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Maximally mixing active nematics
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Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike
components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits
chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this
paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square
with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is
maximally mixing, in that it optimizes the (dimensionless) “topological entropy”—the exponential stretching
rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively,
produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic
state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be
seen in future experiments.

DOI: 10.1103/PhysRevE.109.014606

I. INTRODUCTION

Active matter extends the scope of soft condensed matter
physics to systems far from equilibrium [1], with exam-
ples ranging from bird flocks to the cellular cytoskeleton.
These materials exhibit self-organized collective motion aris-
ing from the interplay of local order with internal driving
forces. Though this collective motion is often chaotic, strong
confinement by walls, wells, or spherical vesicles can render
it more predictable [2–7]. But the confinement and control
of active materials is still poorly understood. This paper re-
ports the discovery of regular time-periodic dynamics within
a well-established continuum model of active materials with
nematic order, confined to a spatially periodic domain. We
computationally demonstrate a method to stabilize this orbit
for laboratory applications. Strikingly, this periodic motion
maximizes the chaotic mixing of the fluid.

Active nematics are a particularly important example of
active materials. They consist of small rodlike subunits that
locally align, forming a nematic phase, and they have a local
energy source which drives their motion. An important model
system consists of a dense two-dimensional (2D) layer of
microtubule (MT) bundles crosslinked by kinesin molecular
motors [2,8–21]. These motors hydrolyze adenosine triphos-
phate (ATP) to walk along the microtubules and stretch the
bundles, injecting extensile deformations into the fluid and
driving large-scale coherent motion. This motion is charac-
terized by the creation and annihilation of topological defects
in the nematic order (Fig. 1) and the chaotic motion of
these defects. Defects have topological charges ±1/2, which
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are created and annihilated in pairs to conserve topological
charge.

A key goal in active nematics research is to coax them to
perform some useful control objective. A natural objective
is to optimize their self-mixing, which could have practi-
cal benefits in microfluidic systems, where mixing, e.g., of
reagents, is particularly difficult due to lack of turbulence
[22]. We characterize mixing by the amount of stretching in
the fluid, quantified by the topological entropy h; in a 2D
fluid h equals the asymptotic exponential stretching rate of a
passively advected material curve. We seek to maximize this
stretching over the natural “active” timescale of the system,
defined below.

Reference [18] first applied topological entropy to active
nematics—for the MT-based active nematics, h was computed
quite accurately from the space-time “braiding” of +1/2 de-
fects about one another [Fig. 1(c)]. Defects act as virtual rods
stirring the fluid. Thus, optimizing mixing reduces to coaxing
the +1/2 defects into an efficient braid pattern. Reference
[23] addressed which braid to target, conjecturing, with strong
numerical evidence, that the orbit in Fig. 2(a) maximizes
the topological entropy per operation, with hTEPO = log(φ +√

φ) = 1.0613, where φ = (1 +
√

5)/2 is the golden ratio.
An operation is a set of simultaneous swaps (clockwise or
counterclockwise) of neighboring defects. Due to the numeri-
cal evidence, we call this the maximal mixing braid.

This paper reports that the above maximal mixing braiding
state spontaneously occurs in simulations of active nematics,
when confined to a sufficiently small square with peri-
odic boundary conditions, i.e., a topological torus. Though
numerous theoretical [15,24–30] and experimental [2–7]
works have studied 2D active nematics in strongly con-
fined geometries, and others have studied bulk behavior
(i.e., weak confinement) in squares with periodic boundary
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(a) (b) (c)

FIG. 1. (a) Cartoon of defects showing nematic contours. (b) Flu-
orescence image of MT-based active nematic with +1/2 (circles) and
−1/2 (triangles) defects. (c) Space-time braiding of experimental
+1/2 defect positions. (Adapted from Ref. [18].)

conditions [10,31,32], we know of no prior study system-
atically exploring the strong confinement limit on a square
with periodic boundary conditions. Here, strong confinement
means that the square is small relative to the active length
(defined below) of the system.

We use the term “confined” not for the physical system, but
for the mathematical simulation, i.e., the numerical solution of
the model partial differential equations (PDEs) are confined to
a square with periodic boundary conditions. Such boundary
conditions are admittedly not directly realizable in the labora-
tory, though there is a long history of using them in theoretical
studies. A solution with periodic boundary conditions on a
square is equivalent to a solution in the plane with discrete
translational symmetry. So, any solution on the square with
periodic boundary conditions is also a solution on the plane.
A solution with “strong” or “weak” confinement on the square
corresponds to a solution with a “small” or “large” periodic
cell in the plane, relative to the active length "a defined below.

II. MATHEMATICAL MODEL

Following Ref. [10], we model the fluid velocity u and ne-
matic tensor Q = S(n ⊗ n − I/2), where S ! 0 is the nematic
order parameter and n is the director field; a director is a unit
vector with no distinction between head and tail, i.e., n and
−n are identified. We numerically solve the two nematohy-
drodynamic equations as given in Ref. [10], the first being

D
Dt

Q = ∂

∂t
Q + u · ∇Q = λSE + [Q,ω] + γ −1H, (1)

(a) (b)

FIG. 2. (a) Cartoon showing the circular orbits (blue) of the two
stirring rods (open and solid black dots) for the maximal mixing braid
on a torus, using a periodic tiling of the fundamental cell (gray).
(b) Trajectories of positive (blue) and negative (red) defects for sim-
ulations with "a = 3. The gray rectangle is the original integration
domain, which tiles the remainder of the plane.

where D/Dt is the advective derivative, [, ] is the commutator,
E = [(∇u) + (∇u)T ]/2 is the strain rate tensor, and
ω = [(∇u) − (∇u)T ]/2 is the vorticity tensor. The flow
alignment parameterλ describes the shape of the mesoscale
nematogens. Circular nematogens have λ = 0. Infinitely
thin needles have λ = 1, which we use for most of our
simulations. (This value of λ is very close to that found in
Ref. [33] as well.) The first two terms on the right-hand
side of Eq. (1) derive from the passive advection of the
microtubules. The deviation from this behavior is given by
the rotational viscosity γ and the molecular tensor

H = − δ

δQ
FLdG = −Q[A + C Tr(Q2)] + K∇2Q, (2)

which is the variation of the Landau–de Gennes (LdG) free
energy FLdG with C = −A > 0. The first term describes
the isotropic-nematic phase transition, and the second term
derives from the elastic energy, with elastic constant K .

The second dynamic equation is Navier-Stokes,

ρ
D
Dt

u = ρ

(
∂

∂t
u + u · ∇u

)
= ρν∇2u + F − ∇p, (3)

assuming incompressibility, ∇ · u = 0, with constant density
ρ. The first term on the right-hand side is the viscous drag,
with viscosity ν, and the third term is the force density due
to the pressure p. The force density Fi = ∇ j*i j comes from
the elastic and active stresses * = *E + *A, with *E =
−λH + [Q, H] and *A = −αQ, and where the activity α in
the MT system depends on ATP concentration, motor density,
and other material properties.

The bulk, i.e., unconfined, material has two length scales,
the active length "a =

√
K/α and nematic coherence length

"n =
√

K/C, which characterize the average defect spacing
and defect core size, respectively. Furthermore, the square
domain width L determines the confinement. The active
timescale is ta = K/(αν) and corresponding velocity is va =
"a/ta = ν

√
α/K . The dynamics is determined by five di-

mensionless parameters: the flow alignment parameter λ, the
Reynolds number Re = K/(ρν2), a dimensionless rotational
viscosity γ̃ = γ ν/K , a LdG parameter C̃ = C/α = ("a/"n)2,
and the confinement ratio "a/L. Strong confinement corre-
sponds to "a/L ! 1 and weak confinement to "a/L " 1. In
simulations, we primarily use the dimensionless parameters
λ = 1, Re = 0.01, γ̃ = 50, C̃ = 9.0, and vary the confinement
through "a, keeping L = 100. In terms of the original param-
eters in Eqs. (1)–(3), we use γ = 5 × 256, K = 2562, ρ = 1,
ν = 2560, C = 2562 × (3/"a)2, and α = (256/"a)2.

III. REALIZATION OF THE MAXIMALLY MIXING STATE

Figure 3(a) shows snapshots of the simulation of Eqs. (1)
and (3), with a random initial condition, at "a = 1.0. (See
Supplemental Movie M1 [34].) Defects are continuously cre-
ated and destroyed, and their motion is chaotic, as is typical
for bulk behavior. The instantaneous root-mean-square (rms)
velocity displays a chaotic time dependence. Increasing "a
to 3.0 in Fig. 3(b) confines the system more tightly, with
correspondingly fewer defects. (See Supplemental Movie M2
[34].) Unlike the bulk behavior, the rms velocity quickly be-
comes periodic. Two snapshots taken at the same phase of
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(a)

(b)

FIG. 3. Simulations of active nematics for different values of "a.
(a) "a = 1.0. Snapshots of the defect positions and director field are
shown along the trace of rms velocity vs time. The defect dynamics
is chaotic. (b) "a = 3.0. Analogous plot for a more confined case,
i.e., larger "a. The defect dynamics is periodic with period T .

the motion show essentially the same director field and defect
locations. In this periodic state, four defects trace out periodic
orbits shown in Fig. 2(b), with no creation or annihilation
events. A key observation is that the +1/2 orbits are topo-
logically identical to Fig. 2(a), showing that the +1/2 defects
exhibit the maximal mixing braid. Note that each +1/2 defect
traces out a bounded, circular shape. The defects repeatedly
encounter and revolve around each other counterclockwise,
with four such encounters during each orbit. The −1/2 defects
trace out a strikingly square orbit, braiding around no other
defects. Of course, by symmetry there is also a reflected orbit
in which the +1/2 defects pass each other clockwise.

The maximally mixing orbit is reminiscent of the “Ceilidh
dance” orbit, initially observed for channel confinement by
Shendruk et al. [15,28]. In that geometry, the +1/2 defects
aggregate along a line with half the defects moving right and
the other half left. When opposing defects encounter one an-
other, they alternately pass clockwise and counterclockwise.
Several differences distinguish the maximal mixing orbit from

the Ceilidh dance: (i) Maximal mixing defects move in a
fully 2D pattern; (ii) defect motion is spatially bounded; (iii)
defects always pass each other in the same sense; (iv) there
are no hard-wall boundaries; and (v) the orbit generates the
maximum topological entropy per operation, hTEPO = 1.0613,
as conjectured in Ref. [23], which is strictly larger than that
of the Ceilidh dance [hTEPO = log(1 +

√
2) = 0.8814] [35].

Interestingly, the Ceilidh dance is also optimally mixing, but
only under the restriction that rods are confined to a linear
arrangement [35]. In a similar manner, it has been shown that
the experimental motion of four defects on a sphere [2] is also
very close to maximal mixing for that class of defect braids
[30]. Thus, it would appear that active nematics naturally find
maximal mixing states as the system parameters are varied.

To compute topological entropy, we numerically advect an
initial line segment forward, recording its length versus time
in the semilog plots of Fig. 4, whose slopes yield h = 3.19 ±
0.03 ("a = 1) and h = 0.475 ± 0.003 ("a = 3). (See also Sup-
plemental Movies M3 and M4 [34].) Here, the units are recip-
rocal integration time and errors are the error on the mean over
four advected curves. The insets show final advected curves.
We define a dimensionless topological entropy h̃ = hta, which
accounts for the shift in fluid velocity with changing activity,
yielding h̃ = (1.25 ± 0.01) × 10−3 ("a = 1) and h̃ = (1.66 ±
0.01) × 10−3 ("a = 3). Thus, by this measure, the periodic
motion has more effective mixing by about 33%. Next, we
compute the topological entropy from the E-tec (ensemble-
based topological entropy calculation) algorithm [36] applied
to an ensemble of 1000 randomly initialized advected trajecto-
ries. These results agree with the line-stretching computation
to within two significant figures: h̃ = (1.184 ± 0.001) × 10−3

("a = 1) and h̃ = (1.665 ± 0.003) × 10−3 ("a = 3). Since E-
tec is more efficient than the line-stretching algorithm (which
becomes exponentially more expensive in time), we use E-tec
for the remainder of the paper.

To explore the transition to periodic behavior, Fig. 5
records h̃ for 1 " "a " 4.5. The black curve uses an initial
Q field taken from the periodic state at "a = 3. The system
either remains in a nearby stable periodic state or departs from
it. The blue band is the interval where the system retains two
+1/2 defects for the duration of the simulation. Within this
band, the periodic orbit is stable, or at least sufficiently close
to stable, that it remains mostly periodic over the course of
the simulation. The topological entropy drops precipitously
on either side of the blue band, due to the periodic state ei-
ther disappearing or becoming sufficiently unstable. On either
side of the periodic band, the system converges to a steady
state with no defects and small, nearly constant, velocity (red
band). Technically, for a small number of "a values in this
interval, a pair of opposite defects remained at the end of
the integration, but such a lone pair is expected to eventually
annihilate when integrated further. At "a " 1.5 the final state
has chaotic defect motion with three or more defects (green
band) and an intermediate value of h̃.

The dimensionless topological entropy of the maximal
mixing braid is h̃max = log(φ +

√
φ)/(T̃ /4), where T̃ is the

period of defect motion in units of ta. This produces the
blue curve in Fig. 5, which closely tracks h̃, albeit at a
slightly larger value. We attribute this difference to the
positive defects moving slightly faster than the surrounding
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(a)

(b)

FIG. 4. Exponential growth in the contour length for "a = 1 (top)
and "a = 3 (bottom). Insets show the final image of advected curves.

fluid. For example, at "a = 3.0 the rms difference between
defect and fluid velocities is about 34%. This fact is also
seen by the defect passing through the advected curves. (See
Supplemental Movies M3 and M4 [34].) This difference in ve-
locity is also seen in experiments as the MT bundles fracturing
when bent too far [8].

To clarify the bifurcation at the left edge of the blue band in
Fig. 5, we compute the Lyapunov exponent , of the periodic
solution by measuring how quickly a nearby state diverges
from it (for positive ,) or converges to it (for negative ,). See
Fig. 6(a). The Lyapunov exponent transitions from negative
to positive as "a decreases, passing through zero at "a = "c ≈
2.92. The linear trend in , and the fact that no nearby stable
periodic orbit exists below "c, suggests that this is a subcritical
pitchfork bifurcation [37] (and certainly not a saddle-node
or supercritical pitchfork bifurcation). Pitchfork bifurcations
generically occur for systems with a discrete symmetry whose

FIG. 5. Topological entropy h̃ vs "a. The initial Q tensor for the
black curve is a snapshot of the periodic state at "a = 3, γ̃ = 50,
whereas the initial tensor for the red curve is nearly constant. Red
shading denotes intervals with zero or one +1/2 defects remaining.
Blue denotes two remaining and green three or more.

square is the identity, as for certain translational, rotational,
and mirror symmetries of Fig. 2(b). Thus, we suspect that
there is a pair of nearby unstable symmetrically related pe-
riodic solutions for "a > "c, which collide with the stable
periodic orbit at "c to drive it toward instability.

For a given "a < "c, a +1/2 trajectory diverges “adiabati-
cally” from the periodic state. As each +1/2 defect swaps past
its partner, it is nudged slightly until it eventually annihilates
with a −1/2 defect. [See Fig. 6(b) and Supplemental Movie
M5 [34].] Since each nudge is small, the periodic oscillations
in urms persist, but with a gentle downward trend [left inset of
Fig. 6(a)]. The same trend is seen in reverse for "a > "c, as the
nudges stabilize the orbit [right inset of Fig. 6(a)].

Unstable orbits near the right edge of the blue band be-
have very differently [Fig. 6(c)]. First, the +1/2 orbit has

(a)

(b)

(c) (d)

FIG. 6. (a) The Lyapunov exponent of the periodic orbit. The
insets show urms vs integration time for positive and negative ,.
(b) An orbit diverging from the periodic orbit for "a = 2.8. (c) Same
as (b) for "a = 4.15. (d) urms vs time for orbit in (c).
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(a) (b)

FIG. 7. (a) Simulation ("a = 3) on a square domain having twice
the width as before, with periodic boundary conditions. The maximal
mixing solution is no longer stable as seen by negative (red) and
positive (blue) defect trajectories. (b) Identical simulation except
eight control points are added following the negative defects.

developed four kinks, each coming from a head on collision
between the two +1/2 defects. (See Supplemental Movie M4
[34].) Eventually, small perturbations lead to a hard scattering
event that nearly instantaneously pushes the +1/2 defect onto
an entirely different path, causing it to annihilate with a −1/2
defect. The orbit changes “nonadiabatically”; urms remains
periodic until suddenly breaking down [Fig. 6(d)].

The active nematic can exhibit bistability, with the final
dynamics dependent on the initial conditions. The red curve in
Fig. 5 is the entropy h̃ resulting from a nearly uniform initial
director field. The bump seen in the black curve due to the
maximal mixing orbit is now absent. Furthermore, the jump in
entropy due to chaotic trajectories only occurs for the lowest
value of "a.

To understand how the shape of the nematogen affects our
results, we varied λ, keeping γ̃ , C̃, Re fixed, and varying
"a. We found that λ needed to be sufficiently large, roughly
greater than or equal to 0.6 for the periodic orbit to be visible
(Supplemental Fig. 1 [34]). We also explored how our results
varied with the rotational viscosity γ̃ . See the Supplemental
Material for details [34].

IV. POSSIBILITY FOR LABORATORY OBSERVATION

Recall that the maximal mixing solution relies on tight
confinement within a flat square with periodic boundary con-
ditions; this setup is unphysical in the laboratory. So, for
this solution to be experimentally seen, it would need to be
stable when periodically tiled over an experimental domain
large enough that boundary effects could be ignored. To test
this, we ran simulations on a square with twice the width,
using an initial Q tensor consisting of a 2 × 2 tiling of the
original periodic state plus a small perturbation that breaks
the discrete translational symmetry. The computation showed
that the periodic solution was unstable [see Fig. 7(a) and the
left-hand side of Supplemental Movie M7 [34]]. Thus, this

periodic motion must be stabilized to be seen in the laboratory.
We focus on a simple method that introduces local control
points in the fluid; at a control point, the potential in the
LdG free energy inverts at the origin to become a well with
a single minimum. This induces a local phase transition to
the isotropic state at each control point. (For details on the
modification to the LdG free energy, see the Supplemental
Material [34].) Our computations show that these control
points indeed successfully stabilize the maximal mixing state
[Fig. 7(b) and the right-hand side of Supplemental Movie M7
[34]]. The simulation in Fig. 7(a) (without control points) uses
exactly the same initial conditions as Fig. 7(b) (with control
points) and runs for the same duration. Thus, we have realized
in computation the stabilization of the maximal mixing state
over an expanded domain. Furthermore, we ran the simulation
on an even larger tiling (4 × 4 tiling, with control points and
periodic boundary conditions), and we still see stability of
the maximal mixing solution. We strongly believe that such
simulations remain stable regardless of the tiling size, and we
expect this solution could be realized in the laboratory on a
square domain of sufficient size that the nonperiodic boundary
conditions are negligible.

The control points need to be dynamic, following square
paths that closely track the negative defects in the original
periodic orbit. Intuitively, the negative defects nucleate and
are trapped in the vicinity of the control points. The positive
defects, however, are not directly controlled, but are free to
move. Note that the motion of the control points themselves
has zero topological braid entropy. All topological entropy,
and hence mixing, is generated by the response of the positive
defects.

The control points might be realized in the laboratory in
several ways. One basic approach could be to use a laser to
interrupt the nematic structure at the control points, analo-
gous to laser melting of a thermotropic liquid crystal [38,39].
More generally, a variety of optical techniques have recently
been developed to control activity and guide defects [40–43].
Finally, one might place at the control points a physical ob-
struction, such as a movable (and ideally controllable, e.g.,
optically or magnetically) pillar, large bead, or some other
floating microfabricated structure, as utilized in Refs. [44,45].

The periodic behavior demonstrated here thus provides a
possibility for taming the chaos and unpredictability of active
nematics, while also enhancing their overall mixing.
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