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Abstract

PR
We show that the size-Ramsey number of the 'n " n grid graph is Opn®®“q, improving a

previous bound of n3{2 °P1d by Clemens, Miralaei, Reding, Schacht, and Taraz.

1 Introduction

For graphs G and H, we say that G is Ramsey for H, and write G N H, if every 2-colouring of the
edges of G contains a monochromatic copy of H. In 1978, Erdds, Faudree, Rousseau, and Schelp
[9] pioneered the study of the size-Ramsey number fpHq, dened as the smallest integer m for
which there exists a graph G with m edges such that G N H. The existence of the usual Ramsey
number rpHg shows that this notion is sensible, since, for any H, it is easy to see that fpHq /
rPHa When H is a complete graph, this inequality is an equality, a simple fact rst observed by
Chvatal.

An early example showing that size-Ramsey numbers can exhibit interesting behaviour was found
by Beck [1], who showed that P,, the path with n vertices, satises fpP,g Opng, which is
signicantly smaller than the Opn2q bound that follows from applying the inequality above and
the corresponding bound rpP,q Opnq for the usual Ramsey number of P,,. In a follow-up paper,
Beck [2] asked whether a similar phenomenon occurs for all bounded-degree graphs, that is,
whether, for any integer ¥ 3, there exists a constant c such that any graph H with n vertices
and maximum degree has size-Ramsey number at most cn. Although Redl and Szemeredi [19]
showed that this question has a negative answer already for 3, much work has gone into
extending Beck’s result to other natural families of graphs, including: cycles [14], bounded-degree
trees [10], powers of paths and bounded-degree trees [3, 5, 13], and more besides.

Most of the known families with linear size-Ramsey numbers have a bounded structural parameter,
such as bandwidth [5] or, more generally, treewidth [15] (though see the recent papers [8, 18] for
examples with a somewhat dierent avour). However, a fairly simple family of graphs which
does not fall into any of these categories, but may still have linear size-Ramsey numbers, is the
family of two-dimensional grid graphs. For s P N, the s s grid is the graph with vertex set
rss rss where two pairs are adjacent if and only if they dier by one in exactly one coordinate.
Obviously, the maximum degree of the s s grid is four, but its bandwidth and treewidth are
both exactly s (see, e.g., [4]), so the problem of estimating the size-Ramsey number of this graph,
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?
and usually we will take s n so that the graph has n vertices, provides an interesting test

case for exploring new ideas and techniques.
??
Regarding upper bounds for the size-Ramsey number of the m n grid, an important result of

Kohayakawa, Redl, Schacht, and Szemeredi [17], which says that every graph H with n vertices

and maximum degree satises fpHq / n2 oPld immediately yields the bound n7{* °Pla This

was recently improved by Clemens, Miralaei, Reding, Schacht, and Taraz [6] to n3{2 ©°Pld(and
an alternative proof of this bound was also noted in our recent paper [7]). The goal of this

short note is to provide an elementary proof of an improved upper bound.
?2 02

Theorem 1.1. There exists a constant C i 0 such that the size-Ramsey number of the "' n —n
grid graph is at most Cn>{4,

Like much of the work on size-Ramsey numbers, the previous bounds for grids were obtained by
applying the sparse regularity method to show that every 2-colouring of the edges of the
Erd¢s{Renyi random graph G,.,, for some appropriate density p, contains a monochromatic
copy of the grid. However, it is a simple exercise in the rst moment method to show that for p
I nY2 the random g?raph Gn;p with high probability does not contain the s s grid graph as a
subgraph if s p ng, so the bound Opn32q is the best that one can hope to achieve using

this procedure.

To see how it is that we gain on this bound, suppose that s ?_n. It is known [14] that there are
K; i 0andagraph H with K's vertices and maximum degree at most which is Ramsey for Cg, the
cycle of length s. Consider now a ‘blow-up’ of H obtained by replacing every x P V pHqg by an
independent set V, of order psqand every xy P H by a bipartite graph pV,; Vyq in which every edge
exists independently with probability p ps{2q. With high probability, such a blow-up contains
ps*2q pn°*q edges. That is, instead of revealing a random graph Gy, on all n ps?q vertices, we
only reveal edges that lie within psq bipartite subgraphs, each with parts of order psq. This
salvages a signicant number of edges which would otherwise go to waste.

Consider now a 2-colouring of and recall that H was chosen so that H N Cs. A key lemma,
Lemma 2.3 below, then allows us to conclude that there are sets V1;:::;Vs in  and a collection
U; , Vi of large subsets such that all pU;; U; 1q with i P rss, where addition is taken modulo s,
are ‘regular’ in the same colour. We may then sequentially embed the vertices of the grid so that

2 Denitions and key lemmas

In this section, we recall several standard denitions and note two key lemmas that will be
needed in the proof of Theorem 1.1. Most of these revolve around the concept of sparse regularity
(for a thorough overview of which we refer the reader to the survey by Gerke and Steger [12]).

For " i 0 and p P p0;1s, a pair of sets pVi;Vaq is said to be p"; pg-lower-regular in a graph G
if, for all U; ,, Vi, i Pt1;2u, with |Ui| ¥ "|Vi|, the density dgpU1; U2q egpUs; Uoa{p|U1]| |U2|q of edges
between U; and U, satises

dspUs1; Uaq ¥ pl "qp:

Immediately from this denition, we get that in every p"; pg-lower-regular pair pVi;V,q, for eachi
P t1; 2u, all but at most "|V;j| vertices in V; have degree at least pl "gp|Vsi| into V3; | a



fact we will make use of in the proof of Theorem 1.1. Another useful and well-known property is
that lower-regularity is inherited on large sets.

Lemma 2.1. Let 0 " , pPp0;1s, and let pVi;Vaq be an p"; pg-lower-regular pair. Then any
pair of subsets V1, Vi, i P t1;2u, with |V} ¥ |Vi| form an p"{; pg-lower-regular pair.

For i 0and p P p0;1s, a graph G is said to be p; pg-uniform if, for all disjoint X; Y , V pGq
with |X];|Y | ¥ |VpGq|, the density of edges between X and Y satises dgpX;Y g pl gp. If only
the upper bound holds, the graph is said to be upper-uniform.! For example, it is easy to see
that the random graph Gy;, is with high probability poplq; pg-uniform whenever p* 1{n.If G
pV1; Va; Eq is bipartite, we say that G is p; pg-uniform or upper-uniform if the same conditions
hold for all X , V1 andY , Vo with |[X| ¥ |Vi] and |Y |¥ [V2]. In order to prove our main
technical lemma, we rely on the following result, a simple corollary of [16, Lemma 6], whose
proof follows a density increment argument. The same conclusion can also be obtained by an
application of the sparse regularity lemma.

Lemma 2.2. Forall0 " 1{2 and P p0;1q, there exists i 0 such that the following holds for
every p P p0;1s. Let G pVi; Va; Eq be a p; pg-upper-uniform bipartite graph with |Vi| V2] and |E| ¥
[V1][V2]p. Then there exist U; , V;, i P t1;2u, with |Uj| [Vi| such that pU;;U,q is p"; pg-lower-
regular in G.

The next lemma is the crux of our argument. Here and elsewhere, we say that pX;Y;Eq is
lower-regular if pX;Y qis lower-regular with respect to the set of edges E.

Lemma 2.3. For every r; ¥ 2 and " | 0, there exists i O such that the following holds for
every p P p0;1s. Let H be a graph on at least two vertices with pHq/ and let be obtained by
replacing every x P V pHqg with an independent set V4 of suciently large order n and every xy P
H by a p; pg-uniform bipartite graph between V, and Vy. Then, for every r-colouring of the edges
of , there exists an r-colouring ’ of the edges of H and, for every x P V pHq, asubset Uy, Vy
of order |Uy| n such that pUy; Uy; Enyyqq is p"; p{p2rqg-lower-regular for each xy P H, where
E'pxyq » EP Qg stands for the edges in colour "pxyq.

Proof. Given ", r, and , we let 1{p2rq, " 1:", 1 22p" 1,0, and, for everyi ;_:::;1,

sequentially take "; "i 1; 1 and; 22p"i;q. Lastly, let iPr 1si-

Fix any r-colouring of (the edges of) and, for every c P rrs, let . stand for the subgraph (in
terms of edges) in colour c. Note that H has edge-chromatic number at most 1. In other

nd the required collection tUyu,py png by maintaining the following condition for every i Pr 1s: for
every x PVpHgq, there exists a chain Vx U, ..U, ..U, ... .U, such that© 1 2 i

(i) |U,J;| jlujll)for”allj P ris and

(ii) for every xy P . i Hj, pUL; UJq is p"i; pg-lower-regular in . for some c P rrs.

J

Consequently, for i 1, we obtain sets Uy , Vy, for every x P VpHq, of order |Uy| pp, 1

igqn n such that pU,; Uyq is p" 1;pg-lower-regular and, thus, p";pqg-lower-regular for every xy
P H. It remains to show that we can indeed do this.

LFor consistency with the existing literature and for historical reasons, we use both ‘regular’ and ‘uniform’ as
terms, even though they are basically the same concept.




Consider rst i 1. For each xy P Hi, let ¢ P rrs be the majority colour in rV,;Vys. As e
PVi; Vyaq ¥ pl gn2p{r, we may apply Lemma 2.2 with "1 (as ") and crVy; Vys (as G) to obtain
sets U,; U, with the desired properties. For every x PV pHq which is isolated in Hy, we simply
take an arbitrary subset U, , Vy of order 1|U,|. Thus, &he required condition holds fori 1.

Suppose now that the condition holds for some i ¥ 1 and let us show that it also holds for i 1.
As above, for every xy P H; 1, let c P rrs be the majority colour in rVy; Vys. Since rVy; Vys is
p; pg-uniform and, by (i), |U;'|U,| ¥ n, we have e pU,; U/q p1 q|U,||U,|p arld, Hence,

pL qU'| 1Y gfr/ e pU'; U/, pl alU, [ fp:
Lemma 2.2 applied to ruU}; Ui,s with "i 1 (as ") gives sets Ul 1, Ul and U‘y1 , Ui of order
U gyl and |in N 11Uy i

for which pUXi L, U\‘/ 1gis p"; 1;pg-lower-regular in .. For every x P V pHq which is isolated in
Hi 1, we again take an arbitrary subset U L Ui of order ; 1|U']. Qbserve also that,

for every xz P i/ Hj, since pU}; Ulg was p"j; pg-lower-regular in a for some ¢! P rrs and
Ul 1] ;i 1]U"], Llemma 2.1 and the fact that "i{; 1 " 1 imply that pU' 1; Ul 1q isp"

1; pg-lower-regular in ¢, as desired. This completes the proof. ]

We also need a variant of a result from our previous paper [7, Lemma 3.5] about regularity
inheritance. While that result was stated for the usual (full) notion of regularity, we only need
lower-regularity here, allowing us to save a factor of plog nq*2.

Lemma 2.4. For all ";; i 0, there exist positive constants "1p";q and Cp";;q such that for p ¥
Cn'2, with probability at least 10pn°q, the random graph Gy, has the following property.

Suppose G , and V1;V, , Vp qgare disjoint subsets of order fi n such that pVq;Vaqis p"l; pg-
lower-regular in G. Then there exists B ,, Vp g of order |[B| / "f such that, for each v;w P
Vpgr pvViY VoY Bqg (not necessarily distinct), the following holds: for any two subsets N,
, N pv;Viqg and Ny , N pw;V,oq of order np{4, both pNy;V.q and pNy;Nwq are p"; pg-lower-
regular in G.

Sketch of the proof. The proof proceeds along the same lines as the proof of [7, Lemma 3.5]. The
only dierence is that there we made use of an inheritance lemma for full regularity (namely,

Corollary 3.5 in [20]), which requires the sets on which regularity is inherited to be of order at least
C log n{p, resulting in the requirement that p ¥ Cplog n{nqX2. However, for lower-regularity, one
can instead use the inheritance lemma of Gerke, Kohayakawa, Redl, and Steger [11, Corollary 3.8],
which only requires the sets to be of order at least C{p, resulting in p ¥ CnY2. The rest of the
proof remains exactly the same. O

3 Proof of Theorem 1.1

Since it requires no additional work, we will actually prove the r-colour analogue of Theorem 1.1.
More precisely, we will show that for every integer r ¥ 2 there exists a graph of order n with
O;pn5{4) gdges for which every r-colouring of the edges contains a monochromatic copy of the
n ~n grid for some | O.



By a result of Haxell, Kohayakawa, and Luczak [14, Theorem 10], there exist constants K; j O,
both depending only on r, such that, for every suciently large s P N, there is a graph H on K's

vertices with maximum degree at most which has the property that every r-colouring of its
edges contains a monochromatic copy of C, the cycle of length *, for every logs! ‘/ s. Let

1{p2rq; " {256; nl "5.4p"{9; o 2:3pr;;"1q; and mint1{p4Kq;"{4u: We show that the size-

?
Ramsey number of the s s grid is Ops®2q, which, for s n, implies
the desired statement.

Let be a graph obtained by replacing every vertex x P V pHq by an independent set V, of
order s and every edge xy P H by a bipartite graph between Vy and Vy in which each edge exists
independently with probability p Cs{2 for some suciently large constant C | 0. With high
probability, has the following property:

(A1) e pVEVil pl gl |V [p fok every xy PH and V, , V,land V.
100s{2.

y ” Vy ]\Nlth |VX| |Vy|p¥ !

This is a standard feature of random graphs and follows from the Cherno bound together
with an application of the union bound. In particular, it establishes that with high probability
rVy; Vys is p; pg-uniform for every xy P H and, therefore, has at most

Ks {2 p1 gs’p Ops>?q

edges. Additionally, with high probability, is such that every rV,Y VyY V,s has the property of
Lemma 2.4 (applied with "{9 as ", {3 as, and 3s as n) for every path xyz of length twoin H.?
This again follows from the union bound, as there are Opsq such paths in total and the conclusion
of Lemma 2.4 holds with probability 1 ops>q for every xed path. We now x an outcome of which
satises all of these properties.

Consider some r-colouring of the edges of and let ’ be the colouring of the edges of H given by
Lemma 2.3 (applied with " as "). By the choice of H, this colouring contains a monochromatic

there is a colour c P rrs and sets U; of order & sin such that, for every i P rss, the pair pU;; U; 19
is p"L; pg-lower-regular in the subgraph of induced by colour ¢, where we identify s i
with i. Let G be the graph induced by these sets whose edges are the edges of of colour c. We will
show that G contains the s s grid as a subgraph.

For every i Prss,letB , U;Y U; 1Y U; , be the set given by Lemma 2.4 (which was applied with
"{9as",{3as,and3sasn)on rU;Y U; 1Y U; 35, which is a set of ‘bad vertices’ for the pair
pU; 1; Ui 20. As each U; is a part of three such applications, by the chosen properties of

, for every i P rss there exists a set B; ,, U; of order |B;j| / "¢ such that:

(B1) pNy;U;i 2rB; »qisp";pg-lower-regular® in G foreveryv P U;rB; and Ny , Ngpv; U; 1qof
order $p{4 and

(B2) pNy;Nyqg is p"; pg-lower-regular in G for every vP Ujr Bj, uPU; 1r B;j 1 and N, ,
Ngpv; Ui 10, Ny ,, Ngpu; U; 2q, each of order sp{4.

Our plan is to embed the vertex pi; jq of the s s grid into U; j1. The next claim helps us
achieve this.

2Technically, to apply the lemma, we must also temporarily reveal the edges between Vx and V. and within
each Vyx; Vy; V., but, unless xz is itself an edge of H, these are all then removed from

3The conclusion of Lemma 2.4 states that pNv; Ui 2qis p"{9; pg-lower-regular, but, as B 2 is small, Lemma 2.1
implies that pNv; Ui 2r Bi 2qis p"; pg-lower-regular.



Claim 3.1. Let i Prss. Suppose that sets S; j1 , Ui jir B; j1 of order sp{4 are given for
each j P rss and that pS; j1;Si jg and pS; j1; Ui jr B;i jq are p";pg-lower-regular. Then, for
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Figure 1: A picture showing the rst two rows of the grid already embedded (the thick black lines), the
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by Claim 3.1, together with the corresponding neighbourhoods Ngpvj; Ui j r Qi jq (the red blobs).

Before proving the claim, we show how to complete the embedding of the grid assuming that it

holds. We start by embedding the rst row. Let v; P U;r B; be a vertex for which thereis S, ,,

Ngpvi; Uo r Byq of order sp{4 such that pS;; Uz r Bsq is p";pg-lower-regular. As pU;rBy; U

rB,q is p2"l; pg-lower-regular, there are at least p12"lgpl1"g3 vertices v P U;r B ; that satisfy
degepv; Uz r Baq ¥ pl 2'q|Usr By|p ¥ spi4;

by our choice of constants. Thus, by property (B1) almost any choice of v; P U; r B; will do.
Sequentially, for every i ¥ 2, let vi P S; be a vertex for which there is S; 1, Ngpvi; Ui 1r Bi 19
of order sp{4 and both pS; 1;U; > r B; »g and pS;;S; 1q are p"; pg-lower-regular. This is
possible as pSi; Ui 1r B 1qis p";pg-lower-regular and properties (B1) and (B2) hold. We

when we embedded vs. In particular, S; j , U1 jr By j and pSy j;S2 jgand pSy j;Uz jr
B> jq are both p";pg-regular for every j Prss. Then, by settingQ; j : By j Y tvy ju and

S1 j foreveryj Prss. By the conclusion of Claim 3.1 and a slight abuse of notation, thereis a
collection of sets S, j , Ngpuj; Uz jr Qp jq for every j Prss, each of order sp{4, which, by (B1)
and (B2),asujPU; jrBy jandu; 1 PUy j 1rBy1 j 1,aresuchthatpS; j;Sz j 19and pS;
iUz j 1r B2 j 1gare p";pg-lower-regular.

The same process can now be repeated for any i ¥ 3 by setting the sets Q; j;1 , U; j1 for everyj P
rss to be the union of B; j; and the vertices of the grid that were previously embedded into U;
i1, that is, the images of the vertices p1;i i 1ag;p2;i j 20;::5;pi 15 1g. Since
[Bi j2]/ "s, ", and the lower-regularity conditions hold by (B1) and (B2), we may apply
Claim 3.1 to embed the ith row. It only remains to prove this claim.



Proof of Claim 3.1. Without loss of generality, we may assume that all the Q; j1 are of order 2"s,
as we can take arbitrary supersets if this is not the case. Let S; i1 Si’j1 be theset of all v P
Si j1 with at least sp{4 neighbours in U;j j r Q; j. On the one hand, aspS; j1;U;i jr Bi jqis
p"; pg-lower-regular and, thus, there are fewer than "|S; j1| verticesin S; j1 with degree less than
sp{2in U; jr B; j, we have

eGPSi j1r Sy ju; Qi ja¥ ISi jar S; il "ISi julsp{4:

On the other hand, assuming S; j1r S, ]jl is of order at least $p{16 and, hence,
ISi j1r Si JallQ jlp¥ sp{16 2"sp ¥ 100s{’
for C i 0 suciently large, property (A1) implies that
egpSi j1r S; le;Qi ja/ pl q2"s|Si jir S; jflp:

Since " {128, this is a contradiction. Therefore, there are sets S; jjl »Si j1 of order at least
ISi j1l5p{16 for eachj P rsssuch thateveryv PS; ;; satises INGpv; Ui jrQ; jal ¥ sp{4.

We will now nd a collection of sets S; 3, , S; ;;'of order at least |S; j1| $p{8 such that, for
every 2/ j / s, every v P S, ;, has a hon-empty Ngpv;S; ;1q. First,2chooseS; ¢; , S; ¢
offorder |S; 1| $p{8 arbitrarily, noting that such a set exists by the bound on |S; ].
Having chosén S, i1 for some 2/ j /2's, we choose S; j2 as follows. Recall that pS; j2;Si j1q
is p"; pg-lower-regular and, thus, by Lemma 2.1 and the bounds on the orders of S; ;, and S; ;;,
PS; ;25 Si j10 i$p2"; pg-lowér-regulaf It folldws that there are at least pl 2"qlS j2| ¥ IS j2l
sp{8 vertices v P S; ;,which satisfy 1

deggpv; S? 10 ¥ pl 2"qlS; jip ¥ *sp*{16i O:

We declare the set of such vertices to be S;2 j2 and continue on to the next index j.

Starting with an arbitrary v1 P S and sequentially choosing vj P Ngpvjs1; S; jzlq now completes
the proof. O
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