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M O N O C H R O M A T I C  C O M P O N E N T S  W I T H  M A N Y  E D G E S

D AV I D  CONLON, S AMMY  LUO, AND  M Y K H AY L O  T Y O M K Y N

A b s t r a c t .  Given an r-edge-coloring of the complete graph K n ,  what is the largest number of edges in
a monochromatic connected component? This natural question has only recently received the
attention it deserves, with work by two disjoint subsets of the authors resolving it for the rst two
special cases, when r  =  2 or 3. Here we introduce a general framework for studying this problem and
apply it to fully resolve the r  =  4 case, showing that any 4-edge-coloring of K n  contains a
monochromatic component with at least  1   n       edges, where the constant  1   is optimal only when the
coloring matches a certain construction of Gyarfas.

1. Introduction

Given an r-coloring of the edges of the complete graph K n ,  how large is the largest monochromatic
connected component? A  partial answer to this question was provided in 1977 by Gyarfas [6], who
showed that any such r-coloring always contains a monochromatic connected component with at
least n=(r   1) vertices. Moreover, this estimate is best possible whenever r    1 is a prime power and
n is a multiple of (r    1)2. An alternative proof of this result, as a simple corollary of his fractional
version of Ryser’s conjecture, was later found by Fu•redi [4, 5], who also showed that if there is no
ane plane of order r  1, then the bound can be improved to (r  1)n=(r2 2r).

There are many variants of this question. For instance, what happens when the complete graph K n
is replaced by another graph, say a subgraph of the complete graph [8] or the complete bipartite graph
[3] of high minimum degree? Or what happens when we insist that our component has small diameter
[10]? Here we will be concerned with another variant, a rather basic one which has received
surprisingly little attention in the literature, namely, given an r-coloring of K n ,  what is the largest
number of edges in a monochromatic connected component?

This question was rst raised by Conlon and Tyomkyn [1] because of its close relation with
another problem, that of determining the Ramsey number for trails and circuits. However, the
components problem is arguably the more fundamental question. If we write M (n; r) for the
largest natural number such that every r-coloring of K n  contains a monochromatic connected
component with at least M (n; r) edges, then the main result of [1] may be interpreted as saying
that M (n; 2) =  2 n2 +  o(n2). In fact, a more careful analysis of their argument implies that
M (n; 2)  1 (2n2 n 1), with, where divisibility allows it, the example consisting of two disjoint
red cliques of orders 2n+1  and n  1 with all blue edges between showing that this is best possible.

To  say something about the general case, we rst look at Gyarfas’ construction of r-colorings
where each monochromatic component has at most n=(r   1) vertices. As noted earlier, his con-
struction, which relies on the existence of the ane plane of order r    1, works when r    1 is a prime
power and n is a multiple of (r  1)2. Concretely, the ane plane of order r  1 corresponds
to a copy of K ( r  1)2 together with r  dierent decompositions of this graph into r  1 vertex-disjoint
copies of K r  1 (that is, r  dierent K r  1-factors) with the property that any edge is contained in
exactly one of the r (r    1) copies of K r  1. By giving the edges in the ith K r  1-factor color i, we
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obtain an r-coloring where every monochromatic component has at most r  1 vertices. Moreover,
when n is a multiple of (r  1)2, we can simply blow up this coloring to obtain an r-coloring where
every monochromatic component has at most n=(r 1) vertices.

As noted by Conlon and Tyomkyn [1], essentially the same construction works in the edge case to
show that, when r  1 is a prime power, there are r-colorings where each monochromatic component
has at most ( r ( r  1) +  o(1)) n      edges (the only caveat is that we should use each color roughly the
same number of times within each of the blown-up vertices). They also showed that this bound is
correct up to a constant and conjectured that, for r  =  3, it is asymptotically tight. That this is the
case was veried by Luo [9], who proved that M (n; 3) =  d 1 n  e for n suciently large. Moreover,
by giving a tight lower bound for the largest number of edges in a connected component in a graph
of given density, he was able to show that M (n; r)   1  n      in the general case, a result which was later
strengthened to M (n; r)  

r
 
 r +

  
2     in a revised version of the paper. Our concern here will be with the

following conjectural improvement to this bound.

Conjecture 1. For any natural numbers n and r  with r   3,

M (n; r) 
r (r  1) 2

:

Moreover, when there is no ane plane of order r  1, there exists a constant "r >  0 such that

M (n; r) 
r (r  1) 

+  "r 2 
:

The result of [9] proves this conjecture when r  =  3, while the result of [1] shows that the
conjectured bound does not extend to the case r  =  2. Our main result is a proof of the next open
case, when r  =  4. Note that, in this case, Gyarfas’ construction corresponds to a 4-coloring of K 9

where each color class is the union of three vertex-disjoint triangles. In the statement below, by
saying that a coloring matches Gyarfas’ construction, we mean that the set of components and the
intersection pattern of their vertex sets match those in this construction.

Theorem 2. In every 4-coloring of the edges of K n ,  there is a monochromatic component with at
least 12 2      edges. That is, M (n; 4)  d 12 2 e. Moreover, unless the coloring matches Gyarfas’s

construction, there is a monochromatic component with at least     12 +  "     2       edges, where " =

14+
p

96  
  12 >  0:0007.

Our proof of Theorem 2 consists of rst showing that any 4-coloring of K n  has one of a bounded
number of component structures and then that each such component structure contains a compo-
nent with enough edges. For instance, one of the possible component structures is that each color has
precisely three components. But then one of these 12 components clearly contains at least 1=12 of
the edges, as required. For the other possible component structures, our arguments are not usually so
simple, relying instead on a key observation, Proposition 3 below. This says that if a certain union
of components is large in the vertex sense, but none of these components is large in the edge sense,
then some one of the remaining components will be large in the edge sense. In fact, even this is not
quite enough and, inspired by Fu•redi’s approach to the vertex case, we must allow for weighted or
fractional unions of components. We will describe our general framework and how it may be applied
in more detail in the next section.

2. A  g ener a l  f ra mework

Suppose r   2 and x an r-coloring of the edges of the complete graph G  =  (V ; E ) =b  K n .  For 1  i
r, let G i  be the \graph of color i", i.e., the subgraph of K n  formed by the edges with color
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i, where we include vertices that are isolated in that color in the graph. In particular, jGi j =  n for all
i. Let Ci be the set of connected components in G i  and let C be the set of all monochromatic
components, i.e., C = Ci. Since each vertex of G  is in exactly one component of each color, we
have

jV (C )j  =  rjV (G)j =  rn:
C 2 C

Similarly, since each edge of G  is in exactly one component of exactly one color, we have
jE (C ) j  =  jE (G)j  = :

C 2 C

The following observation will be central to our approach.

Proposition 3. Let X   C be a set of connected monochromatic components in an r-coloring of K n
and let x  =  jX j. Suppose  2  [0; r] and z 2  R +  are constants such that C 2 X  jV (C )j  n and
maxC 2C jE (C ) j   z 2 . Then

z(r )2  max(1 xz; 0)2: (2.1)

Proof. If  =  r, then 
P

C 2 X  jV (C )j   rn =  
P

C 2 C  jV (C )j, so X  =  C. Then

xz =  
X  

z  
X  jE (C ) j  

=  1;
C 2 C C 2 C 2

so both sides of (2.1) are zero. Thus, we can assume  <  r.
For 1  i   r, let H i  be the induced subgraph of G i  on V (G)  n C 2 C i \ X  V (C ).  Then

r                  
jE (H i ) j  =  jE ( K n ) j   jE (C ) j   max (1 xz ) ; 0 ;

i = 1                                                           C 2 X

while
X

j V  (Hi ) j  =  rn   
X  

jV (C )j   (r  )n:
i = 1 C 2 X

Note that jV (Hi ) j  =  0 implies jE (H i ) j  =  0. Thus, by a standard averaging argument, there is some
j  with jV (H j ) j  =  0 and

jV (H
j

) j  
 
P

i = 1  jE (H
i

) j  
 
n 

2 
1 

max
 

r   
; 0:

Let C0 be the set of components of H j ,  so, by the same averaging argument, there is some C0 2  C0

such that
0 jE (C ) j

jV (C 0)j 
 P

C 2 C

j  

jV (C )j  
=  

jV (H j ) j  2
max

r  
; 0 : (2.2)

Since jE (C 0 )j  
 jV (C 0 )j, we have

n      1       jV (C 0)j      1       jE (C 0 )j
2                     2                 jV (C 0)j
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which, combined with (2.2), implies 1 x z   1. We therefore have
n 0 jE (C 0 )j 0 jE (C 0 )j 2jE (C 0 )j

2 jV (C 0)j jV (C 0)j jV (C 0)j
2jE (C 0 )j  +  1 (n 1) max( 1 x z  ; 0) +  1

max(1 xz; 0)2 n
                   

2

(r  )2 2
which rearranges to the desired bound.

Note that taking X  =  ; ,  we have x  =   =  0, so that z    
2  , which immediately yields the simple lower

bound M (n; r)   1  n  , as proved in Corollary 4 of [9]. For 1  xz  0, x  >  0, and 0  z  1, (2.1) is equivalent
to

(r  )2 +  2x  ((r  )2 +  2x)2 4x2 2
2x2 (r  )2 +  2x + ((r  )2 +  2x)2 4x2

In order to go beyond the bound M (n; r)  
r

 
 r + 5       2     from Theorem 1 of [9], we must investigate the

possible component structures in our r-coloring. For instance, in the case r  =  3, the proof of
Theorem 2 in [9] shows that there are three possible structures for the components in our coloring.
Either:
(a) Some color has exactly one component ( =  1; x =  1 above),
(b) Each color has exactly two components (  =  3; x =  6), or
(c) There is a component of each color such that every vertex is covered by at least two of these

three components (  =  2; x =  3).
Applying Proposition 3 to cases (a) and (c) yields, in each case, a lower bound on z higher than the
tight bound of 1 , while case (b), with r     =  0, implies 1   xz  0, so z  1 =  1 , which is tight.

For general r, in order to prove a lower bound of the form M (n; r)  z
 n, it suces to nd, in any given

r-coloring, a set X   C yielding values of x  2  Z +  and  2  [0; r] such that x   1 and (2.1) does not hold, that
is, z (r )2  (1 xz)2. This rearranges to

x   
1 

  
r   

 : (2.4)

We can state our conclusions concisely as follows.

Corol lary 4. Let z 2  R + .  If there exists a set of components X   C such that, for some x  2  Z +  and  2
[0; r], jX j =  x , C 2 X  jV (C )j   n, and (2.4) holds, then there is a component C  2  C with at
least z 2      edges.

In fact, a simple probabilistic argument allows us to strengthen Corollary 4 to a fractional form
allowing for non-integer values of x.

Proposition 5. Let z 2  R + .  If there exists a function w : C !  [0; 1] such that, for some x  2  R +  and
2  [0; r], C 2 C  w (C ) =  x, C 2 C  w(C )jV (C )j   n, and (2.4) holds, then there is a component C  2  C
with at least z 2      edges.

Proof. Our proof takes advantage of the fact that (2.4) is linear in x  and . Given a function w
with the required properties, we construct a random subset X   C by taking each component C  2  C 4
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with probability w(C ). Abusing notation by letting x  and  be the random variables with x  =  jX j
and  =  1

C 2 X  jV (C )j, we have

E  x  +   p   =  
X  

w (C ) +  
r    n C 2 C  w(C )jV  (C )j

C 2 C

 x  +  
r   

 
 
 
z

;

so there is some choice of X  that satises the conditions of Corollary 4, yielding a component with
the desired size.

In practice, we will apply Proposition 5 in the following form, allowing us to work with the
convenient bound (2.3).

Corol lary 6. Let w : C !  [0; 1], x  2  R + ,  and  2  [0; r] and suppose 
P

C 2 C  w (C ) =  x  and

C 2 C  w(C )jV (C )j  n. Then (2.3) holds for z =  ( n )  maxC 2C jE (C )j .

Note that the condition 
P

w(C )jV (C )j  n is satised if, for every vertex v 2  V (G), we have
w(C )  ;

C 3 v

i.e., the function w gives a fractional cover of the vertices by components that cover each vertex
with weight at least . This allows us to convert our problem into a linear program, akin to
Fu•redi’s approach to the vertex case, namely, we wish to minimize x  = w(C ) subject to the
constraints that 0  w (C )  1 for all C  and C 3 v  w(C )   for all v 2  V (G). In particular, to show
that z =  r ( r  1) works, it would suce to show that x   r (r  1)      (r       ) r (r  1).

3. The case r  =  4

In the case r  =  4, we can investigate the set of possible component structures as in the case
r  =  3, though the analysis is now considerably more intricate. Recall that our aim is to show there
exists a component with at least  1  n       edges; moreover, we would like to show that this bound is
only asymptotically tight when the components match the extremal conguration described by
Gyarfas in [7].

We will make use of the following fact shown in the course of handling the r  =  3 case in [9]. An
equivalent result also appears as Lemma 4.19 in [2].

Lemma 7. In any 2-coloring of the complete bipartite graph between two vertex sets A1  and A2 ,
one of the following holds:
(a) Some color has exactly one component,
(b) Each color has exactly two components, each of which intersects both A1  and A2 , or
(c) There is one component of each color such that the intersection of their vertex sets contains

one of A1  and A2  and their union contains both.
In each of these cases, one may assign weights of 1 or 1 to the components involved to get weights
summing to at most 2 that cover every vertex involved to weight at least 1.

It will sometimes be convenient to specify further subcases within the cases of Lemma 7. We say
that a pair of vertex sets (A1 ; A2 ) \satises case (a) for color c" if c is a color with exactly one
component covering A1  [  A2. We also say that (A1 ; A2 ) \satises case (c) directed toward A1 " (or,
equivalently, directed away from A2 ) if A1 is contained within the intersection of the two
components.
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F i gu r e  1. The cases of Lemma 7

Dene the G i  and Ci as before and, for convenience, name the colors red, orange, yellow, and blue.
We begin by establishing a lower bound on maxC 2C jE (C )j  in the following \degenerate" case where
some three components with distinct colors cover the entire vertex set.

Lemma 8. If, in a 4-coloring of the edges of K n ,  there are three components C1 ; C2 ; C3 2  C of
distinct colors such that C1  [  C2  [  C3  =  V , then

maxC 2C jE (C ) j 2 1

2                            14 +      96       12

Proof. If there is one component C1  with V (C1 ) =  V , then applying Proposition 3 with X  =  fC1 g
and (; x) =  (1; 1) yields, via (2.3), the bound

z  
11

 
+

2  
117 

>  
2 

>  
14

 
+

 p
96

;

as desired.
Next, suppose that there are two components C1 ; C2 with C 1 [ C 2  =  V , but with both V1 =  C1 nC2

and V2 =  C2  n C1  non-empty. Since we have not yet distinguished the colors in any way, we can
assume without loss of generality that C1  is red and C2  is orange. Then all edges between V1 and V2
are either yellow or blue. Applying Lemma 7 to the pair of vertex sets (V1; V2) yields a way to choose
weights on the yellow and blue components summing to at most 2 such that every vertex in V1 [  V2
is covered by components with weights summing to at least 1. Starting from this choice of weights
and adding a weight of 1 to each of C1  and C2  then allows us to apply Corollary 6 with (; x) =  (2; 4),
which yields the bound

z  
12

 
+

 p
80 

>  
21 

>  
14

 
+

 p
96

;

which again suces.
The remaining case to consider is where there are three components C1 ; C2 ; C3 with C 1 [ C 2 [ C 3  =

V , but all of V1 =  C1  n (C2  [  C3 ), V2 =  C2  n (C3  [  C1 ), and V3 =  C3  n (C1  [  C2 ) are non-empty.
Without loss of generality, we can assume that C1  is red, C2  is orange, and C3  is yellow. For each
pair of the Vi, only two colors are possible on the edges between them, one of which is blue. Our
aim is to apply Lemma 7 to each of these pairs and then combine the results into an appropriate
choice of weights on the components of the overall coloring of K n .

6
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F i gu r e  2. The vertex partition in Lemma 8

For each of the pairs (Vi ; Vj ), we apply Lemma 7 to the complete bipartite graph between Vi and
Vj , yielding one of the cases (a), (b), or (c) described therein. We further split case (a) into (a1) and
(a2), depending on whether the corresponding component is blue (case (a1)) or not (some cases are
not mutually exclusive, but this will not be an issue).

F i gu r e  3. The cases between pairs in Lemma 8

For any case constellation between the pairs (Vi ; Vj ), we aim to exhibit at most two components
other than C1 ; C2 ; C3 covering V1 [ V 2  [ V3 .  Together with C1 , C2 , and C3 , this will yield a 2-cover of
the entire graph K n  by at most 5 components (since all vertices outside V1 [  V2 [  V3 are in at least
two of the C i  and so are already 2-covered). Applying Corollary 6 with (; x) =  (2; 5) would then give
the claimed bound of

z  
14

 
+

 p
96

:

If case (a) (that is, either (a1) or (a2)) occurs for at least two pairs (Vi ; Vj ), then the relevant
components readily give a cover of V1 [  V2 [  V3. Hence, from now on we can assume that this is not
the case.

7
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Suppose case (a1) occurs on one of the pairs, say (V1; V2). If (V1; V3) satises case (b), then V1
[ V 2  [ V 3  is covered by a single blue component. If (V1; V3) satises case (c) (in either direction), then
V1 [  V2 is covered by a blue component B  and V3 n B  is covered by a non-blue component. Thus, we
can assume from now on that case (a1) never happens.

If case (b) occurs, say on (V1; V2), then one of the two remaining pairs, say (V1; V3), must satisfy
case (b) or (c). If (V1; V3) satises case (b), then V1 [  V2 [  V3 is covered by at most two blue

components. The same is true if (V1; V3) satises case (c) directed away from V1. Lastly, if (V1; V3)
satises (c) directed toward A1, then V1 [  V2 is covered by a blue component B0 and V3 n B0 is
covered by a non-blue component. Hence, we may also assume from now on that case (b) never
happens. In other words, each pair satises either case (a2) or (c) and the former occurs at most once.

If all three pairs (Vi ; Vj ) satisfy case (c), then the respective ‘case (c) directions’ result in an
auxiliary 3-vertex tournament, which is either cyclic or transitive. In the cyclic case we again have
that V1 [  V2 [  V3 is contained in a single blue component. In the transitive case, without loss of
generality, let each (Vi ; Vj ) for i  <  j  be directed toward Vi. Then again V1 [  V2 lies in a single blue
component B00 and V3 n B00 can be covered by a non-blue component.

Hence, we may assume that one pair, say (V1; V2), is of type (a2), with D  being the non-blue
component between them, and the other two pairs are of type (c). If either of these type (c) pairs is
directed toward V3, then V1 [  V2 [  V3 is covered by D  and the corresponding blue component. Thus,
the last case to consider is when both (V1; V3) and (V2; V3) are directed away from V3.

In that case, let B 1  and D 1  be the blue and non-blue components between (V1; V3), respectively,
and dene B 2  and D 2  similarly with respect to (V2; V3). If B 1  \  B 2  \  V3 =  ; ,  then B 1  and B 2
coalesce into a single component B  in K n  and V3 n B can be covered by a non-blue component. On the
other hand, if B 1  \  B 2  \  V3 =  ; ,  then

D 1  [  D 2   (V3 n B1 )  [  (V3 n B2 )  =  V3

and, since D 1  and D 2  cover V1 and V2, respectively, we again obtain that two components, namely
D 1  and D2 , cover V1 [  V2 [  V3. Thus, in every case, we have a component with at least p       2
edges, as desired.

The lower bound of  p       in the conclusion of Lemma 8 can be improved slightly through a
more careful analysis. However, we chose to omit this more involved proof, since the improved
estimate is not needed for the tight case in Theorem 2.

For any vertex v and any component C  with v 2  C , we can assume there is a vertex w 2  C  not
in any other component containing v; otherwise, we are done by Lemma 8. In particular, we can
assume that no component has its vertex set contained entirely within the vertex set of another
component.

For the sake of clarity, we say that two vertices v1 and v2 are joined in a given color if the edge
between them is of that color, while a set of vertices is connected in a given color if they share a
component of that color. Call two vertices v1 and v2 equivalent if they are contained in a common
component, that is, they are connected, in each color. Clearly, this is an equivalence relation, so we
may speak of equivalence classes with respect to it. Note that if v1 and v2 share exactly three
components, then, considering a vertex w outside of these three components (if there is no such w,
we are again done by Lemma 8), both v1 and v2 must be joined to w via the fourth color, meaning
that they share all four components, a contradiction. Hence, we can assume that any two vertices are
either equivalent or share at most two components. If v1 and v2 share precisely two components,
let us call them biconnected.

8
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The next two lemmas cover a pair of general cases where we again get a lower bound of at least

14+
p

96  2     
 edges.

Lemma 9. If there is a pair of components of dierent colors that do not intersect, then there is a
monochromatic component with at least 

14+
p

96  2      edges.

Proof. By symmetry, we can assume that the two disjoint components R  and B  are red and blue,
respectively. All  edges between R  and B  are orange or yellow, so we can apply Lemma 7 to the
complete bipartite graph G R ; B  between them. If either R  or B  is contained entirely in a single
orange or yellow component in G R ; B  and thus in G, we are done by Lemma 8, so assume otherwise.
Then only case (b) of Lemma 7 can apply, where there are exactly two orange components and two
yellow components in G R ; B  (none of which can coalesce together in G). It is easy to see that in this
case any two vertices in R  that share an orange component also share a yellow component and are
therefore equivalent. Hence, there are exactly two equivalence classes of vertices in R  and, likewise,
exactly two equivalence classes in B .  Taking representatives v1; v2 2  R  and w1; w2 2  B  of these
equivalence classes, let

X  =  f C  2  C : C  \  fv1; v2; w1; w2g =  ;g  n fR ; B g:

Dene w (C ) =  1 when C  2  X  and w (C ) =  0 otherwise. We claim that this choice of w satises the
conditions of Corollary 6 with (; x) =  (3; 8). If fv1; v2g  C  for any component C  =  R ,  then R   C ,  a
contradiction, so v1 and v2 do not share any non-red components; likewise, w1 and w2 do not share
any non-blue components. Thus, X  contains exactly two components of each color, so w(C ) =
jX j  =  8. Moreover, by construction, for u 2  R  [  B ,  we have w(C ) =  3.

Now consider a xed u 2= R [ B .  Since the two equivalence classes in R  do not share any non-red
components, there are at least two colors among the edges between u and R  and, similarly, at
least two colors among the edges between u and B .  If there are exactly two colors among the
edges between u and R  [  B ,  then these colors must be orange and yellow, a contradiction because R
[  B  cannot be covered by the union of an orange component and a yellow one. So there are at least
three colors among the edges between u and R  [  B ,  which means w(C )  3. Thus,
we can apply Corollary 6 with (; x) =  (3; 8), yielding a monochromatic component with at least

17+
p

33  
n      >  

14+
p

96  
n      edges, as desired.

Lemma 10. If there is a pair of biconnected vertices, then there is a monochromatic component
with at least 

14+
p

96  2      edges.

Proof. Suppose that v1 and v2 are biconnected. By symmetry, we can assume that the two com-
ponents they share are red and orange and that there are at least as many orange components as red
components in our coloring. We can also assume that there are at least two red components;
otherwise, we are done by Lemma 8. If there are exactly two orange components, then applying
Proposition 3 to the set of red and orange components with (; x) =  (2; 4) yields z   p       and
we are again done, so we can assume that there are at least three orange components. Let R  and O
be the joint red and orange components, respectively, of v1 and v2 and, for i  2  f1; 2g, let the yellow
and blue components containing vi be Yi and B i ,  respectively. Let T =  V n R .

Since fR; O; Y1; B1g are the four components of v1, their union is the whole of V . Hence,
D  : =  B 1  n ( R  [  O) =  ; ,  as otherwise fR; O; Y1g would satisfy the assumptions of Lemma 8 and,
analogously, E  : =  Y1 n ( R  [  O) =  ; .  Observe that v2 must be joined in yellow to all vertices in D
and in blue to all vertices in E .  This means that D  \  E  =  ;  and, consequently, v1 is joined to all
of D  in blue and to all of E  in yellow. Furthermore, E  =  B 2  n ( R  [  O) and D  =  Y2 n ( R  [  O).
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F i gu r e  4. The situation in Lemma 10

If there is a vertex w 2  Y1 \  B 1  \  R  n O, then w shares exactly three components with v1, a
contradiction. Hence, we may conclude that

Y1 \  B 1  n O =  Y1 \  B 1  n ( R  [  O) =  D  \  E  =  ; (3.1)

and, similarly, Y2 \  B 2  n O =  ; .
Now consider a vertex v3 2  R  n O. If v3 is joined in orange to all of T n O =  D  [  E ,  then either

there are only two orange components (O and the component of v3) or there is an orange
component whose vertex set is contained within R ;  either case is a contradiction. Therefore, v3 is
joined in blue or yellow to some vertex in T n O, which means it is in one of B1; B2; Y1; Y2. By
symmetry, we can assume it is in B1 , so by (3.1) we have v3 2= Y1. We conclude that v3 must be
joined to all of E  in orange (see Figure 4). Since v3 was chosen from R n O arbitrarily, every vertex in
R  n O is joined either to all of D  or to all of E  in orange. If any orange component does not
intersect R ,  we are done by Lemma 9. Otherwise, we have at most three orange components in
total, so by our earlier assumption it must be exactly three. In particular, there will be a vertex in
R  n O connected in orange to all of D  and none of E .  It follows that every edge between D  and E
must be red, so all of D  [  E  =  V n ( R  [  O) is contained in a single red component. If there is a third
red component, it must lie entirely inside O, so we are done by Lemma 8. Therefore, we can assume
there are exactly two red components.

Next, note that v1 and v3 share components in red and blue but not in orange, which means v1 and
v3 are biconnected. Therefore, by the same argument as above (with orange and blue swapped), the
total number of blue components is also three. Let B 3  be the third blue component and note that
B 3   R [ O .  Consequently, we must have B 3  \ R n O =  ; ,  as otherwise B 3  would be contained in O. Let
v4 2  B 3  \  R  n O be an arbitrary vertex. By using similar reasoning as for v3, we have that v4 is in
one of B1; B2; Y1; Y2; since v4 2  B3 , it must be in one of Y1 and Y2. We conclude, as before for v3
and blue, that there are exactly three yellow components.

Thus, we have exactly two red components and exactly three components of every other color, for
a total of exactly 11 monochromatic components. By the pigeonhole principle, one of these
components must have at least 11 2     >  

14+
p

96  2      edges, as needed.

We are now ready to complete the proof of our main theorem.

Proof of Theorem 2. If the hypotheses of any of Lemmas 8, 9, or 10 hold, we have a component with at
least  p       2     

 edges, as needed, so we can assume otherwise. Thus, every pair of components
of dierent colors intersects and any pair of vertices sharing at least two components are equivalent.
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We claim that in this case there are at most three components of each color. Without loss of
generality, let red be a color with the fewest components. Let R  be a red component and x a
vertex v 2= R .  Let O, Y , and B  be the orange, yellow, and blue components of v, respectively. By
Lemma 10, we can assume that all vertices in R  \  O are equivalent and similarly for R  \  Y and R  \
B .  However, O [  B  [  Y  R ,  as every vertex in R  is adjacent to v via a non-red edge. So the vertices of
R  can be partitioned into at most three equivalence classes. Thus, there are at most three
components of each color that intersect V ( R )  and since, by Lemma 9, we can assume that R
intersects every non-red component, there are at most three components of each color in total, as
claimed.

If there is a color with fewer than three components, then jCj  11 and there is some compo-
nent with at least  1  n       edges. Otherwise, we will show that our coloring matches the extremal
construction claimed. Indeed, by assumption, the equivalence class of a vertex is determined by its
red and orange components. Let R  =  R1 ; R2 ; R3 be the red components and O1; O2; O3 the orange
components and let Vi j  =  R i  \ O j  for 1  i ; j   3. The Vi j  form a partition of V (G)  and each is an
equivalence class of vertices. Since we can assume that every pair of components of dierent colors
intersects, the Vi j  are all non-empty.

Every component contains exactly three equivalence classes: one for each orange component if it
is red and one for each red component if it is not red. Each pair of the three vertex sets V11; V22; V33
must share at least one component, each of which must be yellow or blue; one of the two colors
occurs at least twice, say yellow. Then V11 [ V2 2  [ V3 3  is connected in yellow and in fact must form
a yellow component, since each yellow component contains exactly three equivalence classes. Then
neither V13 nor V31 shares a red, orange, or yellow component with V22, so V13 [  V22 [  V31 forms a
blue component and, similarly, so do V12 [  V21 [  V33 and V11 [  V23 [  V32. Repeating this argument
shows that V12 [  V23 [  V31 forms another yellow component, as does V13 [  V21 [  V32. Hence, we are
in exactly the extremal conguration claimed.

Thus, only the claimed extremal conguration can have fewer than  p       n       edges in every
component and in this extremal conguration, since there are 12 components, we instead get a
lower bound of 12 2      edges, as desired.

As in [1] and [9], it is possible to amend our argument to show that every 4-coloring of K
contains a monochromatic trail or circuit of length at least (  1  + o(1))n2 . We omit the details, but
briey note the main idea, which is to delete a sparse subgraph in order to guarantee that each
component is Eulerian and then work around these omitted edges.
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