MORE ON LINES IN EUCLIDEAN RAMSEY THEORY
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ABSTRACT. Let £, be a sequence of m points on a line with consecutive points at distance one.
Answering a question raised by Fox and the first author and independently by Arman and Tsaturian,
we show that there is a natural number m and a red/blue-colouring of E™ for every n that contains
no red copy of ¢3 and no blue copy of £,,.

1. INTRODUCTION

Let E" denote n-dimensional Fuclidean space, that is, R™ equipped with the Euclidean metric.
Given two sets X1, X9 C E", we write E" — (X1, X2) if every red/blue-coloring of E™ contains
either a red copy of X; or a blue copy of Xs, where a copy for us will always mean an isometric
copy. Conversely, E" -» (X7, X2) means that there is some red/blue-coloring of E™ which contains
neither a red copy of X; nor a blue copy of Xo.

The study of which sets X3, Xo C E" satisfy E” — (X7, X3) is a particular case of the Euclidean
Ramsey problem, which has a long history going back to a series of seminal papers [6, 7, 8] of
Erdés, Graham, Montgomery, Rothschild, Spencer and Straus in the 1970s. Despite the vintage
of the problem, surprisingly little progress has been made since these foundational papers (though
see |9, 12| for some important positive results). For instance, it is an open problem, going back to
the papers of Erdés et al. 7], as to whether, for every n, there is m such that E" -» (X, X) for
every X C E" with |X| = m.

Write £, for the set consisting of m points on a line with consecutive points at distance one.
Perhaps because it is a little more accessible than the general problem, the question of determining
which n and X satisfy the relation E™ — (f2, X) has received considerable attention. For instance,
it is known [11, 14] that E? — (/2, X) for every four-point set X C E? and that E2 — (fo,f5). On
the other hand [5], there is a set X of 8 points in the plane, namely, a regular heptagon with its
center, such that E? - ({3, X).

In higher dimensions, by combining results of Szlam [13] and Frankl and Wilson [10], it was
observed by Fox and the first author [4] that E" — ({g,£,,) provided m < 2" for some positive
constant ¢ (see also [1, 2] for some better bounds in low dimensions). Our concern here will be with
a question raised independently by Fox and the first author [4] and also by Arman and Tsaturian [2],
namely, as to whether an analogous result holds with ¢s replaced by £3. That is, for every natural
number m, is there a natural number n such that E® — (¢3,¢,,)? We answer this question in the
negative.

Theorem 1.1. There exists a natural number m such that E" - (ls, £y,) for all n.

Before our work, the best result that was known in this direction was a 50-year-old result of Erdds
et al. [6], who showed that E™ -» (g, {s) for all n. Their proof uses a spherical colouring, where all
points at the same distance from the origin receive the same colour. We will also use a spherical
colouring, though, unlike the colouring in [6], which is entirely explicit, our colouring will be partly
random.
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2. PRELIMINARIES

In this short section, we note two key lemmas that will be needed in our proof. The first says
that certain real-valued quadratic polynomials are reasonably well-distributed modulo a prime gq.

Lemma 2.1. Let p(z) = 22 + ax + B, where o and B3 are real numbers, and let q be a prime
number. Then, for m = ¢3, the set {p(i)}™, overlaps with at least q/6 of the intervals [j,7 + 1)
with 0 < j < q — 1 when considered mod q.

Proof. By a standard argument using the pigeonhole principle, there exists some k < ¢? such that
|ka| < 1/q mod q. We split into two cases, depending on whether k is a multiple of ¢ or not.

Suppose first that k # 0 mod ¢ and consider the set of values {p(ki)}?_,. Note first that {i*}?_,
is a set of (¢ + 1)/2 distinct integers mod g, so, since k is not a multiple of ¢, the same is also true
of the set {k?i?}’_,. Hence, letting p1(x) = 2 + 3, we see that the set {p1(ki)}’_, overlaps with
at least ¢/2 of the intervals [j,j + 1) with 0 < j < ¢ — 1 when considered mod ¢. But |kia| <1
mod ¢ for all 1 < < g, so that |p(ki) — p1(ki)] <1 for all 1 <14 < g. Therefore, since exactly three
different intervals are within distance one of any particular interval, the set {p(ki)}!_; overlaps with
at least ¢/6 of the intervals [j,j + 1) mod gq.

Suppose now that k = sq for some s < gq. Then sqa = rq + € for some |e| < 1/¢, which implies
that o = £ 4 €, where |¢/| < 1/ q®>. Without loss of generality, we may assume that r and s have
no common factors. Consider now the polynomial py(z) = 2* + Lz and the set {pa(si)}{_;. Since
pa(si) = s2i%+7ri, it is easy to check that ps(si) = pa(sj) mod ¢ if and only if s2(i+75)+r = 0 mod q.
Since 7 and s are coprime, this implies that the set {pa(si)}{_; takes at least ¢/2 values mod gq.
Hence, letting p3(z) = 22 + Lx + B3, we see that the set {p3(si)}{_, overlaps with at least ¢/2 of the
intervals [j, + 1) with 0 < j < ¢ — 1 when considered mod ¢. But, since | —r/s| < 1/¢?, we have
that |p(si) — pa(si)| = |a — L|si < 1, so that, as above, the set {p(si)}L; overlaps with at least ¢/6
of the intervals [j,7 4+ 1) mod q. O

Given M real polynomials p1,...,py in N variables, a vector o € {—1,0,1} is called a sign
pattern of pi,...,pu if there exists some z € RY such that the sign of pi(z)is o; forall 1 < i < M.
The second result we need is the Oleinik—Petrovsky—Thom—Milnor theorem (see, for example, [3]),
which, for N fixed, gives a polynomial bound for the number of sign patterns.

Lemma 2.2. For M > N > 2, the number of sign patterns of M real polynomials in N variables,

. N
each of degree at most D, is at most (W) .

3. PrROOF OF THEOREM 1.1
Suppose that a1, a2, a3 € R™ form a copy of ¢3 with |a; — ag| = |ag — ag| = 1. If the points are at
distances x1, 9 and x3, respectively, from the origin o and the angle ajas0 is 8, then we have

23 =124+ 1 —229cos6

and
22 =22 4+ 1+ 229 cosh.
Adding the two gives
x3 4+ i = 223 + 2.
Similarly, if ay,ag,...,a, € R™ form a copy of £, with |a; — a;41] =1 for alli =1,2,...,m — 1,
then, again writing z; for the distance of a; from the origin, we have
a2+l =217 42

for all ¢ = 2,...,m — 1. Given these observations, our aim will be to colour R>g so that there is
no red solution to y; 4+ y3 = 2y2 + 2 and no blue solution to the system y; 1 + y;+1 = 2y; + 2 with
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i=2,...,m— 1. Assuming that we have such a colouring x, we can simply colour a point a € R"
by x(Ja|?) and it is easy to check that there is no red copy of £3 and no blue copy of £,,.

We have therefore moved our problem to one of finding a natural number m and a colouring x of
R>o with no red solution to y1 +y3 = 2y2+2 and no blue solution to the system y;_1 +yi+1 = 2y; +2
with 4 = 2,...,m — 1. Let ¢ be a prime number. We will take m = ¢> and define y by choosing an
appropriate colouring x’ of Z; and then setting x(y) = x'(|y| mod ¢) for all y € R>¢. Our aim now
is to show that there is a suitable choice for x’. For this, we consider a random red/blue-colouring
X' of Z, and show that, for ¢ sufficiently large, the probability that y contains either of the banned
configurations is small.

Concretely, suppose that Z, is coloured randomly in red and blue with each element of Z,
coloured red with probability p = ¢ 3/* and blue with probability 1 — p. With this choice, the
expected number of solutions in red to any of the equations y; + y3 = 2y2 + ¢ with ¢ € {1,2,3} is
at most

3p°¢% + 9p?q < 12¢7 /4

1
< 5
where we used that there are at most 3¢ solutions to any of our 3 equations with two of the variables
{y1,y2,y3} being equal and that ¢ is sufficiently large. Note that if there are indeed no red solutions
to these three equations over Z,, then there is no red solution to y1 + y3 = 2y2 + 2 in the colouring

x of R. Indeed, if y; = n; + ¢; with 0 < ¢; < 1, then n; is coloured red in ¥’ and
n1 4+ ng = 2ng + 2 + 2¢9 — €1 — €3.
But |2e2 — €1 — €3] < 2, so we must have
ni+ng=2n+4c

for c € {1,2,3}. However, we know that there are no red solutions to any of these equations in the
colouring y’, so there is no red solution to y; + y3 = 2y2 + 2 in the colouring Y.

For the blue configurations, we first observe that if the y; satisfy the equations y;_14+y;+1 = 2y;+2
withi =2,...,m—1 with y; = a and yo = a+d, then y; = a+ (i —1)d+ (i*> — 3i +2). In particular,
by Lemma 2.1, at least ¢/6 elements of the sequence y1, ...,y lie in different intervals [j,j + 1)
with 0 < 7 < ¢ — 1 when considered mod gq.

Our aim now is to apply Lemma 2.2 to count the number of different ways in which a set of
solutions (y1,¥2, ..., Ym) to our system of equations can overlap the collection of intervals [j,j + 1)
mod ¢q. Without loss of generality, we may assume that 0 < a,d < ¢g. Since, under this assumption,
any set of solutions over R to our system of equations is contained in the interval [0, 2m?), it will
suffice to count the number of feasible overlaps with the intervals [j, j + 1) with 0 < j < 2m? — 1.
Since we need to check at most two linear inequalities in the two variables a and d to check whether
each of the m points are placed in each of the 2m? intervals, we can apply Lemma 2.2 with N = 2,
D=1and M =2-m-2m? = 4m? to conclude that the points y1,...,ym overlap the intervals
[j,7 +1) with 0 < j < 2m? — 1 in at most (100m?)? = 10*m® different ways. But now, since at
least ¢/6 of the y; must always be in distinct intervals, a union bound implies that the probability
we have a blue solution to our system of equations is at most

4, 601 _ —3/4yq/6 _ L

10°m°(1 — ¢ /%) 1° < 5

for m sufficiently large. Combined with our earlier estimate for the probability of a red solution to

Y1 +y3 = 2y + 2, we see that for m sufficiently large (m = 10°° will suffice) there exists a colouring
with no red /3 and no blue 4,,, as required.

4. CONCLUDING REMARKS

We say that a set X C E¢ is Ramsey if for every natural number 7 there exists n such that
every r-colouring of E" contains a monochromatic copy of X. In [4], it was shown that a set X is
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Ramsey if and only if for every natural number m and every fixed K C E" there exists n such that
E" — (X, K). We suspect that there may be an even simpler characterisation.

Conjecture 4.1. A set X is Ramsey if and only if for every natural number m there exists n such
that E™ — (X, 4y,).

Of course, by the result mentioned above, we already know that if X is Ramsey, then E" —
(X, 4y,) for n sufficiently large. It therefore remains to show that if X is not Ramsey, then there
exists m such that E" - (X,{,,) for all n. To prove this in full generality might be difficult.
However, an important result of Erdgs et al. [6] says that if X is Ramsey, then it must be spherical,
in the sense that it must be contained in the surface of a sphere of some dimension. Thus, a first
step towards Conjecture 4.1 might be to prove the following.

Conjecture 4.2. For every non-spherical set X, there exists a natural number m such that E™ -»
(X, lp,) for alln.

The simplest example of a non-spherical set is the line ¢3, so our main result may be seen as a
verification of Conjecture 4.2 in this particular case. The next case of interest seems to be when X
consists of three points a1, az,as on a line, but now with |a; — az| = 1 and |as — a3| = « for some
irrational a.
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