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On the size-Ramsey number of grids

David Conlon Rajko Nenadovy Milos Trujicz

Abstract

We show that the size-Ramsey number of the 
?

n   
?

n  grid graph is Opn5{4q, improving a
previous bound of n3{2 op1q by Clemens, Miralaei, Reding, Schacht, and Taraz.

1 Intro duct ion

For graphs G  and H ,  we say that G  is Ramsey for H ,  and write G  Ñ  H ,  if every 2-colouring of the
edges of G  contains a monochromatic copy of H .  In 1978, Erd}os, Faudree, Rousseau, and Schelp
[9] pioneered the study of the size-Ramsey number r̂pHq, dened as the smallest integer m for
which there exists a graph G  with m edges such that G  Ñ  H .  The existence of the usual Ramsey
number rpHq shows that this notion is sensible, since, for any H ,  it is easy to see that r̂pHq ⁄
rpHq . When H  is a complete graph, this inequality is an equality, a simple fact rst observed by
Chvatal.

An early example showing that size-Ramsey numbers can exhibit interesting behaviour was found
by Beck [1], who showed that Pn , the path with n vertices, satises r̂pPnq  Opnq, which is
signicantly smaller than the Opn2q bound that follows from applying the inequality above and
the corresponding bound rpPnq  Opnq for the usual Ramsey number of Pn . In a follow-up paper,
Beck [2] asked whether a similar phenomenon occurs for all bounded-degree graphs, that is,
whether, for any integer  ¥  3, there exists a constant c such that any graph H  with n vertices
and maximum degree  has size-Ramsey number at most cn. Although Ro•dl and Szemeredi [19]
showed that this question has a negative answer already for   3, much work has gone into
extending Beck’s result to other natural families of graphs, including: cycles [14], bounded-degree
trees [10], powers of paths and bounded-degree trees [3, 5, 13], and more besides.

Most of the known families with linear size-Ramsey numbers have a bounded structural parameter,
such as bandwidth [5] or, more generally, treewidth [15] (though see the recent papers [8, 18] for

examples with a somewhat dierent avour). However, a fairly simple family of graphs which
does not fall into any of these categories, but may still have linear size-Ramsey numbers, is the
family of two-dimensional grid graphs. For s P N, the s  s grid is the graph with vertex set
rss  rss where two pairs are adjacent if and only if they dier by one in exactly one coordinate.
Obviously, the maximum degree of the s  s grid is four, but its bandwidth and treewidth are

both exactly s (see, e.g., [4]), so the problem of estimating the size-Ramsey number of this graph,
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and usually we will take s  
?

n  so that the graph has n vertices, provides an interesting test
case for exploring new ideas and techniques.

Regarding upper bounds for the size-Ramsey number of the 
?

n
?

n  grid, an important result of
Kohayakawa, Ro•dl, Schacht, and Szemeredi [17], which says that every graph H  with n vertices
and maximum degree  satises r̂pHq ⁄  n21{ op1q, immediately yields the bound n7{4 op1q. This
was recently improved by Clemens, Miralaei, Reding, Schacht, and Taraz [6] to n3{2 op1q (and

an alternative proof of this bound was also noted in our recent paper [7]). The goal of this
short note is to provide an elementary proof of an improved upper bound.

Theorem 1.1. There exists a constant C  ¡  0 such that the size-Ramsey number of the 
?

n
?

n
grid graph is at most Cn5{4 .

Like much of the work on size-Ramsey numbers, the previous bounds for grids were obtained by
applying the sparse regularity method to show that every 2-colouring of the edges of the
Erd}os{Renyi random graph Gn;p, for some appropriate density p, contains a monochromatic
copy of the grid. However, it is a simple exercise in the rst moment method to show that for p
!  n1{2 the random graph Gn;p with high probability does not contain the s  s grid graph as a
subgraph if s  p nq, so the bound Opn3{2q is the best that one can hope to achieve using
this procedure.

To  see how it is that we gain on this bound, suppose that s  
?

n .  It is known [14] that there are
K ;  ¡  0 and a graph H  with K s  vertices and maximum degree at most  which is Ramsey for Cs ,  the
cycle of length s. Consider now a ‘blow-up’   of H  obtained by replacing every x  P V pHq by an
independent set Vx of order psq and every xy P H  by a bipartite graph pVx; Vyq in which every edge
exists independently with probability p  ps1{2q. With high probability, such a blow-up contains
ps5{2q  pn5{4q edges. That is, instead of revealing a random graph Gn;p on all n  ps2q vertices, we
only reveal edges that lie within psq bipartite subgraphs, each with parts of order psq. This
salvages a signicant number of edges which would otherwise go to waste.

Consider now a 2-colouring of   and recall that H  was chosen so that H  Ñ  Cs . A  key lemma,
Lemma 2.3 below, then allows us to conclude that there are sets V1; : : : ; Vs in   and a collection
Ui „ Vi of large subsets such that all pUi; Ui 1q with i  P rss, where addition is taken modulo s,
are ‘regular’ in the same colour. We may then sequentially embed the vertices of the grid so that
the rst row is embedded into U1; : : : ; Us, the second into U2; : : : ; Us; U1, and so on.

2 Denit ions and key  lemmas

In this section, we recall several standard denitions and note two key lemmas that will be
needed in the proof of Theorem 1.1. Most of these revolve around the concept of sparse regularity
(for a thorough overview of which we refer the reader to the survey by Gerke and Steger [12]).

For " ¡  0 and p P p0; 1s, a pair of sets pV1; V2q is said to be p"; pq-lower-regular in a graph G
if, for all Ui „ Vi, i  P t1; 2u, with |Ui| ¥  "|Vi|, the density dGpU1; U2q  eGpU1;U2q{p|U1||U2|q of edges
between U1 and U2 satises

dGpU1; U2q ¥  p1  "qp:

Immediately from this denition, we get that in every p"; pq-lower-regular pair pV1; V2q, for each i
P t1; 2u, all but at most "|Vi| vertices in Vi have degree at least p1  "qp|V3i| into V3i |  a
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fact we will make use of in the proof of Theorem 1.1. Another useful and well-known property is
that lower-regularity is inherited on large sets.

Lemma 2.1. Let 0 " , p P p0; 1s, and let pV1; V2q be an p"; pq-lower-regular pair. Then any
pair of subsets Vi

1 „ Vi , i  P t1; 2u, with |Vi
1| ¥  |Vi| form an p"{; pq-lower-regular pair.

For  ¡  0 and p P p0; 1s, a graph G  is said to be p; pq-uniform if, for all disjoint X ; Y „ V pGq
with |X|;|Y | ¥  |V pGq|, the density of edges between X  and Y satises dGpX; Y q  p1  qp. If only
the upper bound holds, the graph is said to be upper-uniform.1 For example, it is easy to see
that the random graph Gn;p is with high probability pop1q; pq-uniform whenever p "  1{n. If G
pV1; V2; Eq is bipartite, we say that G  is p; pq-uniform or upper-uniform if the same conditions
hold for all X  „ V1 and Y „ V2 with |X| ¥  |V1| and |Y | ¥  |V2|. In order to prove our main
technical lemma, we rely on the following result, a simple corollary of [16, Lemma 6], whose
proof follows a density increment argument. The same conclusion can also be obtained by an
application of the sparse regularity lemma.

Lemma 2.2. For all 0 " 1{2 and  P p0; 1q, there exists  ¡  0 such that the following holds for
every p P p0; 1s. Let G   pV1; V2; Eq be a p; pq-upper-uniform bipartite graph with |V1|  |V2| and |E| ¥
|V1||V2|p. Then there exist Ui „ Vi , i  P t1; 2u, with |Ui|  |Vi| such that pU1; U2q is p"; pq-lower-
regular in G.

The next lemma is the crux of our argument. Here and elsewhere, we say that pX; Y ; Eq is
lower-regular if pX; Y q is lower-regular with respect to the set of edges E .

Lemma 2.3. For every r;  ¥  2 and " ¡  0, there exists  ¡  0 such that the following holds for
every p P p0; 1s. Let H  be a graph on at least two vertices with pHq ⁄   and let   be obtained by
replacing every x  P V pHq with an independent set Vx of suciently large order n and every xy P
H  by a p; pq-uniform bipartite graph between Vx and Vy. Then, for every r-colouring of the edges
of  , there exists an r-colouring ’  of the edges of H  and, for every x  P V pHq, a subset Ux „ Vx

of order |Ux|  n such that pUx; Uy; E’pxyqq is p"; p{p2rqq-lower-regular for each xy P H ,  where
E ’p xy q  „ Ep q stands for the edges in colour ’pxyq.

Proof. Given ", r, and , we let   1{p2rq, " 1 : ",  1  2:2p" 1; q, and, for every i   ; : : : ; 1,
sequentially take "i  "i 1 i 1 and i   2:2p"i; q. Lastly, let  iPr 1s i .

F i x  any r-colouring of (the edges of )   and, for every c P rrs, let  c stand for the subgraph (in
terms of edges) in colour c. Note that H  has edge-chromatic number at most    1. In other
words, there exists a partition of the edges of H  into H1; : : : ; H 1 such that each H i  is a matching. We
nd the required collection tUx uxPV pHq by maintaining the following condition for every i  P r  1s: for
every x  P V pHq, there exists a chain Vx  Ux … Ux … Ux …  … Ux such that

(i )  |Uj|  j|Uj1| for all j  P ris and

(ii ) for every xy P j ⁄ i  H j ,  pUx; Uyq is p"i; pq-lower-regular in  c for some c P rrs.

Consequently, for i      1, we obtain sets Ux „ Vx, for every x  P V pHq, of order |Ux|  piPr 1s

iqn  n such that pUx; Uyq is p" 1; pq-lower-regular and, thus, p"; pq-lower-regular for every xy
P H .  It remains to show that we can indeed do this.

1 For consistency with the existing literature and for historical reasons, we use both ‘regular’ and ‘uniform’ as
terms, even though they are basically the same concept.
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Consider rst i   1. For each xy P H1 , let c P rrs be the majority colour in  rVx; Vys. As e

cpVx; Vyq ¥  p1  qn2p{r, we may apply Lemma 2.2 with "1 (as ") and  crVx; Vys (as G )  to obtain
sets Ux ; Uy with the desired properties. For every x  P V pHq which is isolated in H1 , we simply
take an arbitrary subset Ux „ Vx of order 1|Ux|. Thus, the required condition holds for i   1.

Suppose now that the condition holds for some i  ¥  1 and let us show that it also holds for i  1.
As above, for every xy P H i  1, let c P rrs be the majority colour in  rVx; Vys. Since  rVx; Vys is
p; pq-uniform and, by (i ), |Ux|;|Uy| ¥  n, we have e pUx; Uyq  p1  q|Ux||Uy|p and, hence,

p1  q|Ui||Ui|p{r ⁄  e cpU i ; U iq ⁄  p1 q|Ux||Uy|p:

Lemma 2.2 applied to  crU i ; U i s with "i 1 (as ") gives sets U i 1 „ U i and U i 1 „ U i of order

|Ui 1|  i  1|Ux| and |Ui 1|  i  1|Uy|

for which pUi 1; U i 1q is p"i 1; pq-lower-regular in  c. For every x  P V pHq which is isolated in
H i  1, we again take an arbitrary subset U i 1 „ U i of order i  1|Ui|. Observe also that,
for every xz P j ⁄ i  H j ,  since pUi ; Uiq was p"i; pq-lower-regular in  c1 for some c1 P rrs and
|Ui 1|  i  1|Ui|, Lemma 2.1 and the fact that "i { i  1  "i 1 imply that pUi 1; U i 1q is p"i

1; pq-lower-regular in  c1, as desired. This completes the proof.

We also need a variant of a result from our previous paper [7, Lemma 3.5] about regularity
inheritance. While that result was stated for the usual (full) notion of regularity, we only need
lower-regularity here, allowing us to save a factor of plog nq1{2.

Lemma 2.4. For all "; ;  ¡  0, there exist positive constants "1p";q and Cp"; ; q such that for p ¥
Cn1{2, with probability at least 1 opn5q, the random graph    Gn;p has the following property.

Suppose G  „   and V1; V2 „ V p q are disjoint subsets of order n~  n such that pV1; V2q is p"1; pq-
lower-regular in G.  Then there exists B  „ V p q of order |B| ⁄  "n~ such that, for each v; w P
V p q r  pV1 Y  V2 Y  Bq (not necessarily distinct), the following holds: for any two subsets Nv

„ N  pv;V1q and Nw „ N  pw;V2q of order n~p{4, both pNv; V2q and pNv; Nwq are p"; pq-lower-
regular in G.

Sketch of the proof. The proof proceeds along the same lines as the proof of [7, Lemma 3.5]. The
only dierence is that there we made use of an inheritance lemma for full regularity (namely,
Corollary 3.5 in [20]), which requires the sets on which regularity is inherited to be of order at least
C  log n{p, resulting in the requirement that p ¥  Cplog n{nq1{2. However, for lower-regularity, one
can instead use the inheritance lemma of Gerke, Kohayakawa, Ro•dl, and Steger [11, Corollary 3.8],
which only requires the sets to be of order at least C {p, resulting in p ¥  Cn1{2. The rest of the
proof remains exactly the same.

3 Proof of Theorem 1.1

Since it requires no additional work, we will actually prove the r-colour analogue of Theorem 1.1.
More precisely, we will show that for every integer r  ¥  2 there exists a graph of order n with
Opn5{4) edges for which every r-colouring of the edges contains a monochromatic copy of the
n   n grid for some  ¡  0.
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By a result of Haxell, Kohayakawa, and Luczak [14, Theorem 10], there exist constants K ;  ¡  0,
both depending only on r, such that, for every suciently large s P N, there is a graph H  on K s
vertices with maximum degree at most  which has the property that every r-colouring of its
edges contains a monochromatic copy of C ‘ ,  the cycle of length ‘,  for every log s !  ‘  ⁄  s. Let

  1{p2rq; "  {256; "1  "2:4p"{9; q;   2:3pr; ; "1q; and   mint1{p4Kq; "{4u: We show that the size-

Ramsey number of the s  s grid is Ops5{2q, which, for s  
?

n ,  implies
the desired statement.

Let   be a graph obtained by replacing every vertex x  P V pHq by an independent set Vx of
order s and every edge xy P H  by a bipartite graph between Vx and Vy in which each edge exists
independently with probability p  Cs1{2 for some suciently large constant C  ¡  0. With high
probability,   has the following property:

( A 1 )  e pVx; Vyq  p1  q|Vx||Vy|p for every xy P H  and Vx „ Vx and Vy „ Vy with |Vx||Vy|p ¥
100s{2.

This is a standard feature of random graphs and follows from the Cherno bound together
with an application of the union bound. In particular, it establishes that with high probability
 rVx; Vys is p; pq-uniform for every xy P H  and, therefore,   has at most

K s   {2  p1 qs2p  Ops5{2q

edges. Additionally, with high probability,   is such that every  rVx Y  Vy Y  Vz s has the property of
Lemma 2.4 (applied with "{9 as ", {3 as , and 3s as n) for every path xyz of length two in H .2

This again follows from the union bound, as there are Opsq such paths in total and the conclusion
of Lemma 2.4 holds with probability 1  ops5q for every xed path. We now x an outcome of   which
satises all of these properties.

Consider some r-colouring of the edges of   and let ’  be the colouring of the edges of H  given by
Lemma 2.3 (applied with "1 as "). By the choice of H ,  this colouring contains a monochromatic
copy of Cs ,  which, without loss of generality, we may assume has vertices 1; : : : ; s. Therefore,
there is a colour c P rrs and sets Ui of order s~  s in   such that, for every i  P rss, the pair pUi; Ui 1q
is p"1; pq-lower-regular in the subgraph of   induced by colour c, where we identify s i
with i. Let G  be the graph induced by these sets whose edges are the edges of   of colour c. We will
show that G  contains the s  s grid as a subgraph.

For every i  P rss, let B  „ Ui Y  Ui 1 Y  Ui 2 be the set given by Lemma 2.4 (which was applied with
"{9 as ", {3 as , and 3s as n) on  rUi Y  Ui 1 Y  Ui 2s, which is a set of ‘bad vertices’ for the pair
pUi 1; Ui 2q. As each Ui is a part of three such applications, by the chosen properties of
 , for every i  P rss there exists a set B i  „ Ui of order |Bi| ⁄  "s~ such that:

( B 1 )  pNv; Ui 2 r B i  2q is p"; pq-lower-regular3 in G  for every v P U i r B i  and Nv „ N Gpv; Ui 1q of
order s~p{4 and

( B 2 )  pNv; Nuq is p"; pq-lower-regular in G  for every v P Ui r  B i ,  u P Ui 1 r  B i  1 and Nv „
NGpv; Ui 1q, Nu „ N Gpu; Ui 2q, each of order s~p{4.

Our plan is to embed the vertex pi; jq of the s  s grid into Ui j 1 . The next claim helps us
achieve this.

2 Technically, to apply the lemma, we must also temporarily reveal the edges between Vx  and Vz and within
each Vx ; Vy ; Vz , but, unless xz  is itself an edge of H ,  these are all then removed from  .

3 The conclusion of Lemma 2.4 states that pNv ; Ui     2q is p"{9; pq-lower-regular, but, as B i      2  is small, Lemma 2.1
implies that pNv ; Ui     2  r  B i      2q is p"; pq-lower-regular.
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Claim 3.1. Let i  P rss. Suppose that sets S i  j 1  „ Ui j 1 r  B i  j 1 of order s~p{4 are given for
each j  P rss and that pSi j 1 ; Si  jq and pSi j 1 ; Ui j  r  B i  jq are p"; pq-lower-regular. Then, for

every Qi j 1 „ Ui j 1 , j  P rss, of order |Qi j1| ⁄  2"s~, there exists a path v1; : : : ; vs

with each vj P S i  j 1  such that |NGpvj ; Ui j  r  Qi jq| ¥  s~p{4.

U1 U2 U3 U4 U5

S1 S2 S3 S4 S5

vδ s−1 vδs v1 v2 v3

B 1      
Q1 B 2      

Q2 B 3      
Q3 B 4      

Q4 B 5      
Q5

Uδs

Sδ s

vδ s−2

Qδs
δs

Figure 1: A  picture showing the rst two rows of the grid already embedded (the thick black lines), the
candidate sets for the third row (the grey blobs S3; S4; : : : ; Ss ; S1 ; S2), and (in red) the path v1; v2; : : : ; vs given
by Claim 3.1, together with the corresponding neighbourhoods NG pvj ; Ui j  r  Qi j q (the red blobs).

Before proving the claim, we show how to complete the embedding of the grid assuming that it
holds. We start by embedding the rst row. Let v1 P U1 r  B 1  be a vertex for which there is S2 „
NGpv1; U2 r  B2q of order s~p{4 such that pS2; U3 r  B3q is p"; pq-lower-regular. As pU1 r B 1 ; U 2

r B 2 q  is p2"1; pq-lower-regular, there are at least p12"1qp1"qs~ vertices v P U1 r B 1  that satisfy
degGpv; U2 r  B2q ¥  p1  2"1q|U2 r  B2|p ¥  s~p{4;

by our choice of constants. Thus, by property (B1) almost any choice of v1 P U1 r  B 1  will do.
Sequentially, for every i  ¥  2, let vi P S i  be a vertex for which there is S i  1 „ N Gpvi; Ui 1 r B i  1q
of order s~p{4 and both pSi 1; Ui 2 r  B i  2q and pSi ; Si 1q are p"; pq-lower-regular. This is
possible as pSi; Ui 1 r  B i  1q is p"; pq-lower-regular and properties (B1) and (B2) hold. We
continue until we have embedded the rst row of the grid as v1; : : : ; vs, with vi P Ui for every i
P rss.

Consider now sets S2; : : : ; Ss ; S1 which we previously chose, where we note that S1 was dened
when we embedded vs. In particular, S1 j  „ U1 j  r  B 1  j  and pS1 j ; S2 jq and pS1 j ; U2 j  r
B 2  jq are both p"; pq-regular for every j  P rss. Then, by setting Q1 j  : B 1  j  Y  tv1 j u and
invoking Claim 3.1 with i   2, we can embed the second row of the grid as u1; : : : ; us, with uj P
S1 j  for every j  P rss. By the conclusion of Claim 3.1 and a slight abuse of notation, there is a
collection of sets S2 j  „ N Gpuj ; U2 j  r  Q2 jq for every j  P rss, each of order s~p{4, which, by (B1)
and (B2), as uj  P U1 j  r B 1  j  and uj  1 P U1 j  1 r B 1  j  1, are such that pS2 j ; S2 j  1q and pS2

j ; U2 j  1 r  B 2  j  1q are p"; pq-lower-regular.

The same process can now be repeated for any i  ¥  3 by setting the sets Qi j 1  „ Ui j 1 for every j  P
rss to be the union of B i  j 1 and the vertices of the grid that were previously embedded into Ui

j 1 , that is, the images of the vertices p1; i j   1q; p2; i j   2q; : : : ; pi  1; j 1q. Since
|Bi j1| ⁄  "s~, ", and the lower-regularity conditions hold by (B1) and (B2), we may apply
Claim 3.1 to embed the ith row. It only remains to prove this claim.
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Proof of Claim 3.1. Without loss of generality, we may assume that all the Qi j 1 are of order 2"s~,
as we can take arbitrary supersets if this is not the case. Let S i  j 1  „ S i  j 1  be the set of all v P
S i  j 1 with at least s~p{4 neighbours in Ui j  r  Qi j . On the one hand, as pSi j 1 ; Ui j  r  B i  jq is
p"; pq-lower-regular and, thus, there are fewer than "|Si j1| vertices in S i  j 1  with degree less than
s~p{2 in Ui j  r  B i  j , we have

eGpSi j 1  r  S i  j 1 ; Qi jq ¥  
 

|Si j 1 r  S i  j1|  "|Si j1|s~p{4:

On the other hand, assuming S i  j 1 r  S i  j 1  is of order at least s~p{16 and, hence,

|Si j 1  r  S i  j1||Qi j|p ¥  s~p{16  2"s~p ¥  100s{2

for C  ¡  0 suciently large, property (A1) implies that

eGpSi j 1  r  S i  j 1 ; Qi jq ⁄  p1 q2"s~|Si j 1 r  S i  j1|p:

Since " {128, this is a contradiction. Therefore, there are sets S i  j 1  „ S i  j 1  of order at least
|Si j1|s~p{16 for each j  P rss such that every v P S i  j 1 satises |NGpv; Ui j  r Q i  jq| ¥  s~p{4.

We will now nd a collection of sets S i  j 1  „ S i  j 1  of order at least |Si j1|  s~p{8 such that, for
every 2 ⁄  j  ⁄  s, every v P S i  j 2  has a non-empty NG pv; Si j1q. First, choose S i  s1 „ S i  s1
of order |Si s1|  s~p{8 arbitrarily, noting that such a set exists by the bound on |Si s1|.
Having chosen S i  j 1 for some 2 ⁄  j  ⁄  s, we choose S i  j 2 as follows. Recall that pSi j 2 ; Si  j1q
is p"; pq-lower-regular and, thus, by Lemma 2.1 and the bounds on the orders of S i  j 2  and S i  j 1 ,
pSi j 2 ; Si  j1q is p2"; pq-lower-regular. It follows that there are at least p1  2"q|Si j2| ¥  |Si j2|
s~p{8 vertices v P S i  j 2  which satisfy

degGpv; Si j1q ¥  p1  2"q|Si j1|p ¥  2s~p2{16 ¡  0:

We declare the set of such vertices to be S i  j 2 and continue on to the next index j .

Starting with an arbitrary v1 P S i  and sequentially choosing vj P NG pvj 1 ; Si j1q now completes
the proof.
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