
coefficients.

In practice, we deviate from the original WST introduced by
Bruna & Mallat (2013) in two senses:

1. We use b-spline wavelets; these wavelets are indexed by
R and T where R represents the radial index and T
represents the angular index.

2. We take the absolute value squared instead of the
absolute value as the nonlinear operation between
convolutions.

We use b-spline wavelets for some motivations:

1. Z,-j vﬁ + -1}%(3 = 1 everywhere in the Fourier disk up to
|k| = kpax. The wavelet square sums to unity up to kpa,.
Thus, the summed coefficients are expected to be more
isotropic. Then it decays to zero from kpax t0 kny.

2. In addition to the above property, the wavelets decays to
zero from |k| = kpay to |k| =kyy, and thus we have no
contribution at all from any modes over kny.

3. The wavelets decays precisely to zero within a sparse
region of the Fourier space. This permits a much faster
computation using the bounding boxes of the wavelets.

Appendix C
Convergence of the Parameter Constraints

We used a subset of the fiducial and derivative simulations to
estimate the convergence of the parameter constraints. The
entire Fisher analysis was repeated using a fraction of the
simulations and the results are shown in Figure 7.
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Figure 7. The convergence of the parameter constraints are shown. We used a subset of the fiducial and derivative simulations to repeat the whole Fisher analysis. The
absolute percent error on the parameter constraints are plotted as a function of the fraction of simulations used. Using 80% of the simulations, the error for all statistics

and all parameters is at the percent level.
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Appendix D
Full-sized Corner Plots for the Fisher Constraints

We show the full 6 parameter corner plots for all standard

Park et al.

Pk, log(Pk), Pk & log(Pk), f(Pk) are shown in Figure 8 and
their corrected constraints in Figure 9. The standard constraints
for Mk, Bk, WST are shown in 10 and their corrected

and comected statistics. The standard constraints for constraints in Figure 11.
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Figure 8. We used the Fisher matrix formalism to quantify how well a given statistic can constrain the value of the cosmological parameters. The figure shows the
results for Pk, log(Pk), Pk & log(Pk), f(Pk) . Pk and log(Pk) almost overlap and appear as a single line. As can be seen, Pk & logPk and f(Pk) achieve tighter
constraints on the value of the parameters than Pk and logPk (they achieve similar constraints), which is not possible.
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Figure 9. Similarly to Figure 8, we show the results for Pk, log(Pk), Pk & log(Pk) , but for the Gaussianized equivalent (i.e., the statistic obtained after removing the
non-Gaussian components as explained in Section 2.3). The Gaussianized Pk & log(Pk) achieve constraints much more similar to either Pk or logPk. We note
however that for f(Pk) we were not able to keep enough Gaussian dimensions to obtain reliable Fisher constraints.
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Appendix E
Result of the xz Distributional Test on the Corrected
Statistics level and at the 5o level were most consistent with the null

We have applied the y distributional test on the corrected hypothesis that the statistic is Gaussian distributed. These
statistics as well. As expected, the statistics corrected at the 3o results are shown in Figures 12 and 13.
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Figure 12. Results of the f distributional test performed on the seven statistics considered in this work: Pk, log(Pk), Pk & log(Pk), f (Pk), Mk, Bk, WST . Unlike
Figure 4, this test was performed after removing the non-Gaussian components at the 3o level.
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Figure 14. Comparison of Fisher matrix constraints from our power spectrum and the power spectrum from Villaescusa-Navarro et al. (2020).

Appendix F
Computational Details

We make our library computing Pk, Bk, WST publicly
available. Our code is available on Github.

We discuss some details we consider to accelerate the
computation.

1. All of our functions are batched. Modern machines’
RAM and GPUs can easily have >10 GB of memory. To
perform FFTs and array slicing in an efficient manner, we
batch every function. For a two-dimensional field, one
thus feeds in a (C,H,W) array, and for a three-
dimensional field, one feeds in a (C,H,W,D) array.

2. When the nonlinearity applied between convolutions is
the modulus squared for the WST, we do not perform the

last IFFT since we can use the Plancherel theorem:

[T ir@pdx = [T 1 dopak.

We can thus simply output the squared power multiplied by

3.

the wavelet in Fourier space.

Most of our wavelets are sparse in Fourier Space. One
can use a sparse representation and extract the relevant
pixels of the Fourier space image. However, since sparse
operations are inherently slower than dense operations,
we use a much faster altemative. We exploit the fact that
our wavelets are not only sparse in Fourier space but also
compactly packed in a small region. (It is important that
one computationally works in the Fourier space repre-
sentation where the zero frequency is in the middle of


https://github.com/cfpark00/LazyWaveletTransform
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Table 4
Runtime of Qur Statistics Code on an NVIDIA A100-SXM4-40 GB for Double Precision Arithmetic
Time (ms)
2D iD
H=128 H=1256 H=128 H=1256
N=10 N=100 N=10 N =100 N= N=5 N=1 N=5
Pk 05+02 0.6 +£0.2 0.6+02 1.0£0.5 274+02 36102 18 +1 25+1
Bk (4096 configs) 108 £6 285+2 143+ 5 1164 £ 8 390 + 20 1860 + 30 2900 £ 50 14100 + 200
WST(NR =4, NT = 4) 13+£2 14+2 13+2 30+£2
WST(NR = 8, NT = 8) 145+6 146 £ 5 145+ 4 168 + 4
WST(NR =4, NT =4, NZ =3) 103 +7 176 £ 4 284 £5 1188.8 £ 0.1
WST(NR =8, NT=8,NZ=16) 5390 + 60 5430 £20 5410 £ 30 12220 + 20
an array.). We simply precompute the rectangular t BKgujoce

bounding box of each wavelet and only operate on the
pixels in the bounding box. The remaining sparcity after
extracting out only the bounding box is of the order of 1.

4. Since a Fourier transform of an image is Hermitian, we
sample angles only up to 7 and not 2. The coefficients
will be the same regardless. In the three-dimensional
case, we choose to keep the angular sampling the same,
and thus we cannot exploit the Hermitianity again in the
z-direction.

5. For the power spectrum, we precompute the radial
binning function and save it in memory as a sparse
matrix. For a grid of side H, dimension d, and NR radial
bins, we have a matrix P € R#*N® where Py is 1 if the
ith pixel of the flattened the d-dimensional array falls into
the jth bin. We also save the normalization needed, which
does not depend on the input field.

The runtime of our statistic code is described in Table 4.

Appendix G
Cross Check of Our Fisher Matrices

To confirm that we did not make a mistake in our analysis,
we check our standard power spectrum Fisher matrix with the
Fisher results published in Villaescusa-Navarro et al. (2020).
We note that although very close, they are not numerically
identical, and we suspect that this results from the binning
choice of the power spectrum.

Appendix H
Check with an External Bispectrum

We do notice that small choices when implementing the FFT
estimator (Sefusatti 2005; Watkinson et al. 2017) could alter
the Fisher analysis results and could thus be important. Thus, it
could be the case that only the bispectrum coefficients we
obtained with our code show non-Gaussianity. If so, the b
distributional test would only be detecting non-Gaussianity
from our own products. To verify that the finding generalizes to
previously published bispectra, in this case from the Quijote
suite products (Villaescusa-Navarro et al. 2020), we apply the
x distributional test here. As we see in Figure 15, we clearly
detect the non-Gaussianity in this bispectrum.

23

0.006 | x? distribution of df=1898
' f B BKguijore Samples

0.005 - Jol

0.004 4

Probability density
g

e
(=]
=3
=}

0.001

0.000 -
1000

2000 2500 3000 3500

X test Bkaujote

1500

Figure 15. 1 distributional test applied to the 1898-dimensional bispectrum
from Villaescusa-Navarro et al. (2020).
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